

National Institute for Health and Clinical Excellence

Public Health Programme

Walking and cycling: local measures to promote walking and cycling as forms of travel or recreation:

Health economic and modelling report

21st March 2012

Authors:

Alan Brennan

Laurence Blake

Daniel Hill-McManus

Nick Payne

Helen Buckley Woods

Lindsay Blank

School of Health and Related Research (ScHARR), University of Sheffield, Regent Court, 30 Regent Street, Sheffield, S1 4DA, UK

CONTENTS

National Institute for Health and Clinical Excellence	1
Public Health Programme	1
Walking and cycling: local measures to promote walking and cycling as forms travel or recreation:	of 1
Health economic and modelling report	1
21 st March 2012	1
Executive summary	1
Acknowledgments	21
Author contributions 2	21
1 Introduction 2	22
1.1 Overall Aims and objectives2	22
1.2 Overall Research Questions	22
1.3 Objectives of This Report	22
1.4 Description of Modelling Requirements from NICE Scope / Protocol 2	22
1.5 Background2	23
2 Economic Literature Review 2	26
2.1 Objectives of Economic Literature Review	26
2.2 Economic Review Methods	26
2.2.1 Search Strategy 2	26
2.2.2 Economic Modelling Searches 2	26
2.2.3 Inclusion and Exclusion Criteria for Obtaining Full Papers	27
2.3 Results of Review of Cost-Effectiveness Studies	27
2.3.1 Summary of Studies Included in this Review 2	27
2.3.2 Intervention Types Examined in Cost-Effectiveness Literature 2	29
2.3.3 Effectiveness Measures Examined in Cost-Effectiveness Literature	30
2.3.4 Costs Examined in Cost-Effectiveness Literature	32
2.3.5 Cost Utilities and Cost Benefits Reported in Cost-Effectivener Literature	ss 33
2.4 Economic Review Evidence Statement Summaries	34
2.4.1 Economic Evidence Statement 1. Led walking including Walking SchoBus 34	ol

2	2.4.2	Economic Evidence Statement 2. Pedometer	35
2	2.4.3	Economic Evidence Statement 3. Media campaigns	35
2 (2.4.4 TravelS	Economic Evidence Statement 4. Community Health Inforn Smart)	nation 35
2 [2.4.5 Demons	Economic Evidence Statement 5. Multi-component (C	ycling 36
2.5	i Co	nclusions from the Economic Evidence Review	36
3 N	MODEL	LING METHODOLOGY	38
3.1	Bri	ef review of Existing Model Frameworks	38
3	3.1.1	Previous Physical Activity Work for NICE (MATRIX)	38
3 (3.1.2 YHEC)	Previous Walking and Cycling Infrastructure Economics Work for 38	NICE
3	3.1.3	The HEAT	38
3	3.1.4	The National Transport Model	39
3	3.1.5	Need for a New Model	39
3.2	2 Ov	erview of Conceptual Modelling Framework	39
3.3	B Po	pulation of Interest and Baseline Estimates of Behaviour	41
3	3.3.1	Population Modelled	41
3	3.3.2	Key Dataset 1 – Health Survey for England	41
3	3.3.3	Key Dataset 2: National Travel Survey	41
3	3.3.4	Health Survey for England Overall Physical Activity	41
3	3.3.5	HSE Compared with NTS for Cycling Data	43
3	3.3.6	HSE Compared with NTS for Walking Data	43
3.4	Ou	tcomes of Interest for Inclusion in the Modelling	43
3	3.4.1	Walking and Cycling Outcomes	43
3	3.4.2	Health Outcomes	44
3	3.4.3	Environmental Outcomes	45
3	3.4.4	Cost and Economic Outcomes	45
3	3.4.5	Other Outcomes Excluded	46
3.5	5 Tra	ansforming Physical Activity Outcome to Reduced Mortality Risk	47
3 N	3.5.1 Mortality	Evidence Used for Transforming Physical Activity Outcome to Red	duced 47

3.5.2 S	Step Function Version of the Mortality Risk Model	47
3.5.3 A Fitting to C	A Modelled Continuous Risk Function Based on a Logarithmic Curr Copenhagen Relative Risks	ve 47
3.6 Using	g Life-Tables,	49
3.7 Estin using Statist	nating Change in Physical Activity given Evidence on Walking/Cyclir ical Models: Health Survey for England	ng 50
3.8 Estin Statistical Mo	nating Change in Driving given Evidence on Walking/Cycling usir odels: National Travel Survey	ng 52
3.8.1 C	Car Distance Related to Walking, Cycling and Other Covariates	52
3.8.2 C	Car Time Related to Walking, Cycling and other Covariates	58
3.8.3 N Covariates	اumber of Trips by Car Related to Walking, Cycling and oth s	er 59
3.9 Gene and Cost Evi	eral Approach to Incorporating Interventions' Effectiveness Evidence into the Model	ce 51
3.9.1 T	Types of Outcomes Reported by Effectiveness Studies	51
3.10 Selec	ction of Interventions for Modelling	51
3.11 Spec	cific Intervention Effectiveness Estimates	52
3.11.1 N	Aulti-Component - Cycling Demonstration Towns	32
3.11.1.1	Effectiveness Evidence	32
3.11.1.2 needed	2 Assumptions used to transform effectiveness evidence to input for the model	ıts 32
3.11.1.3	Inputs Used in the Model	32
3.11.2 N	Aulti-Component – Sustainable Travel towns	53
3.11.2.1	Effectiveness Evidence	53
3.11.2.2 model	2 Assumptions to transform effectiveness evidence to inputs for th 64	ne
3.11.3 P	Personalised Travel Support – TravelSmart	35
3.11.3.1	Effectiveness Evidence	35
3.11.3.2	2 Assumptions to Transform Effectiveness Evidence to Model Inputs 6	66
3.11.4 P	Pedometer Interventions	66
3.11.4.1	Effectiveness Evidence	58
3.11.5 L	ed Walking Interventions	72
3.11.5.1	Effectiveness Evidence	72
3.12 Spec	cific Interventions: Cost Estimates and Assumptions	73 iii

	3.12	.1	Costing Multi-component Intervention - Cycling Demonstration To 73	owns
	3.12	.2	Costing Multi-Component Intervention – Sustainable Travel Towns	73
	3.12	.3	Costing Personalised Travel Support - TravelSmart	74
	3.12	.4	Costing Pedometer Interventions	74
	3.12	.5	Costing Led Walking Interventions	79
	3.13	Mc	netary Valuation of Environmental Outcomes	82
	3.14	Mc	del to Integrate Data and Evidence	83
	3.15	So	me Key Limitations on Model Approach	84
4	Res	ults		86
	4.1	Re	sults: Multi-Component	86
	4.1.1	I	Results: Multi-Component - Cycling Demonstration Towns	87
	4.1.2	2	Results: Multi-Component – Sustainable Travel towns	89
	4.2	Re	sults: TravelSmart	91
	4.3	Re	sults: Pedometer	94
	4.4	Re 10	sults: Led Walking and Encouraging Independent Community Wa 4	lking
	4.4.1	I	Extra Runs Requested by NICE/PDG	109
	4.4.2	2	Get Walking Keep Walking	118
	4.5	Re	sults: What-If Analyses	. 119
	4.5.1 Phys	l sica	What ifs on Threshold Costs for 1% of the Population Becon Active Forever (>2 Hours Moderate Exercise Per Week)	ming 120
	4.5.2 Phys	2 sica	What ifs on Threshold Decay Rates for 1% of the Population Becon Active at a Cost of £50 Per Person	ming 124
	4.5.3 Phys	3 sica	What ifs on Threshold Decay Rates for 1% of the Population Becon Active at a Cost of £10 Per Person	ming 129
	4.5.4 Minu	1 ites	What ifs on Walking: Threshold Decay for an Average Increase of a week Walking at a Cost of £10.	of 10 134
	4.5.5 Wee	5 k C	What ifs on Threshold Decay for an Average Increase of 10 Minut ycling for those not Physical Active at a Cost of £10.	tes a 138
	4.6 and Co	Co St F	mparison of Results Across Interventions in Terms of Health Ber Per QALY	nefits . 142
	4.7 Effects	Co	mparison of Results across Interventions in Terms of Environmentation 149	ental

	4.8 with H per Pe	Wh lighe ersor	nat-If Analyses to Investigate Trade-Offs Between Narrow Interve er Effects per Person, Versus Wider Interventions with Smaller I n	entions Effects 154
5	DIS	CUS	SION	163
	5.1	Lin	nitations and Implications	163
6	Refe	eren	ces	164
	6.1	Re	ferences Used in the Modelling	164
	6.2	Re	ferences Used In the Cost-Effectiveness Review	166
7	APP	PEND	DICES	168
	7.1	Ар 168	pendix on Literature Search Methods for Cost-Effectiveness Ev 3	idence
	7.1.	1	List of Data Sources	168
	7.1.2	2	Example Search Strategies	169
	7.2 Full Re	Ap eadir	pendix on Studies identified as Possible for Inclusion but Rejecteng – and Reasons for Rejection	d after 173
	7.2. ⁻ Rea	1 ding	Studies Identified by Economic Searches and Rejected after – and Reasons for Rejection.	er Full 173
	7.2.2 (Inde	2 eper	Inclusion and Exclusion for Papers Supplied by NICE / PDG / ondently Double Reviewed by LB and ABr)	Others 174
	7.3 Literat	Ap ure l	pendix: Evidence Tables for Included Studies in Health Eco Review	nomic 178

INDEX OF TABLES

Table 2.1 Summary of economic literature review process 28
Table 2.2: Summary of studies included in the review of cost-effectiveness evidence.
Table 3.1 Comparison of HSE and NTS cycling time data
Table 3.2. Relative risk of mortality by age and gender. 47
Table 3.3 Physical activity related to walking and cycling from HSE – regression results 51
Table 3.4 Regression estimates for predictor variables of car distance travelled fromthe NTS for the group with access to a car as a main driver
Table 3.5 Regression estimates for predictor variables of car distance travelled fromthe NTS for the group without access to a car as a main driver.55
Table 3.12 Cycling Demonstration Towns: key effectiveness evidence. 62
Table 3.13 Sustainable Travel Towns key effectiveness evidence 63
Table 3.14 Assumptions to transform Sustainable Travel Towns evidence into walk- time and bike-time increases.64
Table 3.15 Sustainable Travel Towns alternative evidence formulation based onpercentage increase in distances rather than trips
Table 3.16 Assumptions to convert Sustainable Travel Towns percentage increase indistance into model inputs in terms of mean distance increase.65
Table 3.17 Estimated weighted average effectiveness for TravelSmart
Table 3.18 Assumptions used to transform effectiveness evidence on TravelSmart toinputs needed for the model
Table 3.19 Summary of effectiveness from UK trial of pedometers (main resourceinput over first 4 weeks of intervention)69
Table 3.21 Effectiveness evidence for larger Australian trial of pedometers (3 months follow up)
Table 3.22 Summary of effectiveness evidence from UK trial of led walking
Table 3.23 Estimated costing for Cycling Demonstration Towns 73
Table 3.24 Costing multi-component intervention – Sustainable Travel Town
Table 3.25 Cost estimates for pedometer study Baker, 2008a 75
Table 3.26 Cost Estimates for pedometer study Baker 2008b and its longer term follow-up to 12 months 76
Table 3.27 Cost estimates for pedometer study Baker 2008b and its longer termfollow-up to 12 months using cost data from Shaw (2011)
Table 3.28 Cost estimates for pedometer study Merom 2007 (Australia)

Table 3.29 Description of key cost items in Lamb 2001 led walking trial
Table 3.32 Extract from Department of Transport valuation
Table 4.1 Multi-component results summary 86
Table 4.2 Results: multi-component - Cycling Demonstration Towns (Scenario 1a) 87
Table 4.3 Results: multi-component - Cycling Demonstration Towns (Scenario 1b) 88
Table 4.4 Results: multi-component – Sustainable Travel Towns using trips evidence for congestion estimate 89
Table 4.5 Results: multi-component – Sustainable Travel towns (Scenario 2b) usingBiketime and Walktime plus regression model to estimate congestion effects
Table 4.6 Results: TravelSmart using continuous risk function for mortality
Table 4.7 Results: TravelSmart using step function risk for mortality
Table 4.8 Pedometers results from studies by Baker
Table 4.9 Pedometers results from short-term study by Baker using continuous risk function for mortality
Table 4.10 Pedometers results using step-function risk for mortality 97
Table 4.11 Pedometers with continuing support/advice: results using continuous risk function for mortality
Table 4.12 Pedometers with continuing support/advice: results using step-function risk for mortality
Table 4.13 Pedometers with continuing support/advice: results using continuous riskfunction for mortality (lower continuing support cost scenario)
Table 4.14 Pedometers with continuing support/advice: results using step-functionrisk for mortality (lower continuing support cost scenario)
Table 4.15 Pedometer results based on Australian study (continuous risk function)
Table 4.16 Pedometer results based on Australian study (step-risk function) 103
Table 4.17 Led walking results assuming Lamb et al. before and after results arerepresentative of effect in practice
Table 4.18 Led walking results assuming 50% of the effectiveness seen in Lamb etal. before and after Results106
Table 4.19 Led walking results assuming 10% of the effectiveness seen in Lamb etal. before and after results
Table 4.20 Led walking Results assuming 10% of the effectiveness seen in Lamb et al. before and after results and lower costs per participant from Derbyshire PCT 108
Table 4.21 Led walking result: Lamb with base cost and 50% annual decay 109
Table 4.22 Led walking result: Lamb with base cost and 75% annual decay 110
vii

Table 4.23 Led walking result: Lamb with base cost and 100% annual decay 111
Table 4.24 Led walking result: Lamb with lower cost and 50% annual decay 112
Table 4.25 Led walking result: Lamb with lower cost and 75% annual decay 113
Table 4.26 Led walking result: Lamb with lower cost and 100% annual decay 114
Table 4.27 Led walking result: Lamb with 50% annual decay and 1.5% annual benefit discount
Table 4.28 Led walking result: Lamb with 75% annual decay and 1.5% annual benefit discount
Table 4.29 Led walking result: Lamb with 100% annual decay and 1.5% annual benefit discount 1.5% annual 117
Table 4.30 Results for Get Walking Keep Walking 118
Table 4.31 Threshold costs for 1% of the population becoming physical active forever
Table 4.32 What if 1% more physically active forever at a cost of £1 per person 121
Table 4.33 What if 1% more physically active forever at a cost of £100 per person122
Table 4.34 What if 1% more physically active forever at a cost of £1,000 per person
Table 4.35 Threshold Decay for 1% of the population becoming physical active at acost of £50 per person
Table 4.36 What-if 1% more physically active at cost £50 per person with decay = 0%
Table 4.37 What-if 1% more physically active at cost £50 per person with decay =25%
Table 4.38 What -if 1% more physically active at cost £50 per person with decay =50%127
Table 4.39 What -if 1% more physically active at cost £50 per person with decay =100%
Table 4.40 Threshold decay for 1% of the population becoming physical active at acost of £10 per person
Table 4.41 What -if 1% more physically active at cost £10 per person with decay =0%
Table 4.42 What -if 1% more physically active at cost £10 per person with decay =25%
Table 4.43 What -if 1% more physically active at cost £10 per person with decay =50%
Table 4.44 What -if 1% more physically active at cost £10 per person with decay = 100%

Table 4.45What if analyses for a 10 minute increase in walking in those notcurrently physical active at a cost of £10 per person134
Table 4.46 What -if 10 minutes more walking for those not physically active. decay =0%
Table 4.47 What -if 10 minutes more walking for those not physically active. decay =50%
Table 4.48 What -if 10 minutes more walking for those not physically active. decay =100%
Table 4.49 What if analyses for a 10 minute increase in cycling in those not currentlyphysical active at a cost of £10 per person138
Table 4.50 What -if 10 minutes more cycling for those not physically active; decay =0%
Table 4.51 What -if 10 minutes more cycling for those not physically active; decay =50%
Table 4.52 What -if 10 minutes more cycling for those not physically active; decay =100%
Table 4.53 The influence of effectiveness decay 142
Table 4.54 Comparison of results across interventions144
Table 4.55 Cost benefit comparison across 'what if' scenarios147
Table 4.56 Comparison of results across Interventions in terms of environmentaleffects and cost-benefit
Table 4.57 Sensitivity analysis for congestion results if kilometres driven reductionswere on different road types153

Table 4.58: What-If Analysis Results Examining Offer Cost and Uptake Cost for aRange of levels of Effect and Uptake: Scenarios with No Decay157

Table 4.59: What-If Analysis Results Examining Offer Cost and Uptake Cost for a Range of levels of Effect and Uptake: Scenarios with 50% Decay per annum...... 159

INDEX OF FIGURES

Figure 3.1: % Females undertaking under 2 hours overall physical activity per week (HSE 2008)
Figure 3.2: % Males undertaking under 2 hours overall physical activity per week (HSE 2008) 42
Figure 3.3 Illustration of step-function risk model for mortality
Figure 3.4 Example of fitted continuous mortality risk function (dotted line)
Figure 3.5 Physical activity regression, comparison of observed, expectation and randomly sampled values

EXECUTIVE SUMMARY

Objectives

This health economic and modelling report has two main objectives:

- 1. Review existing health economic studies on walking and cycling interventions relevant to the scope.
- Model, to the extent that evidence allows, the likely cost effectiveness/cost utility of those interventions identified in the earlier effectiveness review and considered by the Programme Development Group (PDG) to be of highest priority.

Economic Evidence Review

The economic evidence review identified a small number of economic evaluations of specific walking and cycling interventions. The findings are:

- ER1. Some UK and international evidence exists that interventions to promote walking or cycling could be considered cost-effective, particularly for the following types of interventions: led walking including walking school bus, pedometers, TravelSmart, media campaigns, and multi-component.
- ER2. For the interventions either modelled or directly assessed by the small number of studies available, all would be considered cost-effective when compared to standard care or 'do nothing', except under the extremes of some of the sensitivity analyses.
- ER3. There remain however, some significant gaps when compared with the range of intervention categories highlighted by the effectiveness review.
- ER4. Only one of the reports, the Cycling Demonstration Towns considered environmental outcomes, and the general applicability of these may be in question, as the intervention was infrastructure based.
- ER5. There is a need for some *de novo* modelling work to provide additional costeffectiveness evidence to the PDG.

Method: The ScHARR Walking and Cycling Model version 1.0

The modelling team has developed a new model, which in brief operate as follows:

The modelling builds upon three key components

- The relationship between levels of walking and cycling, and overall physically activity. We use the Health Survey for England (HSE) 2008 to estimate statistical relationships between these variables. This allows direct evidence from studies of the effect of interventions on levels of walking and cycling to be converted into estimated changes on overall physical activity.
- The relationship between physical activity and relative risk of mortality as reported in the long-term observational study by Anderson et al. (2000). This allows transformation of physical activity level changes into life expectancy, numbers of deaths and quality adjusted life-years.
- The relationship between levels of walking and cycling, and travel, especially driving distance but also driving time and numbers of trips. We use the National Travel Survey (NTS) data from 2002 to 2008 to estimate statistical relationships between these variables. This allows estimation of the effects of interventions that increase levels of walking and cycling on reduced kilometres driven and hence reduced congestion, pollution, and greenhouse gas emissions.

In overview, the steps taken to produce this common platform have been as follows

- 1. Analysis of baseline data (by age, sex, work status, car ownership)
 - a. HSE walking, cycling, physical activity
 - b. NTS trips, walking, cycling, driving by purpose
- 2. Take evidence from effectiveness review on effectiveness of specific interventions (chosen as priorities by the PDG).
- 3. For health benefits, estimate change in levels of physical activity either directly from the evidence or indirectly via statistical relationships between walking and cycling levels and overall physical activity from HSE.
- 4. Quantify reduced mortality risk given increased levels of physical activity using Anderson *et al.* Copenhagen study (as is used in the HEAT) using

either a step function on relative risks taken directly from the study and based on per cent of people achieving over 2 hours moderate activity per week, or a modelled continuous risk function.

- Use ONS life-tables and evidence on average health related quality of life by age and sex to estimate discounted lifetime QALYs for baseline versus with intervention.
- 6. For the environmental benefits considered, estimate change in levels of car drive distance either directly from the evidence on reduced car distance / trips or indirectly via statistical relationships between walking and cycling levels and overall car distance from NTS. (We relate driving to walking and cycling via NTS zero inflated negative binomial regressions for car driving distance, car driving time and number of trips made).
- 7. Estimate cost of intervention if rolled out across all England.
- 8. Compute cost per discounted QALY gained over a lifetime horizon using health benefits modelling.
- 9. Compute value per annum of congestion reduction, pollution, and other environmental outcomes using DfT guidelines on economic evaluation (*e.g.* average value of 13.1p per vehicle km for congestion across the whole road network) as well as value of deaths avoided using value of a statistical life.

Analyses Undertaken

Following consultation with the Economic Sub-group members and PDG, four main intervention types were selected for modelling. These were:

- 1. Multi-component Interventions including Cycling Demonstration Towns, and Sustainable Travel Towns
- 2. Personalised Travel Advice TravelSmart,
- 3. Pedometer interventions
- 4. Community based led walks
- 5. In addition, a series of what-if analyses was undertaken. The purpose of these was to determine the level of cost is justifiable for interventions with particular levels of effect, and to investigate the trade-off between narrow

interventions with large effects per person versus wider interventions with smaller effects per person. Specific scenarios considered were:

- a 1% increase in the population who are physically active
- encouraging those who are not physically active to walk an extra 10mins per week on average
- encouraging those who are not physically active to cycle an additional 10mins per week
- considering levels of decay ranging from the effect continuing forever, through annual decay rates of 25, 50%, 75% and 100% (*i.e.* no effect after year 1).

Results

The modelling findings for specific interventions are given below

- M1. For Cycling Demonstration Towns, the modelling undertaken suggests that the intervention appears cost-effective. The cost per QALY is estimated to be of the order of £5,000 for models runs using either the continuous or the step risk function.
- M2. For Sustainable Travel Towns, the modelled cost-effectiveness is estimated to be of the order of £900 per QALY for models runs using either the percentage change in trips evidence or the walking and cycling distance evidence.
- M3. For TravelSmart, the modelling undertaken suggests that the intervention appears cost-effective. The cost per QALY is estimated to be of the order of £300 using the continuous risk function, or £2,500 using the step risk function.
- M4. For pedometers, a short-term 4-week pedometer intervention appears costeffective, but less so than some of the multi-component interventions. The cost per QALY is estimated to be of £2,900 using the continuous risk function, or £9,400 using the step risk function. Part of the reason for this is the decay in effect – we assume zero effect after year one.
- M5. For the longer-term support pedometer intervention, evidence suggests that an effect persists to 12 months. In the scenarios modelled, we assume that

this level would be maintained in future years provided the support costs (advice and telephone support) were maintained. The results suggest that longer-term support to pedometers appears cost-effective. For a scenario where the ongoing cost per participant is around £25, the cost per QALY is estimated to be of the order of £1,700 (continuous risk function), or £7,800 (step risk function). With ongoing cost £9 per participant, results are estimated at £750 per QALY (continuous risk function), or £3,400 per QALY (step risk function).

- M6. The main led-walking evidence modelled comes from a UK RCT by Lamb et al. Using this evidence has been a topic of debate and concern within the PDG, as the RCT shows no difference between led walking and a comparator arm of advice. If we use the before and after comparison of the led walking arm itself, it could be considered that some or even all of the effect was a regression to the mean effect. The results of the modelling undertaken suggest that the intervention appears cost-effective but is very sensitive to the level of effect assumed. The cost per QALY is estimated to be of the order of £1,900 using 100% of the apparent effect from the trial, £3,600 using 50% of the apparent effect, and £16,500 using 10% of the apparent effect. For this 10% of the apparent effect scenario, but using slightly lower costs obtained from personal communication with representatives of Derbyshire Primary Care Trust, the cost per QALY is estimated to be of the order of £10,400.
- M7. We also model the 'Get Walking Keep Walking' intervention using evidence from an evaluation of a large UK study. The modelling undertaken suggests that the intervention appears cost-effective. The cost per QALY is estimated to be of the order of £2,700.

The modelling findings for what-if analyses are given below

M8. The results suggest that interventions that could achieve a permanent shift of one percentage point in the proportion of the total population achieving over 2 hours physical activity per week, would have a substantial effect. The cost per QALY estimates for a range of different costs are:

Investment per person	Cost per QALY of
currently not-physically	achieving 1% of the
active	population becoming more
	physically active

£1	£118
£50	£4,733
£100	£9,465
£1,000	£94,650

M9. However, decay rates in effectiveness have a substantial influence on costeffectiveness. For a £50 per person intervention, the cost per QALY estimates for a range of decay rates are:

Annual Decay Rate in Effect	Cost per QALY of achieving 1% of the population becoming more physically active	
0%	£4,733	
25%	£40,068	
50%	£66,255	
100%	£99,199	

M10. For a £10 per person intervention, the cost per QALY estimates for a range of decay rates are:

Annual Decay Rate in Effect	Cost per QALY of achieving 1% of the population becoming more physically active	
0%	£947	
25%	£8.014	
50%	£13,251	
100%	£19,824	

M11. The results suggest that interventions that could achieve a permanent shift in <u>walking</u> of 10 minutes per week in those who are currently under 2 hours physical activity per week would have a substantial benefit. If this effect could

be maintained, the modelling suggests that such interventions would be very cost-effective (using the continuous risk function approach). Again, the results are sensitive to the rate of decay in effect, but such interventions would remain cost-effective under the modelling assumptions used. For a £10 per person intervention, the cost per QALY estimates for a range of decay rates are:

Annual Decay Rate in Effect	Cost per QALY (assuming a £10 walking intervention)	
0%	£43	
50%	£666	
100%	£991	

M12. The results suggest that interventions which could achieve a permanent shift in <u>cycling</u> of 10 minutes per week in those who are currently under 2 hours physical activity per week would have a substantial benefit. If this effect could be maintained, the modelling suggests that such interventions would be very cost-effective (using the continuous risk function approach). Again, the results are sensitive to the rate of decay in effect, but such interventions would remain cost-effective under the modelling assumptions used. For a £10 per person intervention, the cost per QALY estimates for a range of decay rates are:

Annual Decay Rate in Effect	Cost per QALY (assuming a £10 cycling intervention)	
0%	£40	
50%	£617	
100%	£918	

M13. For decision makers considering which of these interventions to implement given limited resources or considering what mix of a variety of interventions to invest in, it might be useful to consider comparison across interventions rather than each intervention versus 'do nothing'. This is most easily done in health economic terms by calculating the incremental 'net benefit' of each

intervention, which is simply a way of estimating the monetary value of the QALYs gained (assuming 1 QALY is 'worth' £20,000) and netting off the cost of the intervention. We present detailed analyses of this kind and the results suggest that interventions such as sustainable travel towns could probably be considered more cost-effective than pedometers or led-walking. The implication of these analyses is not that decision makers should only implement the intervention suggested as having the lowest cost per QALY (or highest incremental net benefit) because clearly local context issues, feasibility and timing of implementations, the value of a mix of measures to encourage different subgroups within the population etc., are all going to be important. It does however mean that decision makers should begin to consider, estimate and monitor the effectiveness of the measures they put in place to encourage walking and cycling and their costs.

M14. Where possible, DfT guidelines have been followed when assessing environmental and traffic related outcomes. These have been informed by the series of published Web-Tag guides and by personal communication with transport economists at the department. The results suggest that TravelSmart is the most cost-effective intervention; followed by the Sustainable Travel Towns programme. The three pedometer interventions are next with very similar results, while the Cycling Demonstration Towns appears to be the least cost-effective. It should be noted that these cost-benefit ratios take into account only a limited selection of environmental outcomes, and are used for comparison across interventions, rather than as full assessments of each programme.

When the reduced travel by motorised traffic is presumed to apply to a subset of roads types, rather than to the national road mix, calculated benefits increase for all individual road types except for minor roads in rural areas. This is because of the proportionately large influence of the congestion cost in the total calculation

M15. We have also considered the question regarding the balance of costs and effects that accrue for interventions that are designed for small numbers of people but have large effects versus interventions which are designed for much wider populations and have smaller effects per person. In particular,

we have undertaken what-if analyses to examine the sensitivity of results to the proportion of people achieving uptake of the intervention from the wider population to whom it is offered. When the offer cost is small, the effect of uptake is negligible. The higher the level of effect, the more cost-effective the intervention, but this is not a simple linear relationship, because the relative risk function used. The continuous logarithmic relative risk function means that increasing levels of physical activity by 5 minutes is more beneficial for those who are not physically active, than for those who already are. Therefore, increasing physical activity by say 60 minutes, is not twice as beneficial as increasing physical activity by 30 minutes, a kind of diminishing returns. As the offer cost becomes a higher component of the total cost, then the cost per QALY becomes more and more sensitive to the level of uptake, and it becomes apparent that there can be a threshold level of uptake below which the intervention would not be considered cost-effective. This threshold is higher when the effectiveness of the intervention is subject to quick decay e.g. all effect is lost by the end of year 1 or year 3 than it is when there is a sustained effect, *i.e.* no decay.

Limitations and Conclusions

- In the health related benefits modelling, the key evidence used is the Copenhagen study relating level of physical activity to relative risk of mortality from all causes. We assume that such risk reductions occur within a year of the increased physical activity and are removed similarly quickly of the physical activity levels are reduced.
- Throughout we have not examined effects on under 18s, partly because a lack of direct evidence on children's behaviour in many of the studies and partly because we did not feel that the Copenhagen study on relative mortality risk reduction could be extrapolated to younger age groups.
- The transport/ congestion modelling has used different methods to estimate reductions in car distance and may not mean that direct comparison across the interventions is like for like. When considering the monetary values of the congestion benefits, it should be noted that these forecasts were made in 2002, and traffic growth has been lower than thought. This would result in the calculated benefits being over-estimated. The DfT is currently updating its

forecasts. The benefit to cost ratios shown in the congestion tables, apply only to the environmental outcomes listed, the DfT would normally consider congestion benefits as only one part of the overall assessment of a project. These benefit-cost ratios here are not directly comparable with those typically used by DfT which usually also, include environmental and health benefits.

- A number of the interventions considered in this report were part of multicomponent programmes, requiring either new or existing infrastructure to realise their full potential benefit. Investors should consider whether such interventions would be appropriate in their own areas.
- Care must be taken with interventions where the offer cost is a large proportion of the total, as these will require significant take-up rates to become cost-effective. In addition, given the sensitivity of the benefits to costs, uptake, and decay, it would be sensible to monitor these factors during the lifetime of any intervention

ACKNOWLEDGMENTS

The ScHARR team would like to acknowledge the following people and organisations for advice and support in the development of this research:

Department for Transport: Robin Cambery Mark Ledbury Stephen Smith **Derbyshire PCT:** David Michael NICE PDG economics sub-group: Harry Rutter Jenny Roberts Patrick Lingwood Nick Cavill Melvyn Hillsdon London Borough of Hounslow: Mark Frost York Health Economics Consortium: Sophie Beale

AUTHOR CONTRIBUTIONS

Drafting of the report was shared between, AB and LB.

LB undertook main work on economic evidence review.

AB and LB undertook model design, building and analysis.

DH-M undertook regression analyses on HSE and NTS

NP and AB with support from LB and LB agreed on use of effectiveness evidence in model inputs.

HB-W undertook literature searches.

1 INTRODUCTION

1.1 Overall Aims and objectives

This is one of a series of reports that was undertaken to support the development of guidance on walking and cycling: local measures to promote walking and cycling as forms of travel or recreation.

1.2 Overall Research Questions

Question 1: Which local interventions are effective and cost effective at promoting and increasing cycling and walking for recreational and travel purposes?

Question 2: Which local interventions are effective and cost effective at changing population-level norms and behaviour in relation to cycling and walking for recreational and travel purposes?

Question 3: What health and other outcomes may be achieved by increasing cycling and walking for travel and recreation?

1.3 Objectives of This Report

Presented here is the health economic and modelling report that will:

- 1. review existing health economic studies which consider relevant health related outcomes;
- Model, to the extent that evidence allows, the likely cost effectiveness/cost utility of those interventions identified in the earlier effectiveness review and considered by the Programme Development Group (PDG) to of highest priority to be considered in this way.

1.4 Description of Modelling Requirements from NICE Scope / Protocol

Input to the modelling approach has been driven mainly by the results of the literature review and economic model searches. A lot of transport modelling work has already been done by various agencies, and this has been built on where possible. In addition, talks were held with individuals involved with the HEAT project, the DfT, and PDG members to identify suitable modelling approaches to adopt for this model. Outcomes are reported using a variety of metrics. Heath benefits use measures of

quality of life and the statistical value of a life, while environmental outcomes such as pollution and congestion are reported in natural units. These units are related to vehicle distance travelled, the approach taken by the Department of Transport.

1.5 Background

Physical activity is essential for good health (DH 2004); it can help reduce the risk of coronary heart disease, stroke and type 2 diabetes by up to 50%. It also keeps the musculoskeletal system healthy and promotes mental wellbeing. However, based on self-reporting, 61% of men (71% of women) in England aged 16 and over did not meet the national recommended levels (Craig et al. 2009). Guidance for adults has recently been revised to recommend 150mins (two and a half hours) each week of moderate to vigorous intensity physical activity (and adults should aim to do some physical activity every day). Muscle strengthening activity should also be included twice a week (Department of Health 2011). The proportion of men who are physically active enough to meet national recommended levels decreases markedly as they age (from 53% at age 16–24 to 16% at 65 plus). The level of activity among women is considerably lower once they reach age 65. (Around 12% of women over 65 meet the recommended levels compared to 28-36% of younger women.) In children, 63% of girls (72% of boys) aged between 2-15 report being physically active for 60 minutes or more on 7 days a week. (Girls' activity declines after the age of 10.) (The Information Centre 2007). However, objective data suggest this is an overestimate. Only 2.5% (boys 5.1%, girls 0.4%) actually did more than 60 minutes of moderate to vigorous physical activity daily (Riddoch et al. 2007). Black African and Asian adults and black Caribbean women are less likely to meet the recommended activity levels of physical activity than the general population (The Information Centre 2006).

Walking is reported to be the most common, and cycling the fourth most common recreational and sporting activity undertaken by adults in Britain (Fox and Rickards 2004). Among women of all ages, walking (for any purpose) is the most important way of achieving the recommended physical activity levels. (It accounted for between 37% and 45% of the total time they spend doing moderate or vigorous physical activities [MVPA]). It is also one of the most important physical activities for men of all ages –accounting for between 26% and 42% of total MVPA (Belanger et al. 2011).

Of all trips made in Great Britain in 2009, 20% covered less than 1 mile. More than half (56%) of car journeys were less than 5 miles (Department for Transport 2010b). It is estimated that, on an average day in London, around 4.3 million trips are 'potentially cycle-able' (Transport for London 2010). However, in Britain, the average

time spent travelling on foot or by bicycle has decreased, from 12.9 minutes per day in 1995/97 to 11 minutes per day in 2007 (Department for Transport 2010c). Cycle use in Britain is lower than in other European Union (EU) countries. It is estimated that bicycles are used for 2% of journeys in Britain compared to about 26% of journeys in the Netherlands, 10% in Denmark and 5% in France (Ministry of Transport, Public Works and Water Management 2009).

Changes in the number of people walking and cycling could have an effect on health, the environment and the economy. These may be positive or negative, and can be experienced by individuals or populations. Health outcomes include increased physical activity and changes to conditions such as obesity, cardiovascular disease (CVD), type 2 diabetes, some cancers, and mental wellbeing. Cycling and walking are also important ways for people to travel to local places and services (such as education, employment, shops, healthcare and recreation). This, in turn, could boost the local economy while having a positive effect on the environment. For example, a decision to cycle or walk rather than drive reduces the emission of air pollutants and carbon dioxide.

Walking and cycling may have unintended consequences, some of which may be counter-intuitive. For example, deciding to cycle might replace another more intense activity (such as going to the gym) which may result in an overall reduction in physical activity. In addition, walking or cycling, rather than driving, may result in a different level of exposure to air pollution. Generally, cyclists and pedestrians experience higher rates of injuries than motorists (Department for Transport 2010b). However, there is also some evidence to support the hypothesis that increasing the number of cyclists reduces the risk of injury, possibly by making drivers and cyclists more familiar with each other (Jacobsen 2003). The decision to drive rather than walk may expose others to risk of injury from a collision.

Motorised transport in urban areas is associated with considerable costs. Congestion, poor air quality, collisions and physical inactivity in English urban areas each cost around £10 billion a year (Department for Transport 2009). The cost of greenhouse gas emissions and the annoyance associated with noise are smaller, but still significant. In the case of greenhouse gases, costs are expected to rise sharply in future years (Department for Transport 2009).

Interventions to promote walking or cycling may have an effect on health inequalities. For instance, the change experienced as a result may be different for people with limited mobility. Ensuring planning decisions improve access on foot or by cycling, may help those who are unable to drive. Changes in vehicle use may alter the risk of injury – which itself varies significantly according to people's socioeconomic background. As exposure to air pollution also varies across the social gradient, so changes in the level of pollutants may be more significant for some groups than others.

2 ECONOMIC LITERATURE REVIEW

2.1 Objectives of Economic Literature Review

To review existing literature on the cost-effectiveness of Interventions to promote cycling and walking for recreational and travel purposes.

2.2 Economic Review Methods

2.2.1 Search Strategy

To inform the economic modelling, an economic literature review was undertaken. Searches were made of a number of databases, and all search results were downloaded to Reference Manager. Potentially relevant papers were identified based on title and abstract, and full versions obtained. A number of papers and reports were also suggested by PDG members.

Studies were identified through the review search strategies, which included searching in the NHS Economic Evaluation Database (via Wiley). An additional search was undertaken that included the use of the Scottish Intercollegiate Guidelines Network economics study filter. The aim of the search was to identify relevant cost effectiveness papers in medical, health, social science and transport databases including the NHS Economic Evaluation Database. The search focussed on health economic studies that dealt with interventions to increase walking and/or cycling, and reported relevant health related outcomes and cost benefit analysis results studies which considered wider outcomes including travel, congestion, and pollution where the evidence permits. Expert advice was sought for non-NHS sources. Simplified search strategies were also used to search another economic specific database: EconLit (via OVID SP).

The search strategies used were discussed by and agreed between the ScHARR and NICE teams.

2.2.2 Economic Modelling Searches

Searching, that was agreed by the ScHARR and NICE teams, was also undertaken to support the initial stages of the modelling process. This took the form of reference tracking and consultation with experts. In addition, economic specific databases were searched: NHS Economic Evaluation Database (via Wiley) and EconLit (via OVID SP). These were supplemented by expert advice regarding sources. The strategies were based in part on existing search strategies (Ogilvie et al., 2007; Yang et al., 2010; YHEC, 2007) and from keywords generated from the project scope and key known literature in the field.

2.2.3 Inclusion and Exclusion Criteria for Obtaining Full Papers

Studies were included if they:

- were studies of specific interventions that promoted walking or cycling,
- included a cost-effectiveness measure or a cost-benefit analysis.

Studies were excluded if they:

- were judged as irrelevant from title or abstract,
- were intervention areas specifically excluded by the study protocol:
 - o disease rehabilitation studies,
 - o national policy, fiscal and legislative change,
 - infrastructure and physical environment.

2.3 Results of Review of Cost-Effectiveness Studies

2.3.1 Summary of Studies Included in this Review

The literature searches of the economic and transport databases identified 1089 studies. 1077 of these were rejected based on title or abstract, leaving 12 for further investigation. Of these, 8 were rejected after reading mainly because they were cost-effectiveness studies that did not link the observed behaviour modification to health or environmental benefits, or because the walking and cycling elements could not be disaggregated from a more general measure of physical activity. In addition, 20 potentially relevant publications were forwarded by PDG members or identified by ourselves. Following reading, 18 of these were rejected based on the inclusion and exclusion criteria. Table 2.1 provides a summary.

Table 2.1 Summary of economic literature review process

Table 2.2 lists the five included reports. The Cycling Demonstration Towns, whilst primarily an analysis of infrastructure investment, also had a number of other elements, thus making it a multi-component intervention. The NICE programme guidance (Fordham 2008) included a section on walking school buses, which, while not analysing a specific intervention, estimated cost, effectiveness, and benefit data from a number of sources to arrive at an estimate of cost-utility (Mackett 2008, DfT 2006,). The three remaining studies drew data from a number of different interventions for comparative modelling. Intervention groups considered included led walking, pedometers, media campaigns, and the TravelSmart programme.

Study/report	Setting	Study Type	Intervention Type	Economic evaluation
Roux 2008	U.S.	Review	Led walking (3)	Cost per QALY
Cobiac 2009	Australia	Review	Pedometer (1) TravelSmart (1)	Cost per DALY
Pringle 2010	U.K.	Review	Media campaign(2) Led walking (2)	Cost per QALY
Cycling Demonstration Towns 2010	U.K.	Trial	Multi-component	Cost/benefit ratio
Fordham NICE 2008	U.K.	Economic assessment	Walking school bus	Cost per QALY

Table 2.2: Summary of studies included in the review of cost-effectiveness evidence.

2.3.2 Intervention Types Examined in Cost-Effectiveness Literature

The Roux (2008) study aimed to model the costs and benefits of seven public health interventions to promote physical activity in a simulated cohort of healthy U.S. adults. Of the seven interventions, only three were solely concerned with encouraging an increase in walking, as opposed to general physical activity. Two of these used community based social support strategies, including organised walking groups, home visits and phone calls, and newsletters, maps and handouts. The other was an intensive mass-media campaign that promoted walking among sedentary adults aged 50 to 65years.

Cobiac (2009), in Australia, used data from six categories of interventions designed to promote physical activity. As with the Roux studies, most of the interventions measured outcomes as an aggregated total of activity, however two categories derived their data from interventions that reported effectiveness in terms of increases in walking or cycling. The first of these categories was pedometer interventions, which used a meta-analysis of eight randomised control trials, and the second was the TravelSmart programme, which pooled the results from twenty-one individual TravelSmart interventions. The target group for both of these categories was the general population of adults aged fifteen an over.

The study by Pringle (2010) measured changes in moderate physical activity in seven community-based intervention types at nine sites across the U.K., a total of 39 individual programmes. Again, most interventions were concerned with overall activity, leaving just four individual programmes that focused on the promotion of

walking or walking and cycling. Two of these were media campaigns circulating maps of walking and cycling routes, the other two were organised community walking groups. Participation appears to have been open to everyone, however demographic details are provided only for completers, and at an aggregate level across all intervention types and sites.

The Cycling Demonstration Towns programme was a £14 million investment in eight towns, designed to promote cycling. It consisted of infrastructure measures such as the building cycle paths, combined with a programme of education and marketing, and was aimed at the general population.

The walking bus is an intervention designed to encourage schoolchildren to walk to school. Children are escorted along a set route by a number of adults. In producing the NICE programme guidance, no intervention was instigated. Rather, estimations for costs and effectiveness were made by reference to studies of a number of previously operating walking buses (Mackett 2008,DfT 2006,)

2.3.3 Effectiveness Measures Examined in Cost-Effectiveness Literature

Roux (2008) used data from the original studies to model the effectiveness of a oneyear intervention on physical activity, divided into four levels, 'inactive', 'irregularly active', 'meets guidelines', and 'highly active'. Following the intervention, cohort members had an annual probability of either remaining in the new activity level or moving to a lower level. The decline in activity level in the second year was presumed to be 50%. After this initial rapid decline, cohort members were moved to a natural history model developed from age and gender specific activity data from the Behavioural Risk Factor Surveillance System (CDC). Health outcomes considered were CHD, ischaemic stroke, type 2 diabetes, breast cancer, colon cancer, and death. The annual probability of developing each disease was estimated using population-based, disease specific incidence data combined with relative risks derived from epidemiological studies, specific for activity levels and disease. Benefits were given as QALY gains derived from disease state, physical activity level, age, and gender using data from 2001 National Health Interview Survey (CDC) quality of well-being scores.

Participation rates and effectiveness data for the study by Cobiac (2009) were taken from the underlying studies. For pedometer interventions, the change in activity was measured as the change in the number of steps taken per day, and for the TravelSmart interventions, it was a weighted average of change in the number of walking and cycling trips made per week in the 21 study areas. For the model, this change in activity level was converted to a change in energy expenditure and linked to the relative risk of experiencing or dying from a number of activity-related diseases. These were stated as: ischaemic heart disease, ischaemic stroke, type 2 diabetes, breast cancer and colon cancer. A cost-effectiveness rate was generated based on intervention in the first year, with health outcomes measured over the lifetime of the Australian population. The base case analysis presumed a decay in the intervention effects, after the first year, of 50% per year. Health benefits were expressed as changes in Disability Adjusted Life Years (DALYs) compared with a "do nothing" scenario using disease-specific disability weights.

The assessment of the effectiveness of the interventions considered by Pringle (2010) was compromised by the low numbers of completers from whom physical activity data were collected. From the 194 participants in the media campaign, 14 completed, while from the 273 people who took part in the walking groups, effectiveness data were collected from just eight. Before and after activity levels were measured and grouped into four bands, 'sedentary', 'lightly active', 'moderately active', and 'highly active'. The Matrix model was then used to estimate the effect of activity levels on the likelihood that people will experience CHD, stroke, type 2 diabetes or colon cancer. This model also estimates the effect of experiencing these conditions on a person's quality of life, expressed as QALY gains. It was presumed that 50% of those who achieved increases in activity level maintained that increase.

Conducting a benefit-cost analysis was not the primary purpose of the data collection in the Cycling Demonstration Towns; therefore it was necessary to make a number of presumptions about the effectiveness of the programme. The change in the number of cyclists in each town was estimated by Cavill (2009) using sample surveys comparing before and after cycling levels. Benefits considered were reduced absenteeism, decongestion, accident rates among cyclists, and benefits to cyclists from better facilities.

Presumption of the effectiveness of walking bus interventions were mainly based on the findings of Mackett (2008). It was estimated that, on average, 10.71 pupils would take part, 50% of whom would be replacing a car journey, the journey would take 22 minutes, and the bus would operate for one year, with children attending school for 38 weeks. Benefits were estimated by linking increases in physical activity directly to QALY gain at a fixed rate using data from The Health Survey for England.

2.3.4 Costs Examined in Cost-Effectiveness Literature

Roux (2008) conducted the cost effectiveness from a societal perspective. Unit costs of the interventions were obtained through direct communication with the authors of the original investigations. In addition to the costs of intervention delivery, and expenses incurred by the participants were included, as was a measure of the value of their time based on age and gender specific salaries. Medical costs were derived from an analysis of claims for each of the diseases considered, from a longitudinal medical claims database. Medical costs were inflated by an annual 8%, and discounted back at 3% per year.

The costs of each intervention considered in the Cobiac (2009) study used an Australian health service perspective. This includes costs to both the government and the patients, including time and travel costs, but excluding patient time costs associated with changes in physical activity. Start-up costs of research and development were also excluded, so that the interventions were compared as if operating under steady-state conditions. The monetary benefits accruing from improved health were based on cost per incident of the five exercise-related morbidities modelled; however the source of these costs is not stated. Health care costs for all other diseases in added years of life were excluded from the basic analysis. Future health outcomes and costs were discounted back to the baseline year of 2003 at 3% per year.

For the interventions taken from the work by Pringle (2010), costs were derived from quarterly interviews with the intervention manager. They included the implementation costs of personnel, training, premises, transport, equipment, publicity, and other running costs, and excluded costs to participants. In the cost effectiveness analysis, cost and attendance data were combined to estimate the monthly implementation cost, and the cost per participant in the intervention. Potential future savings to the NHS are implicit to the Matrix model used.

The Cycling Demonstration Towns took a market unit of account approach to their costing. This involved removing VAT and uplifting all costs by the market cost adjustment factor of 20.9%. For the purpose of discounting, all costs, initial capital investment and running costs, were evenly spread over the three years of the programme.

Costs for setting up a walking bus were estimated by allocating a unit cost to the component tasks. These included, among others, route planning and risk

assessment, administration, insurance training and criminal record checking for volunteers, and the provision of tabards.

2.3.5 Cost Utilities and Cost Benefits Reported in Cost-Effectiveness Literature

Results for the Roux (2008) study were given in US\$ per QALY based on 2003 prices. The mass-media campaign produced a cost per QALY of \$14,286, while the two social support interventions were less cost-effective at \$27,373 and \$39,690. Some sensitivity analysis was conducted on the modelling assumptions. Repeating the intervention once after 20 years was reported to have a small effect as was varying the dissipation of the effect sizes, although no figures were given. Shortening the analytic time-horizon had a significant effect with one of the social support interventions quoted as an example. The figure of \$27,373 based on a 40-year horizon increasing to \$147,000 using 10 years.

Cobiac (2009) reported cost effectiveness in AUS\$ per DALY at 2003 prices. The pedometer interventions were reported to have a net saving of \$21,000 per DALY, while the TravelSmart programme resulted in a cost of \$18,000 per DALY. Sensitivity analyses were conducted on the rate of decay of the intervention effects. Pedometer interventions maintained a net saving even when the intervention effect was modelled to decay completely by the end of the first year, although no figures were given. The TravelSmart programme had net savings with annual decay rates of 0% and 25%, but costs rose to \$41,000 per DALY at 75%, and \$63,000 per DALY at 100% decay.

Pringle (2010) reported costs per QALY in UK pounds at 2003 prices. For the campaign based interventions, the cost per QALY was given as £86 for provision of a healthy living map with walking and cycling routes, and £288 for the promotion of walking and cycling though printed media approach. The two organised walking group interventions showed a cost per QALY of £301 and £475. The authors conducted sensitivity analyses, and stated that the conclusions of the cost effectiveness analysis were not sensitive to presumptions made in the modelling process.

Benefits accruing in the Cycling Demonstration Towns program were converted to monetary values and compared with the initial investment and running costs to produce a benefit-cost ratio. A range of 2.6 to 3.5 was given, reflecting the different approaches available for estimating accident and absenteeism benefits. Sensitivity analysis was done to consider different rates at which the increases in cycling fall over time, varying from 0% to 30%. Time-horizons of 10, 20, and 30 years were also considered. Under all but the most pessimistic of scenarios considered, the benefit-cost ratio remained above one, with a potential to reach 12.3 (under a scenario presuming 10% annual growth in demand over 20years with no additional costs).

The cost-benefit of providing a walking school bus was estimated to be £4,010 per QALY gained. Sensitivity analyses were concentrated on participation rate and the number of volunteers involved. Uncertainty around the relationship between physical activity and quality of life was also explored. In the best-case scenario for the variables considered, the cost per QALY dropped to £2,431.51, while at the other extreme, the authors reported that the cost per QALY was "only slightly less favourable" than the assumed threshold of £20,000/QALY.

2.4 Economic Review Evidence Statement Summaries

2.4.1 Economic Evidence Statement 1. Led walking including Walking School Bus

Moderate evidence from 4 studies suggests that led walking interventions (7 different interventions analysed in 4 studies) could be cost-effective

Gusi 2008 (Spain) [six-month programme to promote walking based exercise via a supervised exercise programme with three 50-minute sessions per week]. Incremental cost per QALY range of 94 to 871 Euros per QALY.

Roux 2008 (USA) [community based social support strategies, including organised walking groups, home visits and phone calls, and newsletters, maps and handouts]. Incremental cost per QALY of \$27,373 and \$39,690 for the two different led walking interventions versus do nothing.

Pringle 2010 (UK) [*organised community walking groups*]. The two organised walking group interventions showed a cost per QALY of £301 and £475.

Fordham (NICE) 2008 (UK) [*walking bus intervention designed to encourage schoolchildren to walk to school*]. Incremental cost per QALY estimated to be approx. £4,007 per QALY gained

The evidence is partially applicable to the UK, with 2 of the studies UK based, and the other international studies concerning interventions that could be of UK relevance.

2.4.2 Economic Evidence Statement 2. Pedometer

Moderate evidence from 1 study suggests pedometer interventions could be costeffective

Cobiac 2009 (Aus) [*pedometer interventions, which used a meta-analysis of eight randomised control trials*]. Pedometer interventions maintained a net saving even when the intervention effect was modelled to decay completely by the end of the first year. That is, the modelled lifetime cost savings to the health service outweighed the pedometer costs as well as providing health benefits.

The evidence is partially applicable to the UK as similar pedometer interventions are of relevance.

2.4.3 Economic Evidence Statement 3. Media campaigns

Moderate evidence from 1 study suggests media campaigns could be cost-effective

Pringle 2010 (UK) [*media campaigns circulating maps of walking and cycling routes*]. The cost per QALY £86 for provision of healthy living map with walking & cycling routes, and £288 for the promotion of walking and cycling though printed media approach

The evidence is applicable to the UK.

2.4.4 Economic Evidence Statement 4. Community Health Information (TravelSmart)

Moderate evidence from 1 study suggests TravelSmart interventions could be costeffective

Cobiac 2009 (Aus) [TravelSmart intervention with individualised information to households on travel choices measuring change in the number of walking and cycling trips made per week]. TravelSmart programme resulted in a cost of \$18,000 per DALY assuming 50% decay per annum. The TravelSmart programme had net savings with annual decay rates of 0% and 25%, but costs rose to \$41,000 per DALY at 75%, and \$63,000 per DALY at 100% decay
The evidence is partially applicable to the UK as the TravelSmart style intervention is relevant in the UK.

2.4.5 Economic Evidence Statement 5. Multi-component (Cycling Demonstration Towns)

Moderate evidence from 1 study suggests that the Cycling Demonstration Towns projects have a good benefit/cost rate.

Cycling Demonstration Towns 2010 (UK) [infrastructure measures such as the building cycle paths, combined with a programme of education and marketing, and was aimed at the general population]. Benefits converted to monetary values and compared with the initial investment and running costs to produce a benefit-cost ratio. A range of 2.6 to 3.5 was given, reflecting the different approaches available for estimating accident and absenteeism benefits. Under all but the most pessimistic of scenarios considered, the benefit-cost ratio remained above one.

The evidence on cycle demonstration town is directly applicable as it was conducted in the UK.

2.5 Conclusions from the Economic Evidence Review

- ER6. Some UK and international evidence exists that interventions to promote walking or cycling could be considered cost-effective, particularly for the following types of interventions: led walking including walking school bus, pedometers, TravelSmart, media campaigns, and multi-component.
- ER7. For the interventions either modelled or directly assessed by the small number of studies available, all would be considered cost-effective when compared to standard care or 'do nothing', except under the extremes of some of the sensitivity analyses.
- ER8. There remain however, some significant gaps when compared with the range of intervention categories highlighted by the effectiveness review.

- ER9. Only one of the reports, the cycling demonstration towns considered environmental outcomes, and the general applicability of these may be in question, as the intervention was infrastructure based.
- ER10. There is a need for some *de novo* modelling work to provide additional costeffectiveness evidence to the PDG.

3 MODELLING METHODOLOGY

3.1 Brief review of Existing Model Frameworks

3.1.1 Previous Physical Activity Work for NICE (MATRIX)

In 2006, Matrix Research and Consultancy undertook a project to model the cost effectiveness of a number of interventions aimed at increasing physical activity. The areas considered were, brief interventions in primary care, pedometers, exercise referral, and walking and cycling programmes in the community. An economic model was constructed to estimate the effects of these interventions on participants' change in experiencing CHD, stroke diabetes, and colon cancer, and the consequent effect on their quality of life and NHS cost savings. Their study concluded that all the interventions were dominant when compared to usual care

3.1.2 Previous Walking and Cycling Infrastructure Economics Work for NICE (YHEC)

York Health economic Consortium, (Beale 2007), undertook a study for NICE, which was an economic analysis of environmental interventions that promote physical activity. They took three different approaches to assess the benefit of building walking and cycling trails. The first method was a standard cost-benefit model that considered such benefits as health, comfort and security, travel time, and short-term absenteeism. Their second approach was a disease –specific model that considered a range of health benefits including the risks of CHD stroke and diabetes. This model was based on the aforementioned Matrix project and reported results as cost per QALY. The final approach was an econometric model that used data from the HSE to link activity levels to EQ-5D measures of quality of life.

3.1.3 The HEAT

In 2008, the World Health Organisation produced the Health Economic Assessment Tool for cycling. This draws on the work of Anderson *et al.* (2000) and is designed to assist people or organisations conducting economic appraisals of the health effects related to increased cycling. It produces an estimate of the mean annual benefit per cyclist due to reduced mortality as a result of cycling. In this way, it allows the user to attach a value to the health benefits resulting from an estimated level of cycling when new infrastructure is put in place.

3.1.4 The National Transport Model

The Department for Transport has produced a multi-modal model of land-based transport in Great Britain. The main objectives are to produce forecasts of traffic volume, congestion, carbon dioxide and pollutants, and to provide a policy and scenario-testing tool. The model forecasts are based on presumptions of future trends in population, oil price, and GDP. Whilst walking and cycling trips are included in the model, it is mainly designed to produce national level forecasts, and as such is of limited value when considering small-scale local interventions.

3.1.5 Need for a New Model

There is a need for some *de novo* modelling work to provide additional costeffectiveness evidence to the PDG.

3.2 Overview of Conceptual Modelling Framework

A modelling methodology has been developed to provide a common platform for health economic assessment of interventions that are local measures to promote walking and cycling as a form of travel or recreation. The modelling builds upon three key components

- The relationship between physical activity and relative risk of mortality as reported in the long-term observational study by Anderson et al. (2000). This allows transformation of physical activity level changes into life expectancy, numbers of deaths and quality adjusted life-years.
- The relationship between levels of walking and cycling, and overall physically activity. We use the Health Survey for England to estimate statistical relationships between these variables. This allows direct evidence from studies of the effect of interventions on levels of walking and cycling to be converted into estimated changes on overall physical activity, and hence life expectancy etc.
- The relationship between levels of walking and cycling, and travel, especially driving distance but also driving time and numbers of trips. We use the National Travel Survey to estimate statistical relationships between these variables. This allows estimation of the effects of interventions that increase levels of walking and cycling on reduced kilometres driven, and hence reduced congestion, pollution and greenhouse gas emissions.

In overview, the steps taken to produce this common platform have been as follows

- 1. Analysis of baseline data (by age, sex, work status, have a car)
 - a. HSE Walking, cycling, physical activity
 - b. NTS trips, walking, cycling, driving by purpose
- 2. Take evidence from effectiveness review on effectiveness of specific interventions (chosen as priorities by the PDG).
- 3. For health benefits, estimate change in levels of physical activity either directly from the evidence or indirectly via statistical relationships between walking and cycling levels and overall physical activity from HSE.
- 4. Quantify reduced mortality risk given increased levels of physical activity using Anderson *et al.* Copenhagen study (as is used in HEAT) using either a step function on relative risks based on per cent of people achieving over two hours moderate activity per week or a modelled continuous risk function.
- Use ONS life-tables and evidence on average health related quality of life by age and sex to estimate discounted lifetime QALYs for baseline versus with intervention
- 6. For environmental outcomes, estimate change in levels of car driving distance, either directly from the evidence on reduced car distance / trips, or indirectly via statistical relationships between walking and cycling levels and overall car distance from NTS. (We relate driving to walking and cycling via NTS zero inflated negative binomial regressions for car driving distance, car driving time and number of trips).
- 7. Estimate cost of intervention if rolled out across all England
- 8. Compute cost per discounted QALY gained over a life-time horizon using health benefits modelling.
- 9. Compute value per annum of congestion reduction, pollution, and other environmental outcomes using DfT guidelines on economic evaluation (*e.g.* average value of 13.1p per vehicle km for congestion across the whole road network) as well as value of deaths avoided using value of a statistical life..

3.3 Population of Interest and Baseline Estimates of Behaviour

3.3.1 Population Modelled

For the analyses undertaken, we have used the 2008 Health Survey for England as a representative sample of the general population. For all analyses reported in this draft report we have used the population aged 16+, as under 16s had a different set of questions asked of them regarding their walking, cycling and physical activity.

3.3.2 Key Dataset 1 – Health Survey for England

The HSE is a series of annual surveys about the health of people living in England. Relevant details on individuals were taken from the 2008 survey, which covered 22,623 people. These details included some general information such as, age, gender, employment status, and whether the person had access to a car. Health related measures such as BMI, blood pressure and cholesterol ratio were included, as were measures of general physical activity.

3.3.3 Key Dataset 2: National Travel Survey

The NTS has data covering seven years on 152,344 individuals, of whom 133,664 completed a trip diary, recording the mode and purpose of every journey they made over a period of one week. Details of the individuals also included age, gender, employment status, and access to a car, enabling a link to be established with the HSE.

3.3.4 Health Survey for England Overall Physical Activity

Data from the HSE were analysed to derive population measures of physical activity.

The key variable used in the modelling is the number of hours spent per week doing all different kinds of physical activity, where the activity lasted more than 10 minutes, known as "Hours 10+mins/wk all PA".

We used this to classify each individual into 'active' and 'inactive' groups using a cutoff point of two hours of physical activity per week (Figure 3.1, Figure 3.2)

Figure 3.1: % Females undertaking under 2 hours overall physical activity per week (HSE 2008)

Figure 3.2: % Males undertaking under 2 hours overall physical activity per week (HSE 2008)

3.3.5 HSE Compared with NTS for Cycling Data

Individual levels of cycling may be expected to very greatly, as the majority of the population do not do any cycling at all. Respondents to the HSE and NTS reported very similar levels of cycling; the similarity persisting when considering either the full samples or just those who did any cycling.

Mean bike time (minutes per week)	HSE	NTS
of all people	7.42	5.25
if cycle	107.10	106.93

Table 3.1 Comparison of HSE and NTS cycling time data

3.3.6 HSE Compared with NTS for Walking Data

At the overall average level, there is a marked difference in the reported levels of walking in the HSE and NTS. The HSE average is 118 minutes compared with the NTS average of 45 minutes. This difference may, at least in part, be explained by the differing recording methods and definitions used by each survey. The HSE gives a value for the number of hours per week of walking episodes of at least ten minutes at a brisk or fast pace, which is derived from each individual's recall over the four weeks previous to their interview. The maximum value of any person for this is 147 hours, which represents over six days walking in a week, and raises concerns over the accuracy of the measure. For the NTS, participants kept a trip diary for one week in which all walking trips were recorded with their respective start and finish times and distance travelled. While there may be issues with people neglecting to record all trips, it does avoid the issue of memory when using recall data. For these reasons, it was felt that the NTS methodology probably provided the more accurate measure of walking.

3.4 Outcomes of Interest for Inclusion in the Modelling

3.4.1 Walking and Cycling Outcomes

The most common outcome reported in the effectiveness studies was a change in a measure of walking or cycling or both. This could be in terms of

- Minutes spent
- Number of steps

- Numbers of 'sessions' of walking or cycling
- Numbers of trips made

Travel behaviours were reported in terms of active travel, measured as time spent, distance travelled or number of trips made. Some studies also report

- Changes from baseline in level of overall physical activity or
- percentage of people achieving physical activity guidelines (2 hours of moderate physical activity per week)

3.4.2 Health Outcomes

In order to estimate effects on health, one needs to convert any increases in walking and cycling outcomes into risks of morbidity and mortality. In particular, for NICE decision-making and recommendations, one would like to achieve an estimate of the quality-adjusted life-years gained by the intervention. This incorporates together effects on extended survival due to mortality risk reductions (the life-years) with health related quality of life measures. A person living in full or perfect health is measured with a health related quality of life score of 1. A person in a state of health that is so bad it might be considered equally preferable to being dead is scored 0. Any health state between these can be scored on the 0 to 1 scale. A person living 15 years in perfect health would enjoy 15 quality adjusted life years. A person living 15 years in a moderately poor health state of score 0.666, would experience 10 qualityadjusted life-years.

Therefore the primary health outcome of interest is

• Mortality risk

With a secondary outcome related to

• Health related quality of life

Occasionally the published effectiveness studies report health related outcomes, including mortality, cardio-respiratory fitness, reduction in blood pressure, and changes in weight or BMI. A small number of studies reported well-being or quality of life measures as outcomes.

For most studies, we will need to transform the walking, cycling, or physical activity outcomes into risk reductions for mortality and health related quality of life.

3.4.3 Environmental Outcomes

The scope of the health economic appraisal indicates that, if possible, NICE would like to receive estimates of the effects of interventions on environmental outcomes. Ideally, these would include

- Improvements in congestion measured by reductions in time spent driving
- Local air quality
- CO₂/ greenhouse gas emissions

3.4.4 Cost and Economic Outcomes

For an assessment of the cost-effectiveness of interventions, one needs to balance the investment cost against the effects achieved.

We include:

- Direct costs of the intervention to public sector or related bodies including
 - o costs of staff time in giving advice or training,
 - costs of materials related to the intervention e.g. pedometers or booklets

On the effect side, we make estimates of:

- Quality adjusted life years gained (QALYs)
- Deaths avoided
- Car travel distance reductions
- Environmental outcomes

We provide several indicators of the economic performance of the intervention therefore. As is common for health related interventions, we estimate

• Incremental cost per QALY gained for the intervention

As is common in transport related appraisals, we have attempted to estimate

- Value of deaths avoided using the statistical value of a life approach
- Value of reduced congestion

• Value of reduced pollution

3.4.5 Other Outcomes Excluded

At this stage non-health or non-congestion related outcomes have been excluded from the analysis. Outcomes considered out of scope included:

- Effects on the economy including
 - o suppliers of materials related to walking and/or cycling
 - o effects on public and other forms of transport
 - o personal spending from changed travel behaviours

3.5 Transforming Physical Activity Outcome to Reduced Mortality Risk

3.5.1 Evidence Used for Transforming Physical Activity Outcome to Reduced Mortality Risk

A multivariate adjusted relative risk of mortality for moderate physical activity, compared with low physical activity, was taken from the Copenhagen Study for Mortality Risk Reduction (Anderson, 2000).Table 3.2 shows the relative risks categorised by age-band and gender.

The key results used are from the multivariate adjusted relative risk, moderate physical activity (two hours per week) versus low physical activity This evidence is also used in HEAT.

Age	Male	Female
20-44 years	0.73	0.75
45-64 years	0.75	0.73
65 + years	0.62	0.65
All ages	0.72	0.65

Table 3.2. Relative risk of mortality by age and gender.

3.5.2 Step Function Version of the Mortality Risk Model

In the simplest version of the modelling, we simply use the relative risks from Table 3.2. Hence, for example, we can define RR=1 if physical activity reported in HSE is <2 hrs, and RR=0.75 if >2hrs (F20-44), as shown in Figure 3.3.

3.5.3 A Modelled Continuous Risk Function Based on a Logarithmic Curve Fitting to Copenhagen Relative Risks

Feedback from the PDG suggested that the very simple step function modelling approach might miss benefits for those whose physical activity might move from say 30mins per week to 1 hour 59 minutes within the model, and over-estimate benefits for people moving from 1 hour 59 minutes to 2 hours and 1 minute. With a population level model these over / under estimates might well cancel out, but to investigate the effects we developed a simple continuous risk function model by fitting a logarithmic curve to the 3 points provided from the Anderson evidence *i.e.* under 2 hours, 2-4hours, and 4 hours plus. We used the HSE to find the mean level of physical activity in each of these four categories. As an example, for females 20-44, we fitted the curve below (Note: we adjusted the relative risks so that the HSE mean would be 1, rather than basing 0-2 hours as 1). We have assumed, by looking

at the trend in the fitted curve close to zero, that the upper limit relative risk, *i.e.* for physical activity reported as zero, is 1.8.

Figure 3.3 Illustration of step-function risk model for mortality

Figure 3.4 Example of fitted continuous mortality risk function (dotted line)

3.6 Using Life-Tables,

An average annual risk of death was computed for each single year age band for each gender, for active and inactive adults.

Given the average probability of death for each single-year age band and gender (http://www.ons.gov.uk/ons/publications/re-reference-tables.html?edition=tcm%3A77-213645), we used the baseline inactive percentage combined with the relevant relative risk, to calculate the probability of death for active and inactive people in each band.

Thus, when there is an increase in the percentage of active people, we can compute the associated increase in average life expectancy.

3.7 Estimating Change in Physical Activity given Evidence on Walking/Cycling using Statistical Models: Health Survey for England

Using the HSE 2008, a statistical model was constructed relating a person's level of walking and cycling to their overall levels of physical activity. This was then incorporated into the model in order to adjust an individual's total physical activity following an intervention targeted at either walking or cycling, or both.

The outcome measure of interest is the average number of minutes doing all physical activities for 10+ minutes per week, as derived in the HSE 2008. We chose to mode this variable as a count variable and the distribution of observed values from inspection of the HSE resembles a Poisson distribution. Further inspection revealed both over-dispersion and a very large number of excess zeros in the data. We therefore assumed a zero-inflated negative binomial distribution in order to account for both of these characteristics.

We have been made aware of the possibility that some survey respondents may have misinterpreted the questions relating to their total time walking and cycling per week, and provided responses that were unreasonable high. We made the assumption that any respondents who recorded spending more than 84 hours a week (12 hours a day, 7 days a week) walking or cycling had misunderstood the question and given incorrect answers. Therefore we have chosen to discard all respondents whose combined walking and cycling time exceeded 84 hours a week.

The regression model was estimated using STATA/SE version 10.1. Likelihood ratio tests were used to determine the most appropriate set of predictor variables for inclusion in the final model. Overall the final model was highly statistically significant, P<0.0000. We also conducted the usual tests for the applicability of the zero-inflated model versus the standard negative binomial, and of the zero-inflated negative binomial versus the zero-inflated Poisson. A highly significant Vuong statistic (P<0.000) indicates that the zero-inflated model is appropriate as opposed to non zero-inflation, and the dispersion parameter, alpha, being significantly greater than 0 (0.089, lower 95% CI: 0.86 and lower 95% CI: 0.92) indicates that it was appropriate to account for the over-dispersion using this model. The regression estimation results for the final model are presented in Table 3.3.

Physical Activity Regression Coefficients	Coefficient	Robust Std. Err.	P Value
Weekly Walk Time (mins)	0.0008	0.0000	0.0000
Weekly Bike Time (mins)	0.0011	0.0001	0.0000
Gender = Male	-0.1714	0.0174	0.0000
Car/Van = Not Available	0.0971	0.0459	0.0340
Age Band	-0.0231	0.0114	0.0430
Econ. Status = Unemployed	-0.3285	0.0595	0.0000
Econ. Status = Retired	-0.6207	0.1139	0.0000
Econ. Status = Other Inactive	-0.4492	0.1291	0.0010
Interaction(Age#Econ. Status)	-0.0080	0.0063	0.2090
Interaction(Car/Van Available#Age Band)	-0.0978	0.0208	0.0000
Constant	7.1454	0.0469	0.0000
Inflation Model Coefficients			
Car/Van = Not Available	0.7415	0.0534	0.0000
Econ. Status = Unemployed	0.6343	0.1539	0.0000
Econ. Status = Retired	2.5688	0.0672	0.0000
Econ. Status = Other Inactive	1.9267	0.0775	0.0000
Constant	-3.2899	0.0596	0.0000
Overdispersion Parameter			
In(alpha)	-0.1133	0.0142	0.0000
alpha	0.8929	0.0127	-

Figure 3.5 Physical activity regression, comparison of observed, expectation and randomly sampled values

3.8 Estimating Change in Driving given Evidence on Walking/Cycling using Statistical Models: National Travel Survey

Using the National Travel Survey, we constructed statistical models relating a person's level of walking and cycling to various measures of driving behaviour, including:

- Weekly total distance of car travel
- Weekly total time driving
- Weekly total number of car trips

These were then incorporated into the model in order to adjust an individual's driving behaviour following an intervention targeted at either walking or cycling, or both.

The measures of driving behaviour are derived from each individual's trip diary and only include the trips where this individual was driving, and not those for which they were a passenger. Data from the trip diaries were aggregated by purpose, mode, and purpose/mode combinations, and appended to the respective person from the individual database.

In addition to the three measures above, a regression model was developed that included trip purpose with mode in the predictors of car distance. Trip times were grouped based on a four-mode and six-purpose matrix. Coefficients were computed for time spent walking for each purpose (commuting, business, education, escort education, shopping, and leisure/other). Cycling times for commuting, shopping, and leisure/other were also included. This approach should be useful when considering interventions that are aimed at specific combinations of purpose and mode that are shown by the regression model to have an effect on driving time, for example, encouraging walking to school or cycling to work.

3.8.1 Car Distance Related to Walking, Cycling and Other Covariates

This outlines the modelling approach used to deriving the statistical relation between the total distance driven ('cardist') and other individual covariates available in the NTS. The procedure is also following when estimating models for the other measures of driving behaviour: time spent driving and number of trips.

From inspection of the data we found that the distribution of the amount of distance travelled in a car during the diary period displays a different form depending on the parameter 'carstatus', which records the level of car access a person has. We further found that the multiple categories of car access contained in 'carstatus' could be condensed into a binary variable which indicates whether a person has access to a car as a main driver. The two distributions of car distance, defined according to the new binary variable 'caraccess', have significant differences which proved to be difficult to capture by assuming a single distributional form for 'cardist'. Therefore, we chose to assume a separate distribution for each of these groups and estimate two separate regression models.

For the group with access to a car as a main driver, the mean car distance is 83 miles and the variance is 175,009 miles. The over-dispersion does not appear due to excess zeros and we therefore assume a negative binomial distribution. We also banded the 'cardist' variable and plotted this against the Poisson and Negative Binomial distribution with the same mean and the same mean and dispersion respectively. The similarity of the observed distribution to the negative binomial provided further evidence for the appropriateness of the Negative Binomial distribution.

We restricted our choice of predictor variables, by only considering those that are available both in the HSE and the NTS. The potential predictor variables considered were:

Individual age, banded (variable id: i6a) Gender (variable id: i3) Ethnicity, white or non-white (variable id: ethnic) Work status, bands include full time, part time, retired, etc (variable id: i77a) Frequency of walking banded (variable id: ethnic) Time spent walking Frequency of bike rides (variable id: i265) Whether they own a bike (variable id: i271) Car access status, categories (variable id: i203)

The regression model was estimated using STATA/SE version 10.1. Likelihood ratio test were used to determine the most appropriate set of predictor variables for inclusion in the final model:

 $log(cardist) = \beta_0 + walktime * \beta_1 + biketime * \beta_2 + I(worker)_j * \beta_{3j} + I(age band)_j * \beta_{4j} + I(sex)_j * \beta_{5j} + I(ethnic)_j * \beta_{6j}$

The variables 'worker', 'age', 'sex' and 'ethnic' are categorical, while 'walktime' and 'biketime' are continuous. Worker categories are: in work, unemployed, retired, and student/home/other. The age bands categories are: 16-19, 20-29, 30-39, 40-49, 50-

59, 60-69 and 70+. Sex categories are: Male or female. Ethnic categories are: White or non-white.

Overall, the model is highly significant, as are all of the predictor variables. The Negative Binomial distribution is equal to the Poisson distribution when alpha, the dispersion parameter, is zero. As shown in the Table 3.4, zero is outside the 95% confidence intervals for alpha and the likelihood ratio test comparing this model with alpha = 0 shows that alpha is significant in this model. This strongly suggests that alpha is non-zero and the negative binomial model is more appropriate than the Poisson model. The regression estimates are presented in Table 3.4.

Physical Activity Regression Coefficients	Coefficient	Robust Std. Err.	P Value
Weekly Walk Time (mins)	-0.00002	0.00006	0.7490
Weekly Bike Time (mins)	-0.00100	0.00015	0.0000
Worker = Unemployed	-0.31142	0.04302	0.0000
Worker = Retired/Sick	-0.56538	0.01257	0.0000
Worker = Student/Home/Other	-0.33813	0.02006	0.0000
Age Band = 30-49	0.10075	0.01376	0.0000
Age Band = 50+	0.03147	0.01497	0.0360
Gender = Female	-0.43070	0.00875	0.0000
Ethnicity = non-white	-0.32902	0.02219	0.0000
Constant	7.48580	0.01308	0.0000
Overdispersion Parameter			
In(alpha)	0.28262	0.00914	-
alpha	1.32661	0.01212	-

Table 3.4 Regression estimates for predictor variables of car distance travelled from the NTS for the group with access to a car as a main driver.

In the next step, we estimated the model for the group without access to a car as a main driver. Within this group we found a large number of zero observations. However, the non-zero observations are not constrained to being small values and some of these people do in fact have very high drive distances. To allow for both the over-dispersion and the excess zeros, as for the physical activity model using the HSE, we assume a zero inflated negative binomial distribution.

For the group of people who do not have access to a car as a main driver, by comparing models using likelihood ratio tests, we selected the final model:

log(cardist) = Linear Predictor(Negative Binomial)

Linear Predictor(Inflation) + 1

Linear Predictor(Negative Binomial) = β_0 + walktime * β_1 + biketime * β_2 + I(worker)_j* β_{3j} + I(sex)_i * β_{4j} + I(ethnicity)_i* β_{5j} + I(age band)_i* β_{6j}

Linear Predictor(Inflation) = β_0 + I(worker)_j* β_{2j} + I(ethnicity)_j * β_{3j}

Although the category worker = 2 is not statistically significantly different from the reference category 1, testing the difference between other combinations of worker all show P < 0.0000 and therefore this variable is retained.

Overall the model is significant, as are all of the predictor variables except for the category worker = 2. As in the previous model, zero is outside of the 95% confidence intervals of alpha, indicating that the negative binomial distribution is more appropriate than the Poisson distribution.

Re-running the model without the survey weights allows the inclusion of the Vuong statistic, which provides a test of the zero inflated model versus the standard Negative Binomial model. The p value for the Vuong statistic is <0.0000 and indicates that the zero inflated model is more appropriate than the standard Negative Binomial model. The regression estimates are presented in Table 3.5.

Physical Activity Regression Coefficients	Coefficient	Robust Std. Err.	P Value
Weekly Walk Time (mins)	-0.0008	0.0002	0.0000
Weekly Bike Time (mins)	-0.0014	0.0004	0.0000
Age Band = 30-49	0.1135	0.0402	0.0050
Age Band = 50+	0.0311	0.0452	0.4920
Gender = Female	-0.7011	0.0299	0.0000
Ethnicity = non-white	-0.4022	0.0665	0.0000
Worker = Unemployed	-0.1017	0.1183	0.3900
Worker = Retired/Sick	-0.6096	0.0439	0.0000
Worker = Student/Home/Other	-0.2182	0.0511	0.0000
Constant	7.0766	0.0370	0.0000
Inflation Model Coefficients			
Ethnicity = non-white	0.8627	0.0530	0.0000
Worker = Unemployed	1.2137	0.0872	0.0000
Worker = Retired/Sick	1.5301	0.0314	0.0000
Worker = Student/Home/Other	1.1659	0.0396	0.0000
Constant	0.8359	0.0162	0.0000
Overdispersion Parameter			
In(alpha)	0.1706	0.0118	0.0000
alpha	1.1861	0.0140	-

 Table 3.5 Regression estimates for predictor variables of car distance travelled from

 the NTS for the group without access to a car as a main driver.

A further regression was run in which journeys were summarised by mode and purpose, so that it would be possible to fine-tune the predicted car time to account for interventions that affect a particular combination of mode and purpose, These may include for example workplace programmes to encourage employees to commute by bicycle. Results are summarised below, again separately for those individuals with or without access to a car as main driver.

		Robust	
	Coef.	Std. Err.	р
cardist			
wacotime	-0.0043093	0.0003762	0.0000
wabust	0.0009169	0.0004949	0.0640
waedut	0.0008157	0.0013308	0.5400
waescedut	-0.0027104	0.000341	0.0000
washopt	-0.0003329	0.0001779	0.0610
waothert	0.0002203	0.0000654	0.0010
cyccomt	-0.0035965	0.0003151	0.0000
cycbust	-0.0040126	0.00224	0.0730
cycedut	-0.0094917	0.001612	0.0000
_lworker_2	-0.2010386	0.0409023	0.0000
_lworker_3	-0.4400548	0.0140982	0.0000
_lworker_4	-0.2311311	0.0237947	0.0000
_lsex_1	-0.4216409	0.0083202	0.0000
_lethnic_1	-0.2425118	0.0206822	0.0000
_In_ageban~2	0.0650727	0.0130603	0.0000
_In_ageban~3	0.008836	0.0142519	0.5350
_Ihhincome_1	0.1428002	0.014491	0.0000
_Ihhincome_2	0.2981614	0.0208697	0.0000
wkxhhin	-0.0089287	0.0061433	0.1460
_cons	7.402567	0.0147911	0.0000
inflate			
_lworker_2	0.4845056	0.1551	0.0020
_lworker_3	0.4584069	0.0438734	0.0000
_Iworker_4	0.6366353	0.0676007	0.0000
_lethnic_1	0.8405768	0.0686415	0.0000
_cons	-3.068784	0.0254629	0.0000
/Inalpha	-0.3106304	0.0079955	0.0000
alpha	0.7329847	0.0058606	

Table 3.6 Mode and purpose regression estimates of car distance travelled for the group without access to a car as a main driver.

		Robust	
	Coef.	Std. Err.	р
cardist			
wacotime	-0.0044385	0.0004472	0.0000
wabust	0.0005246	0.0015643	0.7370
waedut	-0.0033347	0.0009731	0.0010
waescedut	-0.002515	0.0007643	0.0010
washopt	-0.0015309	0.0007584	0.0440
waothert	-0.0001252	0.0001877	0.5050
cyccomt	-0.0029845	0.0005547	0.0000
cycbust	-0.0070223	0.0021507	0.0010
cycedut	-0.0037823	0.0012809	0.0030
_lworker_2	-0.0725272	0.1187964	0.5420
_Iworker_3	-0.5655061	0.0511906	0.0000
_lworker_4	-0.1496827	0.0688427	0.0300
_lsex_1	-0.6969139	0.0296501	0.0000
_lethnic_1	-0.3767963	0.0679518	0.0000
_In_ageban~2	0.1066527	0.0402282	0.0080
_In_ageban~3	0.0180466	0.0448271	0.6870
_Ihhincome_1	0.1348435	0.0494961	0.0060
_Ihhincome_2	0.2258664	0.072156	0.0020
wkxhhin	-0.0139526	0.0189629	0.4620
_cons	6.976987	0.0464894	0.0000
inflate			
_lworker_2	1.214239	0.0872161	0.0000
_lworker_3	1.530649	0.0314004	0.0000
_lworker_4	1.166402	0.0396099	0.0000
_lethnic_1	0.8628102	0.0530221	0.0000
_cons	0.8355504	0.0161789	0.0000
/Inalpha	0.1552871	0.0121255	0.0000
alpha	1.167993	0.0141625	

Table 3.7 Mode and purpose regression estimates of car distance travelled for the group with access to a car as a main driver.

Predictor variables in the regressions are abbreviated thus:

cardist	Total car distance
wacotime	walk time commuting
wabust	walk time business
waedut	walk time education
waescedut	walk time education escortin
washopt	walk time shopping
waothert	walk time other
cyccomt	cycle time commuting
cycbust	cycle time business
cycedut	cycle time education

3.8.2 Car Time Related to Walking, Cycling and other Covariates

The following regression results for the time spent driving were produced using a similar regression approach to that described for car distance, Section 3.8.1.

As for the previous model for car distance, for the purpose of this regression the population was split according to whether they had access to a car as a main driver. The regression estimates for those who do have car access as main driver are presented in Table 3.6 and for those without in Table 3.7. Both models were highly significant overall, with p values <0.0000. The usual statistical tests also supported the choice of both the Negative Binomial and the zero-inflated Negative Binomial models.

Physical Activity Regression Coefficients	Coefficient	Robust Std. Err.	P Value
Weekly Walk Time (mins)	-0.00016	0.00005	0.0010
Weekly Bike Time (mins)	-0.00095	0.00012	0.0000
Worker = Unemployed	-0.20506	0.03168	0.0000
Worker = Retired/Sick	-0.38751	0.00927	0.0000
Worker = Student/Home/Other	-0.23172	0.01469	0.0000
Age Band = 30-49	0.11743	0.00995	0.0000
Age Band = 50+	0.07585	0.01085	0.0000
Gender = Female	-0.24110	0.00639	0.0000
Ethnicity = non-white	-0.05492	0.01529	0.0000
Constant	5.91156	0.00953	0.0000
Overdispersion Parameter			
In(alpha)	-0.10432	0.01075	-
alpha	0.90093	0.00969	-

 Table 3.8 Stata output for negative binomial regression model of 'cartime' for group

 with access to a car as main driver

Physical Activity Regression Coefficients	Coefficient	Robust Std. Err.	P Value
Weekly Walk Time (mins)	-0.0008	0.0001	0.0000
Weekly Bike Time (mins)	-0.0015	0.0003	0.0000
Age Band = 30-49	0.1622	0.0300	0.0000
Age Band = 50+	0.0904	0.0331	0.0060
Gender = Female	-0.4699	0.0225	0.0000
Ethnicity = non-white	-0.0605	0.0486	0.2130
Worker = Unemployed	-0.0871	0.0713	0.2220
Worker = Retired/Sick	-0.4665	0.0338	0.0000
Worker = Student/Home/Other	-0.1880	0.0371	0.0000
Constant	5.5226	0.0279	0.0000
Inflation Model Coefficients			
Ethnicity = non-white	0.8638	0.0530	0.0000
Worker = Unemployed	1.2131	0.0872	0.0000
Worker = Retired/Sick	1.5309	0.0314	0.0000
Worker = Student/Home/Other	1.1659	0.0396	0.0000
Constant	0.8382	0.0162	0.0000
Overdispersion Parameter			
In(alpha)	-0.2491	0.0186	0.0000
alpha	0.7795	0.0145	-

Table 3.9 Stata output for negative binomial regression model of 'cartime' for group without access to car as main driver.

3.8.3 Number of Trips by Car Related to Walking, Cycling and other Covariates

The following regression results for the number of car trips were produced using a similar regression approach to that described for car distance, Section 3.8.1.

As for the previous model for car distance, for the purpose of this regression the population was split according to whether they had access to a car as a main driver. The regression estimates for those who do have car access as main driver are presented in Table 3.8 and for those without in Table 3.9. Both models were highly significant overall, with p values <0.0000. The usual statistical tests also supported the choice of both the Negative Binomial and the zero-inflated Negative Binomial models.

Physical Activity Regression Coefficients	Coefficient	Robust Std. Err.	P Value
Weekly Walk Time (mins)	-0.00058	0.00004	0.0000
Weekly Bike Time (mins)	-0.00102	0.00013	0.0000
Worker = Unemployed	-0.03973	0.02804	0.1570
Worker = Retired/Sick	-0.18417	0.00823	0.0000
Worker = Student/Home/Other	-0.05954	0.01266	0.0000
Age Band = 30-49	0.16529	0.00832	0.0000
Age Band = 50+	0.09304	0.00905	0.0000
Gender = Female	0.00607	0.00541	0.2630
Ethnicity = non-white	-0.13199	0.01385	0.0000
Constant	2.72736	0.00791	0.0000
Overdispersion Parameter			
In(alpha)	-0.85754	0.01040	_
alpha	0.42420	0.00441	-

Table 3.10 Stata regression output for the number of journeys for the group with access to a car as main driver.

Physical Activity Regression Coefficients	Coefficient	Robust Std. Err.	P Value
Weekly Walk Time (mins)	-0.0013	0.0001	0.0000
Weekly Bike Time (mins)	-0.0017	0.0003	0.0000
Age Band = 30-49	0.4335	0.0304	0.0000
Age Band = 50+	0.3217	0.0328	0.0000
Gender = Female	-0.1804	0.0205	0.0000
Ethnicity = non-white	-0.1127	0.0463	0.0150
Worker = Unemployed	-0.0097	0.0763	0.8980
Worker = Retired/Sick	-0.3220	0.0305	0.0000
Worker = Student/Home/Other	-0.1199	0.0379	0.0020
Constant	2.1406	0.0295	0.0000
Inflation Model Coefficients			
Ethnicity = non-white	0.8686	0.0537	0.0000
Worker = Unemployed	1.2204	0.0886	0.0000
Worker = Retired/Sick	1.5357	0.0319	0.0000
Worker = Student/Home/Other	1.1628	0.0403	0.0000
Constant	0.7557	0.0171	0.0000
Overdispersion Parameter			
In(alpha)	-0.4402	0.0370	0.0000
alpha	0.6439	0.0238	-

Table 3.11 Stata regression output for the number of journeys for the group without access to a car as main driver.

3.9 General Approach to Incorporating Interventions' Effectiveness Evidence and Cost Evidence into the Model

3.9.1 Types of Outcomes Reported by Effectiveness Studies

The most common outcome reported in the effectiveness studies was a change in a measure of walking or cycling or both. In some studies, there were also measures of overall physical activity. Travel behaviours were reported in terms of active travel, measured as time spent, distance travelled or number of trips made. Occasionally, outcomes were health related, including mortality, cardio-respiratory fitness, reduction in blood pressure, and changes in weight or body mass index (BMI). A small number of studies reported well-being or quality of life measures as outcomes.

3.10Selection of Interventions for Modelling

Following consultation with the Economic Sub-group members and PDG, four main intervention types were selected for modelling. These were:

- 6. Multi-component Interventions including Cycling Demonstration Towns, and Sustainable Travel Towns
- 7. Personalised Travel Advice TravelSmart,
- 8. Pedometer interventions
- 9. Community based led walks

In addition, a series of what-if analyses was undertaken to see what level of cost is justifiable for interventions with particular levels of effect.

3.11Specific Intervention Effectiveness Estimates

3.11.1 Multi-Component - Cycling Demonstration Towns

3.11.1.1 Effectiveness Evidence

Analysis of data from the Cycling Demonstration Towns project [Sloman, 2009], reported an annual 4% increase in the number of cyclists, and an increase in the number of cycle trips of 27% by 2009, compared with the baseline in 2005. The percentage of adults who cycled regularly rose, and those who were classified as inactive fell from 26.2% to 23.6%. The effectiveness data are summarised in Table 3.610.

	Before	After	Absolute change	Relative Change
Percentage inactive	26.2%	23.6%	<mark>-2.6%</mark>	-9.92%
New cyclists				4%
Extra journeys				27%
% cycling 30+ minutes once a month	11.8%	15.0%	3.2%	27.12%
% cycling 30+ minutes 12+ times per month	2.6%	3.5%	0.9%	34.62%

Table 3.62 Cycling Demonstration Towns: key effectiveness evidence.

3.11.1.2 Assumptions used to transform effectiveness evidence to inputs needed for the model

- All age/gender bands have a 2.6% absolute increase in proportion doing two hours per week physical activity.
- There is a lifetime persistence in increase in physical activity

3.11.1.3 Inputs Used in the Model

To determine health outcomes, the derived change in the measure of physical activity in the Cycling Demonstration Towns was applied to all adults in the HSE. For environmental outcomes related to driving levels, the reported change in cycle journeys was used in the regression model to derive the expected change in distance driven.

3.11.2 Multi-Component – Sustainable Travel towns

3.11.2.1 Effectiveness Evidence

The key evidence from the Economic Appraisal by the DfT, relates to walking and cycling increases (13.1% and 26.1% respectively), which can be incorporated into the health model. Also available is evidence on the reduction in car/motorcycle trips (-8.4%).

Effectiveness Evidence				
	Sustainable travel			
Intervention:	towns			
Study	Economic Appraisal o	f the Sustainable trav	el towns by DfT	
Summary: Darlington, Peterborough and V	Norcestor received fu	nding over 4 years to p	promote sustainable t	ravel, including
walkking and cycling infrastructure, Smart	er Choices personalis	ed travel planning, pro	omotion of active mod	des and 'soft
Summary of effects (see Table 3)	Trips per annu	ım (Thousand)		
	2004	2008	Change	% Change
Walk	76,621	86,687	10,066	13.1%
Cycle	10,800	13,622	2,822	26.1%
Car + Motorbike Driver	139,417	127,648	-11,769	-8.4%
Car Passenger	70,408	66,232	-4,176	-5.9%
Bus and other Public Transport	24,410	27,756	3,346	13.7%
Total	321,656	321,945	289	0.1%

 Table 3.73 Sustainable Travel Towns key effectiveness evidence

For the model, the increase in the number of walking and cycling trips needed to be converted to the corresponding increase in walking and cycling time. For this, the NTS trip diary was used to compute average time per trip, from the total time and number of trips. The observed increase in trip numbers was then multiplied by the average trip time to give an implied increase in the weekly walking and cycling time. It was presumed that new trips were similar in duration to the existing average.

3.11.2.2 Assumptions to transform effectiveness evidence to inputs for the model

Assumptions to Convert % Increase in Trips into Bike Time and Walktime					
Walking					
Mean walktime per week	44.70	NTS average			
Percentage increase	13.1%				
Implied increase in walk time	5.87				
Cycling					
Mean biketime per week	5.25	NTS average			
Percentage increase	26.1%				
Implied increase in cycle time	1.37				
Note: The study assumed a 40% decay rate					
numbers of trips e.g. See Figure 1					

Table 3.84 Assumptions to transform Sustainable Travel Towns evidence into walktime and bike-time increases.

Another way of examining the effects of Sustainable Travel Towns uses the evidence available on % increases in cycling distance (28% to 32%) and walking distance (18% to 27%) rather than trip numbers.

Effectiveness Evidence				
	Sustainable travel			
Intervention:	towns			
	The Effects of Smarte	er Choice programmes	in the Sustainable Tra	vel towns: Summary
Study	Report			
	http://assets.dft.gov	.uk/publications/the-	effects-of-smarter-ch	oice-programmes-in-
	the-sustainable-trave	el-towns-summary-re	port/summaryreport.	odf
walkking and cycling infrastructure, Smart measures' for piblic transport.	ter Choices personalis	ed travel planning, pr	omotion of active mod	des and 'soft
Summary of effects (see Table 3 and 4)				
% Increase in Cycling Dictance per Person	28% to 22%			
% increase in cycing Distance per Person	20/0 10 52/0			
we assume	30.0%			
% Increase in Walking Distance per				
Person	18% to 27%			
We assume	22.5%			

 Table 3.95 Sustainable Travel Towns alternative evidence formulation based on

 percentage increase in distances rather than trips.

Again, the mean trip time and distance from the NTS was used to convert these distance increases into an implied increase in time for use in the model.

Assumptions to Convert % Increase in Distance into Bike Time and Walktime				
Mean Trip Time and Distance from NTS				
Walking				
Mean walktime per week	44.70			
Mean distance per week	3.15	miles		
Mean speed per mile	4.23	mph		
Implied mean absolute increase in walk				
distance per person	0.71	miles		
Implied mean absolute increase in walk				
time per person	10.06	mins		
Cycling				
Mean biketime per week	5.25			
Mean distance per week	0.66	miles		
Mean speed per mile	7.50	mph		
Implied Mean absolute increase in cycle				
distance per person	0.20	miles		
Implied Mean absolute increase in cycle				
time per person	1.58	mins		

 Table 3.106 Assumptions to convert Sustainable Travel Towns percentage increase in

 distance into model inputs in terms of mean distance increase.

3.11.3 Personalised Travel Support – TravelSmart

3.11.3.1 Effectiveness Evidence

Evidence for the effectiveness of the TravelSmart programme come in the form of increases in walking and cycling, decrease in car trips, and increases in sustainable travel trips as shown in the table below

Calculations on Effects				
Area	Relative change (where reported)			
	Increase in	Increase in	Decrease in	Increase in
	walking	cycling	car trips	sustainable
				travel trips
East Inverness			-13%	19%
Cramlington			-11%	17%
Doncaster	29%	14%	-13%	29%
Sheffield			-12%	15%
Nottingham			-12%	20%
Peterborough			-11%	16%
Lowestoft	19%	19%		
lpswich *				
Broxbourne*				
Watford	20%	33%		
London (Kingston)			-14%	17%
Exeter	18%	33%		
Bristol (Windmill Hill and Southville)			-10%	10%
Bristol (Bishopston)			-11%	9%
Gloucester (Quedgeley)			-12%	18%
Gloucester (Barton, Tredworth and White City)	18%	16%	-13%	17%
Worcester			-10%	12%
Preston and South Ribble	11%	35%	-10%	11%
Lancaster City & Morecambe	18%	69%	-14%	19%
Population weighted avarage	19.8%	32.1%	-11.9%	17.4%

 Table 3.117 Estimated weighted average effectiveness for TravelSmart

3.11.3.2 Assumptions to Transform Effectiveness Evidence to Model Inputs

Once again, the average trip lengths from the NTS were used to transform the evidence into inputs suitable for the model.

Assumptions to Convert % Increase in Trips into Bike Time and Walktime				
Mean Trip Time from NTS	Mean walktime	e per week		
Walking				
Mean walktime per week	44.70424348			
Mean No of trips	1.820407888			
Mean Walk time per trip	24.5572675			
Implied Mean absolute increase in walk time per				
person	4.856881795			
Cycling				
Mean biketime per week	5.252820505			
Mean No of trips	0.27			
Mean Biketime per trip	19.38681798			
Implied Mean absolute increase in bike time per				
person	6.225322663			

 Table 3.128 Assumptions used to transform effectiveness evidence on TravelSmart to

 inputs needed for the model

3.11.4 Pedometer Interventions

3.11.4.1 Effectiveness Evidence

We model three scenarios of evidence around pedometers.

- 1. UK trial of pedometer use with most of the support in first 4 weeks
- 2. UK trial of more sustained support for pedometer use
- 3. Larger sample size Australian trial of pedometers

For the first two studies by Baker (2008a&b), effectiveness was measured as an increase in the number of steps taken from baseline compared with the control group. This was converted to extra minutes walking by equating 3,100- 4,000 steps to 30 minutes of walking. In the Australian trial by Merom (2007) outcomes were reported as walking sessions, which could be directly converted to times to give an indication of the percentage considered active or inactive. The tables below summarise the key evidence.

Effectiveness				
Evidence				
Lvidence	Dedementerie			
Intervention:	Pedometers			
Ctudy	Dakar 2009a			
Study	Baker 2008a			
Summary: BCT of p	edometers Most of t	he intervention takes	place over the first 4	weeks but follow up
is over 52 weeks				
Sample Size	n=26	n=24		
	No. of steps per			
	week		Relative change from	baseline
	Control with sealed		Control with sealed	
Week	pedometers	Pedometer	pedometers	Pedometer
0	69,171	62,065	1.00	1.00
1		75,722		1.22
2		78,041		1.26
3		84,315		1.36
4	86,820	94,219	1.26	1.52
16	84,612	86,953	1.22	1.40
52	63,084	64,549	0.91	1.04
		Increase in mean		
		steps per week over		Mean increase in
Week	No of weeks	baseline	Area under curve	steps per week
0		0		
1	1	13,657	6,828.5	
2	1	15,976	14,816.5	
3	1	22,250	19,113.0	
4	1	32,154	27,202.0	
16	12	24,888	342,252.0	
52	36	2,484	492,696.0	
			902,908.0	17,364
Convert Additional	Steps to Additional W	/alktime		
3100 to 4000 steps				
equates to 30 min	Implied steps per		Implied added	Implied added
walk	hour		hours of walking	Minutes of walking
	7,100		2.45	146.73

 Table 3.139 Summary of effectiveness from UK trial of pedometers (main resource input over first 4 weeks of intervention)

Study	Baker 2008b + Person	al Communication on	Longer Term Follow-U	p
Summary: RCT of p	edometers with supp	ort and advice at weel	ks 12,24 and 36. Thus p	providing additional
information on sus	tained support and us	e.		
Sample Size	n=39	n=40		
	No of Steps per Day		Relative change from	baseline
		Walking programme		Walking programme
Week	Control	+ pedometer	Control	+ pedometer
0	6,924	6,802	1.00	1.00
12	7,078	9,977	1.02	1.47
24		9,201	-	1.35
48		8,678	-	1.28
Additional Informa	tion from point where	e control group crosse	d over to intervention	receive
intervention after :	12 weeks in original st	udy		
	No of Steps per Day	-	Relative change from	baseline
		Control group given		
Week		interv'n at 12 weeks		
0		7,078		1.00
12		8,693		1.23
24		8,417		1.19
48		8,208		1.16
		Increase in mean		
		steps per week over		Mean increase in
Week	No of weeks	baseline	Area under curve	steps per day
0		0		
12	12	3,175	19,050.0	
24	12	2,399	33,444.0	
48	24	1,8/6	51,300.0	0.100
			103, /94.0	2,162
Nean Increase in si	teps per day			15,137
Convert Additional	Steps to Additional W	/alktime		
3100 to 4000 steps				
equates to 30 min	Implied steps per		Implied added	Implied added
walk	hour		hours of walking	Minutes of walking
	7,100		2.13	127.92
Sustained level of	Effect Assumtpion			
Mean Increase in Steps per Day over Year 1				2,162
Mean Increase in Steps per Day Maintained beyond Year 2			1,876	
Implied Sustained level of effect after decay				86.8%

Table 3.20 Effectiveness evidence from UK trial to support sustained use of

pedometers

Effectiveness					
Evidence					
Intervention:	Pedometers				
Study	Merom 2007				
Summary: RCT of 3	arms - Control, Walkir	ng program alone and	pedometers with wal	king programmes.	
Large sample size.	Set in Australia. Follov	w up 3 months.			
Sample Size	n=123	n=123	n=123		
				Relative change from	baseline
			Walking programme		Walking programme
Australia	Control	Walking programme	+ pedometer	Control	+ pedometer
Walking sessions u	ndertaken				
0	2.54	2.8	2.36	1.00	1.00
12	3.74	4.1	4.66	1.47	1.97
Difference 0 to 12	1.2	1.3	2.3		
				-	-
Mins all purpose w	alking per week				
0	69	59	63	1.00	1.00
12	112	114	115	1.62	1.83
Difference 0 to 12	43	55	52		
>=150 mins activity					
0	16.30%	17%	16.30%	1.00	1.00
12	31.70%	31.70%	39.00%	1.94	2.39
Difference 0 to 12	15.40%	14.70%	22.70%		

Table 3.14 Effectiveness evidence for larger Australian trial of pedometers (3 months follow up)
3.11.5 Led Walking Interventions

3.11.5.1 Effectiveness Evidence

For led walks, the evidence was presented as the percentage of participants who became active compared with the baseline.

Effectiveness Evidence				
Intervention:	Led Walking			
Study	Lamb 2001			
Summary: RCT of le	d walking "health wal	ks" versus advice only	. Sample size n=260 a	cross 2 arms, Follow
up = 12 months.				
Sample Size	n=131	n=129		
	% partcipants achievi	ng 120 mins	Relative change from	baseline
Week	Advice	Health walks	Advice	Health walks
0	3.1%	2.3%	1.00	1.00
26	24.4%	17.2%	7.87	7.48
52	26.6%	31.0%	8.58	13.48
Absolute Increase i	n % of people active v	vho were previously i	nactive	
Week	Advice	Health walks		
0	0.0%	0.0%		
26	21.3%	14.9%		
52	23.5%	28.7%		

Table 3.152 Summary of effectiveness evidence from UK trial of led walking.

3.12Specific Interventions: Cost Estimates and Assumptions

3.12.1 Costing Multi-component Intervention - Cycling Demonstration Towns

Costs for the Cycling Demonstration Towns were taken from the published economic evaluation (Cope 2010).

	1			1
Cost Evidence				
	Cycling			
	Demonstration			
Intervention:	Towns			
	Cycling Demo			
Study	Towns (Ref)			
Descriptions of Cost Items				
http://www.etcproceedings.org/paper	c/cycling-demonst	ration-towns-an-eco	nomic-evaluation	
investment programme (f18 million ov	ver three years). T	he towns received f	unding of £500.000 r)er vear
(approximately fE per head of populat	ion norwoor) star	ting in October 2005	and matched by the	a respective local
				: Tespective local
authorities so that the total level of inv	estment in cycling	g was at least £10 pe	r head per year. This	s represented a
substantially higher level of investmen	t than the English	local authority avera	age, which, at the be	ginning of the
programme, was closer to roughly £1 p	er head per year.	This represented a s	ubstantially higher	evel of
investment than the English local author	ority average, whi	ch, at the beginning	of the programme.	was closer to
roughly f1 per baad per year			or the programme,	
Toughty II per head per year				
Annual cost per person (Central Govern	nment) of £5 per a	nnum plus matched	funding from local t	owns over 3 years
implies mean cost of £30 per person ov	ver 3 years. Hence	, an implied populat	ion of the 6 towns o	f 600,000
· · ·				
			Implied Cost per	
Costs Assumptions / Calculations	Unit Cost	Number of Units	narticnant	No of people
costs Assumptions / calculations	0111 0031	Number of office	particpant	

Total Cost£18,000,0001£Table 3.163 Estimated costing for Cycling Demonstration Towns

3.12.2 Costing Multi-Component Intervention – Sustainable Travel Towns

Cost evidence for Sustainable Travel Towns was taken from the Economic Appraisal published by the Department for Transport.

30.00

600,000

Cost Evidence		
Intervention:	Sustainab	le travel towns
	Economic	Appraisal of the
	Sustainab	le travel towns
Study	by DfT	
Population (see Table 1)		316,000
Table 10 Scheme Costs		
2004/5	£	2,338,070
2005/6	£	3,303,445
2006/7	£	3,989,989
2007/8	£	3,759,921
Total	£	13,441,425
PVC (after discounting)	£	12,226,441
PVC(after market price adjustment)	£	14,830,091
Implied Cost per Individual	£	46.93

Table 3.174 Costing multi-component intervention – Sustainable Travel Town

3.12.3 Costing Personalised Travel Support - TravelSmart

Cast Fuidance				
Cost Evidence				
Intervention:	TravelSmart			
Study	TravelSmart			
Leading the way in travel behaviour change	Unit Cost per household	£	20.00	
Information sheet FF36				
http://www.sustrans.org.uk/assets/files/travelsmart				
/behaviour_change_ff36.pdf				
TravelSmart project review	Unit Cost per household	£	25.00	
Sept 2009				
http://www.sustrans.org.uk/assets/files/travelsmart				
/TravelSmart%20Project%20Review.pdf				

3.12.4 Costing Pedometer Interventions

The following tables present four sets of costing estimates for use in the modelling scenarios. Costs were estimated for the Baker studies, and supplemented by evidence from Shaw (2011) when this was published

Cost Evidence							
Intervention:	Pedometers						
Study	Baker 2008a						
Descriptions of Cost Items							
Weekly meetings in first 4 weeks including							
suggestions for goals							
Pedometer							
Briefing Session at 4 weeks (including option to buy							
pedometer at a discounted price)							
Costs Assumptions / Calculations	<u>Unit Cost</u>		Number of Units	<u>Impli</u>	ed Cost		
			Hrs				
15 Mins initial briefing (Cost of staff / hour from Unit							
Costs of Health and Social Care 2011 Equivalent to							
physiotherapy salary £22,700)	£	31.00	0.25	£	7.75		
3 * 15 mins session (weeks 1,2,3)	£	31.00	0.75	£	23.25		
Half hour final briefing	£	31.00	0.50	£	15.50		
Subtotal Staff Time							
Pedometer	£	6.00	1	£	6.00		
Subtotal Staff Time						£	46.50
Subtotal Other Costs						£	6.00
Resulting Cost estimate per person				£	52.50		

Table 3.185 Cost estimates for pedometer study Baker, 2008a

Cost Evidence							
Intervention:	Pedomete	rs					
	Baker 2008	8b + Longer					
Study	term Follo	w Up					
Descriptions of Cost Items							
Initial Consultation							
Pedometer							
"Walking Program"							
Relapse Consultation at 12 weeks							
Leaflet given at 24 weeks							
Support Telephone Call at 36 weeks							
Costs Assumptions / Calculations	<u>Unit</u>	t Cost	Number of Units	Implie	ed Cost		
	Cost of sta	aff (Equiv to					
	phy	/sio / health					
	promot	ion worker)	Hrs				
30 Mins initial briefing	£	31.00	0.50	£	15.50		
Pedometer	£	6.00	1	£	6.00		
Relapse Consultation at 12 weeks	£	31.00	0.50	£	15.50		
24 week leaflet	£	1.00	1	£	1.00		
Phone Call at 36 weeks							
Staff Time (assume 15 mins)	£	31.00	0.25	£	7.75		
Call Cost	£	1.00	1	£	1.00		
Subtotal Staff Time						£	38.75
Subtotal Other Costs						£	8.00
Resulting Cost estimate per person (Year 1)				£	46.75		
Resulting Cost estimate per person (Year 2 and							
beyond assuming 12,24,36 week contact as in Y1)				£	25.25		
Resulting Cost estimate per person (Year 2 and							
beyond assuming 24,36 week contact as in Y1)				£	9.75		

Table 3.196 Cost Estimates for pedometer study Baker 2008b and its longer termfollow-up to 12 months

Cost data from	Shaw	Min			Max
	Unit cost	Number of Units	Implied Cost	Number of Units	Implied Cost
Consultation	£17.50	0.08	£1.46	0.50	£8.75
Pedometer	13	1.00	£13.00	1.00	£13.00
Walking					
programme	£1.00	1.00	£1.00	1.00	£1.00
Relapse					
prevention	£17.50	0.08	£1.46	0.50	£8.75
Physical activity					
advice leaflet	£0.16	0.00	£0.00	1.00	£0.16
Follow up call	£17.50	0.08	£1.46	0.13	£2.33
		Yr1	£18.38		£33.99
		yr2	£1.46		£11.24

Table 3.207 Cost estimates for pedometer study Baker 2008b and its longer termfollow-up to 12 months using cost data from Shaw (2011)

Cost Evidence					
Intervention:	Pedometers				
Study	Merom 2007	Australia			
Descriptions of Cost Items					
Booklet Step-by-Step					
6 * Postcard walking diaries					
20 minute telephone interview at baseline					
20 minute telephone interview at 3 motnhs					
Costs Assumptions / Calculations	Linit C	ost	Number of Units	Implied Cos	:+
		031	Hrs	implied cos	
Booklet (Step-by-Step) (assumed £5)	f	5.00	1	f 50	0
		5.00		1 3.0	
Prepaid poastage postcard walking diary	£	1.00	6	£ 6.0	00
Pedometer	£	6.00	1	£ 6.0	00
20 minute telephone interview at baseline	£	31.00	0.33	£ 10.3	3
20 minute telephone interview at 3 months	£	31.00	0.33	£ 10.3	3
Telephone Call Costs	£	1.00	2	£ 2.0	00
Subtotal Staff Time					£ 20.67
Subtotal Other Costs					£ 19.00
Resulting Cost estimate per person				£ 39.6	57
Comparison with Australian Cost Estimate					
Australian \$ 2007 estimate in published article				\$ 33.00)
Conversion to UK £ factor				0.6	8
Estimate UK 2007 Cost				£ 22.37	7
Inflation factor at 3% * 5 years				1.1	5
Implied UK cost				£ 25.93	3

Table 3.218 Cost estimates for pedometer study Merom 2007 (Australia)

3.12.5 Costing Led Walking Interventions

Cost Evidence				
Intervention:	Led Walking			
Study	Lamb 2001			
Descriptions of Cost Items in Trial				
Recruiting to the Led Walking Scheme				
Trial took place in and CD practice with list size 26 EW	Target population - 4	0.70 years alds who	a ara linactival (a	2 hours
madarate physical activity) 2000 people aged 40.70	J. Target population = 4	0-70 years olds wild		Z HOUIS
moderate physical activity). 2000 people aged 40-70 v	vere randomly invited.	483 responded as w	Anna 2000 40 70 m	rered 260
were actually willing to be (and were) randomised. C	ost is therefore Questio	nnaire mailed out	to 2000 40- 70 yr (bids on
GP list and analysed to see if 'inactive'				
"Advice" Arm of trial				
Physio advice for 10 to 20 people (30mins)				
General Written guidance				
Self-sought advice from their own GP through the tim	ne of the programme			
"Led walking" Arm of trial				
Physio advice for 10 to 20 people (30mins)				
General Written guidance				
Self-sought advice from their own GP through the tim	ne of the programme			
Telephone call from co-ordinator within 2 weeks				
Walks are led by trained volunteers				
"Walk pack" including routes and calibrated times (In	formation on Health Wa	alks within local are	a with info on p	ublic
transport, car parks and creche facilities)				
3 support telephone calls may per appum				

Table 3.229 Description of key cost items in Lamb 2001 led walking trial

Cost Evidence				
Intervention:	Led Walking			
Study	Lamb 2001			
			Implied Cost	No of
Costs Assumptions / Calculations for Led Walking	Unit Cost	Number of Units	per particpant	people
Upfront Cost of Volunteer Training per Participant				
Assume a 3 hour session, 4 times a year to train the				
volunteers needed for 260 walkers	£ 31.00	12	£ 1.43	260
Upfront Cost of recruitment per Participant		Questionnaires		
Questionnaire mailed out to 2000 40-70 yr olds on GP				
list and analysed to see if 'inactive'. Of whom 260				
took up the offer. Assumed cost per questionnaire of				
£2 in base case. Hence cost per uptaker =				
£2*2000/260. (Might consider using £5 as upper				
sensitivity)	£ 2.00	2000	£ 15.38	260
Direct Costs per Participant		Hrs		
Physio advice for 10 to 20 people for 30mins				
(Assumed 1 hour preparation / travel time for physio				
and 15 people in a session)	£ 31.00	1.50	£ 3.10	15
Self Sought advice from GP (Per surgery consultation				
lasting 11 7 minutes) NB No information reported in				
publication on how many took place, we assume				
this is zero i.e. Only takes place in GP consultations				
that would happen anyway for other reasons	f 36.00	0	f-	
	2 00.00		_	
Written Guidance Booklet	£ 5.00	1	£ 5.00	
Walk Pack	£ 5.00	1	£ 5.00	
3 support telephone calls max per annum (assumed				
2 each at 15 mins)		Hrs		
2*15 minute telephone support call (staff time)	£ 31.00	0.50	£ 15.50	
Telephone Call Costs	£ 1.00	2	£ 2.00	
Subtotal Staff Time				£ 20.03
Subtotal Other Costs				£ 27.38
Resulting Cost estimate per person			£ 47.42	

 Table 3.30 Estimate of costs per participant in Lamb 2001 led walking trial

			Implied Cost	<u>No of</u>
Comparison with Cost estimate from Derbyshire	Unit Cost	Number of Units	per particpant	<u>people</u>
For a population of 750,000, approx half aged 40-70,				
Derbyshire PCT report spending £50,000 to recruit				
1672 walkers through 8 local authorities. (NB				
Walkers did a total of 28,197 contracted walking				
hours in the year)				
Cost of scheme in Derbyshsire	£ 50,000.00	1	£ 29.90	1,672
Difference from 'bottom up' estimate			-£ 17.51	
			-37%	

 Table 3.31 Comparison of estimated costs in Lamb 2001 led walking trial with

 Derbyshire PCT led walking programme 2011.

3.13 Monetary Valuation of Environmental Outcomes

Where the evidence was available, we estimated the change in distance driven, given changes in walking or cycling, using a regression model for the NTS data. This change in vehicle kilometres is the basis for the DfT monetary valuation of environmental outcomes (Department for Transport, TAG Unit 3.5.4 Cost Benefit Analysis).

For congestion, the NTM uses a set of speed-flow curves to calculate the time lost relative to free flow conditions for each additional vehicle using a road. When a road is relatively free of congestion, each additional vehicle has little effect on the average speed. As the road becomes more congested, extra vehicles have a much larger effect, and journey times increase. The NTM combines the delays with values of time for road users, to give a monetary cost of the delay caused by each additional vehicle.

Estimates of the marginal costs associated with accidents, infrastructure damage, noise air quality and greenhouse gases are taken from Sansom *et al.*(2001), and, like congestion costs, are expressed as the cost per vehicle kilometre. A summary of the costs used by the DfT is shown below.

Table A1: Marginal	external costs	for cars (p	/km, 2010	, 2002 pric	es)						
		C	onurbatio	ns	0	Other urba	n		Rural		
Cost	Congestion			Other			Other			Other	Weighted-
type	band	M'ways	A roads	Rds	M'ways	A roads	Rds	M'ways	A roads	Rds	Average
Congestion	Average	5.7	53.4	26.2	n/a	22.2	5.6	3.9	2.1	5.5	13.1
Infrastructure	All	0	0.1	0.1	n/a	0.1	0.1	0	0.1	0.1	0.1
Accident	All	0	2.9	2.9	n/a	2.9	2.9	0	0.7	0.7	1.5
Local Air	All	0.7	0.9	1	n/a	0.5	0.5	0.3	0.2	0.2	0.4
Noise	All	0.2	0.2	0.2	n/a	0.2	0.2	0	0	0.1	0.1
Greenhouse Gases	All	0.3	0.4	0.4	n/a	0.3	0.3	0.3	0.3	0.3	0.3
Indirect Taxation	All	-3.7	-4	-4.7	n/a	-3.3	-4.2	-3.9	-3.1	-3	-3.6
Total	All	3.2	54	26.2	n/a	22.9	5.5	0.6	0.3	3.8	11.9

 Table 3.23 Extract from Department of Transport valuation

http://www.dft.gov.uk/webtag/documents/expert/unit3.9.5.php#04

QALYs and Discounting

Mean EQ5D by gender and 5-year age bands were taken from Kind et al.

Health costs were discounted by 3.5% per annum as indicated by NICE CPHE Method Manual.

3.14 Model to Integrate Data and Evidence

The HSE was used as a representative sample of the population of England. Individuals were used to populate the model with values for selected relevant demographic variables. These included age, gender, employment status, and whether the individual had access to a car. Also included were walking, and physical activity levels, together with a number of biometric indicators related to physical activity. A summary of individuals, grouped by age and gender, was also produced. This allowed the calculation of the percentage of active and inactive in each group, and the application, where appropriate, of effectiveness and relative risk evidence at group level.

The NTS provided data on individuals, with an associated week-long trip diary. Data for seven consecutive years of the survey were used. The individual data contained details of age, gender work status and access to a car, thus providing a link with the HSE. The trip diaries for each individual were aggregated to provide a summary of the number of weekly trips made, with average times and distances, by mode and purpose. The trip modes and purposes given in the NTS were concatenated to four modes and six purposes. Mode categories were grouped into walking, cycling, car, and other; with purposes grouped into commuting, business, education, escort education, shopping, and leisure/other.

3.15 Some Key Limitations on Model Approach

Clearly, some assumptions need to be made in producing a model from a large variety of evidence sources that publish different and partially reported outcomes.

The key assumptions / limitations are as follows.

- We assume the Anderson et al. Copenhagen study accurately represents the risk reductions in mortality for increased levels of physical activity longitudinally in England
- We assume that the effect is fairly rapid, and do not explicitly model time lags, *i.e.* increasing physical activity reduces mortality risk within the following year and vice versa. Decay in physical activity similarly increases the risk to former levels.
- We assume no effects in any of the scenarios modelled in the under 18s, or in the over 70s.
- For the pedometer and led walking scenarios examined, we have assumed that only those currently under two hours physical activity per week are offered the intervention.
- When mean changes in physical activity, walking or cycling are reported, we assume they apply to each age/sex group equally unless differential age/sex evidence is reported. (We do however have age/sex specific baseline levels of physical activity and walking and cycling, so the new levels after adjustment are different for each age/sex band.
- We have modelled various scenarios for decay of effect. For interventions that are more infrastructure based, or have evidence of sustained effect we have assumed 0% decay. For other interventions that are based more on encouraging physical exercise, and where there is direct evidence of a waning of effect, we have assumed a variety of decay of effect scenarios, including for some 100% reduction *i.e.* no continuing effect after year 1.
- In the environmental outcomes modelling, if there is no direct evidence of reduced driving, we have assumed that driving reduction when walking or

cycling increases is equivalent to that shown in cross-sectional regression from the National Travel Survey.

4 RESULTS

4.1 Results: Multi-Component

The two main multi-component studies examined are Cycling Demonstration Towns and Sustainable Travel Towns.

Cost per QALY results for these two interventions are summarised in the table below.

Intervention	Scenario	Cost/QALY
Cycling Demonstration	Individuals	£4,830
Iowns	Age and gender bands	£5,090
Sustainable Travel Towns	Trip evidence (DfT)	£997
	W & C evidence (Smarter Choice)	£951

Table 4.1 Multi-component results summary

For Cycling Demonstration Towns, the modelling undertaken suggests that the intervention appears cost-effective. The cost per QALY is estimated to be of the order of £5,000 for models runs applying the effectiveness evidence either individually or based on age and gender bands.

For Sustainable Travel Towns, the modelled cost-effectiveness is estimated to be of the order of £900 per QALY for models runs using either the percentage change in trips evidence from the DfT economic appraisal or the walking and cycling distance evidence from the Smarter Choice report.

4.1.1 Results: Multi-Component - Cycling Demonstration Towns

Intervention name		Model Run	1
Cycle Demonstration Towns		Scenario	1a
Key Evidence Study	Cycle Demonstration	n Towns	
Change in % Physically Active			2.60%
Mean Change in Physical Activity Hours			
Change in Walktime (Mins per week)			
Change in BikeTime (Mins per Week)			
Annual %Decay in effectiveness (0% = full on	going effect, 100% =	no effect after year 1	0%
Is decay %Effect Relative or absoulte per ann	um		Absolute
Sustained long-term level of %effect after			100%
Cost of Offer (Vear 1)			£0.00
Cost of Untake per person Taking Up (Initial)			£20.00
Ongoing Costs por porson Vr 2 Onwards			£0.00
Decay Pate for Opgoing Costs			10.00
Decay Nate for Ongoing Costs			078
Does the Cost Of Uptake Simply Apply to the	Whole Population? (1=Yes,0=No)	Yes
Offer Rule based on Phsical Activity? Enter C	riterion based on we	ekly hours e.g. <2	>=0
Uptake Rule based on Random Proportion of	those offered		100%
Offer and Uptake Results			
% of Total England Population Who Get bene	fit from Intervention		53.9%
Model Used to Compute Mortality Effect:	5. Step Function Risl	k via % Active on indiv	iduals accounting
	for uptake		
Health benefits Results Summary	No Intervention	With Intervention	Difference
Intervention Costs			£ 1,568,292,630
Discounted QALYS	650,723,003	651,047,714	324,711
Incremental Cost per QALY gained			£ 4,830
Congestion Assumptions Used			
Is effect car distance measured directly in the	e evidence?		No
% Change in Car Trips from direct evidence			
Mean Change in Car Distance travelled (1/2	LOths of mile/week as	s per NTS)	
Does change in Travel from Direct Evidence	e Apply to All or Just	Uptakers?	
Does the change based on Walking and cyclir	ng depend on % chan	ge in trips / time	Yes
% Change in Walking Trips / Time to Apply	to NTS Travel if using	indirect evidence	0%
% Change in Biking Trips / Time to Apply to	NTS Travel if using in	idirect evidence	27%
Does change based on Walking/Cycling depe	nd on absolute chang	ge in walk/bike time	No
Change in Walktime (Mins per week)			
Change in BikeTime (Mins per Week)			
Congestion Results Summary	No Intervention	With Intervention	Difference
Total Expected Car Distance pa (miles)	189,048,839,010	188,858,642,192	-190,196,818
Distance Travelled pa per person	3,616	3,613	-3.6
Valuing Congestion per annum			-£40 097 967
Saving on Congestion Per person per annum	(-ve = saving)		-£0.77
Valuing Greenhouse Gas Reductions	(-£918,274
Total Marginal External Costs per Annum (Inc	cl. Reduced Indirect t	axation)	-£36,424,870
Difference in Number of Deaths at a Time Ho	rizon of 10 years		-13 338
Value using DfT Value of Statistical Life i e	f1 585 510	(-ve = saving)	-f21.148 182 578

Table 4.2 Results: multi-component - Cycling Demonstration Towns (Scenario 1a)

Intervention name		Model Run	2
Cycle Demonstration Towns		Scenario	1b
Key Evidence Study	Cycle Demonstration	n Towns	
Change in % Physically Active			2.60%
Mean Change in Physical Activity Hours			
Change in Walktime (Mins per week)			
Change in BikeTime (Mins per Week)			
Annual % Decay in effectiveness (0% - full on	acing offect 100% -	no offect often year 1	00/
Annual %Decay in enectiveness (0% = full of	going effect, 100% =	no effect after year 1	0%
Is decay %Effect Relative or absoulte per ann	um		Absolute
Sustained long-term level of %enect after			100%
Cost of Offer (Year 1)			£0.00
Cost of Uptake per person Taking Up (Initial)			£30.00
Ongoing Costs per person Yr 2 Onwards			£0.00
Decay Rate for Ongoing Costs			0%
Doos the Cost Of Lintake Simply Apply to the	Whole Deputation 2 (Vac
Does the cost of optake simply Apply to the	whole Populations (1 = 105, 0 = 100	res
Offer Rule based on Phylical Activity? Enter C	riterion based on we	ekiy nours e.g. <2	>=0
Uptake Rule based on Random Proportion of	those offered		100%
Offer and Uptake Results			
% of Total England Population Who Get bene	fit from Intervention		53.9%
Model Used to Compute Mortality Effect:	6. Step Function Risk	k via % Active on Age,	/Sex banded
	Summary (Only valid	d for 100% uptake)	
Health benefits Results Summary	No Intervention	With Intervention	Difference
Intervention Costs			£ 1,568,292,630
Discounted QALYS	650,723,003	651,031,107	308,104
Incremental Cost per QALY gained			£ 5,090
Congestion Assumptions Used			N -
Is effect car distance measured directly in the	e evidence?		NO
% Change in Car Trips from direct evidence			
Mean Change in Car Distance travelled (1/1	Loths of mile/week as	s per NTS)	
Does change in Travel from Direct Evidence	e Apply to All or Just l	Jptakers?	
Does the change based on Walking and cyclir	ng depend on % chan	ge in trips / time	Yes
% Change in Walking Trips / Time to Apply	to NTS Travel if using	indirect evidence	0%
% Change in Biking Trips / Time to Apply to	NTS Travel if using in	direct evidence	27%
Does change based on Walking/Cycling depe	nd on absolute chang	ge in walk/bike time	No
Change in Walktime (Mins per week)			
Change in BikeTime (Mins per Week)			
Congestion Results Summary	No Intervention	With Intervention	Difference
Total Expected Car Distance na (miles)	189 0/18 839 010	188 858 642 192	-190 196 818
Distance Travelled na ner nerson	3 616	3 613	-3.6
	5,010	5,015	5.0
Valuing Congestion per annum			-£40,097,967
Saving on Congestion Per person per annum	(-ve = saving)		-£0.77
Valuing Greenhouse Gas Reductions			-£918,274
Total Marginal External Costs per Annum (Inc	cl. Reduced Indirect ta	axation)	-£36,424,870
Difference in Number of Deaths at a Time Ho	rizon of 10 years		-12,574
Value using DfT Value of Statistical Life i.e	£1,585,510	(-ve = saving)	-£19,936,595,619

Table 4.3 Results: multi-component - Cycling Demonstration Towns (Scenario 1b)

4.1.2 Results: Multi-Component – Sustainable Travel towns

Intervention name		Model Run	3
Sustainable travel towns (using Trips		Scenario	2a
Key Evidence Study Economic Appraisal of the Sustainable tr			ivel towns by DfT
Change in % Physically Active			,
Mean Change in Physical Activity Hours			
Change in Walktime (Mins per week)			5.9
Change in BikeTime (Mins per Week)			1.4
Annual %Decay in effectiveness (0% = full on	noing effect 100% =	no effect after vear 1	0%
Is decay %Effect Relative or absoulte per app			Absolute
Sustained long-term level of %effect after	um		100%
Cost of Offer (Year 1)			£0.00
Cost of Untake per person Taking Up (Initial)			£0.00
Cost of Optake per person Taking Op (Initial)			£46.93
Descu Pata fan Onacina Casta			£0.00
Decay Rate for Ongoing Costs			0%
Does the Cost Of Uptake Simply Apply to the	Whole Population? (1=Yes,0=No)	Yes
Offer Rule based on Phsical Activity? Enter C	riterion based on we	ekly hours e.g. <2	>=0
Uptake Rule based on Random Proportion of	those offered		100%
Offer and Uptake Results			
% of Total England Population Who Get bene	fit from Intervention		53.9%
Model Used to Compute Mortality Effect: 1. Continuous Risk via Biketime/Walktime			
Health benefits Results Summary	No Intervention	With Intervention	Difference
Intervention Costs			£ 2,453,367,344
Discounted QALYS	650,723,003	653,004,659	2,281,656
Incremental Cost per QALY gained			£ 1.075
			= _,
Congestion Assumptions Used			,
Congestion Assumptions Used Is effect car distance measured directly in the	e evidence?		Yes
Congestion Assumptions Used Is effect car distance measured directly in the % Change in Car Trips from direct evidence	e evidence?		Yes -8.4%
Congestion Assumptions Used Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/1	e evidence? .0ths of mile/week as	s per NTS)	Yes -8.4% -28.4
Congestion Assumptions Used Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/2 Does change in Travel from Direct Evidence	e evidence? Oths of mile/week as Apply to All or Just (s per NTS) Jptakers?	Yes -8.4% -28.4 All
Congestion Assumptions Used Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/2 Does change in Travel from Direct Evidence Does the change based on Walking and cyclir	e evidence? Oths of mile/week as Apply to All or Just (ag depend on % chan	s per NTS) Jptakers? ge in trips / time	Yes -8.4% -28.4 All No
Congestion Assumptions Used Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/2 Does change in Travel from Direct Evidence Does the change based on Walking and cyclin % Change in Walking Trips / Time to Apply	e evidence? Oths of mile/week as Apply to All or Just I ng depend on % chan to NTS Travel if using	s per NTS) Jptakers? ge in trips / time indirect evidence	Yes -8.4% -28.4 All No
Congestion Assumptions Used Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/2 Does change in Travel from Direct Evidence Does the change based on Walking and cyclir % Change in Walking Trips / Time to Apply % Change in Biking Trips / Time to Apply to	e evidence? Oths of mile/week as Apply to All or Just I og depend on % chan to NTS Travel if using in	s per NTS) Jptakers? ge in trips / time indirect evidence direct evidence	Yes -8.4% -28.4 All No
Congestion Assumptions Used Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/2 Does change in Travel from Direct Evidence Does the change based on Walking and cyclir % Change in Walking Trips / Time to Apply % Change in Biking Trips / Time to Apply to Does change based on Walking/Cycling depe	e evidence? Oths of mile/week as Apply to All or Just I og depend on % chan to NTS Travel if using NTS Travel if using in nd on absolute chang	s per NTS) Jptakers? ge in trips / time indirect evidence direct evidence ge in walk/bike time	Yes -8.4% -28.4 All No
Congestion Assumptions Used Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/2 Does change in Travel from Direct Evidence Does the change based on Walking and cyclin % Change in Walking Trips / Time to Apply % Change in Biking Trips / Time to Apply to Does change based on Walking/Cycling depe Change in Walktime (Mins per week)	e evidence? Oths of mile/week as Apply to All or Just L ag depend on % chan to NTS Travel if using NTS Travel if using in nd on absolute chang	s per NTS) Jptakers? ge in trips / time indirect evidence direct evidence ge in walk/bike time	Yes -8.4% -28.4 All No No 5.9
Congestion Assumptions Used Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/2 Does change in Travel from Direct Evidence Does the change based on Walking and cyclin % Change in Walking Trips / Time to Apply % Change in Biking Trips / Time to Apply to Does change based on Walking/Cycling depe Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)	e evidence? Oths of mile/week as Apply to All or Just I ag depend on % chan to NTS Travel if using NTS Travel if using in nd on absolute chang	s per NTS) Jptakers? ge in trips / time indirect evidence direct evidence ge in walk/bike time	Yes -8.4% -28.4 All No 5.9 1.4
Congestion Assumptions Used Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/1 Does change in Travel from Direct Evidence Does the change based on Walking and cyclir % Change in Walking Trips / Time to Apply % Change in Biking Trips / Time to Apply to Does change based on Walking/Cycling depe Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)	e evidence? Oths of mile/week as Apply to All or Just I og depend on % chan to NTS Travel if using NTS Travel if using in nd on absolute chang No Intervention	s per NTS) Jptakers? ge in trips / time indirect evidence direct evidence ge in walk/bike time With Intervention	Yes -8.4% -28.4 All No 5.9 1.4 Difference
Congestion Assumptions Used Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/2 Does change in Travel from Direct Evidence Does the change based on Walking and cyclir % Change in Walking Trips / Time to Apply % Change in Biking Trips / Time to Apply to Does change based on Walking/Cycling depe Change in Walktime (Mins per week) Change in BikeTime (Mins per Week) Congestion Results Summary Total Expected Car Distance pa (miles)	e evidence? Oths of mile/week as Apply to All or Just I og depend on % chan to NTS Travel if using NTS Travel if using in nd on absolute chang <u>No Intervention</u> 179,877,428,428	s per NTS) Jptakers? ge in trips / time indirect evidence direct evidence ge in walk/bike time With Intervention 172,145,739,226	Yes -8.4% -28.4 All No 5.9 1.4 Difference -7,731,689,202
Congestion Assumptions Used Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/2 Does change in Travel from Direct Evidence Does the change based on Walking and cyclin % Change in Walking Trips / Time to Apply % Change in Biking Trips / Time to Apply to Does change based on Walking/Cycling depe Change in Walktime (Mins per week) Change in BikeTime (Mins per Week) Congestion Results Summary Total Expected Car Distance pa (miles) Distance Travelled pa per person	e evidence? Oths of mile/week as Apply to All or Just I og depend on % chan to NTS Travel if using NTS Travel if using in nd on absolute chang No Intervention 179,877,428,428 3,441	s per NTS) Jptakers? ge in trips / time indirect evidence direct evidence ge in walk/bike time With Intervention 172,145,739,226 3,293	Yes -8.4% -28.4 All No 5.9 1.4 Difference -7,731,689,202 -147.9
Congestion Assumptions Used Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/2 Does change in Travel from Direct Evidence Does the change based on Walking and cyclir % Change in Walking Trips / Time to Apply % Change in Biking Trips / Time to Apply to Does change based on Walking/Cycling depe Change in Walktime (Mins per week) Change in BikeTime (Mins per Week) Congestion Results Summary Total Expected Car Distance pa (miles) Distance Travelled pa per person Valuing Congestion per annum	e evidence? Oths of mile/week as Apply to All or Just I og depend on % chan to NTS Travel if using NTS Travel if using in nd on absolute chang <u>No Intervention</u> 179,877,428,428 3,441	s per NTS) Jptakers? ge in trips / time indirect evidence direct evidence ge in walk/bike time With Intervention 172,145,739,226 3,293	Yes -8.4% -28.4 All No 5.9 1.4 Difference -7,731,689,202 -147.9 -£1,630,022,088
Congestion Assumptions Used Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/2 Does change in Travel from Direct Evidence Does the change based on Walking and cyclir % Change in Walking Trips / Time to Apply % Change in Biking Trips / Time to Apply to Does change based on Walking/Cycling depe Change in Walktime (Mins per week) Change in BikeTime (Mins per Week) Congestion Results Summary Total Expected Car Distance pa (miles) Distance Travelled pa per person Valuing Congestion per annum Saving on Congestion Per person per annum	e evidence? Oths of mile/week as Apply to All or Just I og depend on % chan to NTS Travel if using in NTS Travel if using in nd on absolute chang <u>No Intervention</u> 179,877,428,428 3,441 (-ve = saving)	s per NTS) Jptakers? ge in trips / time indirect evidence direct evidence ge in walk/bike time With Intervention 172,145,739,226 3,293	Yes -8.4% -28.4 All No 5.9 1.4 Difference -7,731,689,202 -147.9 -£1,630,022,088 -£31.18
Congestion Assumptions Used Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/2 Does change in Travel from Direct Evidence Does the change based on Walking and cyclir % Change in Walking Trips / Time to Apply % Change in Biking Trips / Time to Apply to Does change based on Walking/Cycling depe Change in Walktime (Mins per week) Change in BikeTime (Mins per Week) Congestion Results Summary Total Expected Car Distance pa (miles) Distance Travelled pa per person Valuing Congestion per annum Saving on Congestion Per person per annum Valuing Greenhouse Gas Reductions	e evidence? Oths of mile/week as Apply to All or Just I og depend on % chan to NTS Travel if using in nd on absolute chang No Intervention 179,877,428,428 3,441 (-ve = saving)	s per NTS) Jptakers? ge in trips / time indirect evidence direct evidence ge in walk/bike time With Intervention 172,145,739,226 3,293	Yes -8.4% -28.4 All No 5.9 1.4 Difference -7,731,689,202 -147.9 -£1,630,022,088 -£31.18 -£37,328,750
Congestion Assumptions UsedIs effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/2 Does change in Travel from Direct Evidence Does the change based on Walking and cyclir % Change in Walking Trips / Time to Apply % Change in Biking Trips / Time to Apply to Does change based on Walking/Cycling depe Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)Congestion Results Summary Total Expected Car Distance pa (miles)Distance Travelled pa per personValuing Congestion Per annum Saving on Congestion Per person per annum Valuing Greenhouse Gas Reductions Total Marginal External Costs per Annum (Inc.)	e evidence? Oths of mile/week as Apply to All or Just I og depend on % chan to NTS Travel if using NTS Travel if using in nd on absolute chang No Intervention 179,877,428,428 3,441 (-ve = saving) I. Reduced Indirect ta	s per NTS) Jptakers? ge in trips / time indirect evidence direct evidence ge in walk/bike time With Intervention 172,145,739,226 3,293	Yes -8.4% -28.4 All No 5.9 1.4 Difference -7,731,689,202 -147.9 -£1,630,022,088 -£31.18 -£37,328,750 -£1,480,707,087
Congestion Assumptions UsedIs effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/2 Does change in Travel from Direct EvidenceDoes change in Travel from Direct Evidence Ooes the change based on Walking and cyclir % Change in Walking Trips / Time to Apply % Change in Biking Trips / Time to Apply to Does change based on Walking/Cycling depe Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)Congestion Results Summary Total Expected Car Distance pa (miles) Distance Travelled pa per personValuing Congestion per annum Saving on Congestion Per person per annum Valuing Greenhouse Gas Reductions Total Marginal External Costs per Annum (IncDifference in Number of Deaths at a Time Ho	e evidence? Oths of mile/week as Apply to All or Just (og depend on % chan to NTS Travel if using NTS Travel if using in nd on absolute chang No Intervention 179,877,428,428 3,441 (-ve = saving)	s per NTS) Jptakers? ge in trips / time indirect evidence direct evidence ge in walk/bike time With Intervention 172,145,739,226 3,293	Yes -8.4% -28.4 All No 5.9 1.4 Difference -7,731,689,202 -147.9 -£1,630,022,088 -£31.18 -£37,328,750 -£1,480,707,087 -91,769

 Table 4.4 Results: multi-component – Sustainable Travel Towns using trips evidence for congestion estimate

Intervention name		Model Run	4
Sustainable travel towns (using Walk/Cycle			
Distance evidence)		Scenario	2b
	The Effects of Smart	er Choice programm	es in the Sustainable
Key Evidence Study	Travel towns: Summ	ary Report	
Change in % Physically Active			
Mean Change in Physical Activity Hours			
Change in Walktime (Mins per week)			10.1
Change in BikeTime (Mins per Week)			1.6
Annual %Decay in effectiveness (0% = full on	going effect, 100% =	no effect after year 1	0%
Is decay %Effect Relative or absoulte per ann	um		Absolute
Sustained long-term level of %effect after			100%
Cost of Offer (Year 1)			£0.00
Cost of Uptake per person Taking Up (Initial)			£46.93
Ongoing Costs per person Yr 2 Onwards			£0.00
Decay Rate for Ongoing Costs			0%
Doos the Cost Of Untake Simply Apply to the	Whole Population? (Voc
Offer Pule based on Physical Activity? Enter C	ritorion based on we	1 - 103, 0 - 100	1es >=0
Untake Rule based on Random Proportion of	those offered	ekiy nours e.g. <z< td=""><td>2=0 100%</td></z<>	2=0 100%
			10070
Offer and Uptake Results	6 . 6		
% of Total England Population Who Get bene	fit from Intervention		53.9%
Model Used to Compute Mortality Effect:	1. Continuous Risk v	ia Biketime/Walktime	2
Health benefits Results Summary	No Intervention	With Intervention	Difference
Intervention Costs		1	£ 2,453,367,344
Discounted QALYS	650,723,003	653,302,606	2,579,603
Incremental Cost per QALY gained			£ 951
Congestion Assumptions Used			
Is effect car distance measured directly in the	e evidence?		Yes
% Change in Car Trips from direct evidence			-9%
Mean Change in Car Distance travelled (1/1	Oths of mile/week as	s per NTS)	-3032%
Does change in Travel from Direct Evidence	e Apply to All or Just I	Jptakers?	All
Does the change based on Walking and cyclir	ng depend on % chan	ge in trips / time	No
% Change in Walking Trips / Time to Apply	to NTS Travel if using	indirect evidence	
% Change in Biking Trips / Time to Apply to	NTS Travel if using in	direct evidence	
Does change based on Walking/Cycling depe	nd on absolute chang	ge in walk/bike time	No
Change in Walktime (Mins per week)			10.1
Change in BikeTime (Mins per Week)			1.6
Congestion Results Summary	No Intervention	With Intervention	Difference
Total Expected Car Distance pa (miles)	179,877,428,428	171,634,280,989	-8,243,147,439
Distance Travelled pa per person	3,441	3,283	-157.7
Valuing Congestion per annum			-£1,737,849,524
Saving on Congestion Per person per annum	(-ve = saving)		-£33.24
Valuing Greenhouse Gas Reductions			-£39,798,081
Total Marginal External Costs per Annum (Ind	cl. Reduced Indirect t	axation)	-£1,578,657,201

 Table 4.5 Results: multi-component – Sustainable Travel towns (Scenario 2b) using Biketime

 and Walktime plus regression model to estimate congestion effects

4.2 Results: TravelSmart

The main personalised travel support intervention examined is TravelSmart, results are shown in the tables below.

For TravelSmart, the modelling undertaken suggests that the intervention appears costeffective. The cost per QALY is estimated to be of the order of £300 using the continuous risk function, or £2,500 using the step risk function.

Intervention name		Model Run	5
TravelSmart		Scenario	3a
<u>Key Evidence Study</u> Change in % Physically Active	TravelSmart Reports	i	
Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)			4.9 6.2
Annual %Decay in effectiveness (0% = full on Is decay %Effect Relative or absoulte per ann Sustained long-term level of %effect after	going effect, 100% = um	no effect after year 1	0% Absolute 100%
Cost of Offer (Year 1) Cost of Uptake per person Taking Up (Initial) Ongoing Costs per person Yr 2 Onwards Decay Rate for Ongoing Costs			£0.00 £25.00 £0.00 0%
Does the Cost Of Uptake Simply Apply to the Offer Rule based on Phsical Activity? Enter C Uptake Rule based on Random Proportion of	Whole Population? (riterion based on we those offered	1=Yes,0=No) ekly hours e.g. <2	No >=0 20%
Offer and Uptake Results			
% of Total England Population Who Get bene	fit from Intervention		10.8%
Model Used to Compute Mortality Effect:	1. Continuous Risk v	ia Biketime/Walktime	2
Health benefits Results Summary	No Intervention	With Intervention	Difference
Intervention Costs			£ 141,361,007
Discounted QALYS	650,723,003	651,250,110	527,107
Incremental Cost per QALY gained			£ 268
Congestion Assumptions Used			
Ls effect car distance measured directly in the	evidence?		Vec
% Change in Car Trips from direct evidence			-12.0%
Mean Change in Car Distance travelled (1/1	Oths of mile/week as	s per NTS)	-127 9
Does change in Travel from Direct Evidence	Apply to All or Just I	Jotakers?	Uptakers
Does the change based on Walking and cyclin	ng depend on % chan	ge in trips / time	No
% Change in Walking Trips / Time to Apply	to NTS Travel if using	indirect evidence	-
% Change in Biking Trips / Time to Apply to	INTS Travel II using in	idirect evidence	No
Change in Walktime (Mins per week)	nu on absolute chang	ge in waik/bike time	1.0
Change in BikeTime (Mins per Week)			4.9 6.2
Congestion Results Summary	No Intervention	With Intervention	Difforence
Total Expected Car Distance na (miles)	179 877 / 28 / 28	175 /62 859 382	
Distance Travelled paper person	3.441	3.356	-84.4
Valuing Congestion not any set	-,	-,	C020 C05 074
Valuing Congestion Per annum	$(y_0 - c_0)$		-£930,095,074
Valuing Greenhouse Gas Reductions	l-n⊆ – saniik)		-£17.00 _£21.313.628
Total Marginal External Costs nor Aprum /Inc	Reduced Indiract +	avation)	-121,515,020
Totar Marginal External Costs per Annum (Inc	. Reduced mullect to	алациц	-2043,440,303

Table 4.6 Results: TravelSmart using continuous risk function for mortality

Intervention name		Model Run	6
TravelSmart		Scenario	3b
<u>Key Evidence Study</u> Change in % Physically Active Mean Change in Physical Activity Hours	TravelSmart Reports	;	
Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)			4.9 6.2
Annual %Decay in effectiveness (0% = full on Is decay %Effect Relative or absoulte per ann Sustained long-term level of %effect after	going effect, 100% = um	no effect after year 1	0% Absolute 100%
Cost of Offer (Year 1) Cost of Uptake per person Taking Up (Initial) Ongoing Costs per person Yr 2 Onwards Decay Rate for Ongoing Costs			£0.00 £25.00 £0.00 0%
Does the Cost Of Uptake Simply Apply to the Offer Rule based on Phsical Activity? Enter C Uptake Rule based on Random Proportion of	Whole Population? (riterion based on we those offered	1=Yes,0=No) ekly hours e.g. <2	No >=0 20%
Offer and Uptake Results			-
% of Total England Population Who Get bene	fit from Intervention		10.8%
Model Used to Compute Mortality Effect:	2. Step Function Risk	k via Biketime/Walktii	me
Health benefits Results Summary	No Intervention	With Intervention	Difference
Intervention Costs			£ 141,361,007
Discounted QALYS	650,723,003	650,779,399	56,397
Incremental Cost per QALY gained			£ 2,507
Congestion Assumptions Used			
Ls effect car distance measured directly in the	evidence?		Vec
% Change in Car Trips from direct evidence			-12.0%
Mean Change in Car Distance travelled (1/1	Oths of mile/week as	s ner NTS)	-127 9
Does change in Travel from Direct Evidence	Apply to All or just I	Intakers?	Untakers
Does the change based on Walking and cyclin	ng depend on % chan	ge in trins / time	No
% Change in Walking Trips / Time to Apply	to NTS Travel if using	indirect evidence	
% Change in Biking Trips / Time to Apply to	NTS Travel if using in	direct evidence	
Does change based on Walking/Cycling depe	nd on absolute chang	ge in walk/bike time	No
Change in Walktime (Mins per week)			4.9
Change in BikeTime (Mins per Week)			6.2
Congestion Results Summary	No Intervention	With Intervention	Difference
Total Expected Car Distance pa (miles)	179,877,428,428	175,462,859,382	-4,414,569,046
Distance Travelled pa per person	3,441	3,356	-84.4
Valuing Congestion per annum			-£930,695,074
Saving on Congestion Per person per annum	(-ve = saving)		-£17.80
Valuing Greenhouse Gas Reductions			-£21,313,628
Total Marginal External Costs per Annum (Inc	cl. Reduced Indirect ta	axation)	-£845,440,563

Table 4.7 Results: TravelSmart using step function risk for mortality

4.3 Results: Pedometer

The main pedometer evidence modelled, comes from two UK studies by Baker et al., one a short term 4 week intervention, and the second with longer-term support to participants spread over a year.

For the short-term 4-week pedometer intervention, the modelling undertaken suggests that the intervention appears cost-effective, but less so than some of the multi-component interventions. The cost per QALY is estimated to be of the order of £2,900 using the continuous risk function, or £9,400 using the step risk function. Part of the reason for this is the decay in effect – we assume zero effect after year 1 because the Baker 2008a study showed a return almost to baseline walking levels at 12 months.

For the longer-term support pedometer intervention, the evidence from Baker 2008b suggests that an effect persists to 12 months. In the scenarios modelled, we assume that this level would be maintained in future years provided the support costs (advice and telephone support) are maintained. The results suggest that longer-term support to pedometers appears cost-effective. For a scenario where the continuing cost per participant is around £25, the cost per QALY is estimated to be of the order of £1,700 using the continuous risk function, or £7,800 using the step risk function. For a scenario where the continuing cost per participant is around £9, the cost per QALY is estimated to be of the order of £750 using the continuous risk function, or £3,400 using the step risk function. Further runs were undertaken using cost data from Shaw (2011) for minimal and maximal intervention with the step and continuous risk functions. Summary results are shown in the table below.

Intervention	Decay	Risk Function	
intervention	Decay	Continuous	Step
Baker 2008a	100%	£2,903	£9,448
With sustained support (Baker 2008b)	13.2%	£1,731	£7,817
Lower cost plus support (Baker 2008b)	13.2%	£748	£3,380
Do minimum (Shaw 2011)	13.2%	£144	£650
Do maximum (Shaw 2011)	13.2%	£807	£3,646

 Table 4.8 Pedometers results from studies by Baker

The Australian trial of pedometers (Merom 2007) was also modelled. This was also shortterm with a 3-month follow up. The initial improvement in walking levels was higher than in Baker 2008a, and so the cost-effectiveness estimate is somewhat better. The cost per QALY is estimated to be of the order of £1,500 using the continuous risk function, or £1,900 using the step risk function.

Intervention name		Model Run	7
Pedometers (4 Week Intervention)		Scenario	4a
<u>Key Evidence Study</u> Change in % Physically Active Mean Change in Physical Activity Hours Change in Walktime (Mins per week)	Baker 2008a		146.7
Change in BikeTime (Mins per Week)			0.0
Annual %Decay in effectiveness (0% = full on Is decay %Effect Relative or absoulte per ann Sustained long-term level of %effect after	going effect, 100% = um	no effect after year 1	100% Absolute 0%
Cost of Offer (Year 1) Cost of Uptake per person Taking Up (Initial) Ongoing Costs per person Yr 2 Onwards Decay Rate for Ongoing Costs			£0.00 £52.50 £0.00 0%
Does the Cost Of Uptake Simply Apply to the Offer Rule based on Phsical Activity? Enter C Uptake Rule based on Random Proportion of	Whole Population? (riterion based on we those offered	1=Yes,0=No) ekly hours e.g. <2	No <2 40%
Offer and Uptake Results			
% of Total England Population Who Get bene	fit from Intervention		7.7%
Model Used to Compute Mortality Effect:	1. Continuous Risk v	ia Biketime/Walktime	2
Health benefits Results Summary	No Intervention	With Intervention	Difference
Intervention Costs			£ 211,573,580
Discounted QALYS	650,723,003	650,795,878	72,875
Incremental Cost per QALY gained			£ 2,903
Congestion Assumptions Used			
Ls effect car distance measured directly in the	evidence?		No
% Change in Car Trips from direct evidence			110
Mean Change in Car Distance travelled (1/1	10ths of mile/week as	s per NTS)	
Does change in Travel from Direct Evidence	Apply to All or Just I	Uptakers?	
Does the change based on Walking and cyclin	ng depend on % chan	ge in trips / time	No
% Change in Walking Trips / Time to Apply	to NTS Travel if using	indirect evidence	
% Change in Biking Trips / Time to Apply to	NTS Travel if using in	direct evidence	
Does change based on Walking/Cycling depe	nd on absolute chang	ge in walk/bike time	Yes
Change in Walktime (Mins per week)			146.7
Change in BikeTime (Mins per Week)			0.0
Congestion Results Summary	No Intervention	With Intervention	Difference
Total Expected Car Distance pa (miles)	189,048,839,010	186,141,741,727	-2,907,097,283
Distance Travelled pa per person	3,616	3,561	-55.6
Valuing Congestion per annum			-£612,884,540
Saving on Congestion Per person per annum	(-ve = saving)		-£11.72
Valuing Greenhouse Gas Reductions			-£14,035,524
Total Marginal External Costs per Annum (Ind	cl. Reduced Indirect t	axation)	-£556,742,445

Table 4.9 Pedometers results from short-term study by Baker using continuous risk function for mortality

Intervention name		Model Run	8
Pedometers (4 Week Intervention)		Scenario	4a2
<u>Key Evidence Study</u> Change in % Physically Active Mean Change in Physical Activity Hours	Baker 2008a		
Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)			146.7 0.0
Annual %Decay in effectiveness (0% = full on Is decay %Effect Relative or absoulte per ann Sustained long-term level of %effect after	going effect, 100% = um	no effect after year 1	100% Absolute 0%
Cost of Offer (Year 1) Cost of Uptake per person Taking Up (Initial) Ongoing Costs per person Yr 2 Onwards Decay Rate for Ongoing Costs			£0.00 £52.50 £0.00 0%
Does the Cost Of Uptake Simply Apply to the Offer Rule based on Phsical Activity? Enter C Uptake Rule based on Random Proportion of	Whole Population? (riterion based on we those offered	1=Yes,0=No) ekly hours e.g. <2	No <2 40%
Offer and Uptake Results			
% of Total England Population Who Get bene	fit from Intervention		7.7%
Model Used to Compute Mortality Effect:	2. Step Function Risk	k via Biketime/Walktii	me
Health benefits Results Summary	No Intervention	With Intervention	Difference
Intervention Costs			£ 211,573,580
Discounted QALYS	650,723,003	650,745,396	22,393
Incremental Cost per QALY gained			£ 9,448
Congestion Assumptions Used			
Ls effect car distance measured directly in the	a avidanca?		No
% Change in Car Trips from direct evidence	e evidence:		NO
Mean Change in Car Distance travelled (1/2	I Oths of mile/week as	s ner NTS)	
Does change in Travel from Direct Evidence	Apply to All or just I	Intakers?	
Does the change based on Walking and cyclin	ng depend on % chan	ge in trips / time	No
% Change in Walking Trips / Time to Apply	to NTS Travel if using	indirect evidence	
% Change in Biking Trips / Time to Apply to	NTS Travel if using in	direct evidence	
Does change based on Walking/Cycling depe	nd on absolute chang	ge in walk/bike time	Yes
Change in Walktime (Mins per week)		,	146.7
Change in BikeTime (Mins per Week)			0.0
Congestion Besults Summary	No Intervention	With Intervention	Difference
Total Expected Car Distance pa (miles)	189.048.839.010	186.141.741.727	-2.907.097.283
Distance Travelled pa per person	3,616	3,561	-55.6
Valuing Congestion per annum			-f612.884 540
Saving on Congestion Per person per annum	(-ve = saving)		-£11.72
Valuing Greenhouse Gas Reductions	,0/		-£14,035,524
Total Marginal External Costs per Annum (Ind	cl. Reduced Indirect t	axation)	-£556,742,445
		·	

Table 4.10 Pedometers results using step-function risk for mortality

Intervention name		Model Run	9
Pedometers (with sustained support)		Scenario	4b
	Baker 2008b + Perso	onal Communication	on Longer Term
Kev Evidence Study	Follow-Up		
Change in % Physically Active			
Mean Change in Physical Activity Hours			
Change in Walktime (Mins per week)			127.9
Change in BikeTime (Mins per Week)			0.0
Annual %Decay in effectiveness $(0\% = full on$	poing effect 100% =	no effect after vear 1	13%
Is decay %Effect Relative or absoulte per ann	um		Absolute
Sustained long-term level of %effect after			87%
Cost of Offer (Year 1)			£0.00
Cost of Uptake per person Taking Up (Initial)			£46.75
Ongoing Costs per person Yr 2 Onwards			£25.25
Decay Rate for Ongoing Costs			0%
Does the Cost Of Untake Simply Apply to the	Whole Population? (1=Yes ()=No)	No
Offer Bule based on Physical Activity? Enter C	riterion based on we	e^{kly} hours e $\sigma < 2$	<2
Untake Bule based on Bandom Proportion of	those offered	ckiy 110013 c.g. <2	10%
			+070
Offer and Uptake Results	fit from Intervention		7 70/
% of Total England Population who Get bene	1 Continueurs Bislow		1.1%
Model Used to compute Mortality Effect:	1. Continuous Risk v	la Biketime/ Waiktime	2
Health benefits Results Summary	No Intervention	With Intervention	Difference
Intervention Costs			£ 2,502,488,813
Discounted QALYS	650,723,003	652,168,543	1,445,540
Incremental Cost per QALY gained			£ 1,731
Congestion Assumptions Used			
Is effect car distance measured directly in the	e evidence?		No
% Change in Car Trips from direct evidence			
Mean Change in Car Distance travelled (1/2	LOths of mile/week as	s per NTS)	
Does change in Travel from Direct Evidence	e Apply to All or Just I	Uptakers?	
Does the change based on Walking and cyclir	ng depend on % chan	ge in trips / time	No
% Change in Walking Trips / Time to Apply	to NTS Travel if using	indirect evidence	
% Change in Biking Trips / Time to Apply to	NTS Travel if using in	direct evidence	
Does change based on Walking/Cycling depe	nd on absolute chang	ge in walk/bike time	Yes
Change in Walktime (Mins per week)			127.9
Change in BikeTime (Mins per Week)			0.0
Congestion Results Summary	No Intervention	With Intervention	Difference
Total Expected Car Distance pa (miles)	189,048,839,010	186,487,559,780	-2,561,279,230
Distance Travelled pa per person	3,616	3,567	-49.0
Valuing Congestion per annum			-£539,977,954
Saving on Congestion Per person per annum	(-ve = saving)		-£10.33
Valuing Greenhouse Gas Reductions			-£12,365,907
Total Marginal External Costs per Annum (Inc	cl. Reduced Indirect t	axation)	-£490,514,325

Table 4.11 Pedometers with continuing support/advice: results using continuous risk function for mortality

Intervention name		Model Run	10
Pedometers (with sustained support)		Scenario	4b2
<u>Key Evidence Study</u> Change in % Physically Active Mean Change in Physical Activity Hours Change in Walktime (Mins per week)	Baker 2008b + Perso Follow-Up	onal Communication	on Longer Term 127.9
Change in BikeTime (Mins per Week)			0.0
Annual %Decay in effectiveness (0% = full on Is decay %Effect Relative or absoulte per ann Sustained long-term level of %effect after	going effect, 100% = num	no effect after year 1	. 13% Absolute 87%
Cost of Offer (Year 1) Cost of Uptake per person Taking Up (Initial) Ongoing Costs per person Yr 2 Onwards Decay Rate for Ongoing Costs			£0.00 £46.75 £25.25 0%
Does the Cost Of Uptake Simply Apply to the Offer Rule based on Phsical Activity? Enter C Uptake Rule based on Random Proportion of	Whole Population? (iriterion based on we those offered	1=Yes,0=No) ekly hours e.g. <2	No <2 40%
Offer and Uptake Results			1
% of Total England Population Who Get bene	fit from Intervention		7.7%
Model Used to Compute Mortality Effect:	2. Step Function Risl	k via Biketime/Walkti	me
Health benefits Results Summary	No Intervention	With Intervention	Difference
Intervention Costs			£ 2,497,341,686
Discounted QALYS	650,723,003	651,042,475	319,472
Incremental Cost per QALY gained			£ 7,817
Congestion Assumptions Used Is effect car distance measured directly in the % Change in Car Trips from direct evidence	e evidence?		No
Mean Change in Car Distance travelled (1/2 Does change in Travel from Direct Evidence Does the change based on Walking and cyclin % Change in Walking Trips / Time to Apply % Change in Biking Trips / Time to Apply to	10ths of mile/week a: e Apply to All or Just I ng depend on % chan to NTS Travel if using NTS Travel if using ir	s per NTS) Uptakers? ge in trips / time ; indirect evidence ndirect evidence	No
Does change based on Walking/Cycling depe	nd on absolute chang	ge in walk/bike time	Yes
Change in Walktime (Mins per week)			127.9
Change in BikeTime (Mins per Week)			0.0
Congestion Results Summary	No Intervention	With Intervention	Difference
Total Expected Car Distance pa (miles)	189,048,839,010	186,487,559,780	-2,561,279,230
Distance Travelled pa per person	3,616	3,567	-49.0
Valuing Congestion per annum			-£539,977,954
Saving on Congestion Per person per annum	(-ve = saving)		-£10.33
Valuing Greenhouse Gas Reductions	,6/		-£12,365,907
Total Marginal External Costs per Annum (Inc	cl. Reduced Indirect t	axation)	-£490,514,325

Table 4.12 Pedometers with continuing support/advice: results using step-function risk for mortality

Intervention name		Model Run	11
Pedometers (with sustained support - lower			
level of cost)		Scenario	4c
	Baker 2008b + Perso	onal Communication	on Longer Term
Key Evidence Study	Follow-Up		
Change in % Physically Active			
Mean Change in Physical Activity Hours			
Change in Walktime (Mins per week)			127.9
Change in BikeTime (Mins per Week)			0.0
Annual %Decay in effectiveness (0% = full on	going effect, 100% =	no effect after year 1	13%
Is decay %Effect Relative or absoulte per ann	um	,	Absolute
Sustained long-term level of %effect after			87%
Cost of Offer (Vear 1)			£0.00
Cost of Untake nor norsen Taking Un (Initial)			£46.75
Ongoing Costs per person Taking Op (Initial)			£0.75
Decay Rate for Orgoing Costs			0%
Deedy hate for Ongoing costs			070
Does the Cost Of Uptake Simply Apply to the	Whole Population? (1=Yes,0=No)	No
Offer Rule based on Phsical Activity? Enter C	riterion based on we	ekly hours e.g. <2	<2
Uptake Rule based on Random Proportion of	those offered		40%
Offer and Uptake Results			
% of Total England Population Who Get bene	fit from Intervention		7.7%
Model Used to Compute Mortality Effect:	1. Continuous Risk v	ia Biketime/Walktime	2
Health benefits Results Summary	No Intervention	With Intervention	Difference
Intervention Costs			£ 1,081,959,805
Discounted QALYS	650,723,003	652,168,543	1,445,540
Incremental Cost per QALY gained			£ 748
Congestion Assumptions Used			
Is effect car distance measured directly in the	evidence?		No
% Change in Car Trips from direct evidence			
Mean Change in Car Distance travelled (1/1	Oths of mile/week a	s per NTS)	
Does change in Travel from Direct Evidence	Apply to All or Just I	Uptakers?	
Does the change based on Walking and cyclin	ng depend on % chan	ge in trips / time	No
% Change in Walking Trips / Time to Apply	to NTS Travel if using	indirect evidence	-
% Change in Biking Trips / Time to Apply to	NTS Travel if using in	direct evidence	
Does change based on Walking/Cycling depe	nd on absolute chang	ge in walk/bike time	Yes
Change in Walktime (Mins per week)			127.9
Change in BikeTime (Mins per Week)			0.0
Congestion Decults Summany	NoIntervention	With Intervention	Difference
Total Expected Car Distance na (miles)	180 048 830 010	186 487 550 780	2 561 279 220
Distance Travelled na per person	3 616	3 567	-2,301,279,230
	3,010	5,507	-45.0
Valuing Congestion per annum			-£539,977,954
Saving on Congestion Per person per annum	(-ve = saving)		-£10.33
valuing Greenhouse Gas Reductions			-±12,365,907
Total Marginal External Costs per Annum (Inc	cl. Reduced Indirect t	axation)	-£490,514,325

 Table 4.13 Pedometers with continuing support/advice: results using continuous risk function

 for mortality (lower continuing support cost scenario)

Intervention name		Model Run	12
Pedometers (with sustained support - lower			
level of cost)		Scenario	4c2
	Baker 2008b + Perso	onal Communication	on Longer Term
Key Evidence Study	Follow-Up		
Change in % Physically Active			
Mean Change in Physical Activity Hours			
Change in Walktime (Mins per week)			127.9
Change in BikeTime (Mins per Week)			0.0
Annual %Decay in effectiveness (0% = full on	going effect, 100% =	no effect after year 1	13%
Is decay %Effect Relative or absoulte per ann	um	,	Absolute
Sustained long-term level of %effect after			87%
Cost of Offer (Vear 1)			£0.00
Cost of Untake per person Taking Un (Initial)			£46.75
Ongoing Costs per person Vr 2 Onwards			£9.75
Decay Bate for Ongoing Costs			0%
			0,0
Does the Cost Of Uptake Simply Apply to the	Whole Population? (1=Yes,0=No)	No
Offer Rule based on Phylical Activity? Enter C	riterion based on we	ekly hours e.g. <2	<2
Uptake Rule based on Random Proportion of	those offered		40%
Offer and Uptake Results			
% of Total England Population Who Get bene	fit from Intervention		7.7%
Model Used to Compute Mortality Effect:	2. Step Function Risk	< via Biketime/Walkti	me
		1	
Health benefits Results Summary	No Intervention	With Intervention	Difference
Intervention Costs		1	£ 1,079,972,301
Discounted QALYS	650,723,003	651,042,475	319,472
Incremental Cost per QALY gained			£ 3,380
Congestion Assumptions Used			
Is effect car distance measured directly in the	e evidence?		No
% Change in Car Trips from direct evidence			
Mean Change in Car Distance travelled (1/2	LOths of mile/week as	s per NTS)	
Does change in Travel from Direct Evidence	e Apply to All or Just I	Uptakers?	
Does the change based on Walking and cyclir	ng depend on % chan	ge in trips / time	No
% Change in Walking Trips / Time to Apply	to NTS Travel if using	indirect evidence	
% Change in Biking Trips / Time to Apply to	NTS Travel if using in	direct evidence	
Does change based on Walking/Cycling depe	nd on absolute chang	ge in walk/bike time	Yes
Change in Walktime (Mins per week)			127.9
Change in BikeTime (Mins per Week)			0.0
Congestion Results Summary	No Intervention	With Intervention	Difference
Total Expected Car Distance pa (miles)	189.048.839.010	186.487.559.780	-2.561.279.230
Distance Travelled paper person	3,616	3,567	-49.0
Valuing Congestion per appum	•	•	£520 077 054
Valuing Congestion Per annum	$(y_0 - c_0)$		-£339,977,954
Valuing Greenhouse Gas Reductions	(-ve – saving)		-£10.33
Total Marginal External Costs nor Appum //m	Reduced Indiract +	avation)	-£490 514 225
Total Marginal External Costs per Annulli (Inc		anationij	-140,014,020

Table 4.14 Pedometers with continuing support/advice: results using step-function risk for mortality (lower continuing support cost scenario)

Intervention name		Model Run	13		
Pedometers (Australian Study - Steps		-			
Evidence)		Scenario	5a		
<u>Key Evidence Study</u> Change in % Physically Active	Merom 2007				
Mean Change in Physical Activity Hours					
Change in Walktime (Mins per week)			52.0		
Change in BikeTime (Mins per Week)			0.0		
Annual %Decay in effectiveness (0% = full on Is decay %Effect Relative or absoulte per ann Sustained long-term level of %effect after	going effect, 100% = um	no effect after year 1	40% Absolute 0%		
Cost of Offer (Year 1)			£0.00		
Cost of Uptake per person Taking Up (Initial)			£39.67		
Ongoing Costs per person Yr 2 Onwards			£0.00		
Decay Rate for Ongoing Costs			0%		
Does the Cost Of Uptake Simply Apply to the	Whole Population? (1=Yes,0=No)	No		
Offer Rule based on Phsical Activity? Enter C	riterion based on we	ekly hours e.g. <2	<2		
Uptake Rule based on Random Proportion of	those offered		40%		
Offer and Uptake Results					
% of Total England Population Who Get bene	fit from Intervention		7.7%		
Model Used to Compute Mortality Effect:	1. Continuous Risk v	ia Biketime/Walktime	5		
	ſ	I	1		
Health benefits Results Summary	No Intervention	With Intervention	Difference		
Intervention Costs	650 722 002	650 007 500	£ 159,855,594		
Discounted QALYS	650,723,003	650,827,502	104,499		
			£ 1,530		
Congestion Assumptions Used					
Is effect car distance measured directly in the evidence?			No		
% Change in Car Trips from direct evidence					
Mean Change in Car Distance travelled (1/1	Luths of mile/week as	s per NTS)			
Does the change hased on Walking and cycling depend on % change in trins / time			No		
% Change in Walking Trips / Time to Apply	to NTS Travel if using	indirect evidence	110		
% Change in Biking Trips / Time to Apply to	NTS Travel if using in	direct evidence			
Does change based on Walking/Cycling depe	nd on absolute chang	ge in walk/bike time	Yes		
Change in Walktime (Mins per week)			52.0		
Change in BikeTime (Mins per Week)			0.0		
Congestion Results Summary	No Intervention With Intervention Difference				
Total Expected Car Distance pa (miles)	189,048,839,010	187,961,468,387	-1,087,370,622		
Distance Travelled pa per person	3,616 3,596 -20.8				
Valuing Congestion per annum			-£229,243,324		
Saving on Congestion Per person per annum (-ve = saving)			-£4.39		
Valuing Greenhouse Gas Reductions			-£5,249,847		
Total Marginal External Costs per Annum (Incl. Reduced Indirect taxation)			-£208,243,935		

Table 4.15 Pedometer results based on Australian study (continuous risk function)

Intervention name		Model Run		14
Pedometers (Australian Study - Phys Act				
Evidence)		Scenario		5b
Key Evidence Study	Manage 2007			
<u>Key Evidence Study</u> Change in <u>%</u> Physically Active	Werom 2007			22 70%
Mean Change in Physically Active				22.70%
Change in Walktime (Mins per week)				52.0
Change in BikeTime (Mins per Week)				0.0
				0.0
Annual %Decay in effectiveness (0% = full on	going effect, 100% =	no effect after year 1		40%
Is decay %Effect Relative or absoulte per ann	um			Absolute
Sustained long-term level of %effect after				076
Cost of Offer (Year 1)				£0.00
Cost of Uptake per person Taking Up (Initial)				£39.67
Ongoing Costs per person Yr 2 Onwards				£0.00
Decay Rate for Ongoing Costs				0%
Does the Cost Of Uptake Simply Apply to the	Whole Population? (1=Yes,0=No)		No
Offer Rule based on Phsical Activity? Enter C	riterion based on we	ekly hours e.g. <2		<2
Uptake Rule based on Random Proportion of	those offered			40%
Offer and Uptake Results				
% of Total England Population Who Get bene	fit from Intervention			7.7%
Model Used to Compute Mortality Effect:	5. Step Function Risk	< via % Active on indiv	vidua	Is accounting
	for uptake			
Health benefits Results Summary	No Intervention	With Intervention		Difference
Intervention Costs		1	£	159,855,594
Discounted QALYS	650,723,003	650,804,754		81,751
Incremental Cost per QALY gained			£	1,955
Congestion Assumptions Used				
Is effect car distance measured directly in the	e evidence?			No
% Change in Car Trips from direct evidence				
Mean Change in Car Distance travelled (1/2	L0ths of mile/week as	s per NTS)		
Does change in Travel from Direct Evidence	e Apply to All or Just I	Uptakers?		
Does the change based on Walking and cyclir	ng depend on % chan	ge in trips / time		No
% Change in Walking Trips / Time to Apply	to NTS Travel if using	indirect evidence		
% Change in Biking Trips / Time to Apply to	NTS Travel if using in	direct evidence		
Does change based on Walking/Cycling depe	nd on absolute chang	ge in walk/bike time		Yes
Change in Walktime (Mins per week)				52.0
Change in BikeTime (Mins per Week)				0.0
Congestion Results Summary	No Intervention	With Intervention		Difference
Total Expected Car Distance pa (miles)	189,048,839,010	187,961,468,387	-1	,087,370,622
Distance Travelled pa per person 3,616 3,596 -20.8				
Valuing Congestion per annum			-f	229,243,324
Saving on Congestion Per person per annum (-ve = saving)				-£4.39
Valuing Greenhouse Gas Reductions				£5,249,847
Total Marginal External Costs per Annum (Incl. Reduced Indirect taxation)			- f	208,243,935

Table 4.16 Pedometer results based on Australian study (step-risk function)

4.4 Results: Led Walking and Encouraging Independent Community Walking

The main led-walking evidence modelled comes from a UK RCT by Lamb et al. Using this evidence has been a topic of debate and concern within the PDG, as the RCT shows no difference between led walking and a comparator arm of advice. The economic team planned to use the levels of walking before and after the intervention as the measure of effect (we do this in one of the scenarios below), but there was concern that some or even all of the effect was a regression to the mean, whereby only people who had been low on a physical activity questionnaire at around the start of the trial were eligible for the trial, and many of these would naturally have a higher level of physical activity later. As a consequence of this concern, we also model scenarios where the true effectiveness is either 50% or 10% of the effect apparent from the before and after evidence. Of course, if there is believed to be zero effect then the intervention would, by logic, not be cost-effective.

We also model scenarios where the costs of led walking in practice are somewhat lower, based on personal communication from a PCT rather than the costs implied by the resources discussed in the trial paper.

At the suggestion of the PDG, a number of further runs were carried out to investigate the influence of effectiveness decay.

Finally, we also model the 'Get Walking Keep Walking' intervention using evidence from an evaluation of a large UK study (CLES 2011).

For led walking using the Lamb *et al.* as evidence, the modelling undertaken suggests that the intervention appears cost-effective but is very sensitive to the level of effect assumed. The cost per QALY is estimated to be of the order of £1,900, using 100% of the apparent effect from the trial, £3,600 using 50% of the apparent effect, and £16,500 using 10% of the apparent effect. For this 10% of the apparent effect scenario, but using the slightly lower costs from the PCT, the cost per QALY is estimated to be of the order of £10,400.

For the 'Get Walking Keep Walking' intervention, the modelling undertaken suggests that the intervention appears cost-effective. The cost per QALY is estimated to be of the order of $\pounds 2,700$. Results are shown in the tables below.

Intervention name		Model Run	15
Led Walking (Full before and after effect)		Scenario	6a
<u>Key Evidence Study</u> Change in % Physically Active Mean Change in Physical Activity Hours Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)	Lamb 2001		28.70%
Annual %Decay in effectiveness (0% = full on Is decay %Effect Relative or absoulte per ann Sustained long-term level of %effect after	going effect, 100% = um	no effect after year 1	40% Absolute 0%
Cost of Offer (Year 1) Cost of Uptake per person Taking Up (Initial) Ongoing Costs per person Yr 2 Onwards Decay Rate for Ongoing Costs			£0.00 £47.42 £0.00 0%
Does the Cost Of Uptake Simply Apply to the Offer Rule based on Phsical Activity? Enter C Uptake Rule based on Random Proportion of	Whole Population? (riterion based on we those offered	1=Yes,0=No) ekly hours e.g. <2	No <2 40%
Offer and Uptake Results			
% of Total England Population Who Get bene	fit from Intervention		7.7%
Model Used to Compute Mortality Effect: 5. Step Function Risk via % Active on individuals accounting for uptake			
Health benefits Results Summary	No Intervention	With Intervention	Difference
Intervention Costs			£ 191,082,718
Discounted QALYS	650,723,003	650,821,750	98,747
Incremental Cost per QALY gained			£ 1,935
Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/2	e evidence? : L0ths of mile/week a:	s per NTS)	No
Does change in Travel from Direct Evidence Apply to All or Just Uptakers? Does the change based on Walking and cycling depend on % change in trips / time % Change in Walking Trips / Time to Apply to NTS Travel if using indirect evidence % Change in Biking Trips / Time to Apply to NTS Travel if using indirect evidence			No
Does change based on Walking/Cycling depe Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)	nd on absolute chang	ge in walk/bike time	No
Congestion Results Summary	No Intervention	With Intervention	Difference
Total Expected Car Distance pa (miles)	189,048,839,010	189,048,839,010	0
Distance Travelled pa per person	3,616	3,616	0.0
Valuing Congestion per annum			f0
Saving on Congestion Per person, per annum (-ve = saving)			£0.00
Valuing Greenhouse Gas Reductions			£0
Total Marginal External Costs per Annum (Ind	cl. Reduced Indirect t	axation)	£0
G (1111111111111		,	

Table 4.17 Led walking results assuming Lamb et al. before and after results are representative of effect in practice

Intervention name		Model Run		16
Led Walking (50% before and after effect)		Scenario		6b
<u>Key Evidence Study</u> Change in % Physically Active Mean Change in Physical Activity Hours Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)	Lamb 2001			14.35%
Annual %Decay in effectiveness (0% = full on Is decay %Effect Relative or absoulte per ann Sustained long-term level of %effect after	going effect, 100% = um	no effect after year 1		40% Absolute 0%
Cost of Offer (Year 1) Cost of Uptake per person Taking Up (Initial) Ongoing Costs per person Yr 2 Onwards Decay Rate for Ongoing Costs				£0.00 £47.42 £0.00 0%
Does the Cost Of Uptake Simply Apply to the Offer Rule based on Phsical Activity? Enter C Uptake Rule based on Random Proportion of	Whole Population? (riterion based on we those offered	1=Yes,0=No) ekly hours e.g. <2		No <2 40%
Offer and Uptake Results				
% of Total England Population Who Get bene	fit from Intervention			7.7%
Model Used to Compute Mortality Effect:	5. Step Function Risl for uptake	k via % Active on indi	/idua	lls accounting
Health benefits Results Summary	No Intervention	With Intervention		Difference
Intervention Costs			£	191,082,718
Discounted QALYS	650,723,003	650,775,245		52,242
Incremental Cost per QALY gained			£	3,658
Congestion Assumptions Used				
Is effect car distance measured directly in the	e evidence?			No
% Change in Car Trips from direct evidence				
Mean Change in Car Distance travelled (1/2	Loths of mile/week a	s per NTS)		
Does change in Travel from Direct Evidence	e Apply to All or Just	Uptakers?		No
% Change in Walking Trins / Time to Apply	to NTS Travel if using	indirect evidence		NO
% Change in Biking Trips / Time to Apply	NTS Travel if using in	direct evidence		
Does change based on Walking/Cycling depe	nd on absolute chang	ge in walk/bike time		No
Change in Walktime (Mins per week)				
Change in BikeTime (Mins per Week)				
Congestion Results Summary	No Intervention	With Intervention		Difference
Total Expected Car Distance pa (miles)	189.048.839.010	189.048.839.010		0
Distance Travelled paper person	3,616	3,616		0.0
Valuing Congestion per appur		· ·	 	£0
Valuing Congestion per annum (vo = coving)				£0.00
Valuing Greenhouse Gas Reductions				£0
Total Marginal External Costs per Annum (Incl. Reduced Indirect taxation)				£0

Table 4.18 Led walking results assuming 50% of the effectiveness seen in Lamb et al. before and after Results

Intervention name		Model Run		17	
Led Walking (10% before and after effect)		Scenario		6c	
<u>Key Evidence Study</u> Change in % Physically Active Mean Change in Physical Activity Hours Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)	Lamb 2001			2.87%	
Annual %Decay in effectiveness (0% = full on Is decay %Effect Relative or absoulte per ann Sustained long-term level of %effect after	going effect, 100% = um	no effect after year 1		40% Absolute 0%	
Cost of Offer (Year 1) Cost of Uptake per person Taking Up (Initial) Ongoing Costs per person Yr 2 Onwards Decay Rate for Ongoing Costs				£0.00 £47.42 £0.00 0%	
Does the Cost Of Uptake Simply Apply to the Offer Rule based on Phsical Activity? Enter C Uptake Rule based on Random Proportion of	Whole Population? (riterion based on we those offered	1=Yes,0=No) ekly hours e.g. <2		No <2 40%	
Offer and Uptake Results					
% of Total England Population Who Get bene	fit from Intervention			7.7%	
Model Used to Compute Mortality Effect:	Model Used to Compute Mortality Effect: 5. Step Function Risk via % Active on individuals accounting for uptake				
Health benefits Results Summary	No Intervention	With Intervention		Difference	
Intervention Costs			£	191,082,718	
Discounted QALYS	650,723,003	650,734,531		11,528	
Incremental Cost per QALY gained			£	16,576	
Congestion Assumptions Used					
Is effect car distance measured directly in the	e evidence?			No	
% Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/2 Does change in Travel from Direct Evidence	e 10ths of mile/week as e Apply to All or Just I	s per NTS) Uptakers?			
Does the change based on Walking and cyclir % Change in Walking Trips / Time to Apply % Change in Biking Trips / Time to Apply to	ng depend on % chan to NTS Travel if using NTS Travel if using in	ge in trips / time ; indirect evidence		No	
Does change based on Walking/Cycling depe Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)	nd on absolute chang	ge in walk/bike time		No	
Congestion Results Summary	No Intervention	With Intervention		Difference	
Total Expected Car Distance pa (miles)	189,048,839,010	189,048,839,010		0	
Distance Travelled pa per person	3,616	3,616		0.0	
Valuing Congestion per annum				£0	
Saving on Congestion Per person per annum (-ve = saving)				£0.00	
Valuing Greenhouse Gas Reductions				£0	
Total Marginal External Costs per Annum (Incl. Reduced Indirect taxation)				£0	

Table 4.19 Led walking results assuming 10% of the effectiveness seen in Lamb et al. before and after results
Intervention name		Model Run		20
Led Walking (10% before and after effect)		Compute		C.f.
Lower Costs from Derbyshire PC1		Scenario		61
Key Evidence Study	Lamb 2001			
Change in % Physically Active				2.87%
Mean Change in Physical Activity Hours				
Change in Walktime (Mins per week)				
Change in BikeTime (Mins per Week)				
Annual %Decay in effectiveness (0% = full on	going effect, 100% =	no effect after year 1		40%
Is decay %Effect Relative or absoulte per ann	um			Absolute
Sustained long-term level of %effect after				0%
Cost of Offer (Year 1)				£0.00
Cost of Uptake per person Taking Up (Initial)				£29.90
Ongoing Costs per person Yr 2 Onwards				£0.00
Decay Rate for Ongoing Costs				0%
Does the Cost Of Uptake Simply Apply to the	Whole Population? (1=Yes.0=No)		No
Offer Rule based on Phsical Activity? Enter C	riterion based on we	ekly hours e.g. <2		<2
Uptake Rule based on Random Proportion of	those offered	, -		40%
Offer and Uptake Results				
% of Total England Population Who Get bene	fit from Intervention			7.7%
Model Used to Compute Mortality Effect:	5. Step Function Risl	k via % Active on indiv	vidua	als accounting
	for uptake	1		
Health benefits Results Summary	No Intervention	With Intervention		Difference
Intervention Costs		CE0 704 F04	£	120,513,545
Discounted QALYS	650,723,003	650,734,531	-	11,528
Incremental Cost per QALY gained			£	10,454
Congestion Assumptions Used				
Is effect car distance measured directly in the	e evidence?			No
% Change in Car Trips from direct evidence				
Mean Change in Car Distance travelled (1/.	Luths of mile/week as	s per NTS)		
Does the chapte based on Walking and cycli	e Apply to All of Just	opiakers:		No
% Change in Walking Trins / Time to Apply	to NTS Travel if using	indirect evidence		NO
% Change in Biking Trips / Time to Apply to	NTS Travel if using in	direct evidence		
Does change based on Walking/Cycling depe	nd on absolute chang	ze in walk/bike time		No
Change in Walktime (Mins per week)		j ,		-
Change in BikeTime (Mins per Week)				
Congestion Results Summary	No Intervention	With Intervention	<u> </u>	Difference
Total Expected Car Distance pa (miles)	189,048,839,010	189,048,839,010		0
Distance Travelled pa per person	3,616	3,616		0.0
Valuing Congestion per annum				£0
Saving on Congestion Per person per annum	ı (-ve = saving)			£0.00
Valuing Greenhouse Gas Reductions				£0
Total Marginal External Costs per Annum (In	cl. Reduced Indirect t	axation)		£0

 Table 4.20 Led walking Results assuming 10% of the effectiveness seen in Lamb et al. before

 and after results and lower costs per participant from Derbyshire PCT

4.4.1 Extra Runs Requested by NICE/PDG

Intervention name		Model Pup	20
Led Walking (10% before and after affect)		NOUEI KUII	59 Ch
Led walking (10% before and after effect)		Scenario	011
Key Evidence Study	Lamb 2001		
Change in % Physically Active			2.87%
Mean Change in Physical Activity Hours			
Change in Walktime (Mins per week)			
Change in BikeTime (Mins per Week)			
Annual %Decay in effectiveness (0% – full on	going effect 100% -	no effect after year 1	50%
Is decay %Effect Relative or absoulte per app		no enceranter year i	Absolute
Sustained long-term level of %effect after	um		Absolute 0%
			070
Cost of Offer (Year 1)			£0.00
Cost of Uptake per person Taking Up (Initial)			£47.42
Ongoing Costs per person Yr 2 Onwards			£0.00
Decay Rate for Ongoing Costs			0%
Does the Cost Of Uptake Simply Apply to the	Whole Population? (1=Yes.0=No)	No
Offer Rule based on Phsical Activity? Enter C	riterion based on we	ekly hours e.g. <2	<2
Untake Rule based on Random Proportion of	those offered		40%
Offer and Uptake Results			
% of Total England Population Who Get bene	fit from Intervention		7.7%
Model Used to Compute Mortality Effect:	5. Step Function Risk	c via % Active on indiv	viduals accounting
	for uptake		
Health benefits Results Summary	No Intervention	With Intervention	Difference
Intervention Costs			£ 191,082,718
Discounted QALYS	650,723,003	650,732,651	9,649
Incremental Cost per QALY gained			£ 19,804
Congestion Assumptions Used			
Ls effect car distance measured directly in the	a evidence?		No
% Change in Car Trins from direct ovidence			NO
% Change in Car Trips I official exceeded (1/10 the of mile (week as nor NTC))			
Doos change in Travel from Direct Evidence	Apply to All or just I	Intakors?	
Does the change based on Walking and cyclic	e Apply to All of Just t	opiakers:	No
Change in Walking Tring / Time to Apply	to NTS Travel if using	indirect ovidence	INU
% Change in Walking Trips / Time to Apply	NTS Travel if using in	direct evidence	
% Change in Biking Trips / Time to Apply to	nd on abcolute chang	to in walk (bike time	No
Change in Walktime (Mins per week)	Ind off absolute change	ge in waik/ bike time	INU
Change in Walktime (Mins per Week)			
Change in Bikerime (Mins per Week)			
Congestion Results Summary	No Intervention	With Intervention	Difference
Total Expected Car Distance pa (miles)	189,048,839,010	189,048,839,010	0
Distance Travelled pa per person	3,616	3,616	0.0
Valuing Congestion per annum			£0
Saving on Congestion Per person per annum	(-ve = saving)		£0.00
Valuing Greenhouse Gas Reductions			£0
Total Marginal External Costs per Annum (Ind	cl. Reduced Indirect ta	axation)	£0

 Table 4.21 Led walking result: Lamb with base cost and 50% annual decay

mervention name		Model Run	40
Led Walking (10% before and after effect)		Scenario	6ј
Key Evidence Study	Lamb 2001		
Change in % Physically Active			2.87%
Mean Change in Physical Activity Hours			
Change in Walktime (Mins per week)			
Change in BikeTime (Mins per Week)			
Annual % Descution offerstitueness (00% - full en	acing offect 100%	na offect ofter wood 1	750/
	going effect, 100% =	no enect after year 1	
Is decay %Effect Relative or absoulte per ann	um		Absolute
Sustained long-term level of %effect after			0%
Cost of Offer (Year 1)			£0.00
Cost of Uptake per person Taking Up (Initial)			£47.42
Ongoing Costs per person Yr 2 Onwards			£0.00
Decay Rate for Ongoing Costs			0%
Doos the Cost Of Untake Simply Apply to the	Whole Deputation? (No
Offer Pule based on Desical Activity2 Enter C	ritorion based on we	1 - 1 = 1 = 3, 0 = 100	NU ~2
Unter Rule based on Pandem Properties of	these offered	ekiy hours e.g. <z< td=""><td><<u><</u></td></z<>	< <u><</u>
	those offered		40%
Offer and Uptake Results			
% of Total England Population Who Get bene	fit from Intervention		7.7%
Model Used to Compute Mortality Effect:	5. Step Function Risk	via % Active on indiv	viduals accounting
	for uptake		
Health benefits Results Summary	No Intervention	With Intervention	Difference
Intervention Costs			£ 191,082,718
Discounted QALYS	650,723,003	650,731,073	8,070
Incremental Cost per QALY gained			
			£ 23,678
Congestion Assumptions Used			£ 23,678
Congestion Assumptions Used Is effect car distance measured directly in the	evidence?		£ 23,678
<u>Congestion Assumptions Used</u> Is effect car distance measured directly in the % Change in Car Trips from direct evidence	e evidence?		£ 23,678 No
<u>Congestion Assumptions Used</u> Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/1	e evidence?	ner NTS)	£ 23,678 No
<u>Congestion Assumptions Used</u> Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/1	e evidence? Oths of mile/week as	s per NTS)	£ 23,678 No
Congestion Assumptions Used Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/1 Does change in Travel from Direct Evidence	e evidence? Oths of mile/week as Apply to All or Just L	s per NTS) Jptakers?	£ 23,678 No
Congestion Assumptions Used Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/1 Does change in Travel from Direct Evidence Does the change based on Walking and cyclir	e evidence? Oths of mile/week as Apply to All or Just L ng depend on % chan	s per NTS) Jptakers? ge in trips / time	£ 23,678 No
Congestion Assumptions Used Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/1 Does change in Travel from Direct Evidence Does the change based on Walking and cyclir % Change in Walking Trips / Time to Apply	e evidence? Oths of mile/week as Apply to All or Just L ng depend on % chan to NTS Travel if using	s per NTS) Jptakers? ge in trips / time indirect evidence	£ 23,678 No
Congestion Assumptions Used Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/1 Does change in Travel from Direct Evidence Does the change based on Walking and cyclir % Change in Walking Trips / Time to Apply to	e evidence? Oths of mile/week as Apply to All or Just U ng depend on % chan to NTS Travel if using NTS Travel if using in	s per NTS) Jptakers? ge in trips / time indirect evidence direct evidence	£ 23,678 No
Congestion Assumptions Used Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/1 Does change in Travel from Direct Evidence Does the change based on Walking and cyclir % Change in Walking Trips / Time to Apply to Does change based on Walking/Cycling dependent	e evidence? Oths of mile/week as Apply to All or Just U og depend on % chan to NTS Travel if using NTS Travel if using in nd on absolute chang	s per NTS) Jptakers? ge in trips / time indirect evidence direct evidence ge in walk/bike time	£ 23,678 No No
Congestion Assumptions Used Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/1 Does change in Travel from Direct Evidence Does the change based on Walking and cyclir % Change in Walking Trips / Time to Apply 1 % Change in Biking Trips / Time to Apply to Does change based on Walking/Cycling depen Change in Walktime (Mins per week)	e evidence? Oths of mile/week as Apply to All or Just L ag depend on % chan to NTS Travel if using NTS Travel if using in nd on absolute chang	s per NTS) Jptakers? ge in trips / time indirect evidence direct evidence ge in walk/bike time	£ 23,678 No No
Congestion Assumptions Used Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/1 Does change in Travel from Direct Evidence Does the change based on Walking and cyclir % Change in Walking Trips / Time to Apply to Change in Biking Trips / Time to Apply to Does change based on Walking/Cycling depen Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)	e evidence? Oths of mile/week as Apply to All or Just L og depend on % chan to NTS Travel if using NTS Travel if using in nd on absolute chang	s per NTS) Jptakers? ge in trips / time indirect evidence direct evidence ge in walk/bike time	£ 23,678 No No
Congestion Assumptions Used Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/1 Does change in Travel from Direct Evidence Does the change based on Walking and cyclir % Change in Walking Trips / Time to Apply to Does change based on Walking/Cycling deper Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)	e evidence? Oths of mile/week as Apply to All or Just U og depend on % chan to NTS Travel if using NTS Travel if using in nd on absolute chang No Intervention	s per NTS) Jptakers? ge in trips / time indirect evidence direct evidence ge in walk/bike time With Intervention	f 23,678 No No Difference
 <u>Congestion Assumptions Used</u> Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/1 Does change in Travel from Direct Evidence Does the change based on Walking and cyclir % Change in Walking Trips / Time to Apply 5 % Change in Biking Trips / Time to Apply 1 to Does change based on Walking/Cycling dependence Change in BikeTime (Mins per Week) Congestion Results Summary Total Expected Car Distance pa (miles) 	e evidence? Oths of mile/week as Apply to All or Just L og depend on % chan to NTS Travel if using NTS Travel if using in nd on absolute chang <u>No Intervention</u> 189,048,839,010	5 per NTS) Jptakers? ge in trips / time indirect evidence direct evidence ge in walk/bike time With Intervention 189,048,839,010	f 23,678 No No Difference 0
Congestion Assumptions Used Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/1 Does change in Travel from Direct Evidence Does the change based on Walking and cyclir % Change in Walking Trips / Time to Apply to Change in Biking Trips / Time to Apply to Does change based on Walking/Cycling deper Change in Walktime (Mins per week) Change in BikeTime (Mins per Week) Congestion Results Summary Total Expected Car Distance pa (miles) Distance Travelled pa per person	e evidence? Oths of mile/week as e Apply to All or Just U ng depend on % chang to NTS Travel if using NTS Travel if using in nd on absolute chang <u>No Intervention</u> 189,048,839,010 3,616	s per NTS) Jptakers? ge in trips / time indirect evidence direct evidence ge in walk/bike time With Intervention 189,048,839,010 3,616	£ 23,678 No No No No Difference 0 0.0 0.0
Congestion Assumptions Used Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/1 Does change in Travel from Direct Evidence Does the change based on Walking and cyclir % Change in Walking Trips / Time to Apply ' % Change in Biking Trips / Time to Apply to Does change based on Walking/Cycling deper Change in Walktime (Mins per week) Change in BikeTime (Mins per Week) Congestion Results Summary Total Expected Car Distance pa (miles) Distance Travelled pa per person	e evidence? Oths of mile/week as Apply to All or Just L og depend on % chan to NTS Travel if using NTS Travel if using in nd on absolute chang No Intervention 189,048,839,010 3,616	s per NTS) Jptakers? ge in trips / time indirect evidence direct evidence ge in walk/bike time With Intervention 189,048,839,010 3,616	£ 23,678 No No No No Difference 0 0 0.0 £0 €0
Congestion Assumptions Used Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/1 Does change in Travel from Direct Evidence Does the change based on Walking and cyclir % Change in Walking Trips / Time to Apply to Change in Biking Trips / Time to Apply to Does change based on Walking/Cycling deper Change in Walktime (Mins per week) Change in BikeTime (Mins per Week) Congestion Results Summary Total Expected Car Distance pa (miles) Distance Travelled pa per person Valuing Congestion per annum Saving on Congestion Per person per annum	e evidence? Oths of mile/week as Apply to All or Just L og depend on % chan to NTS Travel if using NTS Travel if using in nd on absolute chang No Intervention 189,048,839,010 3,616 (-ve = saving)	s per NTS) Jptakers? ge in trips / time indirect evidence direct evidence ge in walk/bike time With Intervention 189,048,839,010 3,616	£ 23,678 No No No No Difference 0 0 0.0 £0 £0 £0.00
Congestion Assumptions Used Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/1 Does change in Travel from Direct Evidence Does the change based on Walking and cyclir % Change in Walking Trips / Time to Apply to Does change based on Walking/Cycling deper Change in Biking Trips / Time to Apply to Does change based on Walking/Cycling deper Change in Walktime (Mins per week) Change in BikeTime (Mins per Week) Congestion Results Summary Total Expected Car Distance pa (miles) Distance Travelled pa per person Valuing Congestion per annum Saving on Congestion Per person per annum Valuing Greenhouse Gas Reductions	e evidence? Oths of mile/week as Apply to All or Just L og depend on % chang to NTS Travel if using in nd on absolute chang No Intervention 189,048,839,010 3,616 (-ve = saving)	s per NTS) Jptakers? ge in trips / time indirect evidence direct evidence ge in walk/bike time With Intervention 189,048,839,010 3,616	£ 23,678 No No No No Difference 0 0.0 €0 £0.00 €0 £0 €0
Congestion Assumptions Used Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/1 Does change in Travel from Direct Evidence Does the change based on Walking and cyclir % Change in Walking Trips / Time to Apply ' % Change in Biking Trips / Time to Apply to Does change based on Walking/Cycling deper Change in Walktime (Mins per week) Change in BikeTime (Mins per Week) Congestion Results Summary Total Expected Car Distance pa (miles) Distance Travelled pa per person Valuing Congestion per annum Saving on Congestion Per person per annum Valuing Greenhouse Gas Reductions Total Marginal External Costs per Annum (Inc	e evidence? Oths of mile/week as Apply to All or Just L og depend on % chan to NTS Travel if using NTS Travel if using in nd on absolute chang No Intervention 189,048,839,010 3,616 (-ve = saving)	s per NTS) Jptakers? ge in trips / time indirect evidence direct evidence ge in walk/bike time With Intervention 189,048,839,010 3,616	£ 23,678 No No No No Difference 0 0 0.0 £0 £0 £0 £0 £0 £0 £0 £0 £0 £0 £0 £0 £0 £0
Congestion Assumptions Used Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/1 Does change in Travel from Direct Evidence Does the change based on Walking and cyclir % Change in Walking Trips / Time to Apply to Does change based on Walking/Cycling deper Change in Biking Trips / Time to Apply to Does change based on Walking/Cycling deper Change in Walktime (Mins per week) Change in BikeTime (Mins per Week) Congestion Results Summary Total Expected Car Distance pa (miles) Distance Travelled pa per person Valuing Congestion per annum Saving on Congestion Per person per annum Valuing Greenhouse Gas Reductions Total Marginal External Costs per Annum (Inc	e evidence? Oths of mile/week as e Apply to All or Just U ing depend on % chang to NTS Travel if using NTS Travel if using in nd on absolute chang No Intervention 189,048,839,010 3,616 (-ve = saving)	s per NTS) Jptakers? ge in trips / time indirect evidence direct evidence ge in walk/bike time With Intervention 189,048,839,010 3,616	£ 23,678 No No No No Difference 0 0.0 60 £0.00 £0 £0 £0 £0 £0 £0 £0

Table 4.22 Led walking result: Lamb with base cost and 75% annual decay

Intervention name		Model Run	41
Led Walking (10% before and after effect)		Scenario	6k
Key Evidence Study	Lamb 2001		
Change in % Physically Active			2.87%
Mean Change in Physical Activity Hours			
Change in Walktime (Mins per week)			
Change in BikeTime (Mins per Week)			
Annual %Decay in effectiveness (0% = full on	going effect, 100% =	no effect after vear 1	100%
Is decay %Effect Belative or absoulte per ann	um		Absolute
Sustained long-term level of %effect after			0%
Cost of Offer (Year 1)			£0.00
Cost of Untake per person Taking Up (Initial)			£47.42
Ongoing Costs per person Vr 2 Onwards			£0.00
Decay Rate for Ongoing Costs			0%
			070
Does the Cost Of Uptake Simply Apply to the	Whole Population? (1=Yes,0=No)	No
Offer Rule based on Physical Activity? Enter C	riterion based on we	ekly hours e.g. <2	<2
Uptake Rule based on Random Proportion of	those offered		40%
Offer and Uptake Results			
% of Total England Population Who Get bene	fit from Intervention		7.7%
Model Used to Compute Mortality Effect:	5. Step Function Risl	< via % Active on indiv	viduals accounting
	for uptake	1	
Health benefits Results Summary	No Intervention	With Intervention	Difference
Intervention Costs			£ 191,082,718
Discounted QALYS	650,723,003	650,729,494	6,491
Incremental Cost per QALY gained			£ 29,436
Congestion Assumptions Used			
Is effect car distance measured directly in the	e evidence?		No
% Change in Car Trips from direct evidence			
Mean Change in Car Distance travelled (1/1	Oths of mile/week as	s per NTS)	
Does change in Travel from Direct Evidence	Apply to All or Just I	Uptakers?	
Does the change based on Walking and cyclir	ng depend on % chan	ge in trips / time	No
% Change in Walking Trips / Time to Apply	to NTS Travel if using	indirect evidence	
% Change in Biking Trips / Time to Apply to	NTS Travel if using in	direct evidence	
Does change based on Walking/Cycling depe	nd on absolute chang	ge in walk/bike time	No
Change in Walktime (Mins per week)			
Change in BikeTime (Mins per Week)			
Congestion Results Summary	No Intervention	With Intervention	Difference
Total Expected Car Distance pa (miles)	189,048,839,010	189,048,839,010	0
Distance Travelled pa per person	3,616	3,616	0.0
Valuing Congestion per annum			£0
Saving on Congestion Per person per annum	(-ve = saving)		£0.00
Valuing Greenhouse Gas Reductions			£0
Total Marginal External Costs per Annum (Inc	l. Reduced Indirect t	axation)	£0
Difference in Number of Deaths at a Time Ho	rizon of 10 years		-455

Table 4.23 Led walking result: Lamb with base cost and 100% annual decay

Intervention name		Model Run	42
Led Walking (10% before and after effect)		Scenario	61
Key Evidence Study	Lamb 2001		
Change in % Physically Active			2.87%
Mean Change in Physical Activity Hours			
Change in Walktime (Mins per week)			
Change in BikeTime (Mins per Week)			
Annual %Decay in effectiveness (0% = full on	going effect 100% =	no effect after year 1	50%
Is decay %Effect Relative or absoulte per ann		no encer unter year 1	
Sustained long-term level of %effect after	um		0%
			0,0
Cost of Offer (Year 1)			£0.00
Cost of Uptake per person Taking Up (Initial)			£29.90
Ongoing Costs per person Yr 2 Onwards			£0.00
Decay Rate for Ongoing Costs			0%
Does the Cost Of Uptake Simply Apply to the	Whole Population? (1=Yes,0=No)	No
Offer Rule based on Phsical Activity? Enter C	riterion based on we	ekly hours e.g. <2	<2
Uptake Rule based on Random Proportion of	those offered		40%
Offer and Uptake Results			
% of Total England Population Who Get bene	fit from Intervention		7.7%
Model Used to Compute Mortality Effect:	5. Step Function Risk	k via % Active on indiv	viduals accounting
	for uptake		
Health benefits Results Summary	No Intervention	With Intervention	Difference
Intervention Costs	No mervention	With Intervention	f 120 513 545
Discounted OALYS	650,723,003	650,732,651	9.649
Incremental Cost per QALY gained	000)/ 20,000	000)/02/001	£ 12.490
			,
Congestion Assumptions Used			
Is effect car distance measured directly in the	e evidence?		No
% Change in Car Trips from direct evidence			
Mean Change in Car Distance travelled (1/2	Loths of mile/week a	s per NTS)	
Does change in Travel from Direct Evidence	e Apply to All or Just I	Uptakers?	
Does the change based on Walking and cyclin	ng depend on % chan	ge in trips / time	No
% Change in Walking Trips / Time to Apply	to NTS Travel if using	indirect evidence	
% Change in Biking Trips / Time to Apply to	NTS Travel if using in	idirect evidence	
Does change based on Walking/Cycling depe	nd on absolute chan	ge in walk/bike time	No
Change in Walktime (Mins per week)			
Change in BikeTime (Mins per Week)			
Congestion Results Summary	No Intervention	With Intervention	Difference
Total Expected Car Distance pa (miles)	189,048,839,010	189,048,839,010	0
Distance Travelled pa per person	3,616	3,616	0.0
Valuing Congestion per annum			£0
Saving on Congestion Per person per annum	ı (-ve = saving)		£0.00
Valuing Greenhouse Gas Reductions			£0
Total Marginal External Costs per Annum (Inc	cl. Reduced Indirect t	axation)	£0
Difference in Number of Deaths at a Time Ho	rizon of 10 years		-691

Table 4.24 Led walking result: Lamb with lower cost and 50% annual decay

Intervention name		Model Run		43
Led Walking (10% before and after effect)		Scenario		6m
<u>Key Evidence Study</u>	Lamb 2001			
Change in % Physically Active Mean Change in Physical Activity Hours Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)				2.87%
Annual %Decay in effectiveness (0% = full on Is decay %Effect Relative or absoulte per ann Sustained long-term level of %effect after	going effect, 100% = um	no effect after year 1		75% Absolute 0%
Cost of Offer (Year 1) Cost of Uptake per person Taking Up (Initial) Ongoing Costs per person Yr 2 Onwards Decay Rate for Ongoing Costs				£0.00 £29.90 £0.00 0%
Does the Cost Of Uptake Simply Apply to the Offer Rule based on Phsical Activity? Enter C Uptake Rule based on Random Proportion of	Whole Population? (riterion based on we those offered	1=Yes,0=No) ekly hours e.g. <2		No <2 40%
Offer and Lintake Results				
% of Total England Population Who Get bene	fit from Intervention			7.7%
Model Used to Compute Mortality Effect:	5. Step Function Risk for uptake	< via % Active on indiv	/idua	als accounting
Health benefits Results Summary	No Intervention	With Intervention		Difference
Intervention Costs		·	£	120,513,545
Discounted QALYS	650,723,003	650,731,073		8,070
Incremental Cost per QALY gained			£	14,934
Congestion Assumptions Used Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/1 Does change in Travel from Direct Evidence	e evidence? Oths of mile/week as Apply to All or Just (s per NTS) Uptakers?		No
Does the change based on Walking and cyclir % Change in Walking Trips / Time to Apply % Change in Biking Trips / Time to Apply to	ng depend on % chan to NTS Travel if using NTS Travel if using in	ge in trips / time indirect evidence indirect evidence		No
Does change based on Walking/Cycling depe Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)	nd on absolute chang	ge in walk/bike time		No
Congestion Results Summary	No Intervention	With Intervention		Difference
Total Expected Car Distance pa (miles)	189,048,839,010	189,048,839,010		0
Distance Travelled pa per person	3,616	3,616		0.0
Valuing Congestion per annum				£0
Saving on Congestion Per person per annum	(-ve = saving)			£0.00
Valuing Greenhouse Gas Reductions				£0
Total Marginal External Costs per Annum (Inc	l. Reduced Indirect t	axation)		£0
Difference in Number of Deaths at a Time Ho	rizon of 10 years			-573

Table 4.25 Led walking result: Lamb with lower cost and 75% annual decay

Intervention name		Model Run	44
Led Walking (10% before and after effect)		Scenario	6n
Key Evidence Study	Lamb 2001		
Change in % Physically Active			2.87%
Mean Change in Physical Activity Hours			
Change in Walktime (Mins per week)			
Change in BikeTime (Mins per Week)			
Annual %Decay in effectiveness (0% = full on	going effect, 100% =	no effect after year 1	100%
Is decay %Effect Belative or absoulte per ann	um		Absolute
Sustained long-term level of %effect after	um		0%
Cost of Offer (Vear 1)			£0.00
Cost of Untake nor norson Taking Un (Initial)			£20.00
Cost of Optake per person Taking Op (Initial)			£29.90
Digoing Costs per person in 2 Onwards			£0.00
Decay Rate for Ongoing Costs			0%
Does the Cost Of Uptake Simply Apply to the	Whole Population? (1=Yes,0=No)	No
Offer Rule based on Phsical Activity? Enter C	riterion based on we	ekly hours e.g. <2	<2
Uptake Rule based on Random Proportion of	those offered		40%
Offer and Uptake Results			
% of Total England Population Who Get bene	fit from Intervention		7.7%
Model Used to Compute Mortality Effect:	5. Step Function Risl	k via % Active on indiv	iduals accounting
	for uptake		
Health benefits Results Summary	No Intervention	With Intervention	Difference
Intervention Costs			£ 120,513,545
Discounted QALYS	650,723,003	650,729,494	6,491
Incremental Cost per QALY gained			£ 18,565
Congestion Assumptions Used			
Is effect car distance measured directly in the	e evidence?		No
% Change in Car Trips from direct evidence			
Mean Change in Car Distance travelled (1/1	Oths of mile/week a	s per NTS)	
Does change in Travel from Direct Evidence	Apply to All or Just	Uptakers?	
Does the change based on Walking and cyclir	ng depend on % chan	ge in trips / time	No
% Change in Walking Trips / Time to Apply	to NTS Travel if using	indirect evidence	
% Change in Biking Trips / Time to Apply to	NTS Travel if using in	ndirect evidence	
Does change hased on Walking/Cycling dene	nd on absolute chang	e in walk/hike time	No
Change in Walktime (Mins per week)			
Change in BikeTime (Mins per Week)			
			Difference
Congestion Results Summary	NO Intervention	180 048 820 010	Difference
Distance Travelled na per person	3 616	3 616	0.0
	5,010	5,010	0.0
Valuing Congestion per annum	(£0
Saving on Congestion Per person per annum	(-ve = saving)		±0.00
Valuing Greenhouse Gas Reductions	Doduced In diverses	avation	EU CO
Total Warginal External Costs per Annum (Ind	a. Reduced Indirect t	axation)	£U
Difference in Number of Deaths at a Time Ho	rizon of 10 years		-455

Table 4.26 Led walking result: Lamb with lower cost and 100% annual decay

Intervention name		Model Run	45
Led Walking (10% before and after effect)		Scenario	60
Key Evidence Study Change in % Physically Active	Lamb 2001		2.87%
Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)			
Annual %Decay in effectiveness (0% = full on Is decay %Effect Relative or absoulte per ann Sustained long-term level of %effect after	going effect, 100% = um	no effect after year 1	50% Absolute 0%
Cost of Offer (Year 1)			£0.00
Cost of Uptake per person Taking Up (Initial)			£47.42
Ongoing Costs per person Yr 2 Onwards			£0.00
Decay Rate for Ongoing Costs			0%
Does the Cost Of Uptake Simply Apply to the	Whole Population? (1=Yes.0=No)	No
Offer Rule based on Phsical Activity? Enter C	riterion based on we	ekly hours e.g. <2	<2
Uptake Rule based on Random Proportion of	those offered	, 0	40%
Offer and Untake Results			
% of Total England Population Who Get bene	fit from Intervention		7.7%
Model Used to Compute Mortality Effect:	5. Step Function Risl	k via % Active on indiv	viduals accounting
	for uptake		Ū
Health benefits Results Summary	No Intervention	With Intervention	Difference
Intervention Costs			£ 191,082,718
Discounted QALYS	650,723,003	650,732,651	9,649
Incremental Cost per QALY gained			£ 19,804
Congestion Assumptions Used			
Is effect car distance measured directly in the	e evidence?		No
% Change in Car Trips from direct evidence			
Mean Change in Car Distance travelled (1/1	Oths of mile/week a	s per NTS)	
Does change in Travel from Direct Evidence	Apply to All or Just	Uptakers?	
Does the change based on Walking and cyclir	ng depend on % chan	ge in trips / time	No
% Change in Walking Trips / Time to Apply	to NTS Travel if using	indirect evidence	
% Change in Biking Trips / Time to Apply to	NTS Travel if using in	ndirect evidence	
Does change based on Walking/Cycling depe	nd on absolute chang	ge in walk/bike time	No
Change in Walktime (Mins per week)			
Change in BikeTime (Mins per Week)			
Congestion Results Summary	No Intervention	With Intervention	Difference
Total Expected Car Distance pa (miles)	189,048,839,010	189,048,839,010	0
Distance Travelled pa per person	3,616	3,616	0.0
Valuing Congestion per annum			£0
Saving on Congestion Per person per annum	(-ve = saving)		£0.00
Valuing Greenhouse Gas Reductions			£0
Total Marginal External Costs per Annum (Inc	l. Reduced Indirect t	axation)	£0
Difference in Number of Deaths at a Time Ho	rizon of 10 years		-691

Table 4.27 Led walking result: Lamb with 50% annual decay and 1.5% annual benefit discount

Intervention name		Model Run	46	
Led Walking (10% before and after effect)		Scenario	6р	
<u>Key Evidence Study</u> Change in % Physically Active Mean Change in Physical Activity Hours Change in Walktime (Mins per week)	Lamb 2001		2.87%	
Change in BikeTime (Mins per Week)				
Annual %Decay in effectiveness (0% = full on Is decay %Effect Relative or absoulte per ann Sustained long-term level of %effect after	going effect, 100% = um	no effect after year 1	75% Absolute 0%	
Cost of Offer (Year 1)			£0.00	
Cost of Uptake per person Taking Up (Initial)			£47.42	
Ongoing Costs per person Yr 2 Onwards			£0.00	
Decay Rate for Ongoing Costs			0%	
Does the Cost Of Uptake Simply Apply to the	Whole Population? (1=Yes.0=No)	No	
Offer Rule based on Phsical Activity? Enter C	riterion based on we	ekly hours e.g. <2	<2	
Uptake Rule based on Random Proportion of	those offered		40%	
Coffee and Untrike Describe				
Offer and Optake Results	fit from Intonyontion		7 7%	
Model Used to Compute Mortality Effect:	5 Sten Function Ris	k via % Active on indiv	viduals accountin	σ
	for untake			ig
Health benefits Results Summary	No Intervention	With Intervention	Difference	
Intervention Costs	No Intervention	with filler vention	f 191 082 7	718
	650 723 003	650 731 073	8 (170
Incremental Cost per OALY gained	030,723,003	030,731,073	f 23.6	578
Congestion Assumptions Used Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/2 Does change in Travel from Direct Evidence	e evidence? Loths of mile/week a	s per NTS) Untakors 2	No	
Does the change hased on Walking and cyclin	g depend on % chan	optakers: lige in trins / time	No	
% Change in Walking Trips / Time to Apply % Change in Biking Trips / Time to Apply to	to NTS Travel if using NTS Travel if using ir	indirect evidence		
Does change based on Walking/Cycling depe Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)	nd on absolute chan	ge in walk/bike time	No	
Congestion Results Summary	No Intervention	With Intervention	Difference	
Total Expected Car Distance pa (miles)	189,048,839,010	189,048,839,010	0	
Distance Travelled pa per person	3,616	3,616	0.0	
Valuing Congestion per annum			£0	
Saving on Congestion Per person per annum	(-ve = saving)		£0.00	
Valuing Greenhouse Gas Reductions			£0	
Total Marginal External Costs per Annum (Ind	cl. Reduced Indirect t	axation)	£0	
Difference in Number of Deaths at a Time Ho	rizon of 10 years		-573	

Table 4.28 Led walking result: Lamb with 75% annual decay and 1.5% annual benefit discount

Intervention name		Model Run	47
Led Walking (10% before and after effect)		Scenario	6q
Key Evidence Study	Lamb 2001		
Change in % Physically Active			2.87%
Mean Change in Physical Activity Hours			
Change in Walktime (Mins per week)			
Change in BikeTime (Mins per Week)			
			1000/
Annual %Decay in effectiveness (0% = full on	going effect, 100% =	no effect after year 1	100%
Is decay %Effect Relative or absoulte per ann	um		Absolute
Sustained long-termiever of %enect after			078
Cost of Offer (Year 1)			£0.00
Cost of Uptake per person Taking Up (Initial)			£47.42
Ongoing Costs per person Yr 2 Onwards			£0.00
Decay Rate for Ongoing Costs			0%
Does the Cost Of Uptake Simply Apply to the	Whole Population? (1=Yes.0=No)	No
Offer Bule based on Physical Activity? Enter C	riterion based on we	ekly hours e.g. <2	<2
Uptake Rule based on Random Proportion of	those offered		40%
Offer and Uptake Results	<u>()</u>		7 70/
% of Total England Population Who Get bene	fit from Intervention	· · · · · · · · · · · · · · · · · · ·	1.1%
Model Used to Compute Mortality Effect:	5. Step Function Risl	k via % Active on indiv	viduals accounting
	for uptake		
Health benefits Results Summary	No Intervention	With Intervention	Difference
Intervention Costs	004 640 500	004 (57 024	£ 191,082,718
Discounted QALYS	884,649,590	884,657,934	8,344
Incremental Cost per QALY gained			£ 22,901
Congestion Assumptions Used			
Is effect car distance measured directly in the	e evidence?		No
% Change in Car Trips from direct evidence			
Mean Change in Car Distance travelled (1/1	Oths of mile/week as	s per NTS)	
Does change in Travel from Direct Evidence	Apply to All or Just I	Uptakers?	
Does the change based on Walking and cyclir	ng depend on % chan	ge in trips / time	No
% Change in Walking Trips / Time to Apply	to NTS Travel if using	indirect evidence	
% Change in Biking Trips / Time to Apply to	NTS Travel if using in	direct evidence	
Does change based on Walking/Cycling dependent	nd on absolute chang	ge in walk/bike time	No
Change in Walktime (Mins per week)			
Change in BikeTime (Mins per Week)			
Congestion Results Summary	No Intervention	With Intervention	Difference
Total Expected Car Distance na (miles)	189 0/18 839 010	738 930 635	-188 309 908 374
Distance Travelled na per person	3 616	14	-3 602 2
	3,010		3,002.12
Valuing Congestion per annum			-£39,700,161,501
Saving on Congestion Per person per annum	(-ve = saving)		-£759.43
valuing Greenhouse Gas Reductions			-±909,164,004
Total Marginal External Costs per Annum (Inc	ci. Reduced Indirect t	axation)	-±36,063,505,485
Difference in Number of Deaths at a Time Ho	rizon of 10 years		-455

Table 4.29 Led walking result: Lamb with 100% annual decay and 1.5% annual benefit discount

4.4.2 Get Walking Keep Walking

Intervention name		Model Run		21
Cat Walking koop Walking		Scopario		6.0
	Evaluation of Cot W	alking Koon Walking I		Ug ES (Contro for
Kov Evidonco Study		togios)	JY CL	
<u>Rey Evidence Study</u> Change in % Rhysically Active		legies)		22 40%
Moon Change in Physically Activity Hours				22.40%
Change in Walktime (Mins per week)				
Change in BikeTime (Mins per Week)				
Annual %Decay in effectiveness (0% = full on	going effect, 100% =	no effect after year 1		40%
Is decay %Effect Relative or absoulte per ann	um			Absolute
Sustained long-term level of %enect after				076
Cost of Offer (Year 1)				£0.00
Cost of Uptake per person Taking Up (Initial)				£55.22
Ongoing Costs per person Yr 2 Onwards				£0.00
Decay Rate for Ongoing Costs				0%
Does the Cost Of Uptake Simply Apply to the	Whole Population? (1=Yes,0=No)		No
Offer Rule based on Phsical Activity? Enter C	riterion based on we	ekly hours e.g. <2		<2
Uptake Rule based on Random Proportion of	those offered			40%
Offer and Uptake Results				
% of Total England Population Who Get bene	fit from Intervention			7.7%
Model Used to Compute Mortality Effect:	5. Step Function Risk	k via % Active on indi	vidua	als accounting
	for uptake			
Health benefits Results Summary	No Intervention	With Intervention		Difference
Intervention Costs			£	222,536,587
Discounted QALYS	650,723,003	650,803,815		80,812
Incremental Cost per QALY gained			£	2,754
Congestion Assumptions Used				
Is effect car distance measured directly in the	e evidence?			No
% Change in Car Trips from direct evidence	!			
Mean Change in Car Distance travelled (1/2	LOths of mile/week as	s per NTS)		
Does change in Travel from Direct Evidence	e Apply to All or Just I	Uptakers?		
Does the change based on Walking and cyclin	ng depend on % chan	ge in trips / time		No
% Change in Walking Trips / Time to Apply	to NTS Travel if using	indirect evidence		
% Change in Biking Trips / Time to Apply to	NTS Travel if using in	idirect evidence		
Does change based on Walking/Cycling depe	nd on absolute chang	ge in walk/bike time		No
Change in Walktime (Mins per week)				
Change in BikeTime (Mins per Week)				
Congestion Results Summary	No Intervention	With Intervention		Difference
Total Expected Car Distance pa (miles)	189,048,839,010	189,048,839,010	<u> </u>	0
Distance Travelled pa per person	3,616	3,616		0.0
Valuing Congestion per annum				£0
Saving on Congestion Per person per annum	(-ve = saving)			£0.00
Valuing Greenhouse Gas Reductions				£0
Total Marginal External Costs per Annum (Inc	cl. Reduced Indirect t	axation)		£0

Table 4.30 Results for Get Walking Keep Walking

4.5 Results: What-If Analyses

To understand the dynamics of the model and the levels of walking and cycling improvements that would be considered cost-effective at particular costs per participant, we have undertaken a series of what-if analyses. These focus in particular on the dimensions of:

- A 1% increase in the population who are physically active
- Encouraging those who are not physically active to walk an extra 10mins per week on average
- Encouraging those who are not physically active to cycle an additional 10mins per week
- Considering levels of decay ranging from the effect continuing forever, through annual decay rates of 25, 50%, 75%, and 100% (*i.e.* no effect after year one).

4.5.1 What ifs on Threshold Costs for 1% of the Population Becoming Physical Active Forever (>2 Hours Moderate Exercise Per Week)

The results suggest that interventions that could achieve a permanent shift in physical activity of 1% of the population shifting from under 2 hours to over 2 hours physical activity per week would have a substantial effect.

The cost per QALY estimates for a range of different costs are:

Investment per person currently not-physically active	Cost per QALY
£1	£118
£50	£4,733
£100	£9,465
£1,000	£94,650

Table 4.31 Threshold costs for 1% of the population becoming physical active forever

Intervention name		Model Run	22
What If @£1 (1% more active forever)		Scenario	7a
<u>Key Evidence Study</u> Change in % Physically Active Mean Change in Physical Activity Hours Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)	"What-If"		1.00%
Annual %Decay in effectiveness (0% = full on Is decay %Effect Relative or absoulte per ann Sustained long-term level of %effect after	going effect, 100% = um	no effect after year 1	0% Absolute 0%
Cost of Offer (Year 1) Cost of Uptake per person Taking Up (Initial) Ongoing Costs per person Yr 2 Onwards Decay Rate for Ongoing Costs			£0.00 £1.00 £0.00 0%
Does the Cost Of Uptake Simply Apply to the Offer Rule based on Phsical Activity? Enter C Uptake Rule based on Random Proportion of	Whole Population? (riterion based on we those offered	1=Yes,0=No) ekly hours e.g. <2	No <2 100%
Offer and Uptake Results			1
% of Total England Population Who Get bene	fit from Intervention		18.9%
Model Used to Compute Mortality Effect:	5. Step Function Risk for uptake	k via % Active on indiv	viduals accounting
Health benefits Results Summary	No Intervention	With Intervention	Difference
Intervention Costs			£ 9,906,247
Discounted QALYS	650,723,003	650,807,274	84,271
Incremental Cost per QALY gained			£ 118
Congestion Assumptions Used			
Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/2	e evidence?	s per NTS)	No
Does change in Travel from Direct Evidence	e Apply to All or Just I	Jotakers?	
Does the change based on Walking and cyclin % Change in Walking Trips / Time to Apply % Change in Biking Trips / Time to Apply to	ng depend on % chan to NTS Travel if using	ge in trips / time indirect evidence	No
Does change in Biking Trips / Trine to Apply to Does change based on Walking/Cycling depe Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)	nd on absolute chang	ge in walk/bike time	No
Congestion Results Summary	No Intervention	With Intervention	Difference
Total Expected Car Distance pa (miles)	189,048,839,010	189,048,839,010	0
Distance Travelled pa per person	3,616	3,616	0.0
Valuing Congestion per annum			f0
Saving on Congestion Per person per annum	(-ve = saving)		f0 00
Valuing Greenhouse Gas Reductions			£0
Total Marginal External Costs per Annum (Ind	cl. Reduced Indirect ta	axation)	£0
5 •••••• ••••••••••••••••••••••••••••		,	

Table 4.32 What if 1% more physically active forever at a cost of £1 per person

What If @ £100 (1% more active forever) Scenario 7b Key Evidence Study "What-If" .00% Chanage in & Physicall Activity Hours 1.00% Change in Nehysically Active 1.00% Mean Change in Mysical Activity Hours 0% Change in Stepsically Active 0% Annual %Decay in effectiveness (0% = full ongoing effect, 100% = no effect after year 1 0% Sustained long-term level of %effect after 0% Cost of Optake per person Taking Up (Initial) £100.00 Cost of Uptake per person Taking Up (Initial) £100.00 Ocst of Uptake per person T2 Onwards 60.00 Decay Rate for Ongoing Costs 0% Does the Cost Of Uptake Simply Apply to the Whole Population? (1=Yes,0=No) No Offer Rule based on Phsical Activity? Enter Criterion based on weekly hours e.g. <2 <2 Uptake Rule based on Random Proportion of those offered 40% Offer and Uptake Results 5. Step Function Risk via % Active on individuals accounting for uptake Health benefits Results Summary No Intervention 7.7% Model Used to Compute Mortality Effect: 5. Step Function Risk via % Active on individuals accounting for uptake 402,997,296 Discounted QALYS	Intervention name		Model Run	23
Key Evidence Study "What-If" Change in % Physicall Active 1.00% Mean Change in Physical Activity Hours 1.00% Change in Walktime (Mins per week) 0% Change in BikeTime (Mins per week) 0% Annual %Decay in effectiveness (0% = full ongoing effect, 100% = no effect after year 1 0% Sustained long-term level of %effect after 0% Cost of Offer (Year 1) € 0.00 Cost of Uptake per person Taking Up (Initial) £ 100.00 Decay Rate for Ongoing Costs 0% Does the Cost Of Uptake Simply Apply to the Whole Population? (1=Yes,0=No) No Offer and Uptake Results 0% 4 of Total England Population Who Get benefit from Intervention 7.7% Model Used to Compute Mortality Effect: 5. Step Function Risk via % Active on individuals accounting for uptake Health benefits Results Summary No Intervention 7.7% Model Used to Compute Mortality Effect: 5. Step Function Risk via % Active on individuals accounting for uptake Health benefits Results Summary No Intervention 10/fference Intervention Costs £ 402,997.296 Discounted QALYS 650,723,003 650,765,578 42,576 </td <td>What If @ £100 (1% more active forever)</td> <td></td> <td>Scenario</td> <td>7b</td>	What If @ £100 (1% more active forever)		Scenario	7b
Annual %Decay in effectiveness (0% = full ongoing effect, 100% = no effect after year 1 0% Is decay %Effect Relative or absoubte per annum Absolute Sustained long-term level of %effect after 0% Cost of Offer (Year 1) £0.00 Ongoing Costs per person Taking Up (Initial) £100.00 Ongoing Costs per person Yr 2 Onwards £0.00 Decay Rate for Ongoing Costs 0% Does the Cost Of Uptake Simply Apply to the Whole Population? (1=Yes,0=No) No Offer Rule based on Phsical Activity? Enter Criterion based on weekly hours e.g. <2 <2 Uptake Rule based on Phsical Activity? Enter Criterion based on weekly hours e.g. <2 <2 Uptake Rule based on Random Proportion of those offered 40% Offer and Uptake Simply Apply to the Whole Population? (1=Yes,0=No) No Offer and Uptake Results 5 & of Total England Population Who Get benefit from Intervention 7.7% Model Used to Compute Mortality Effect: 5. Step Function Risk via % Active on individuals accounting for uptake 1 Health benefits Results Summary No Intervention With Intervention Difference Intervention Costs £ £ 402,997,296 Discounted OALYS 650,723,003 650,765,578 42,576 Incremental Cost per QALY gained £ 9,465 Congestion Assumptions Used Is effect car distance measured directly in the evidence? No % Change in Car Trips from direct evidence Mean Change in Car Toips from direct evidence Mean Change in Car Distance travelled (1/10ths of mile/week as per NTS) Does the change based on Walking and cycling depend on % change in trips / time No % Change in Biking Trips / Time to Apply to NTS Travel if using indirect evidence % Change in Biking Trips / Time to Apply to NTS Travel if using indirect evidence % Change in Biking Trips / Time to Apply to NTS Travel if using indirect evidence % Change in Biking Trips / Time to Apply to NTS Travel if using indirect evidence % Change in Biking Trips / Time to Apply to NTS Travel if using indirect evidence % Change in Biking Trips / Time to Apply to NTS Travel if using indirect evidence % Change in Biking Trips / Time to Apply t	<u>Key Evidence Study</u> Change in % Physically Active Mean Change in Physical Activity Hours Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)	"What-If"		1.00%
Cost of Offer (Year 1) £0.00 Cost of Uptake per person Taking Up (Initial) £100.00 Ongoing Costs per person Yr 2 Onwards £0.00 Decay Rate for Ongoing Costs 0% Does the Cost Of Uptake Simply Apply to the Whole Population? (1=Yes,0=No) No Offer Rule based on Phiscial Activity? Enter Criterion based on weekly hours e.g. <2	Annual %Decay in effectiveness (0% = full on Is decay %Effect Relative or absoulte per ann Sustained long-term level of %effect after	going effect, 100% = um	no effect after year 1	0% Absolute 0%
Does the Cost Of Uptake Simply Apply to the Whole Population? (1=Yes,0=No) No Offer Rule based on Phsical Activity? Enter Criterion based on weekly hours e.g. <2	Cost of Offer (Year 1) Cost of Uptake per person Taking Up (Initial) Ongoing Costs per person Yr 2 Onwards Decay Rate for Ongoing Costs			£0.00 £100.00 £0.00 0%
Offer and Uptake Results % of Total England Population Who Get benefit from Intervention 7.7% Model Used to Compute Mortality Effect: 5. Step Function Risk via % Active on individuals accounting for uptake Health benefits Results Summary No Intervention With Intervention Intervention Costs £ 402,997,296 Discounted QALYS 650,723,003 650,765,578 42,576 Incremental Cost per QALY gained £ 9,465 Congestion Assumptions Used Is effect car distance measured directly in the evidence? No % Mean Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/10ths of mile/week as per NTS) Does change in Travel from Direct Evidence Apply to All or Just Uptakers? No Does the change based on Walking and cycling depend on % change in trips / time No % Change in Walking Trips / Time to Apply to NTS Travel if using indirect evidence Mchange in Walking Kitime (Mins per week) Change in Walkime (Mins per week) No No Congestion Results Summary No Intervention With Intervention Difference % Change in BikeTime (Mins per Week) 189,048,839,010 189,048,839,010 0 Congestion Results Summary No Intervention With Intervention	Does the Cost Of Uptake Simply Apply to the Offer Rule based on Phsical Activity? Enter C Uptake Rule based on Random Proportion of	Whole Population? (riterion based on we those offered	1=Yes,0=No) ekly hours e.g. <2	No <2 40%
% of Total England Population Who Get benefit from Intervention 7.7% Model Used to Compute Mortality Effect: 5. Step Function Risk via % Active on individuals accounting for uptake Health benefits Results Summary No Intervention With Intervention Difference Intervention Costs £ 402,997,296 Discounted QALYS 650,723,003 650,765,578 42,576 Incremental Cost per QALY gained £ 9,465 Congestion Assumptions Used Is effect car distance measured directly in the evidence? No % Change in Car Trips from direct evidence No % Mean Change in Car Distance travelled (1/10ths of mile/week as per NTS) Does change in Travel from Direct Evidence Apply to All or Just Uptakers? No % Change in Walking Trips / Time to Apply to NTS Travel if using indirect evidence % Change in Walking Trips / Time to Apply to NTS Travel if using indirect evidence % Change in Bikeng Trips / Time to Apply to NTS Travel if using indirect evidence No % Congestion Results Summary No Intervention With Intervention Difference Does change in Bikeng Trips / Time to Apply to NTS Travel if using indirect evidence No Change in Bikeng Trips / Time to Apply to NTS Travel if using indirect evidence No Congestion Results Su	Offer and Uptake Results			
Model Used to Compute Mortality Effect: 5. Step Function Risk via % Active on individuals accounting for uptake Health benefits Results Summary No Intervention With Intervention Intervention Costs £ 402,997,296 Discounted QALYS 650,723,003 650,765,578 42,576 Incremental Cost per QALY gained £ 9,465 Congestion Assumptions Used Is effect car distance measured directly in the evidence? No No % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/10ths of mile/week as per NTS) Does change in Travel from Direct Evidence Apply to All or Just Uptakers? No Does the change based on Walking and cycling depend on % change in trips / time No No % Change in Biking Trips / Time to Apply to NTS Travel if using indirect evidence % No Meange in Biking Trips / Time to Apply to NTS Travel if using indirect evidence No Change in Walktime (Mins per week) Change in BikeTime (Mins per week) Change in BikeTime (Mins per week) No No Congestion Results Summary No Intervention With Intervention Difference Total Expected Car Distance pa (miles) 189,048,839,010 189,048,839,010 0 Distance Tra	% of Total England Population Who Get bene	fit from Intervention		7.7%
Health benefits Results SummaryNo InterventionWith InterventionDifferenceIntervention Costs£402,997,296Discounted QALYS650,723,003650,765,57842,576Incremental Cost per QALY gained£9,465Congestion Assumptions UsedIs effect car distance measured directly in the evidence?No% Change in Car Trips from direct evidenceNo% Change in Car Distance travelled (1/10ths of mile/week as per NTS)NoDoes the change based on Walking and cycling depend on % change in trips / timeNo% Change in Walking Trips / Time to Apply to NTS Travel if using indirect evidenceNo% Change in Biking Trips / Time to Apply to NTS Travel if using indirect evidenceNoCongestion Results SummaryNo InterventionWith InterventionNo are change in BikeTime (Mins per week)189,048,839,010189,048,839,010Congestion Results SummaryNo InterventionWith InterventionCongestion Per person3,6160.0Valuing Congestion per annum-yee saving)£0Valuing Greenhouse Gas Reductions£0	Model Used to Compute Mortality Effect: 5. Step Function Risk via % Active on individuals accounting for uptake			
Intervention Costs£402,997,296Discounted QALYS650,723,003650,765,57842,576Incremental Cost per QALY gained£9,465Congestion Assumptions UsedIs effect car distance measured directly in the evidence?No% Change in Car Trips from direct evidenceMean Change in Car Distance travelled (1/10ths of mile/week as per NTS)NoDoes change in Travel from Direct Evidence Apply to All or Just Uptakers?No% Change in Travel from Direct Evidence Apply to NTS Travel if using indirect evidenceNo% Change in Biking Trips / Time to Apply to NTS Travel if using indirect evidenceNo% Change in Walking Arips / Time to Apply to NTS Travel if using indirect evidenceNo% Change in Walkimg Trips / Time to Apply to NTS Travel if using indirect evidenceNoCongestion Results Mime (Mins per week)NoDifferenceCongestion Results SummaryNo InterventionWith InterventionCongestion Results Summary189,048,839,010189,048,839,010Oistance Travelled pa per person3,6163,616Outing Congestion per annumf0Saving on Congestion Per person per annum (-ve = saving)f0Yaluing Greenhouse Gas Reductionsf0Total Marginal External Costs per Annum (Incl. Reduced Indirect taxation)f0	Health benefits Results Summary	No Intervention	With Intervention	Difference
Discounted QALYS650,723,003650,765,578422,576Incremental Cost per QALY gained£9,465Congestion Assumptions UsedIs effect car distance measured directly in the evidence?No% Change in Car Trips from direct evidenceMean Change in Car Distance travelled (1/10ths of mile/week as per NTS)NoDoes change in Travel from Direct Evidence Apply to All or Just Uptakers?NoSoes change in Travel from Direct Evidence Apply to NTS Travel if using indirect evidenceNo% Change in Walking Trips / Time to Apply to NTS Travel if using indirect evidenceNo% Change in Biking Trips / Time to Apply to NTS Travel if using indirect evidenceNoChange in Walkime (Mins per week)Change in BikeTime (Mins per week)NoCongestion Results SummaryNo InterventionWith InterventionCongestion per person3,6163,6160.0Valuing Congestion per annumf0Saving on Congestion Per person per annum (-ve = saving)f0Yaluing Greenhouse Gas Reductionsf0f0f0	Intervention Costs			£ 402,997,296
Incremental Cost per QALY gained£9,465Congestion Assumptions Used Is effect car distance measured directly in the evidence?No% Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/10ths of mile/week as per NTS) Does change in Travel from Direct Evidence Apply to All or Just Uptakers?NoDoes the change based on Walking and cycling depend on % change in trips / time % Change in Walking Trips / Time to Apply to NTS Travel if using indirect evidence % Change in Biking Trips / Time to Apply to NTS Travel if using indirect evidenceNoDoes change based on Walking/Cycling depend on absolute change in walk/bike time Change in Walktime (Mins per week) Change in BikeTime (Mins per week) Change in BikeTime (Mins per Week)No InterventionWith InterventionCongestion Results SummaryNo Intervention 3,616With Intervention 3,6160.0Valuing Congestion per annum Congestion per annum (-ve = saving)£00.00Valuing Greenhouse Gas Reductions£0Total Marginal External Costs per Annum (Incl. Reduced Indirect taxation)£0	Discounted QALYS	650,723,003	650,765,578	42,576
Congestion Assumptions Used No Is effect car distance measured directly in the evidence? No % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/10ths of mile/week as per NTS) Does change in Travel from Direct Evidence Apply to All or Just Uptakers? No Does the change based on Walking and cycling depend on % change in trips / time No % Change in Walking Trips / Time to Apply to NTS Travel if using indirect evidence % % Change in Biking Trips / Time to Apply to NTS Travel if using indirect evidence No Does change based on Walking/Cycling depend on absolute change in walk/bike time No Change in Walktime (Mins per week) Change in BikeTime (Mins per week) No Congestion Results Summary No Intervention With Intervention Difference Total Expected Car Distance pa (miles) 189,048,839,010 189,048,839,010 0 Distance Travelled pa per person 3,616 3,616 0.0 Valuing Congestion per annum £0 50 50 50 Saving on Congestion Per person per annum (-ve = saving) £0 50 50 Valuing Greenhouse Gas Reductions £0 50 50 50	Incremental Cost per QALY gained			£ 9,465
Is effect car distance measured directly in the evidence? No % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/10ths of mile/week as per NTS) Does change in Travel from Direct Evidence Apply to All or Just Uptakers? No Does the change based on Walking and cycling depend on % change in trips / time No % Change in Walking Trips / Time to Apply to NTS Travel if using indirect evidence No % Change in Biking Trips / Time to Apply to NTS Travel if using indirect evidence No Does change based on Walking/Cycling depend on absolute change in walk/bike time No Change in Biking Trips / Time to Apply to NTS Travel if using indirect evidence No Change in Walktime (Mins per week) Change in Walktime (Mins per Week) No Congestion Results Summary No Intervention With Intervention Difference Total Expected Car Distance pa (miles) 189,048,839,010 189,048,839,010 0 Distance Travelled pa per person 3,616 3,616 0.0 Valuing Congestion per annum £0 Saving on Congestion Per person per annum (-ve = saving) £0.00 Valuing Greenhouse Gas Reductions £0 £0 Total Marginal External Costs per Annum (Incl. Reduced Indirect taxation) £0 <td>Congestion Assumptions Used</td> <td></td> <td></td> <td></td>	Congestion Assumptions Used			
Does change in Travel from Direct Evidence Apply to All or Just Uptakers?Does the change based on Walking and cycling depend on % change in trips / timeNo% Change in Walking Trips / Time to Apply to NTS Travel if using indirect evidenceNo% Change in Biking Trips / Time to Apply to NTS Travel if using indirect evidenceNoDoes change based on Walking/Cycling depend on absolute change in walk/bike timeNoChange in Walktime (Mins per week)NoChange in BikeTime (Mins per Week)NoCongestion Results SummaryNo InterventionTotal Expected Car Distance pa (miles)189,048,839,010Distance Travelled pa per person3,616Valuing Congestion Per person per annum (-ve = saving)£0Saving on Congestion Per person per annum (-ve = saving)£0Valuing Greenhouse Gas Reductions£0Total Marginal External Costs per Annum (Incl. Reduced Indirect taxation) £0	Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/2	e evidence? e 10ths of mile/week as	s per NTS)	No
Does the change based on Walking and cycling depend on % change in trips / timeNo% Change in Walking Trips / Time to Apply to NTS Travel if using indirect evidenceNo% Change in Biking Trips / Time to Apply to NTS Travel if using indirect evidenceNoDoes change based on Walking/Cycling depend on absolute change in walk/bike timeNoChange in Walktime (Mins per week)NoChange in BikeTime (Mins per Week)No InterventionCongestion Results SummaryNo InterventionTotal Expected Car Distance pa (miles)189,048,839,010Distance Travelled pa per person3,6163,6160.0Valuing Congestion Per person per annum (-ve = saving)£0.00Valuing Greenhouse Gas Reductions£0Total Marginal External Costs per Annum (Incl. Reduced Indirect taxation) £0	Does change in Travel from Direct Evidence	e Apply to All or Just (Uptakers?	
% Change in Biking Trips / Time to Apply to NTS Travel if using indirect evidence Does change based on Walking/Cycling depend on absolute change in walk/bike time No Change in Walktime (Mins per week) No Intervention With Intervention Difference Congestion Results Summary No Intervention With Intervention Difference Total Expected Car Distance pa (miles) 189,048,839,010 189,048,839,010 0 Distance Travelled pa per person 3,616 0.0 0 Valuing Congestion Per annum £0 5aving on Congestion Per person per annum (-ve = saving) £0.00 Valuing Greenhouse Gas Reductions £0 50 Total Marginal External Costs per Annum (Incl. Reduced Indirect taxation) £0	Does the change based on Walking and cyclin % Change in Walking Trips / Time to Apply	ng depend on % chan to NTS Travel if using	ge in trips / time indirect evidence	No
Congestion Results SummaryNo InterventionWith InterventionDifferenceTotal Expected Car Distance pa (miles)189,048,839,010189,048,839,0100Distance Travelled pa per person3,6163,6160.0Valuing Congestion per annum£0Saving on Congestion Per person per annum (-ve = saving)£0.00Valuing Greenhouse Gas Reductions£0Total Marginal External Costs per Annum (Incl. Reduced Indirect taxation) £0	% Change in Biking Trips / Time to Apply to Does change based on Walking/Cycling depe Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)	NTS Travel if using in nd on absolute chanត្	idirect evidence ge in walk/bike time	No
Total Expected Car Distance pa (miles)189,048,839,010189,048,839,0100Distance Travelled pa per person3,6163,6160.0Valuing Congestion per annum£0Saving on Congestion Per person per annum (-ve = saving)£0.00Valuing Greenhouse Gas Reductions£0Total Marginal External Costs per Annum (Incl. Reduced Indirect taxation) £0	Congestion Results Summary	No Intervention	With Intervention	Difference
Distance Travelled pa per person3,6163,6160.0Valuing Congestion per annum£0Saving on Congestion Per person per annum (-ve = saving)£0.00Valuing Greenhouse Gas Reductions£0Total Marginal External Costs per Annum (Incl. Reduced Indirect taxation)£0	Total Expected Car Distance pa (miles)	189,048,839,010	189,048,839,010	0
Valuing Congestion per annum£0Saving on Congestion Per person per annum (-ve = saving)£0.00Valuing Greenhouse Gas Reductions£0Total Marginal External Costs per Annum (Incl. Reduced Indirect taxation) £0	Distance Travelled pa per person	3,616	3,616	0.0
Saving on Congestion Per person per annum (-ve = saving) £0.00 Valuing Greenhouse Gas Reductions £0 Total Marginal External Costs per Annum (Incl. Reduced Indirect taxation) £0	Valuing Congestion per annum			£0
Valuing Greenhouse Gas Reductions £0 Total Marginal External Costs per Annum (Incl. Reduced Indirect taxation) £0	Saving on Congestion Per person per annum	ı (-ve = saving)		£0.00
Total Marginal External Costs per Annum (Incl. Reduced Indirect taxation) £0	Valuing Greenhouse Gas Reductions	. 0/		£0
	Total Marginal External Costs per Annum (Ind	cl. Reduced Indirect t	axation)	£0

Table 4.33 What if 1% more physically active forever at a cost of £100 per person

Intervention name		Model Run	24
What If @ £1,000 (1% more active forever)		Scenario	7c
<u>Key Evidence Study</u> Change in % Physically Active Mean Change in Physical Activity Hours Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)	"What-If"		1.00%
Annual %Decay in effectiveness (0% = full on Is decay %Effect Relative or absoulte per ann Sustained long-term level of %effect after	going effect, 100% = um	no effect after year 1	0% Absolute 0%
Cost of Offer (Year 1) Cost of Uptake per person Taking Up (Initial) Ongoing Costs per person Yr 2 Onwards Decay Rate for Ongoing Costs			£0.00 £1,000.00 £0.00 0%
Does the Cost Of Uptake Simply Apply to the Offer Rule based on Phsical Activity? Enter C Uptake Rule based on Random Proportion of	Whole Population? (riterion based on we those offered	1=Yes,0=No) ekly hours e.g. <2	No <2 40%
Offer and Uptake Results			
% of Total England Population Who Get bene	fit from Intervention		7.7%
Model Used to Compute Mortality Effect:	5. Step Function Risk for uptake	< via % Active on indiv	viduals accounting
Health benefits Results Summary	No Intervention	With Intervention	Difference
Intervention Costs			£ 4,029,972,958
Discounted QALYS	650,723,003	650,765,578	42,576
Incremental Cost per QALY gained			£ 94,655
Congestion Assumptions Used			
Is effect car distance measured directly in the	e evidence?		No
% Change in Car Trips from direct evidence			
Mean Change in Car Distance travelled (1/2	Loths of mile/week as	s per NTS)	
Does change in Travel from Direct Evidence	e Apply to All or Just (Uptakers?	Ne
Change in Walking Tring (Time to Apply)	ig depend on % chan	ge in trips / time	NO
% Change in Biking Trips / Time to Apply	NTS Travel if using in	direct evidence	
Does change hased on Walking/Cycling dene	nd on absolute chang	ze in walk/hike time	No
Change in Walktime (Mins per week)			
Change in BikeTime (Mins per Week)			
Congression Desults Summery	Nolaton contion	With Intervention	Difference
Total Expected Car Distance pa (miles)	180 048 820 010		Difference
Distance Travelled na per person	3 616	3 616	0.0
	3,010	3,010	0.0
Valuing Congestion per annum			£0
Saving on Congestion Per person per annum (-ve = saving)			£0.00
valuing Greenhouse Gas Reductions			£U
I otal Marginal External Costs per Annum (Incl. Reduced Indirect taxation)			£0

Table 4.34 What if 1% more physically active forever at a cost of £1,000 per person

4.5.2 What ifs on Threshold Decay Rates for 1% of the Population Becoming Physical Active at a Cost of £50 Per Person

The results suggest that interventions which could achieve a permanent shift in physical activity of 1% of the population shifting from under 2 hours to over 2 hours physical activity per week would be cost-effective if maintained.

However, decay rates in effectiveness have a substantial influence on cost-effectiveness.

For a £50 per person intervention, the cost per QALY estimates for a range of decay rates costs are:

Annual Decay Rate in Effect	Cost per QALY
0%	£4,733
25%	£40,068
50%	£66,255
100%	£99,199

Table 4.35 Threshold Decay for 1% of the population becoming physical active at a cost of £50per person

Intervention name		Model Run		25
What If @ £50 (1% more active 0% decay)		Scenario		7d
<u>Key Evidence Study</u> Change in % Physically Active Mean Change in Physical Activity Hours Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)	"What-If"			1.00%
Annual %Decay in effectiveness (0% = full on Is decay %Effect Relative or absoulte per ann Sustained long-term level of %effect after	going effect, 100% = um	no effect after year 1		0% Absolute 0%
Cost of Offer (Year 1) Cost of Uptake per person Taking Up (Initial) Ongoing Costs per person Yr 2 Onwards Decay Rate for Ongoing Costs				£0.00 £50.00 £0.00 0%
Does the Cost Of Uptake Simply Apply to the Offer Rule based on Phsical Activity? Enter C Uptake Rule based on Random Proportion of	Whole Population? (riterion based on we those offered	1=Yes,0=No) ekly hours e.g. <2		No <2 40%
Offer and Uptake Results				
% of Total England Population Who Get bene	fit from Intervention			7.7%
Model Used to Compute Mortality Effect:	5. Step Function Risk for uptake	< via % Active on indiv	viduals	accounting
Health benefits Results Summary	No Intervention	With Intervention	0	Difference
Intervention Costs			£	201,498,648
Discounted QALYS	650,723,003	650,765,578		42,576
Incremental Cost per QALY gained			£	4,733
Congestion Assumptions Used				
Is effect car distance measured directly in the % Change in Car Trips from direct evidence	e evidence?			No
Mean Change in Car Distance travelled (1/2 Does change in Travel from Direct Evidence	L0ths of mile/week as e Apply to All or Just I	s per NTS) Uptakers?		
Does the change based on Walking and cyclin % Change in Walking Trips / Time to Apply % Change in Biking Trips / Time to Apply to	ng depend on % chan to NTS Travel if using NTS Travel if using in	ge in trips / time indirect evidence		No
Does change in Biking (Mps / Time to Apply to Does change based on Walking/Cycling depe Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)	nd on absolute chang	ge in walk/bike time		No
Congestion Results Summary	No Intervention	With Intervention	[Difference
Total Expected Car Distance pa (miles)	189,048,839,010	189,048,839,010		0
Distance Travelled pa per person	3,616	3,616		0.0
Valuing Congestion per annum				f0
Saving on Congestion Per person per annum	(-ve = saving)			£0.00
Valuing Greenhouse Gas Reductions				£0
Total Marginal External Costs per Annum (Ind	cl. Reduced Indirect t	axation)		£0

Table 4.36 What-if 1% more physically active at cost £50 per person with decay = 0%

Intervention name		Model Run		26
What If @ £50 (1% more active 25% decay)		Scenario		7e
<u>Key Evidence Study</u> Change in % Physically Active Mean Change in Physical Activity Hours Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)	"What-If"			1.00%
Annual %Decay in effectiveness (0% = full on Is decay %Effect Relative or absoulte per ann Sustained long-term level of %effect after	going effect, 100% = um	no effect after year 1		25% Absolute 0%
Cost of Offer (Year 1) Cost of Uptake per person Taking Up (Initial) Ongoing Costs per person Yr 2 Onwards Decay Rate for Ongoing Costs				£0.00 £50.00 £0.00 0%
Does the Cost Of Uptake Simply Apply to the Offer Rule based on Phsical Activity? Enter C Uptake Rule based on Random Proportion of	Whole Population? (riterion based on we those offered	1=Yes,0=No) ekly hours e.g. <2		No <2 40%
Offer and Uptake Results			-	
% of Total England Population Who Get bene	fit from Intervention			7.7%
Model Used to Compute Mortality Effect:	5. Step Function Risk for uptake	< via % Active on indiv	/idual	s accounting
Health benefits Results Summary	No Intervention	With Intervention		Difference
Intervention Costs			£	201,498,648
Discounted QALYS	650,723,003	650,728,032		5,029
Incremental Cost per QALY gained			£	40,068
Congestion Assumptions Used				
Is effect car distance measured directly in the % Change in Car Trips from direct evidence	e evidence?			No
Mean Change in Car Distance travelled (1/2 Does change in Travel from Direct Evidence Does the change based on Walking and cyclin	LOths of mile/week as Apply to All or Just I ag depend on % chan	s per NTS) Jptakers? ge in trins / time		No
% Change in Walking Trips / Time to Apply % Change in Biking Trips / Time to Apply to	to NTS Travel if using NTS Travel if using in	indirect evidence		
Does change based on Walking/Cycling depe Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)	nd on absolute chang	ge in walk/bike time		No
Congestion Results Summary	No Intervention	With Intervention		Difference
Total Expected Car Distance pa (miles)	189,048,839,010	189,048,839,010		0
Distance Travelled pa per person	3,616	3,616		0.0
Valuing Congestion per annum				£0
Saving on Congestion Per person per annum	(-ve = saving)			£0.00
Valuing Greenhouse Gas Reductions	,			£0
Total Marginal External Costs per Annum (Ind	cl. Reduced Indirect t	axation)		£0

Table 4.37 What-if 1% more physically active at cost £50 per person with decay = 25%

Intervention name		Model Run		27
What If @ £50 (1% more active 50% decay)		Scenario		7f
<u>Key Evidence Study</u> Change in % Physically Active Mean Change in Physical Activity Hours Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)	"What-If"			1.00%
Annual %Decay in effectiveness (0% = full on Is decay %Effect Relative or absoulte per ann Sustained long-term level of %effect after	going effect, 100% = um	no effect after year 1		50% Absolute 0%
Cost of Offer (Year 1) Cost of Uptake per person Taking Up (Initial) Ongoing Costs per person Yr 2 Onwards Decay Rate for Ongoing Costs				£0.00 £50.00 £0.00 0%
Does the Cost Of Uptake Simply Apply to the Offer Rule based on Phsical Activity? Enter C Uptake Rule based on Random Proportion of	Whole Population? (riterion based on we those offered	1=Yes,0=No) ekly hours e.g. <2		No <2 40%
Offer and Uptake Results				
% of Total England Population Who Get bene	fit from Intervention			7.7%
Model Used to Compute Mortality Effect:	5. Step Function Risk for uptake	< via % Active on indiv	/idua	als accounting
Health benefits Results Summary	No Intervention	With Intervention		Difference
Intervention Costs			£	201,498,648
Discounted QALYS	650,723,003	650,726,044		3,041
Incremental Cost per QALY gained			£	66,255
Congestion Assumptions Used				
Is effect car distance measured directly in the % Change in Car Trips from direct evidence	e evidence?			No
Mean Change in Car Distance travelled (1/1	Oths of mile/week as	s per NTS)		
Does change in Travel from Direct Evidence	e Apply to All or Just (Uptakers?		No
% Change in Walking Trips / Time to Apply	to NTS Travel if using	indirect evidence		NO
% Change in Biking Trins / Time to Apply	NTS Travel if using in	direct evidence		
Does change based on Walking/Cycling depe Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)	nd on absolute chang	ge in walk/bike time		No
		Mert Lange and		D:[[
Longestion Results Summary	NO INTERVENTION	with intervention		Difference
Distance pa (miles)	189,048,839,010	189,048,839,010		0
	3,010	3,010		0.0
Valuing Congestion per annum				£0
Saving on Congestion Per person per annum	(-ve = saving)			£0.00
Valuing Greenhouse Gas Reductions				£0
Total Marginal External Costs per Annum (Incl. Reduced Indirect taxation)				£0

Table 4.38 What -if 1% more physically active at cost £50 per person with decay = 50%

Intervention name		Model Run	28
What If @ £50 (1% more active 100%		C is	-
decay)		Scenario	/g
<u>Key Evidence Study</u> Change in % Physically Active Mean Change in Physical Activity Hours Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)	"What-If"		1.00%
Annual %Decay in effectiveness (0% = full on Is decay %Effect Relative or absoulte per ann Sustained long-term level of %effect after	going effect, 100% = um	no effect after year 1	100% Absolute 0%
Cost of Offer (Year 1) Cost of Uptake per person Taking Up (Initial) Ongoing Costs per person Yr 2 Onwards Decay Rate for Ongoing Costs			£0.00 £50.00 £0.00 0%
Does the Cost Of Uptake Simply Apply to the Offer Rule based on Phsical Activity? Enter C Uptake Rule based on Random Proportion of	Whole Population? (riterion based on we those offered	1=Yes,0=No) ekly hours e.g. <2	No <2 40%
Offer and Uptake Results			
% of Total England Population Who Get bene	fit from Intervention		7.7%
Model Used to Compute Mortality Effect:	5. Step Function Risk for uptake	< via % Active on indiv	viduals accounting
Health benefits Results Summary	No Intervention	With Intervention	Difference
Intervention Costs			£ 201,498,648
Discounted QALYS	650,723,003	650,725,036	2,033
Incremental Cost per QALY gained			£ 99,119
Congestion Assumptions Used			
Is effect car distance measured directly in the % Change in Car Trips from direct evidence	e evidence?	- por NTS)	No
Does change in Travel from Direct Evidence	Apply to All or just l	Intakers?	
Does the change based on Walking and cyclin % Change in Walking Trips / Time to Apply % Change in Biking Trips / Time to Apply to	ng depend on % chan to NTS Travel if using NTS Travel if using in	ge in trips / time indirect evidence direct evidence	No
Does change based on Walking/Cycling depe Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)	nd on absolute chang	ge in walk/bike time	No
Congestion Results Summary	No Intervention	With Intervention	Difference
Total Expected Car Distance pa (miles)	189,048,839,010	189,048,839,010	0
Distance Travelled pa per person	3,616	3,616	0.0
Valuing Congestion per annum			£0
Saving on Congestion Per person per annum	(-ve = saving)		£0.00
Valuing Greenhouse Gas Reductions			£0
Total Marginal External Costs per Annum (Ind	cl. Reduced Indirect t	axation)	£0

Table 4.39 What -if 1% more physically active at cost £50 per person with decay = 100%

4.5.3 What ifs on Threshold Decay Rates for 1% of the Population Becoming Physical Active at a Cost of £10 Per Person

The results suggest that interventions which could achieve a permanent shift in physical activity of 1% of the population shifting from under 2 hours to over 2 hours physical activity per week would be cost-effective if maintained.

However, decay rates in effectiveness have a substantial influence on cost-effectiveness.

For a £10 per person intervention, the cost per QALY estimates for a range of decay rates costs are:

Annual Decay Rate in Effect	Cost per QALY (assuming a £10 intervention)
0%	£947
25%	£8.014
50%	£13,251
100%	£19,824

 Table 4.40 Threshold decay for 1% of the population becoming physical active at a cost of £10 per person

Intervention name		Model Run	29
What If @ £10 (1% more active 0% decay)		Scenario	7h
<u>Key Evidence Study</u> Change in % Physically Active Mean Change in Physical Activity Hours Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)	"What-If"		1.00%
Annual %Decay in effectiveness (0% = full on Is decay %Effect Relative or absoulte per ann Sustained long-term level of %effect after	going effect, 100% = um	no effect after year 1	0% Absolute 0%
Cost of Offer (Year 1) Cost of Uptake per person Taking Up (Initial) Ongoing Costs per person Yr 2 Onwards Decay Rate for Ongoing Costs			£0.00 £10.00 £0.00 0%
Does the Cost Of Uptake Simply Apply to the Offer Rule based on Phsical Activity? Enter C Uptake Rule based on Random Proportion of	Whole Population? (riterion based on we those offered	1=Yes,0=No) ekly hours e.g. <2	No <2 40%
Offer and Uptake Results			
% of Total England Population Who Get bene	fit from Intervention		7.7%
Model Used to Compute Mortality Effect:	5. Step Function Risk for uptake	< via % Active on indiv	viduals accounting
Health benefits Results Summary	No Intervention	With Intervention	Difference
Intervention Costs			£ 40,299,730
Discounted QALYS	650,723,003	650,765,578	42,576
Incremental Cost per QALY gained			£ 947
Congestion Assumptions Used			
Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/2)	e evidence? LOths of mile/week as	s per NTS)	No
Does change in Travel from Direct Evidence	e Apply to All or Just I	Uptakers?	
Does the change based on Walking and cyclin % Change in Walking Trips / Time to Apply	ng depend on % chan to NTS Travel if using	ge in trips / time indirect evidence	No
Change in Biking Trips / Time to Apply to Does change based on Walking/Cycling depe Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)	nd on absolute chang	ge in walk/bike time	No
Congestion Results Summary	No Intervention	With Intervention	Difference
Total Expected Car Distance pa (miles)	189,048,839,010	189,048,839,010	0
Distance Travelled pa per person	3,616	3,616	0.0
Valuing Congestion per annum			f0
Saving on Congestion Per person per annum	(-ve = saving)		£0.00
Valuing Greenhouse Gas Reductions	,		£0
Total Marginal External Costs per Annum (Inc	cl. Reduced Indirect t	axation)	£0

Table 4.41 What -if 1% more physically active at cost £10 per person with decay = 0%

Intervention name		Model Run	30
What If @ £10 (1% more active 25% decay)		Scenario	7i
<u>Key Evidence Study</u> Change in % Physically Active Mean Change in Physical Activity Hours Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)	"What-If"		1.00%
Annual %Decay in effectiveness (0% = full on Is decay %Effect Relative or absoulte per ann Sustained long-term level of %effect after	going effect, 100% = um	no effect after year 1	25% Absolute 0%
Cost of Offer (Year 1) Cost of Uptake per person Taking Up (Initial) Ongoing Costs per person Yr 2 Onwards Decay Rate for Ongoing Costs			£0.00 £10.00 £0.00 0%
Does the Cost Of Uptake Simply Apply to the Offer Rule based on Phsical Activity? Enter C Uptake Rule based on Random Proportion of	Whole Population? (riterion based on we those offered	1=Yes,0=No) ekly hours e.g. <2	No <2 40%
Offer and Uptake Results			
% of Total England Population Who Get bene	fit from Intervention		7.7%
Model Used to Compute Mortality Effect:	5. Step Function Risk for uptake	< via % Active on indiv	viduals accounting
Health benefits Results Summary	No Intervention	With Intervention	Difference
Intervention Costs			£ 40,299,730
Discounted QALYS	650,723,003	650,728,032	5,029
Incremental Cost per QALY gained			£ 8,014
Congestion Assumptions Used			
Is effect car distance measured directly in the % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/2	e evidence? 2 L0ths of mile/week as	s per NTS)	No
Does change in Travel from Direct Evidence	e Apply to All or Just (Uptakers?	
Does the change based on Walking and cyclin % Change in Walking Trips / Time to Apply % Change in Biking Trips / Time to Apply to	ng depend on % chan to NTS Travel if using NTS Travel if using in	ge in trips / time indirect evidence	No
Does change in Biking (Tips / Time to Apply to Does change based on Walking/Cycling depe Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)	nd on absolute chang	ge in walk/bike time	No
Congestion Results Summary	No Intervention	With Intervention	Difference
Total Expected Car Distance pa (miles)	189,048,839,010	189,048,839,010	0
Distance Travelled pa per person	3,616	3,616	0.0
Valuing Congestion per annum			f0
Saving on Congestion Per person per annum	(-ve = saving)		£0.00
Valuing Greenhouse Gas Reductions	,		£0
Total Marginal External Costs per Annum (Inc	cl. Reduced Indirect t	axation)	£0

Table 4.42 What -if 1% more physically active at cost £10 per person with decay = 25%

Intervention name		Model Run	31
What If @ £10 (1% more active 50% decay)		Scenario	7j
<u>Key Evidence Study</u> Change in % Physically Active Mean Change in Physical Activity Hours Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)	"What-If"		1.00%
Annual %Decay in effectiveness (0% = full on Is decay %Effect Relative or absoulte per ann Sustained long-term level of %effect after	going effect, 100% = um	no effect after year 1	50% Absolute 0%
Cost of Offer (Year 1) Cost of Uptake per person Taking Up (Initial) Ongoing Costs per person Yr 2 Onwards Decay Rate for Ongoing Costs			£0.00 £10.00 £0.00 0%
Does the Cost Of Uptake Simply Apply to the Offer Rule based on Phsical Activity? Enter C Uptake Rule based on Random Proportion of	Whole Population? (riterion based on we those offered	1=Yes,0=No) ekly hours e.g. <2	No <2 40%
Offer and Uptake Results			
% of Total England Population Who Get bene	fit from Intervention		7.7%
Model Used to Compute Mortality Effect:	5. Step Function Risk for uptake	< via % Active on indiv	viduals accounting
Health benefits Results Summary	No Intervention	With Intervention	Difference
Intervention Costs			£ 40,299,730
Discounted QALYS	650,723,003	650,726,044	3,041
Incremental Cost per QALY gained			£ 13,251
Congestion Assumptions Used			
Is effect car distance measured directly in the % Change in Car Trips from direct evidence	e evidence?		No
Mean Change in Car Distance travelled (1/1 Does change in Travel from Direct Evidence Does the change based on Walking and cyclir	Loths of mile/week as Apply to All or Just I ng depend on % chan	s per NTS) Jptakers? ge in trips / time	No
% Change in Walking Trips / Time to Apply % Change in Biking Trips / Time to Apply to	to NTS Travel if using NTS Travel if using in	indirect evidence direct evidence	
Does change based on Walking/Cycling depe Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)	nd on absolute chanន្	ge in walk/bike time	No
Congestion Results Summary	No Intervention	With Intervention	Difference
Total Expected Car Distance pa (miles)	189,048,839,010	189,048,839,010	0
Distance Travelled pa per person	3,616	3,616	0.0
Valuing Congestion per annum			f0
Saving on Congestion Per person per annum	(-ve = saving)		£0.00
Valuing Greenhouse Gas Reductions	1.10 301116/		£0
Total Marginal External Costs per Annum (Ind	l. Reduced Indirect t	axation)	£0
		· · · · · · · · · · · · · · · · · · ·	

Table 4.43 What -if 1% more physically active at cost £10 per person with decay = 50%

Intervention name		Model Run	32
What If @ £10 (1% more active 100%		Compute	71.
decay)		Scenario	/K
<u>Key Evidence Study</u> Change in % Physically Active Mean Change in Physical Activity Hours Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)	"What-If"		1.00%
Annual %Decay in effectiveness (0% = full on Is decay %Effect Relative or absoulte per ann Sustained long-term level of %effect after	going effect, 100% = um	no effect after year 1	100% Absolute 0%
Cost of Offer (Year 1) Cost of Uptake per person Taking Up (Initial) Ongoing Costs per person Yr 2 Onwards Decay Rate for Ongoing Costs			£0.00 £10.00 £0.00 0%
Does the Cost Of Uptake Simply Apply to the Offer Rule based on Phsical Activity? Enter C Uptake Rule based on Random Proportion of	Whole Population? (riterion based on we those offered	1=Yes,0=No) ekly hours e.g. <2	No <2 40%
Offer and Uptake Results			
% of Total England Population Who Get bene	fit from Intervention		7.7%
Model Used to Compute Mortality Effect:	5. Step Function Risk for uptake	< via % Active on indiv	viduals accounting
Health benefits Results Summary	No Intervention	With Intervention	Difference
Intervention Costs			£ 40,299,730
Discounted QALYS	650,723,003	650,725,036	2,033
Incremental Cost per QALY gained			£ 19,824
Congestion Assumptions Used			
Is effect car distance measured directly in the % Change in Car Trips from direct evidence	e evidence?		No
Mean Change in Car Distance travelled (1/2	Loths of mile/week as	s per NTS)	
Does change in Travel from Direct Evidence	e Apply to All or Just (Jptakers?	No
% Change in Walking Trips / Time to Apply	to NTS Travel if using	indirect evidence	NO
% Change in Biking Trips / Time to Apply to NTS Travel if using indirect evidence Does change based on Walking/Cycling depend on absolute change in walk/bike time Change in Walktime (Mins per week)			No
Change in BikeTime (Mins per Week)			
Congestion Results Summary	No Intervention	With Intervention	Difference
Total Expected Car Distance pa (miles)	189,048,839,010	189,048,839,010	0
Distance Travelled pa per person	3,616	3,616	0.0
Valuing Congestion per annum			£0
Saving on Congestion Per person per annum (-ve = saving)			£0.00
Valuing Greenhouse Gas Reductions			£0
Total Marginal External Costs per Annum (Incl. Reduced Indirect taxation)			£0

Table 4.44 What -if 1% more physically active at cost £10 per person with decay = 100%

4.5.4 What ifs on Walking: Threshold Decay for an Average Increase of 10 Minutes a week Walking at a Cost of £10.

The results suggest that interventions that achieve a permanent shift in <u>walking</u> of 10 minutes per week in those who are currently under 2 hours physical activity per week would have a substantial effect. If this could be maintained, the modelling suggests that such an intervention would be very cost-effective (using the continuous risk function approach). Again, these results are sensitive to the rate of decay in effect, but the interventions would remain cost-effective under the modelling assumptions used.

For a £10 per person intervention, the cost per QALY estimates for a range of decay rates costs are:

Annual Decay Rate in Effect	Cost per QALY (assuming a £10 walking intervention)
0%	£43
25%	£405
50%	£666
100%	£991

 Table 4.45 What if analyses for a 10 minute increase in walking in those not currently physical active at a cost of £10 per person

Intervention name		Model Run	33	
What If @£10 (10mins more walktime				
forever)		Scenario	8a	
Kay Evidence Study	"Mbat If"			
Change in % Physically Active	vviiat-ii			
Mean Change in Physical Activity Hours				
Change in Walktime (Mins per week)			10.0	
Change in BikeTime (Mins per Week)			0.0	
			0.0	
Annual %Decay in effectiveness (0% = full on	going effect, 100% =	no effect after year 1	0%	
Is decay %Effect Relative or absoulte per ann	um		Absolute	
Sustained long-term level of %effect after			0%	
Cost of Offer (Year 1)			£0.00	
Cost of Uptake per person Taking Up (Initial)			£10.00	
Ongoing Costs per person Yr 2 Onwards			£0.00	
Decay Rate for Ongoing Costs			0%	
Does the Cost Of Uptake Simply Apply to the	Whole Population? (1=Yes.0=No)	No	
Offer Rule based on Phsical Activity? Enter C	riterion based on we	eklv hours e.g. <2	<2	
Uptake Rule based on Random Proportion of	those offered	,	40%	
Coffee and Untalia Describe				
Offer and Optake Results	fit from Intonyontion		7 70/	
% of Total England Population who det bene	1. Continuous Picky	ia Rikotimo (Malktimo	1.1%	
model used to compute mortality Effect.	1. Continuous Nisk v		2	
Health benefits Results Summary	No Intervention	With Intervention	Difference	
Intervention Costs		•	£ 40,299,73	30
Discounted QALYS	650,723,003	651,661,797	938,79	94
Incremental Cost per QALY gained			£	43
Congestion Assumptions Used				
Is effect car distance measured directly in the	evidence?		No	
% Change in Car Trips from direct evidence				
Mean Change in Car Distance travelled (1/2	LOths of mile/week as	s per NTS)		
Does change in Travel from Direct Evidence	Apply to All or Just I	Uptakers?		
Does the change based on Walking and cyclin	ng depend on % chan	ge in trips / time	No	
% Change in Walking Trips / Time to Apply	to NTS Travel if using	indirect evidence		
% Change in Biking Trips / Time to Apply to	NTS Travel if using in	ndirect evidence		
Does change based on Walking/Cycling depe	nd on absolute chang	ge in walk/bike time	Yes	
Change in Walktime (Mins per week)			10.0	
Change in BikeTime (Mins per Week)			0.0	
Congestion Results Summary	No Intervention	With Intervention	Difference	
Total Expected Car Distance pa (miles)	189.048.839.010	189.034.560.062	-14.278.948	
Distance Travelled pa per person	3,616	3,616	-0.3	
Valuing Congestion per appum	•	•	-f3 010 338	
Saving on Congestion Per nerson ner annum (-ve = saving)			-£0.06	
Valuing Greenhouse Gas Reductions			-£68,939	
Total Marginal External Costs per Annum (Ind	cl. Reduced Indirect t	axation)	-£2,734.582	
		· /	,,	

Table 4.46 What -if 10 minutes more walking for those not physically active. decay = 0%

Intervention name		Model Run	34
What If @£10 (10mins walktime 50%			
decay)		Scenario	8b
Key Evidence Study Change in % Physically Active	"What-If"		
Mean Change in Physical Activity Hours Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)			10.0 0.0
Annual %Decay in effectiveness (0% = full on Is decay %Effect Relative or absoulte per ann Sustained long-term level of %effect after	going effect, 100% = um	no effect after year 1	50% Absolute 0%
Cost of Offer (Year 1) Cost of Uptake per person Taking Up (Initial) Ongoing Costs per person Yr 2 Onwards Decay Rate for Ongoing Costs			£0.00 £10.00 £0.00 0%
Does the Cost Of Uptake Simply Apply to the Offer Rule based on Phsical Activity? Enter C Uptake Rule based on Random Proportion of	No <2 40%		
Offer and Uptake Results			[
% of Total England Population Who Get bene	fit from Intervention		7.7%
Model Used to Compute Mortality Effect:	1. Continuous Risk v	ia Biketime/Walktime	5
Health benefits Results Summary	No Intervention	With Intervention	Difference
Intervention Costs			£ 40,299,730
Discounted QALYS	650,723,003	650,783,525	60,523
Incremental Cost per QALY gained			£ 666
Congestion Assumptions Used			
Is effect car distance measured directly in the	e evidence?		No
% Change in Car Trips from direct evidence	<u>}</u>		
Mean Change in Car Distance travelled (1/2	L0ths of mile/week as	s per NTS)	
Does change in Travel from Direct Evidence	e Apply to All or Just	Uptakers?	
Does the change based on Walking and cyclin	ng depend on % chan	ge in trips / time	No
% Change in Walking Trips / Time to Apply	to NTS Travel if using	indirect evidence	
% Change in Biking Trips / Time to Apply to	INTS Travel If using in	idirect evidence	Vec
Change in Walktime (Mins ner week)	nd on absolute chang	ge in waik/bike time	10 0
Change in Walktime (Mins per Week)			10.0
		1	0.0
Congestion Results Summary	No Intervention	With Intervention	Difference
Total Expected Car Distance pa (miles)	189,048,839,010	189,034,560,062	-14,278,948
Distance Travelled pa per person	3,616	3,616	-0.3
Valuing Congestion per annum			-£3,010,338
Saving on Congestion Per person per annum (-ve = saving)			-£0.06
Valuing Greenhouse Gas Reductions			-£68,939
Total Marginal External Costs per Annum (Inc	cl. Reduced Indirect t	axation)	-£2,734,582
-			

Table 4.47 What -if 10 minutes more walking for those not physically active. decay = 50%

Intervention name		Model Run	35
What If @£10 (10mins walktime 100%			
decay)		Scenario	8c
Key Evidence Study Change in % Physically Active	"What-If"		
Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)			10.0 0.0
Annual %Decay in effectiveness (0% = full on Is decay %Effect Relative or absoulte per ann Sustained long-term level of %effect after	going effect, 100% = um	no effect after year 1	100% Absolute 0%
Cost of Offer (Year 1) Cost of Uptake per person Taking Up (Initial) Ongoing Costs per person Yr 2 Onwards Decay Rate for Ongoing Costs			£0.00 £10.00 £0.00 0%
Does the Cost Of Uptake Simply Apply to the Offer Rule based on Phsical Activity? Enter C Uptake Rule based on Random Proportion of	No <2 40%		
Offer and Uptake Results			
% of Total England Population Who Get bene	fit from Intervention		7.7%
Model Used to Compute Mortality Effect:	1. Continuous Risk v	ia Biketime/Walktime	5
Health benefits Results Summary	No Intervention	With Intervention	Difference
Intervention Costs			£ 40,299,730
Discounted QALYS	650,723,003	650,763,666	40,663
Incremental Cost per QALY gained			£ 991
Congestion Assumptions Used			
Is effect car distance measured directly in the	e evidence?		No
% Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/2 Does change in Travel from Direct Evidence	Loths of mile/week as Apply to All or Just I	s per NTS) Uptakers?	No
% Change in Walking Trips / Time to Apply % Change in Biking Trips / Time to Apply to	to NTS Travel if using NTS Travel if using	indirect evidence	NO
Does change based on Walking/Cycling depe	nd on absolute chang	ge in walk/bike time	Yes
Change in Walktime (Mins per week)			10.0
Change in BikeTime (Mins per Week)			0.0
Congestion Results Summary	No Intervention	With Intervention	Difference
Total Expected Car Distance pa (miles)	189,048,839,010	189,034,560,062	-14,278,948
Distance Travelled pa per person	3,616	3,616	-0.3
Valuing Congestion per annum			-£3,010,338
Saving on Congestion Per person per annum (-ve = saving)			-£0.06
Valuing Greenhouse Gas Reductions			-£68,939
Total Marginal External Costs per Annum (Ind	cl. Reduced Indirect t	axation)	-£2,734,582

Table 4.48 What -if 10 minutes more walking for those not physically active. decay = 100%

4.5.5 What ifs on Threshold Decay for an Average Increase of 10 Minutes a Week Cycling for those not Physical Active at a Cost of £10.

The results suggest that interventions that achieve a permanent shift in <u>cycling</u> of 10 minutes per week in those who are currently under 2 hours physical activity per week would have a substantial effect. If this could be maintained, the modelling suggests that such an intervention would be very cost-effective (using the continuous risk function approach). Again, these results are sensitive to the rate of decay in effect, but the interventions would remain cost-effective under the modelling assumptions used.

For a £10 per person intervention, the cost per QALY estimates for a range of decay rates costs are:

Annual Decay Rate in Effect	Cost per QALY (assuming a £10 walking intervention)
0%	£40
25%	£375
50%	£617
100%	£918

 Table 4.49 What if analyses for a 10 minute increase in cycling in those not currently physical active at a cost of £10 per person

Intervention name		Model Run	36
What If @£10 (10mins more biketime			
forever)		Scenario	9a
Key Evidence Study Change in % Physically Active	"What-If"		
Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)			0.0 10.0
Annual %Decay in effectiveness (0% = full on Is decay %Effect Relative or absoulte per ann Sustained long-term level of %effect after	going effect, 100% = um	no effect after year 1	0% Absolute 0%
Cost of Offer (Year 1) Cost of Uptake per person Taking Up (Initial) Ongoing Costs per person Yr 2 Onwards Decay Rate for Ongoing Costs			£0.00 £10.00 £0.00 0%
Does the Cost Of Uptake Simply Apply to the Offer Rule based on Phsical Activity? Enter C Uptake Rule based on Random Proportion of	No <2 40%		
Offer and Uptake Results			
% of Total England Population Who Get bene	fit from Intervention		7.7%
Model Used to Compute Mortality Effect:	1. Continuous Risk v	ia Biketime/Walktime	2
Health benefits Results Summary	No Intervention	With Intervention	Difference
Intervention Costs			£ 40,299,730
Discounted QALYS	650,723,003	651,739,698	1,016,695
Incremental Cost per QALY gained			£ 40
Congestion Assumptions Used			
Is effect car distance measured directly in the	e evidence?		No
 % Change in Car Trips from direct evidence Mean Change in Car Distance travelled (1/10ths of mile/week as per NTS) Does change in Travel from Direct Evidence Apply to All or Just Uptakers? Does the change based on Walking and cycling depend on % change in trips / time % Change in Walking Trips / Time to Apply to NTS Travel if using indirect evidence 			No
% Change in Biking Trips / Time to Apply to	NTS Travel if using in	direct evidence	
Does change based on Walking/Cycling depe	nd on absolute chang	ge in walk/bike time	Yes
Change in Walktime (Mins per week)			0.0
Change in BikeTime (Mins per Week)			10.0
Congestion Results Summary	No Intervention	With Intervention	Difference
Total Expected Car Distance pa (miles)	189,048,839,010	188,848,661,396	-200,177,614
Distance Travelled pa per person	3,616	3,613	-3.8
Valuing Congestion per annum			-£42,202,153
Saving on Congestion Per person per annum (-ve = saving)			-£0.81
Valuing Greenhouse Gas Reductions			-£966,462
Total Marginal External Costs per Annum (Inc	cl. Reduced Indirect t	axation)	-£38,336,307

Table 4.50 What -if 10 minutes more cycling for those not physically active; decay = 0%

Intervention name		Model Run	37
What If @£10 (10mins biketime 50% decay)	Vhat If @£10 (10mins biketime 50% decay) Scenario		9b
<u>Key Evidence Study</u> Change in % Physically Active Mean Change in Physical Activity Hours	"What-If"		
Change in Walktime (Mins per week) Change in BikeTime (Mins per Week)			0.0 10.0
Annual %Decay in effectiveness (0% = full ongoing effect, 100% = no effect after year 1 Is decay %Effect Relative or absoulte per annum Sustained long-term level of %effect after			50% Absolute 0%
Cost of Offer (Year 1) Cost of Uptake per person Taking Up (Initial) Ongoing Costs per person Yr 2 Onwards Decay Rate for Ongoing Costs			£0.00 £10.00 £0.00 0%
Does the Cost Of Uptake Simply Apply to the Whole Population? (1=Yes,0=No) Offer Rule based on Phsical Activity? Enter Criterion based on weekly hours e.g. <2 Uptake Rule based on Random Proportion of those offered			No <2 40%
Offer and Uptake Results			Γ
% of Total England Population Who Get bene	fit from Intervention		7.7%
Model Used to Compute Mortality Effect:	1. Continuous Risk v	ia Biketime/Walktime	2
Health benefits Results Summary	No Intervention	With Intervention	Difference
Intervention Costs			£ 40,299,730
Discounted QALYS	650,723,003	650,788,361	65,358
Incremental Cost per QALY gained			£ 617
Congestion Assumptions Used			
Is effect car distance measured directly in the	e evidence?		No
% Change in Car Trips from direct evidence			
Mean Change in Car Distance travelled (1/2	10ths of mile/week as	s per NTS)	
Does change in Travel from Direct Evidence	e Apply to All or Just I	Uptakers?	
Does the change based on Walking and cyclir	ng depend on % chan	ge in trips / time	No
% Change in Walking Trips / Time to Apply	to NTS Travel if using	indirect evidence	
% Change in Biking Trips / Time to Apply to	NTS Travel if using in	idirect evidence	
Does change based on Walking/Cycling depe	nd on absolute chang	ge in walk/bike time	Yes
Change in Walktime (Mins per week)			0.0
Change in BikeTime (Mins per Week)			10.0
Congestion Results Summary	No Intervention	With Intervention	Difference
Total Expected Car Distance pa (miles)	189,048,839,010	188,848,661,396	-200,177,614
Distance Travelled pa per person	3,616	3,613	-3.8
Valuing Congestion per annum			-£42,202,153
Saving on Congestion Per person per annum (-ve = saving)			-£0.81
Valuing Greenhouse Gas Reductions			-£966,462
Total Marginal External Costs per Annum (Ind	cl. Reduced Indirect t	axation)	-£38,336,307

Table 4.51 What -if 10 minutes more cycling for those not physically active; decay = 50%

Intervention name		Model Run	38
What If @£10 (10mins biketime 100%			
decay)		Scenario	9c
Key Evidence Study	"What-If"		
Change in % Physically Active			
Mean Change in Physical Activity Hours			
Change in Walktime (Mins per week)			0.0
Change in BikeTime (Mins per Week)			10.0
Annual %Decay in effectiveness (0% = full on	going effect, 100% =	no effect after year 1	100%
Is decay %Effect Relative or absoulte per ann	um		Absolute
Sustained long-term level of %effect after			0%
Cost of Offer (Year 1)			£0.00
Cost of Uptake per person Taking Up (Initial)			£10.00
Ongoing Costs per person Yr 2 Onwards			£0.00
Decay Rate for Ongoing Costs			0%
Does the Cost Of Untake Simply Apply to the	Whole Population? (1=Yes ()=No)	No
Offer Rule based on Physical Activity? Enter C	riterion based on we	ekly hours e g <2	<2
Uptake Rule based on Random Proportion of	those offered		40%
Offer and Uptake Results	fit from Intervention		7 70/
% of Total England Population who det bene	1. Continuous Picky	ia Rikotimo (Malktimo	1.1%
Model Osed to compute Mortanty Effect.			:
Health benefits Results Summary	No Intervention	With Intervention	Difference
Intervention Costs		-	£ 40,299,730
Discounted QALYS	650,723,003	650,766,912	43,909
Incremental Cost per QALY gained			£ 918
Congestion Assumptions Used			
Is effect car distance measured directly in the	e evidence?		No
% Change in Car Trips from direct evidence	1		
Mean Change in Car Distance travelled (1/2	LOths of mile/week as	s per NTS)	
Does change in Travel from Direct Evidence	e Apply to All or Just	Uptakers?	
Does the change based on Walking and cyclir	ng depend on % chan	ge in trips / time	No
% Change in Walking Trips / Time to Apply	to NTS Travel if using	indirect evidence	
% Change in Biking Trips / Time to Apply to	NTS Travel if using in	ndirect evidence	
Does change based on Walking/Cycling depe	nd on absolute chang	ge in walk/bike time	Yes
Change in Walktime (Mins per week)			0.0
Change in BikeTime (Mins per Week)			10.0
Congestion Results Summary	No Intervention	With Intervention	Difference
Total Expected Car Distance pa (miles)	189,048,839,010	188,848,661,396	-200,177,614
Distance Travelled pa per person	-3.8		
Valuing Congestion per annum			-£42,202,153
Saving on Congestion Per person per annum (-ve = saving)			-£0.81
Valuing Greenhouse Gas Reductions			-£966,462
Total Marginal External Costs per Annum (Inc	cl. Reduced Indirect t	axation)	-£38,336,307
-			

Table 4.52 What -if 10 minutes more cycling for those not physically active; decay = 100%

4.6 Comparison of Results Across Interventions in Terms of Health Benefits and Cost Per QALY

The incremental cost per QALY results for each intervention versus 'do nothing' suggest that each of the interventions modelled could be considered more cost-effective than 'do nothing' from a health economic perspective because the cost per QALY gained estimates are less than the typical threshold of £20,000. The cost-effectiveness is heavily dependent on the persistence of the effect (*i.e.* the decay), and is influenced by uptake rates and of course costs.

To illustrate the important influence of the decay in effectiveness, a number of additional model runs were performed on the Cycling Demonstration Towns and the Sustainable Travel Towns, as shown below

Annual decay in effectiveness		Sce	enario	
	1a	1b	2a	2b
0	£4,830	£5,090	£997	£951
5%	£9,111	£9,608	£1,905	£1,818
10%	£13,936	£14,764	£2,953	£2,819
20%	£24,124	£25,611	£5,166	£4,933
30%	£34,498	£36,684	£7,420	£7,086
40%	£45,022	£47,874	£9,690	£9,254
50%	£55,657	£59,135	£11,969	£11,433
75%	£82,487	£87,387	£17,687	£16,897
100%	£109,406	£115,622	£23,412	£22,367

Table 4.53 The influence of effectiveness decay

Scenarios:

1a, CDT with effects applied individually.

1b. CDT with effect applied to summary age and gender bands.

2a. STT using economic appraisal from the DfT.

2b. STT using Smarter Choice Summary Report.

This shows that, even for the most optimistic scenarios, cost per QALY will rise above £20,000 should the full effect be lost after the first year, while for more expensive scenarios, this threshold is reached with only small levels of decay.

For decision makers considering which of interventions to implement given limited resources or considering what mix of a variety of interventions to invest in, it might be useful to consider comparison across interventions rather than each intervention versus 'do nothing'. This is most easily done in health economic terms by calculating the incremental 'net benefit' of each intervention, which is simply a way of estimating the monetary value of the QALYs gained (assuming 1 QALY is 'worth' £20,000) and netting off the cost of the intervention. That is, Incremental Net benefit = \pounds 20,000 * QALYs gained by intervention – cost of intervention Table 4.53 in the final column shows these calculations for each intervention. We can see that in each case the incremental net benefit (INB) is greater than zero, signifying that the cost per QALY is less than £20,000 *i.e.* the monetary value of the QALYs gained outweighs the costs of the intervention.
Error! Reference source not found. Comparison of results across interventions

Comparing net benefit estimates across the interventions reveals several points that may be of use to decision makers. The intervention with the highest estimated expected net benefit is the Sustainable Travel Towns. This appears to achieve the highest QALYs gained. The estimate of QALYs gained is in turn dependent on the evidence used concerning the increases in the mean walking trips (+13.1%) and cycling trips (+26.1%) respectively, the assumption of no decay in effect over time, and the regression modelling which estimates the increased physical activity and hence reduced mortality risk (using the continuous risk function) as a result. Note also that for interventions where the effectiveness data allows the use of both the continuous and the step-risk function for mortality (for example, TravelSmart), using the continuous risk function model gives results that are more beneficial, because the continuous method allows for benefits to accrue to those individuals who increase their physical activity, but not by enough to move them to the higher level (> 2 hours per week) used in the step-function.

Cycling Demonstration Towns also has a relatively high incremental net benefit. Here the step function for mortality risk was used as the main evidence available on level of effect concerned the percentage of people achieving 2 hours physical activity level.

The TravelSmart intervention has lower estimated net benefit than that for Sustainable travel towns (£10,401m for TravelSmart compared with say £46,751m for STT). Again the use of continuous versus step function risk model makes a difference (£10,401m for continuous function TravelSmart compared with £987m for step function TravelSmart). We might also compare TravelSmart using the step function versus Cycling Demonstration Towns using the step function, and this comparison suggests that the composite intervention of cycling demonstration towns has a higher estimated net benefit than the TravelSmart programme as modelled here. This does not necessarily mean that decision makers should only implement Cycling Demonstration Towns projects rather than TravelSmart as clearly local context issues, feasibility and timing of implementations, the value of a mix of measures to encourage different subgroups within the population etc. are all going to be important. It does however mean that decision makers should begin to consider, estimate, and monitor the effectiveness of the measures they put in place to encourage walking and cycling and their costs.

For the pedometer interventions examined, one can see that an intervention which decays immediately by the end of the first year (as in the Baker 2008a study) has lower estimated net benefit than most of the other interventions examined *(e.g.* £236m using step function). Clearly, if sustained effect can be achieved (for example as assumed in our modelling of the Baker 2008b study assuming some continued support and encouragement), then higher net

benefits would be achieved (e.g. £3,892m for the sustained effect with an additional annual support cost of £25.25 per annum - model run 10). The net benefits estimated for the modelled Australian pedometer study evidence (£1,930m Merom) are slightly lower than those for the Baker 2008b sustained effect scenario.

As discussed earlier, the led walking evidence has been much debated during the NICE guidance development. The estimated net benefits for each led walking scenario are generally lower than for the other interventions examined. If one does not believe that 100% of the before and after effect seen in some of the studies would accrue in practice then the estimated net benefits are lower still (e.g. 50% effect £854m, 10% effect £39m). Again, this does not mean that decision makers should ignore led walking as an option within a mix of interventions but, at least from a health economics interpretation, one would probably not want to see it as the single intervention used by decision makers to achieve cost-effective sustained behaviour change in walking and cycling.

Table 4.55 summarises a similar framework of results for the "what if" scenarios.

Run	Intervention	Risk function	Decay	Notes	QALY gain	Cost	Cost per QALY	INB at £20,000 threshold (x106)
22	£1 pp: 1% become active		Nil	18.9% uptake	84,271	£9,906,247	£118	1,676
23	£100pp: 1% become active	Step		7.7% untako	12 575	£402,997,296	£9,465	449
24	£1000pp: 1% become active			7.770 uptake	42,575	£4,029,972,958	£94,655	-3,178
25			Nil		42,575		£4,733	650
26	fEan: 1% become active	Stop	25%	7.7% untako	5,029	£201 409 649	£40,068	-101
27		Step	50%	7.7% uptake	3,041		£66,255	-141
28			100%		2,033		£99,119	-161
29			Nil		42,575		£947	811
30	610pp; 1% bacama activa	Stop	25%	7 7% uptaka	5,029	£40 200 720	£8,014	60
31	Elopp. 1% become active	Step	50%	7.776 uptake	3,041	L40,299,730	£13,251	21
32			100%		2,033		£19,824	0
33	£10pp: Ten minutes more walking per week		Nil		938,794		£43	18,736
34		Continuous	50%	7.7% uptake	60,522	£40,299,730	£666	1,170
35			100%		40,663		£991	773
36	£10pp: Ten minutes more cycling per week		Nil		1,016,695		£40	20,294
37	of one for week	Continuous	50%	7.7% uptake	65,358	£40,299,730	£617	1,267
38			100%		43,909		£918	838

Table 4.55 Cost benefit comparison across 'what if' scenarios

Summary

Again, to emphasis the point, the implication of these analyses is not that decision makers should only implement the intervention suggested as having the lowest cost per QALY (or highest incremental net benefit) because clearly local context issues, feasibility and timing of implementations, the value of a mix of measures to encourage different subgroups within the population and local setting are all going to be important. It does however mean that local decision makers should begin to consider, estimate and monitor the effectiveness of the measures they put in place to encourage walking and cycling and their costs, based on their local needs and existing resources.

4.7 Comparison of Results across Interventions in Terms of Environmental Effects

The DfT methodology for deriving environmental benefits, involves putting a monetary value on marginal car use, directly linked to the distance travelled. For the purpose of modelling, it was therefore necessary to estimate the change in car distance resulting from each intervention, and a number of methods were used. For Sustainable Travel Towns and TravelSmart, direct evidence was available on the reduction in the number of car trips made, and for these, a corresponding distance was calculated using the average car-trip distance from the NTS. For the Cycling Demonstration Towns, evidence was available on the increase in the number of cycle journeys made. From this, a mean time spent cycling per week was derived, and used in the NTS regression to derive an expected change in car distance. This method was repeated using the mode and purpose regression, to obtain the corresponding reduction if the observed increase in cycle trips applied only to commuting. Finally, the pedometer interventions provided data on the increase in walking time, which was applied directly in the NTS regression; the approach repeated for the hypothetical scenarios that produce ten minutes more cycling or walking from a £10 per person intervention using the respective input variable.

For comparison, a ten-year time-horizon was adopted, with future benefits discounted at an annual rate of 3.5%. These future benefits were accrued in line with the available evidence on the level of decay in effect. Thus, the pedometers study with no sustained effect (Baker 2008a) had no benefit after year 1, and the pedometers study with a sustained effect (Baker 2008b) declined to 87% effect after year 1, and remained at that level. For the Australian pedometer evidence (Merom), we estimated a decline by 40% of the original effect per year to zero, while for the hypothetical cases of ten minutes increase in walking or cycling we assumed full effectiveness for the ten years. Cycle Demonstration Towns, Sustainable Travel Towns and TravelSmart were also assumed to remain at full effectiveness over ten years.

Results, showing a weighted average reflecting the road mix across the country, are tabulated below in **Error! Reference source not found.** The Cycle Demonstration Towns, for example, is estimated to save over 190 million vehicle kilometres each year (using the regression method from **Error! Reference source not found.** and **Error! Reference source not found.** With congestion benefits valued at 13.1 pence per vehicle kilometre (see **Error! Reference source not found.**), With congestion benefits valued at 13.1 pence per vehicle kilometre (see **Error! Reference source not found.**), this translates to a discounted monetary value of £343 million over ten years. Other environmental outcomes were treated in the same manner, using their corresponding values. Indirect taxation shows a negative value,

reflecting the loss in tax revenue from fuel duty and vehicle registrations. Also shown is the amount of carbon emissions saved, estimated at 112,336 tonnes over ten years for Cycling Demonstration Towns, and computed using DfT assumptions directly relating to the vehicle distance via fleet mixture and fuel-efficiency data. Including the cost of each intervention allows the cost per kilometre saved, cost per tonne of carbon saved, and an illustrative benefit-cost ratio to be calculated. The cost of the Cycling Demonstration Towns intervention, if implemented all across England (modelled by uplifting the local costs on a pro-rata population basis to England), was estimated at £1,568m. The cost per km saved over ten years was estimated at £1.33 and the cost per tonne of carbon saved over ten years at £13,961. The benefit-cost ratio shown has as numerator the total transport related valued benefits over ten years (£311m) divided by the denominator of the intervention cost over ten years (£1,568m) giving a cost-benefit ratio estimated for Cycling Demonstration Towns Towns of 0.20.

It should be noted that the benefit-cost ratios shown here are for illustration, using the full cost of each intervention applied to only the specific subset of transport-related outcomes listed in the table, and they should therefore be interpreted only within this context. They are very different from, and much lower than, values that would be obtained from a more comprehensive cost-benefit analysis. This fuller analysis would include health benefits (assessed here using the QALY and cost per QALY framework used by NICE), and other wider economic and societal benefits and losses. This is an important issue when considering interventions with a large infrastructure cost, or those where the benefits are expected to come mainly from health improvements.

When comparing across the table, it is important to recognise that we have had to use different methods to estimate the annual car distance reduction for different interventions because of the different evidence available. Thus, the results comparison across interventions is not like-for-like. In particular, it can be seen that the Cycling Demonstration Towns car distance reduction estimates are an order of magnitude lower than those for Sustainable Travel Towns. That could be because for Cycling Demonstration Towns we have linked percentage increase in cycling trips to a mean increased bike-time per cyclist per week (assuming no effect on non-cyclists), and hence to a reduced car distance using the regressions.

In the second column of results in Table 4.57, we show the effect of assuming that all of the increased cycling is commuting based. For this, we used the more detailed regression that estimates effects on car distance dependent on the different purposes of the cycling journeys as shown in Tables 3.6 and 3.7. The effect of this would be to increase the

estimated car miles reduction to 553m from 190m, which in turn would increase the estimated benefit-cost ratio from 0.20 to 0.58.

The results show much larger estimated reductions in car distance travelled for Sustainable Travel Towns and TravelSmart (7,7731, and 4,414 respectively), again potentially because more direct evidence was available rather than using the regressions. The resulting costs per km. saved are much lower than those estimated for Cycling Demonstration Towns, and the benefit-cost ratios are more favourable, i.e. 5.17 for Sustainable Travel Towns, and 51,22 for TravelSmart. TravelSmart has such a high benefit-cost ratio estimated here because the costs estimated (£141m) are an order of magnitude lower than those estimated for Sustainable Travel towns (£2,453m). These results appear to suggest that, if only these environmental outcomes were considered, TravelSmart would be the most cost-effective intervention, followed by the Sustainable Travel Towns programme.

The three pedometer intervention scenarios examined show substantial reductions in car distance. These are estimated indirectly assuming the NTS overall regression is applied given increases in walk time for every individual taking up the intervention. The pedometer interventions produce estimated benefit-cost ratios around 1.49 to 2.63 depending on the evidence and assumptions used. Here, as the additional benefits of the sustained effect (Baker b versus Baker a) are calculated, the costs also rise (due to the costs of maintaining support to continue encouraging pedometer use and increased walking behaviours), and these two effects balance each other out, leaving a benefit-cost ratio of similar order of magnitude.

The following table, Table 4.57 shows a set of sensitivity analyses that illustrates the different results that would apply if the reduced vehicle distances were applied solely to each individual road type. For the subsets of roads considered, removing traffic from A roads in conurbations has the greatest environmental benefit. For example, a 3.5 fold increase in the value of transport-related benefits for Cycling Demonstration Towns, raising the associated benefit-cost ratio to 0.90, from the 0.20 in Table 4.56. Removing traffic from other roads in conurbations is the next beneficial, followed by A roads in other urban areas. Interventions that remove vehicular traffic from minor roads in rural areas have a much lower, and below average, benefit. This effect is mainly due to the differential value placed on congestion reduction (see Table 3.32).

			Sustainable						
	Cycling	Sustainable	Travel Towns					10 minutes	10 minutes
	Demonstation	Travel Towns	(Smarter					more walking	more cycing
	Towns	(DfT)	Choice)	TravelSmart	Baker a	Baker b	Merom	(£10)	(£10)
Model run	1&2	3	4	5&6	7&8	9,10,11 &12	13&14	33	36
Method for estimating car distance	В	С	А	А	А	D	D	D	D
Annual car distance reduction(miles)	190,196,818	7,731,689,202	8,243,147,439	4,414,569,046	2,907,097,283	2,561,279,230	1,087,370,622	14,278,948	200,177,614
Vehicle kilometres saved per year	118,183,117	4,804,260,878	5,122,067,083	2,743,092,849	1,806,390,994	1,591,509,084	675,662,459	8,872,549	124,384,912
Congestion	£40,097,966	£1,630,022,088	£1,737,849,524	£930,695,074	£612,884,540	£539,977,954	£229,243,324	£3,010,338	£42,202,153
Infrastucture	£306,091	£12,442,917	£13,266,027	£7,104,543	£4,678,508	£4,121,969	£1,749,949	£22,980	£322,154
Accident	£4,591,370	£186,643,751	£198,990,403	£106,568,138	£70,177,619	£61,829,537	£26,249,236	£344,695	£4,832,308
Local air quality	£1,224,365	£49,771,667	£53,064,108	£28,418,170	£18,714,032	£16,487,876	£6,999,796	£91,919	£1,288,615
Noise	£306,091	£12,442,917	£13,266,027	£7,104,543	£4,678,508	£4,121,969	£1,749,949	£22,980	£322,154
Greenhouse gases	£918,274	£37,328,750	£39,798,081	£21,313,628	£14,035,524	£12,365,907	£5,249,847	£68,939	£966,462
Indirect Tax	-£11,019,288	-£447,945,001	-£477,576,968	-£255,763,532	-£168,426,286	-£148,390,888	-£62,998,165	-£827,269	-£11,597,538
Total environmental benefits	£36,424,870	£1,480,707,087	£1,578,657,201	£845,440,563	£556,742,445	£490,514,325	£208,243,935	£2,734,582	£38,336,307
Intervention cost	£1,568,292,630	£2,453,367,344	£2,453,367,344	£141,361,007	£211,573,580	£2,502,488,813	£159,855,594	£40,299,730	£40,299,730
Cost per km saved	£13.27	£0.51	£0.48	£0.05	£0.12	£1.57	£0.24	£4.54	£0.32
Net saving/cost	-£1,531,867,760	-£972,660,257	-£874,710,143	£704,079,556	£345,168,865	-£2,011,974,488	£48,388,341	-£37,565,148	-£1,963,423
Benefit/cost ratio	0.02	0.60	0.64	5.98	2.63	0.20	1.30	0.07	0.95
Tonnes of carbon saved per year	13,118	533,268	568,544	304,480	200,507	176,656	74,998	985	13,807
Cost per tonne of carbon	£119,551	£4,601	£4,315	£464	£1,055	£14,166	£2,131	£40,920	£2,919

Table 4.54 Comparison of results across Interventions in terms of environmental effects and cost-benefit

Method used to estimate car distance saving:

- A direct evidence is available on reduced car trips, and we assume the average NTS car trip distance
- B indirect evidence on increase in cycling trips increase in mean biketime increase in car distance via NTS overall regression
- C indirect evidence on increase in cycling trips increase in mean biketime car distance via NTS purpose=commuting regression
- D indirect evidence on increase walktime or biketime -□ increase in car distance via NTS overall regression

		CDT: cycling		Sustainable					10 minutes	
	Cycling	increase	Sustainable	Travel Towns					more	10 minutes
	Demonstation	applied to	Travel Towns	(Smarter					walking	more cycing
	Towns	commuting	(DfT)	Choice)	TravelSmart	Baker a	Baker b	Merom	(£10)	(£10)
Conurbation: A roads										
Ten year environmental benefits	£1,412,811,438	£4,111,308,901	£57,432,185,523	£61,231,376,565	£32,792,102,972	£2,521,715,780	£16,841,080,128	£1,665,018,856	£106,066,238	£1,486,950,337
Intervention cost	£1,568,292,630	£1,568,292,630	£2,453,367,344	£2,453,367,344	£141,361,007	£211,573,580	£2,502,488,813	£159,855,594	£40,299,730	£40,299,730
Discounted benefit/cost ratio	0.90	2.62	23.41	24.96	231.97	11.92	6.73	10.42	2.63	36.90
Tonnes of carbon saved (ten years)	149,781	435,866	6,088,755	6,491,532	3,476,502	267,343	1,785,431	176,519	11,245	157,641
Cost per tonne of carbon saved	£10,471	£3,598	£403	£378	£41	£791	£1,402	£906	£3,584	£256
Conumbations other reads										
	CC04 425 7C4	64 000 040 220	C27 010 200 202	C20 CE0 072 002	645 070 004 047	64 224 000 572	CO 454 057 4 CO	6006 252 474	CE1 200 401	6720 026 044
len year environmental benefits	£684,125,761	£1,990,819,338	£27,810,390,393	£29,650,072,882	£15,878,921,847	£1,221,090,573	154,957,168	£806,252,174	£51,360,461	£720,026,044
Intervention cost	£1,568,292,630	£1,568,292,630	£2,453,367,344	£2,453,367,344	£141,361,007	£211,573,580	£2,502,488,813	£159,855,594	£40,299,730	£40,299,730
Discounted benefit/cost ratio	0.44	1.27	11.34	12.09	112.33	5.//	3.26	5.04	1.27	17.87
Tonnes of carbon saved (ten years)	149,781	435,866	6,088,755	6,491,532	3,476,502	267,343	1,785,431	176,519	11,245	157,641
Cost per tonne of carbon saved	£10,471	£3,598	£403	£378	£41	£791	£1,402	£906	£3,584	£256
Other urban: A roads										
Ten year environmental benefits	£600,248,273	£1,746,734,208	£24,400,687,356	£26,014,814,904	£13,932,080,854	£1,071,378,319	£7,155,115,676	£707,401,332	£45,063,393	£631,746,989
Intervention cost	£1,568,292,630	£1,568,292,630	£2,453,367,344	£2,453,367,344	£141,361,007	£211,573,580	£2,502,488,813	£159,855,594	£40,299,730	£40,299,730
Discounted benefit/cost ratio	0.38	1.11	9.95	10.60	98.56	5.06	2.86	4.43	1.12	15.68
Tonnes of carbon saved (ten years)	112,336	326,900	4,566,567	4,868,649	2,607,376	200,507	1,339,073	132,390	8,434	118,231
Cost per tonne of carbon saved	£13,961	£4,797	£537	£504	£54	£1,055	£1,869	£1,207	£4,778	£341
Rural: other roads										
Ten year environmental benefits	£102,225,688	£297,478,752	£4,155,575,576	£4,430,470,661	£2,372,712,460	£182,461,810	£1,218,556,818	£120,474,463	£7,674,552	£107,590,099
Intervention cost	£1,568,292,630	£1,568,292,630	£2,453,367,344	£2,453,367,344	£141,361,007	£211,573,580	£2,502,488,813	£159,855,594	£40,299,730	£40,299,730
Discounted benefit/cost ratio	0.07	0.19	1.69	1.81	16.78	0.86	0.49	0.75	0.19	2.67
Tonnes of carbon saved (ten years)	112,336	326,900	4,566,567	4,868,649	2,607,376	200,507	1,339,073	132,390	8,434	118,231
Cost per tonne of carbon saved	£13,961	£4,797	£537	£504	£54	£1,055	£1,869	£1,207	£4,778	£341

Table 4.55 Sensitivity analysis for congestion results if kilometres driven reductions were on different road types

4.8 What-If Analyses to Investigate Trade-Offs Between Narrow Interventions with Higher Effects per Person, Versus Wider Interventions with Smaller Effects per Person

In this section, we consider the balance of costs and effects that accrue for interventions designed for small numbers of people, having a large effect per person, versus interventions designed for much wider populations and having a smaller effect per person. In particular, we also consider the issue of the proportion of people achieving uptake of the intervention from the wider population to whom it is offered.

Example scenario

To illustrate the effects we have developed an example scenario. This consists of:

- An intervention to encourage walking and cycling which achieves an overall increase in physical activity of X minutes per week for each individual who takes up the offer of the intervention.
- We let the effect of the effectiveness of the intervention, which is gained only by those who take up the offer range from X=5 minutes up to X=60 minutes extra physical activity per week in the analyses.
- We let the proportion of people responding to the offer and taking up the intervention (and hence getting the individual benefit of X minutes per week physical activity) range from 0.5% of the population aged 18 or over (1 in 200) all the way up to 100% of the over 18's.
- For illustration, we assume that if 100% uptake were achieved then the cost per person would be £40 for the intervention. This cost is split into two parts – the cost of the offer made to the whole population, and the cost of the intervention provided to those who take it up. So for example, one scenario would be it costs £4 per person to make the offer of the intervention widely known (e.g. by leafleting and advertising), and £36 per person taking up the offer (e.g. a guided walks / cycling advice leaflet and interactive taster session tailored to the local area).
- We analyse 7 scenarios for the balance of costs between the offer and the uptake cost per person with the (offer cost, uptake cost) set at (£0,£40), (£4,£36), (£10,£30), (£20:£20), (£30,£10), (£36,£4), (£40,£0).
- These 7 scenarios are examined with 3 different levels of decay i.e.

- 0% decay the effect in terms of extra physical activity is sustained for a lifetime,
- $\circ~~50\%$ the effect is diminished in year 2 and disappeared by the end of year 3
- o 100% decay the effect has disappeared after year 1.

Table 4.56, Table 4.57, and Table 4.60 show the Cost per QALY gained for each of these what if scenarios for 0%, 50% and 100% decay respectively.

Table 4.56 for 0% decay shows 7 sub-tables starting at the top when all the costs are related to the offer i.e. offer $cost = \pounds 0$, uptake $cost = \pounds 40$, through to the bottom where the balance between the offer component and uptake component of costs is reversed i.e. $\pounds 40$ offer cost, $\pounds 0$ uptake cost.

When the offer cost is small (e.g. in the topmost sub-table where offer cost = \pounds 0) then the effect of uptake is negligible. The cost per QALY remains around £300 to £600 for all of the scenarios, whether the uptake is as low as 0.5% or as high as 100%.

Looking across the rows in the topmost sub-table, one sees a trend whereby the higher the level of effect, the lower the cost-per QALY i.e. the greater the effect the more cost-effective the intervention. This is not a linear relationship however, because of the relative risk function used. The continuous logarithmic relative risk function – (see Figure 3.4) means that increasing levels of physical activity by 5 minutes is more beneficial for those who are not physically active than for those who are. Therefore, increasing physical activity by say 60 minutes is not twice as beneficial as increasing physical activity by 30 minutes; a kind of diminishing returns.

As we move down through the sub-tables, and the offer cost becomes a higher component of the total cost, then it becomes clear how important the level of uptake is. For example when the offer cost is 50% of the total cost i.e. both offer cost and uptake cost are £20, then cost per QALY becomes sensitive to uptake and in these scenarios an uptake of 1% or less would not be cost effective (i.e. cost per QALY increases to higher than a threshold of £20,000). If the offer cost were 100% of the total cost e.g. media campaigns with no direct cost for uptake then an uptake of 2% or less would possibly not be cost effective.

The equivalent pattern of effects is seen when decay is 50% or 100%, only more so.

At 50% decay, when both offer cost and uptake cost are £20, then cost per QALY becomes very sensitive to uptake and in these scenarios an uptake of 10% or less would not be cost effective (i.e. cost per QALY increases to higher than a threshold of £20,000). If the offer

cost is 100% of the cost with no direct cost for uptake then an uptake of 25% or less would possibly not be cost effective.

At 100% decay, when both offer cost and uptake cost are £20, then cost per QALY becomes very sensitive to uptake and in these scenarios an uptake of 25% or less would not be cost effective (i.e. cost per QALY increases to higher than a threshold of £20,000). If the offer cost were 100% of the cost with no direct cost for uptake then an uptake of 50% or less would possibly not be cost effective.

What If A	na	alvses on C	Offer Cost a	nd	Uptake				De	cav =		0%		
	%	cost that is			-					,				
Cost/person	of	fer												
			Offer Cost per			Uptake cost per								
£ 40.00		0%	person	£	-	person	£	40.00			Tota	l Offer Cost	£	-
% Uptake			5 mins extra	10 n	nins extra	15 mins extra	20 I	mins extra	30 m	ins extra	45 m	nins extra	6 0 I	mins extra
achieved		Total Cost	Physical activity	Phy	sical activity	Physical activity	Phy	sical activity	Phys	ical activity	Phys	sical activity	Phy	sical activity
100.0%	£	1,680,000,000	£ 587	£	504	£ 464	£	437	£	403	£	372	£	352
50.0%	£	840,000,000	£ 585	£	503	£ 462	£	436	£	402	£	372	£	352
25.0%	£	420,000,000	£ 635	£	548	£ 505	£	477	£	440	£	407	£	385
10.0%	£	168,000,000	£ 513	£	443	£ 409	£	386	£	357	£	331	£	314
5.0%	t	84,000,000	£ 496	£	428	£ 395	£	3/3	£	345	£	320	£	304
2.0%	Ē	33,000,000	£ 422	E C	505	£ 550	E C	529	£	297	E C	2//	E C	203
0.5%	E E	8 400 000	£ 703	L L	/192	£ 303	L L	428	L L	394	L L	403	L L	2441
0.570		8,400,000	L 373	-	400	L 404	-	420	-	3.74	-	504	-	344
£ 40.00		10%	Offer Cost/pers	s £	4.00	Uptake cost pp	f	36.00			Tota	l Offer Cost	£	168.000.000
100.0%	£	1,680,000,000	£ 587	£	504	£ 464	£	437	£	403	£	372	£	352
50.0%	£	924,000,000	£ 643	£	553	£ 509	£	480	£	443	£	409	£	387
25.0%	£	546,000,000	£ 825	£	713	£ 656	£	620	£	572	£	529	£	501
10.0%	£	319,200,000	£ 975	£	842	£ 776	£	734	£	679	£	629	£	596
5.0%	£	243,600,000	£ 1,440	£	1,242	£ 1,145	£	1,082	£	1,002	£	929	£	881
2.0%	£	198,240,000	£ 2,489	£	2,153	£ 1,989	£	1,885	£	1,751	£	1,631	£	1,554
1.0%	£	183,120,000	£ 7,668	£	6,697	£ 6,203	£	5,879	£	5,455	£	5,064	£	4,806
0.5%	£	175,560,000	£ 11,972	£	10,311	£ 9,480	£	8,940	£	8,237	£	7,598	£	7,181
£ 40.00		25%	Offer Cost/pers	s £	10.00	Uptake cost pp	£	30.00			Tota	l Offer Cost	£	420,000,000
100.0%	£	1,680,000,000	£ 587	£	504	£ 464	£	437	£	403	£	372	£	352
50.0%	£	1,050,000,000	£ 731	£	629	£ 578	£	545	£	503	£	465	£	440
25.0%	£	735,000,000	£ 1,111	£	959	£ 884	£	834	£	770	£	712	£	674
10.0%	£	546,000,000	£ 1,668	£	1,440	£ 1,328	£	1,255	£	1,161	£	1,076	£	1,020
5.0%	£	483,000,000	£ 2,855	£	2,462	£ 2,270	£	2,146	£	1,986	£	1,841	£	1,747
2.0%	£	445,200,000	£ 5,589	£	4,834	£ 4,468	£	4,233	£	3,933	£	3,664	£	3,489
1.0%	£	432,600,000	£ 18,115	£	15,821	£ 14,655	£	13,890	£	12,886	£	11,963	£	11,354
0.5%	£	426,300,000	£ 29,070	£	25,038	£ 23,020	£	21,/07	£	20,002	£	18,451	£	17,437
6 40.00		F.0%	Offer Cest/per		20.00	Untaka cost na		20.00			Tota	Offer Cest		840.000.000
± 40.00		1 680 000 000	Offer Cost/pers	s ±	20.00	Uptake cost pp	t	20.00	c	402	Tota	al Offer Cost	t	840,000,000
100.0%	± c	1,080,000,000	£ 587	± c	754	£ 404	± c	437	£	403	t	3/2	± c	352
30.0%	L L	1,200,000,000	E 0//	E C	1 271	£ 054	L C	1 192	E C	1 101	E C	1 017	E C	328
10.0%	L L	924 000 000	£ 1,367	L L	2 /27	£ 1,202	L L	2 124	L L	1,101	L L	1,017	L L	1 726
5.0%	- L	882,000,000	£ 5,022	5	4 /196	£ 4.145	5	2,124	t T	3 626	£	2 262	£	3 190
2.0%	f	856 800 000	f 10.757	f	9 304	£ 8,598	f	8 147	f	7 570	f	7 051	£	6 714
1.0%	f	848,400,000	f 35,526	f	31.027	£ 28,740	f	27,240	f	25,273	f	23,462	f	22,267
0.5%	£	844.200.000	£ 57,567	£	49.583	£ 45,587	£	42,987	£	39.610	£	36,538	£	34,531
£ 40.00		75%	Offer Cost/pers	£	30.00	Uptake cost pp	£	10.00			Tota	l Offer Cost	£	1,260,000,000
100.0%	£	1,680,000,000	£ 587	£	504	£ 464	£	437	£	403	£	372	£	352
50.0%	£	1,470,000,000	£ 1,023	£	880	£ 809	£	763	£	704	£	651	£	616
25.0%	£	1,365,000,000	£ 2,063	£	1,782	£ 1,641	£	1,549	£	1,431	£	1,323	£	1,252
10.0%	£	1,302,000,000	£ 3,977	£	3,435	£ 3,166	£	2,992	£	2,768	£	2,565	£	2,433
5.0%	£	1,281,000,000	£ 7,571	£	6,531	£ 6,019	£	5,690	£	5,267	£	4,883	£	4,633
2.0%	£	1,268,400,000	£ 15,925	£	13,774	£ 12,729	£	12,061	£	11,206	£	10,438	£	9,940
1.0%	£	1,264,200,000	£ 52,937	£	46,233	£ 42,826	£	40,590	£	37,659	£	34,961	£	33,181
0.5%	£	1,262,100,000	£ 86,064	£	74,128	£ 68,154	£	64,266	£	59,218	£	54,625	£	51,624
			04-0-1			11-4-1	-				.		-	1 540 000
± 40.00		90%	Offer Cost/pers	s £	36.00	Uptake cost pp	£	4.00	0	400	Iota	I Offer Cost	£	1,512,000,000
100.0%	t	1,680,000,000	£ 587	t	504	£ 464	£	437	£	403	£	372	£	352
50.0%	f	1,596,000,000	E 1,111	£	955	£ 878	£	829	t C	/65	É C	1 500	£	1 405
25.0%	± c	1,554,000,000	£ 2,349	± c	2,028	£ 1,808	t	1,704	£	1,029	£	1,500	£	1,425
10.0%	E C	1 520 400 000	£ 4,0/0	L L	4,033	£ 3,/1/	L L	5,514	£	5,200	r r	5,012	L L	2,800
2.0%	L L	1,520,400,000	£ 19.025		16 / 55	£ 15.207	L 2	14 409	L L	12 200	L L	12 471	L L	11 975
1.0%	f	1,513,680,000	£ 63.384	f	55 357	£ 51.278	f	48 600	f	45 090	f	41 860	f	39 728
0.5%	f	1.512.840.000	£ 103.163	f	88,855	£ 81.694	f	77.034	£	70.983	f	65.477	f	61.880
	-	2,022,010,000	2 200,200	-	00,000	2 02,051	-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~	, 0,500	~	00,111	~	01,000
£ 40.00		100%	Offer Cost/pers	£	40.00	Uptake cost pp	£	-			Tota	l Offer Cost	£	1,680,000,000
100.0%	£	1,680,000,000	£ 587	£	504	£ 464	£	437	£	403	£	372	£	352
50.0%	£	1,680,000,000	£ 1,170	£	1,006	£ 925	£	872	£	805	£	744	£	704
25.0%	£	1,680,000,000	£ 2,539	£	2,193	£ 2,020	£	1,907	£	1,761	£	1,628	£	1,541
10.0%	£	1,680,000,000	£ 5,132	£	4,432	£ 4,085	£	3,861	£	3,572	£	3,310	£	3,139
5.0%	£	1,680,000,000	£ 9,929	£	8,565	£ 7,894	£	7,463	£	6,907	£	6,404	£	6,076
2.0%	£	1,680,000,000	£ 21,092	£	18,243	£ 16,859	£	15,975	£	14,842	£	13,826	£	13,165
1.0%	£	1,680,000,000	£ 70,349	£	61,439	£ 56,912	£	53,940	£	50,045	£	46,460	£	44,094
0.5%	£	1,680,000,000	£ 114,562	£	98,673	£ 90,720	£	85,546	£	78,826	£	72,712	£	68,718

 Table 4.56: What-If Analysis Results Examining Offer Cost and Uptake Cost for a Range of

 levels of Effect and Uptake: Scenarios with No Decay

What If A	na	alyses on C	Offer	Cost a	nd	Uptake				De	cay =		50%		
	%	cost that is													
Cost/person	O	ffer	Offer	Cost por			Untako cost por								
f 40.00		0%	perso	n	f	-	person	f	40.00			Tota	l Offer Cost	f	-
% Uptake		070	5 min	s extra	10 m	nins extra	15 mins extra	20	mins extra	30 m	ins extra	45 m	nins extra	<u>ہ</u>	mins extra
achieved		Total Cost	Physic	al activity	Phys	sical activity	Physical activity	Phy	ysical activity	Phys	ical activity	Phys	sical activity	Phy	sical activity
100.0%	£	1,680,000,000	£	7,226	£	6,229	£ 5,733	£	5,411	£	4,994	£	4,614	£	4,366
50.0%	£	840,000,000	£	7,190	£	6,198	£ 5,705	£	5,386	£	4,972	£	4,596	£	4,350
25.0%	£	420,000,000	£	7,600	£	6,576	£ 6,062	£	5,727	£	5,291	£	4,893	£	4,632
10.0%	£	168,000,000	£	6,310	£	5,460	£ 5,036	£	4,762	£	4,406	£	4,083	£	3,871
5.0%	£	84,000,000	£	6,182	£	5,339	£ 4,921	£	4,651	£	4,302	£	3,985	£	3,778
2.0%	£	33,600,000	£	5,364	£	4,645	£ 4,293	£	4,068	£	3,777	£	3,515	£	3,344
1.0%	£	16,800,000	£	8,041	£	7,014	£ 6,492	£	6,148	£	5,698	£	5,283	£	5,010
0.5%	£	8,400,000	£	6,567	£	5,669	£ 5,218	£	4,924	£	4,542	£	4,194	£	3,966
6 40.00		10%	044	. Castla are		4.00	Untaka sast na		26.00			Tata	Offer Cest		168.000.000
£ 40.00		10%	One	r Cost/pers	£	6 229	Uptake cost pp	t c	5 411	£	4 994	Lota	A 614	£	108,000,000
50.0%	E E	924 000 000	r r	7,220	t	6,229	£ 5,733	T T	5 924	E E	4,994	r r	4,014	r r	4,300
25.0%	f	546 000 000	f	9.880	f	8 549	£ 0,270	f	7 445	f	6.878	f	6 361	f	6 022
10.0%	f	319,200,000	f	11,990	f	10.374	f 9.569	f	9.047	f	8,371	f	7,757	f	7,355
5.0%	f	243.600.000	f	17,927	f	15,482	f 14.271	f	13,488	f	12,475	£	11,556	f	10.955
2.0%	f	198.240.000	£	31.647	£	27,407	£ 25.331	£	23,999	£	22,285	£	20,739	£	19.732
1.0%	£	183,120,000	£	87,648	£	76,454	£ 70,758	£	67,016	£	62,108	£	57,588	£	54,604
0.5%	£	175,560,000	£	137,247	£	118,485	£ 109,060	£	102,918	£	94,929	£	87,650	£	82,888
£ 40.00		25%	Offe	r Cost/pers	£	10.00	Uptake cost pp	£	30.00			Tota	l Offer Cost	£	420,000,000
100.0%	£	1,680,000,000	£	7,226	£	6,229	£ 5,733	£	5,411	£	4,994	£	4,614	£	4,366
50.0%	£	1,050,000,000	£	8,988	£	7,748	£ 7,131	£	6,732	£	6,215	£	5,745	£	5,438
25.0%	£	735,000,000	£	13,300	£	11,509	£ 10,608	£	10,022	£	9,259	£	8,563	£	8,106
10.0%	£	546,000,000	£	20,509	£	17,744	£ 16,368	£	15,475	£	14,319	£	13,269	£	12,581
5.0%	£	483,000,000	£	35,545	£	30,698	£ 28,296	£	26,743	£	24,736	£	22,913	£	21,722
2.0%	£	445,200,000	£	71,072	£	61,549	£ 56,888	£	53,895	£	50,048	£	46,576	£	44,314
1.0%	£	432,600,000	£	207,058	£	180,613	£ 167,157	£	158,317	£	146,722	£	136,046	£	128,997
0.5%	±	426,300,000	£	333,266	£	287,710	£ 264,824	£	249,909	£	230,509	£	212,834	£	201,272
£ 40.00		50%	Offe	r Cost/nors	•	20.00	Untake cost nn		20.00			Tota	Offer Cost	•	8/10 000 000
100.0%	5	1 680 000 000	£	7 226	r r	6 229	£ 5 722	L L	5 /11	£	1 99/	fota	1 Offer Cost 4 614	L L	40,000,000
50.0%	f	1,080,000,000	t T	10 786	t T	9 298	£ 3,733	£	8 078	t T	7 / 58	£	6 89/	£	4,500
25.0%	f	1.050.000.000	f	19,000	f	16.441	f 15.155	f	14,317	f	13,227	f	12,233	f	11.580
10.0%	f	924.000.000	£	34,708	£	30.029	£ 27.699	£	26,189	£	24.232	£	22,455	£	21,291
5.0%	£	882,000,000	£	64,909	£	56,056	£ 51,671	£	48,836	£	45,169	£	41,841	£	39,666
2.0%	£	856,800,000	£	136,780	£	118,453	£ 109,483	£	103,723	£	96,319	£	89,637	£	85,283
1.0%	£	848,400,000	£	406,076	£	354,212	£ 327,823	£	310,487	£	287,747	£	266,809	£	252,984
0.5%	£	844,200,000	£	659,966	£	569,751	£ 524,430	£	494,893	£	456,477	£	421,474	£	398,577
£ 40.00		75%	Offe	r Cost/pers	£	30.00	Uptake cost pp	£	10.00			Tota	l Offer Cost	£1	1,260,000,000
100.0%	£	1,680,000,000	£	7,226	£	6,229	£ 5,733	£	5,411	£	4,994	£	4,614	£	4,366
50.0%	£	1,470,000,000	£	12,583	£	10,847	£ 9,984	£	9,425	£	8,701	£	8,043	£	7,613
25.0%	£	1,365,000,000	£	24,700	£	21,373	£ 19,701	£	18,612	£	17,196	£	15,902	£	15,054
10.0%	f	1,302,000,000	£	48,906	£	42,314	± 39,030	£	36,902	£	34,146	£	31,641	£	30,001
5.0%	f	1 268 400 000	r r	34,272	£	81,415	r /5,047	f	152 551	E E	143 590	£	122 607	£	57,610
1.0%	f	1,208,400,000	t T	605.093	t T	527 811	£ 102,078	£	462 656	t T	142,363	£	297 572	£	276 971
0.5%	f	1,262.100.000	£	986.665	£	851.791	£ 784.035	f	739.878	£	682,444	£	630.115	£	595.883
0.570		-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_					-	,	-	,,	_	,110	-	
£ 40.00		90%	Offe	r Cost/pers	£	36.00	Uptake cost pp	£	4.00			Tota	l Offer Cost	£1	1,512,000,000
100.0%	£	1,680,000,000	£	7,226	£	6,229	£ 5,733	£	5,411	£	4,994	£	4,614	£	4,366
50.0%	£	1,596,000,000	£	13,662	£	11,777	£ 10,840	£	10,233	£	9,447	£	8,733	£	8,266
25.0%	£	1,554,000,000	£	28,120	£	24,332	£ 22,429	£	21,190	£	19,576	£	18,104	£	17,138
10.0%	£	1,528,800,000	£	57,425	£	49,684	£ 45,829	£	43,330	£	40,094	£	37,152	£	35,227
5.0%	£	1,520,400,000	£	111,890	£	96,631	£ 89,072	£	84,184	£	77,863	£	72,126	£	68,376
2.0%	£	1,515,360,000	£	241,913	£	209,500	£ 193,635	£	183,447	£	170,352	£	158,534	£	150,834
1.0%	£	1,513,680,000	£	724,503	£	631,970	£ 584,889	£	553,957	£	513,386	£	476,029	£	451,363
0.5%	£	1,512,840,000	£	1,182,685	£	1,021,016	£ 939,799	£	886,868	£	818,024	£	755,299	£	714,266
£ 10.00		4000/	0#	Cortle		40.00	Untaka casta					Tat	OfferCod		1 690 000 000
100.0%		100%	one	T COST/pers	t c	40.00	Uptake cost pp	E C	- E 414	£	4 00 4	rota	a otter Cost	£1 c	1,080,000,000
50.0%	t r	1 680 000 000	£	1/ 201	£	12 207	£ 3,/33	t	3,411	£	4,994	t	4,014	r r	4,300 9 701
25.0%	f	1,680,000,000	f	30 400	f	26 305	f 24.248	f	22 908	f	21 164	f	19 572	f	18 528
10.0%	f	1,680.000.000	£	63,105	f	54 598	£ 50.362	f	47 616	f	44,059	£	40,826	f	38.712
5.0%	f	1,680,000.000	£	123.636	£	106.774	£ 98.422	£	93.021	£	86.037	£	79.698	£	75.554
2.0%	£	1,680,000,000	£	268,196	£	232,262	£ 214,673	£	203,378	£	188,860	£	175,758	£	167,222
1.0%	£	1,680,000,000	£	804,110	£	701,410	£ 649,155	£	614,825	£	569,796	£	528,335	£	500,958
0.5%	£	1,680,000,000	£	1,313,365	£	1,133,832	£ 1,043,641	£	984,862	£	908,411	£	838,755	£	793,189

 Table 4.57: What-If Analysis Results Examining Offer Cost and Uptake Cost for a Range of

 levels of Effect and Uptake: Scenarios with 50% Decay per annum

What If A	na	alvses on C	Offe	er Cost a	nd	Uptake					De	ecav =		100%		
	%	cost that is										,				
Cost/person	of	fer														
costyperson			Offe	er Cost per			Uptake cost pe	r								
£ 40.00		0%	pers	son	£	-	person		£	40.00			Tot	al Offer Cost	£	
% Uptake			5 mi	ins extra	- 10 n	nins extra	15 mins extra		- 20 mi	ins extra	30 r	nins extra	45 r	nins extra	60 r	nins extra
achieved		Total Cost	Phy	sical activity	Phy	sical activity	Physical activit	ty	Physi	ical activity	Phy	sical activity	Phy	sical activity	Phy	sical activity
100.0%	£	1,680,000,000	£	14,174	£	12,225	£ 11,25	54	£	10,623	£	9,806	£	9,062	£	8,576
50.0%	£	840,000,000	£	14,118	£	12,175	£ 11,20	09	£	10,582	£	9,770	£	9,033	£	8,550
25.0%	£	420,000,000	£	14,862	£	12,865	£ 11,86	50	£	11,206	£	10,354	£	9,576	£	9,066
10.0%	£	168,000,000	£	12,407	£	10,738	£ 9,90	06	£	9,366	£	8,667	£	8,031	£	7,615
5.0%	£	84,000,000	£	12,134	£	10,483	£ 9,66	54	£	9,134	£	8,449	£	7,827	£	7,420
2.0%	£	33,600,000	£	10,551	£	9,139	£ 8,44	18	£	8,003	£	7,432	£	6,916	£	6,580
1.0%	£	16,800,000	£	15,578	£	13,586	£ 12,57	74	£	11,908	£	11,036	£	10,233	£	9,702
0.5%	£	8,400,000	£	12,841	£	11,092	£ 10,21	L3	£	9,641	£	8,896	£	8,216	£	7,772
£ 40.00		10%	Of	fer Cost/pers	£	4.00	Uptake cost	рр	£	36.00			Tot	al Offer Cost	£	168,000,000
100.0%	£	1,680,000,000	£	14,174	£	12,225	£ 11,25	54	£	10,623	£	9,806	£	9,062	£	8,576
50.0%	£	924,000,000	£	15,530	£	13,393	£ 12,32	29	£	11,640	£	10,747	£	9,936	£	9,405
25.0%	£	546,000,000	£	19,321	£	16,724	£ 15,41	19	£	14,568	£	13,460	£	12,449	£	11,786
10.0%	£	319,200,000	£	23,573	£	20,402	£ 18,82	21	£	17,796	£	16,467	£	15,259	£	14,469
5.0%	£	243,600,000	£	35,188	£	30,399	£ 28,02	25	£	26,489	£	24,502	£	22,697	£	21,517
2.0%	£	198,240,000	£	62,248	£	53,920	£ 49,84	11	£	47,220	£	43,849	£	40,806	£	38,822
1.0%	£	183,120,000	£	169,795	£	148,091	£ 137,05	52	£	129,802	£	120,292	£	111,535	£	105,752
0.5%	£	175,560,000	£	268,370	£	231,826	£ 213,46	51	£	201,490	£	185,917	£	171,722	£	162,433
£ 40.00		25%	Of	fer Cost/pers	£	10.00	Uptake cost	рр	£	30.00			Tot	al Offer Cost	£	420,000,000
100.0%	£	1,680,000,000	£	14,174	£	12,225	£ 11,25	54	£	10,623	£	9,806	£	9,062	£	8,576
50.0%	£	1,050,000,000	£	17,648	£	15,219	£ 14,01	1	£	13,227	£	12,213	£	11,291	£	10,688
25.0%	£	735,000,000	£	26,009	£	22,513	£ 20,75	56	£	19,610	£	18,120	£	16,759	£	15,866
10.0%	£	546,000,000	£	40,323	£	34,898	£ 32,19	94	£	30,440	£	28,168	£	26,101	£	24,749
5.0%	£	483,000,000	£	69,769	£	60,275	£ 55,56	57	£	52,521	£	48,581	£	45,003	£	42,663
2.0%	£	445,200,000	£	139,795	£	121,092	£ 111,93	31	£	106,044	£	98,474	£	91,640	£	87,185
1.0%	£	432,600,000	£	401,121	£	349,847	£ 323,77	70	£	306,641	£	284,176	£	263,489	£	249,828
0.5%	£	426,300,000	£	651,665	£	562,927	£ 518,33	33	£	489,265	£	451,448	£	416,981	£	394,425
£ 40.00		50%	Of	fer Cost/pers	£	20.00	Uptake cost	рр	£	20.00			Tot	al Offer Cost	£	840,000,000
100.0%	£	1,680,000,000	£	14,174	£	12,225	£ 11,25	54	£	10,623	£	9,806	£	9,062	£	8,576
50.0%	£	1,260,000,000	£	21,177	£	18,263	£ 16,81	L3	£	15,873	£	14,655	£	13,549	£	12,825
25.0%	£	1,050,000,000	£	37,156	£	32,162	£ 29,65	51	£	28,015	£	25,885	£	23,941	£	22,665
10.0%	£	924,000,000	£	68,238	£	59,058	£ 54,48	32	£	51,514	£	47,668	£	44,172	£	41,883
5.0%	£	882,000,000	£	127,404	£	110,067	£ 101,47	70	£	95,908	£	88,713	£	82,179	£	77,906
2.0%	£	856,800,000	£	269,039	£	233,045	£ 215,41	14	£	204,085	£	189,517	£	176,363	£	167,790
1.0%	£	848,400,000	£	786,664	£	686,108	£ 634,96	57	£	601,374	£	557,315	£	516,745	£	489,953
0.5%	£	844,200,000	£	1,290,489	£	1,114,761	£ 1,026,45	53	£	968,889	£	894,001	£	825,745	£	781,079
		750/	~			22.00								1011 0 1		
£ 40.00		/5%	Of	fer Cost/pers	£	30.00	Uptake cost	pp	£	10.00		0.000	lot	al Offer Cost	£1	1,260,000,000
100.0%	£	1,680,000,000	£	14,174	£	12,225	£ 11,25	54	£	10,623	£	9,806	£	9,062	£	8,576
50.0%	£	1,470,000,000	£	24,707	£	21,307	£ 19,61	15	£	18,518	£	17,098	£	15,807	£	14,963
25.0%	f	1,303,000,000	£	48,303	£	41,810	± 38,54	+0	± c	36,419	t	33,651	t	31,124	É	29,465
10.0%	£	1,302,000,000	£	96,154	£	83,218	£ /6,//	/0	£	/2,588	£	67,169	£	62,242	£	59,017
5.0%	É	1,281,000,000	£ C	185,039	t	159,859	L 14/,37	13	t	139,295	£	128,845	É	119,356	£	113,150
2.0%	t	1,268,400,000	£	398,284	£	344,998	£ 318,89	96	£	302,125	£	280,559	£	261,086	£	248,395
1.0%	± c	1,264,200,000	t	1,172,207	± c	1,022,309	£ 940,10	72	£	390,107	t	830,455	t C	1 224 510	E C	1 167 730
0.5%	I	1,202,100,000	r	1,729,313	r	1,000,030	1,034,57	2	L	1,448,313	r	1,530,554	r	1,234,310	Ť.	1,107,732
£ 40.00		90%	Of	fer Cost/ners	f	36.00	Uptake cost	pp	f	4.00			Tot	al Offer Cost	£ 1	.512.000.000
100.0%	f	1.680.000.000	f	14.174	f	12,225	f 11.25	54	f	10.623	f	9,806	f	9.062	f	8.576
50.0%	f	1,596,000,000	f	26.824	f	23.133	£ 21.29	96	£	20.105	f	18.563	f	17.162	f	16.245
25.0%	f	1,554,000,000	f	54,991	f	47,599	£ 43.88	33	f	41,462	f	38,310	f	35.433	f	33,545
10.0%	f	1,528.800.000	£	112,904	£	97.714	£ 90.14	13	£	85,232	f	78,869	f	73.084	f	69.298
5.0%	f	1.520.400.000	f	219,620	f	189,734	f 174.91	15	f	165.328	f	152,924	f	141.661	f	134,296
2.0%	f	1,515,360.000	f	475.830	f	412.170	£ 380.98	36	£	360.950	f	335.184	f	311.920	f	296.758
1.0%	f	1.513.680.000	f	1.403.533	f	1.224.126	£ 1,132,88	32	f	1.072.947	f	994.338	f	921,955	f	874,155
0.5%	£	1,512,840,000	£	2,312,608	£	1.997.697	£ 1,839,44	14	£	1.736.287	£	1.602.085	£	1.479.769	£	1.399.725
		_,,,,		_,,						_/ /		-//		_,,.		
£ 40.00		100%	Of	fer Cost/pers	£	40.00	Uptake cost	pp	£	-			Tot	al Offer Cost	£1	L,680,000,000
100.0%	£	1,680,000,000	£	14,174	£	12,225	£ 11,25	54	£	10,623	£	9,806	£	9,062	£	8,576
50.0%	£	1,680,000,000	£	28,236	£	24,351	£ 22,41	17	£	21,164	£	19,540	£	18,065	£	17,100
25.0%	£	1,680,000,000	£	59,449	£	51,459	£ 47,44	12	£	44,824	£	41,417	£	38,306	£	36,265
10.0%	£	1,680,000,000	£	124,070	£	107,378	£ 99,05	58	£	93,662	£	86,670	£	80,312	£	76,151
5.0%	£	1,680,000,000	£	242,675	£	209,651	£ 193,27	77	£	182,682	£	168,977	£	156,532	£	148,393
2.0%	£	1,680,000,000	£	527,528	£	456,952	£ 422,37	79	£	400,166	£	371,601	£	345,810	£	329,000
1.0%	£	1,680,000,000	£	1,557,751	£	1,358,630	£ 1,257,36	51	£	1,190,840	£	1,103,594	£	1,023,257	£	970,205
0.5%	£	1,680,000,000	£	2,568,138	£	2,218,431	£ 2,042,69	92	£	1,928,137	£	1,779,106	£	1,643,274	£	1,554,386

Table 4.60: What-If Analysis Results Examining Offer and Uptake Cost for a Range of levels ofEffect and Uptake: Scenarios with 100% Decay i.e. no effect after year 1.

5 **DISCUSSION**

5.1 Limitations and Implications

There are several limitations and considerations in the modelling and its interpretation.

- In the health related benefits modelling, the key evidence used is the Copenhagen study relating level of physical activity to relative risk of mortality from all causes. We assume that such risk reductions occur within a year of the increased physical activity and are removed similarly quickly of the physical activity levels are reduced.
- Throughout we have not examined effects on under 18s, partly because a lack of direct evidence on children's behaviour in many of the studies and partly because we did not feel that the Copenhagen study on relative mortality risk reduction could be extrapolated to younger age groups.
- The transport/ congestion modelling has used different methods to estimate reductions in car distance and may not mean that direct comparison across the interventions is like for like. When considering the monetary values of the congestion benefits, it should be noted that these forecasts were made in 2002, and traffic growth has been lower than thought. This would result in the calculated benefits being over-estimated. The DfT is currently updating its forecasts. The benefit to cost ratios shown in the congestion tables, apply only to the environmental outcomes listed, the DfT would normally consider congestion benefits as only one part of the overall assessment of a project. These benefit-cost ratios here are not directly comparable with those typically used by DfT which usually also, include environmental and health benefits.
- A number of the interventions considered in this report were part of multi- component programmes, requiring either new or existing infrastructure to realise their full potential benefit. Investors should consider whether such interventions would be appropriate in their own areas.
- Care must be taken with interventions where the offer cost is a large proportion of the total, as these will require significant take-up rates to become cost-effective. In addition, given the sensitivity of the benefits to costs, uptake, and decay, it would be sensible to monitor these factors during the lifetime of any intervention

6 **REFERENCES**

6.1 References Used in the Modelling

Anderson L, Schnohr P, Schroll M, Hein H, All-cause mortality associated with physical activity during leisure time, work, sports, and cycling to work. Arch. Intern. Med. 2000; 160:1621-1628.

Baker G, Using pedometers as motivational tools: are goals set in steps more effective than goals set in minutes for increasing walking? Int J Health Promotion & Education 2008; 2008. 46(1).

Baker G, Gray SR, Wright A, Fitzsimons C, Nimmo M, Lowry R et al. The effect of a pedometer-based community walking intervention "Walking for Wellbeing in the West" on physical activity levels and health outcomes: a 12-week randomised controlled trial. International Journal of Behavioral Nutrition and Physical Activity 2008; 5.

Beale S, Bending M, Trueman P, An Economic Analysis of Environmental Interventions that Promote Physical Activity. York Health Economics Consortium 2007.

Cope A, Kennedy A, Ledbury M, Cambery R, Cavill N, Parkin J, Nair S, Cycling demonstration towns – an economic evaluation 2020 http://www.etcproceedings.org/paper/cycling-demonstration-towns-an-economic-evaluation

Department for Transport, MSA: Cost Benefit Analysis, TAG Unit 3.9.2,2004. http://www.dft.gov.uk/webtag/documents/expert/pdf/unit3.9.2.pdf

Department for Transport, TAG Unit 3.5.4 Cost Benefit Analysis 2011 http://www.dft.gov.uk/webtag/documents/expert/pdf/unit3.5.4.pdf

Department for Transport, Cycling Demonstration Towns: Development of benefit-cost ratios.2010

Lamb SE, Bartlett HP, Ashley A, Bird W. Can lay-led walking programmes increase physical activity in middle aged adults? A randomised controlled trial. J Epidemiol Community Health 2001; 56(4):246-252.

Merom D, Rissel C, Phongsavan P, Smith B. Promoting walking with pedometers in the community: The step-by-step trial. Am J Prev Med 2007; 32(4).

NICE CPHE Method Manual,2009.

Sansom, T, Nash C, Mackie P, Shires J, & Watkiss P, (2001) 'Surface Transport Costs & Charges: Great Britain 1998' Department of the Environment, Transport and the Regions, London.

Sloman 2009. Analysis and Synthesis of Evidence on the Effects of Investment in Six Cycling Demonstration Towns

http://www.ciltuk.org.uk/download/Analysis_and_synthesis_of_evidence_on_the_effects_of_i nvestment.pdf

6.2 References Used In the Cost-Effectiveness Review

Cobiac LJ, Vos T, Barendregt JJ Cost-effectiveness of interventions to promote physical activity: a modelling study (Structured abstract). PLoS Medicine 6 (2009).

Cavill N, Cope A, Kennedy A, Valuing Increased cycling in the Cycling Demonstration Towns. Report to Cycling England (2009).

CDC. Behavioral Risk Factor Surveillance System: 2003 survey data. www.cdc.gov/brfss/technical_infodata/surveydata/2003.htm.

Department for Transport, How to set up a walking bus. 2006.

Fordham R, Barton G, Promoting physical activity for children: Cost effectiveness analysis. NICE Programme Guidance PH 17, 2008.

Gordon L, Graves N, Hawkes A, Eakin E, A review of the cost-effectiveness of face-to-face behavioural interventions for smoking, physical activity, diet and alcohol (Brief record). Chronic Illness 3 (2007) 101-129.

Graves N, Barnett AG, Halton KA, Veerman JL, Winkler E, Owen N, Reeves MM, Marshall A, Eakin E, Cost-effectiveness of a telephone-delivered intervention for physical activity and diet (Provisional abstract). PLoS ONE 4 (2009).

Gusi N, Reyes MC, Gonzalez-Guerrero JL, Herrera E, Garcia JM, Cost-utility of a walking programme for moderately depressed, obese, or overweight elderly women in primary care: a randomised controlled trial. BMC Public Health 8 (2008) 231.

Hagberg LA, Lindholm L, Cost-effectiveness of healthcare-based interventions aimed at improving physical activity (Brief record). Scandinavian Journal of Public Health 34 (2006) 641-653.

Kind P, Dolan P, Gudex C, Williams A. Variations in population health status: results from a United Kingdom national questionnaire survey. BMJ. 1998;316:736–41.

Mackett R, Lucas L, Paskins J, Turbin J, Walking Buses in Hertfordshire: Impacts and Iessons. UCL: Transport Studies Centre.

http://www.cts.ucl.ac.uk/research/chcaruse/Walking%20bus%20report%20-%20UCL.pdf accessed 3rd March 2008. 2005.

Matrix Research and Consulting. Modelling the cost effectiveness of physical activity interventions. London: National Institute for Health and Clinical Excellence, 2006.

Moodie MH, Cost-effectiveness of active transport for primary school children - Walking School Bus program. International Journal of Behavioral Nutrition and Physical Activity 6 (1479) 1479.

Muller RF, Reinhold T, Willich SN, Cost-effectiveness of interventions promoting physical activity (Brief record). British Journal of Sports Medicine 43 (2009) 70-76.

Pringle A, Cooke C, Gilson N, Marsh K, McKenna J, Cost-effectiveness of interventions to improve moderate physical activity: a study in nine UK sites (Structured abstract). Health Education Journal 69 (2010) 211-224.

Roux L, Pratt M, Tengs TO, Yore MM, Yanagawa TL, Van Den Bos J, Rutt C, Brownson RC, Powell KE, Heath G, Kohl HW Teutsch S, Cawley J, Lee IM, West L, Buchner DM, Cost effectiveness of community-based physical activity interventions (Structured abstract). American Journal of Preventive Medicine 35 (2008) 578-588.

Stevens W, Hillsdon M, Thorogood M, McArdle D, Cost-effectiveness of a primary care based physical activity intervention in 45-74 year old men and women: a randomised controlled trial (Structured abstract). British Journal of Sports Medicine 32 (1998) 236-241.

Shaw R, Fenwick E, Baker G, McAdam C, Fitzsimons C, Mutrie N, 'Pedometers cost buttons': the feasibility of implementing a pedometer based walking programme within the community, BMC Public Health, 11 (2011) 200.

Zheng H Ehrlich F, Amin J, Economic evaluation of the direct healthcare cost savings resulting from the use of walking interventions to prevent coronary heart disease in Australia (Provisional abstract). International Journal of Health Care Finance and Economics 10 (2010) 187-201.

7 APPENDICES

7.1 Appendix on Literature Search Methods for Cost-Effectiveness Evidence

7.1.1 List of Data Sources

NHS Economic Evaluation Database via Wiley (No study filter applied)

EconLit via Ovid

Medline and Medline in Process via OVID

ASSIA via Proquest

Embase via OVID

CINAHL via EBSCO

British Nursing Index via OVID

Science Citation Index via Web of Knowledge

Sociological Abstracts

Social Science Citation Index via Web of Knowledge

PsycINFO via OVID

EPPI Centre Databases – Bibliomap, DoPHER, TRoPHI, The database on Obesity and Sedentary behaviour studies

http://eppi.ioe.ac.uk/cms/

The Transport Database

Social Policy and Practice

Websites

Department for Transport

www.dft.gov.uk/

Transport Research Laboratory

www.trl.co.uk/

Institute for Road Safety Research (SWOV)

http://www.swov.nl/index_uk.htm

7.1.2 Example Search Strategies

Database: Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations and Ovid MEDLINE(R) <1948 to Present>

Search Strategy:

- 1 Bicycling/ or walking/
- 2 (walk\$ or bike\$ or bicycl\$ or biking).ti.
- 3 Travel/ or transportation/mt

4 (active transport or travel mode or active travel or travelling actively or multimodal transport or active commute or green commute or green transport or green travel or ecological commute or ecological transport or ecological travel or non-motori#ed or auto or environmentally friendly transport or travel behavio?r or carbon neutral transport).ti.

5 (carbon emission* or carbon emit* or congestion or Co2 or pC02 or carbon dioxide or pC0 or carbon monoxide or greenhouse gas or air pollut* or noise pollut* or traffic volume).ti,ab.

- 6 1 or 2 or 3 or 4 or 5
- 7 Health promotion/mt
- 8 *Health behavior/
- 9 (health behavio?r or health education or health promotion).ti.
- 10 *Recreation/
- 11 7 or 8 or 9 or 10
- 12 6 and 11

13 ((recreation* or leisure or intervention or interventions or inform* or educat* or promot* or encourage* or advice or advis* or uptake or increas* or adhere* or aware* or encourage* or facilitat* or habit or impact* or pattern* or program* or campaign* or project or activit* or initiative* or scheme or start*) adj5 (Walk* or bike* or bicycl* or biking or active travel or active commut* or modal shift* or pedestrian* or non-motori?ed)).ti.

- 14 12 or 13
- 15 Economics/
- 16 "costs and cost analysis"/
- 17 Cost-benefit analysis/
- 18 Cost control/
- 19 Cost savings/
- 20 Cost of illness/
- 21 Cost sharing/
- 22 "deductibles and coinsurance"/
- 23 Medical savings accounts/
- 24 Health care costs/
- 25 Direct service costs/
- 26 Drug costs/
- 27 Employer health costs/
- 28 Hospital costs/
- 29 Health expenditures/
- 30 Capital expenditures/
- 31 Value of life/
- 32 exp economics, hospital/
- 33 exp economics, medical/
- 34 Economics, nursing/

- 35 Economics, pharmaceutical/
- 36 exp "fees and charges"/
- 37 exp budgets/
- 38 (low adj cost).mp.
- 39 (high adj cost).mp.
- 40 (health?care adj cost\$).mp.
- 41 (fiscal or funding or financial or finance).tw.
- 42 (cost adj estimate\$).mp.
- 43 (cost adj variable).mp.
- 44 (unit adj cost\$).mp.
- 45 (economic\$ or pharmacoeconomic\$ or price\$ or pricing).tw.
- 46 or/15-45
- 47 14 and 46
- 48 limit 47 to (english language and humans and yr="1990 -Current")

Database: Econlit <1961 to August 2011>

Search Strategy:

1 (carbon emission* or carbon emit* or congestion or Co2 or pC02 or carbon dioxide or pC0 or carbon monoxide or greenhouse gas or air pollut* or noise pollut* or traffic volume).ti,ab.

2 (Walk* or cycling or bike* or bicycl* or biking or active travel or active commut* or modal shift* or active transport* or pedestrian* or non-motori?ed).ti,ab.

3 1 or 2 (9863)

4 (cost-benefit analysis or cost benefit analysis).mp.

5 3 and 4

6 limit 5 to yr="1990 -Current"

Econ Lit to inform development of Economic Model

Database: Econlit <1969 to March 2011>

Search Strategy:

1 (carbon emission* or carbon emit* or congestion or Co2 or pC02 or carbon dioxide or pC0 or carbon monoxide or greenhouse gas* or air pollut* or noise pollut* or traffic volume).ti,ab.

2 economic model*.ti,ab.

3 1 and 2

4 ((recreation* or leisure or interven* or inform* or educat* or promot* or encourage*or advice or advis* or uptake or increas* or adhere* or aware* or encourage* or facilitat* or habit or impact* or pattern* or program* or campaign* or project or activit* or initiative* or scheme or start*) adj5 (Walk* or cycling or bike* or bicycl* or biking or active travel or active commut* or modal shift* or active transport* or pedestrian* or non-motori?ed)).ti,ab.

5 3 or 4

References used to inform search strategy development:

Ogilvie, D., Foster, C.E., Rothnie, H., Cavill, N., Hamilton, V., Fitzsimons, C.F., & Mutrie, N. (2007). Interventions to promote walking: systematic review. British Medical Journal, 334, (7605) 1204-1207

Yang, L., Sahlqvist, S., McMinn, A., Griffin, S.J., & Ogilvie, D. (2010). Interventions to promote cycling: systematic review. British Medical Journal, 341 (5293).

York Health Economics Consortium (2007). A Rapid Review of Economic Literature Related to Environmental Interventions that Increase Physical Activity Levels in the General Population. National Institute for Health and Clinical Excellence, PDG Report

7.2 Appendix on Studies identified as Possible for Inclusion but Rejected after Full Reading – and Reasons for Rejection

7.2.1 Studies Identified by Economic Searches and Rejected after Full Reading – and Reasons for Rejection.

Stevens	Walking and cycling measured as part of a self-administered questionnaire,
(1998)	and subsumed into a measure of level of activity, and although recorded,
	not reported separately.
Zheng (2010)	Meta-analysis of studies that linked level of walking to CHD risk to produce
	relative risk equations to apply to population and put monetary value on to
	changes in prevalence of walking. No specific interventions included or
	intervention costs considered.
Graves (2009)	Exercise and diet; exercise self monitored with pedometer. Setting;
	Australia.
Hagberg	Review of studies of interventions affecting general physical activity levels.
(2006)	Home-based exercise, only one has walking as an outcome, no figures for
	cost-effectiveness provided
Müller (2009)	Systematic review, explicitly excluding studies that had cost-utility or cost-
	benefit analysis.
Gordon (2007)	All exercise is general and predominantly associated with morbidities, e.g.
	cardiac rehabilitation exercises.
Shaw (2011)	U.K. pedometer study of walking, only cost-effectiveness reported, no
	QALYs.
Gusi (2008)	Exercise intervention specifically for overweigh or depressed elderly
	females, therefore not applicable to the general population.
Moodie:	Children 5-7, part of prevention of diabetes programme. Walking School
	Bus Not a trial, no data on uptake, no measure of effectiveness and no
	benefits considered.

<u>7.2.2</u> Inclusion and Exclusion for Papers Supplied by NICE / PDG / Others (Independently Double Reviewed by LB and ABr)

Author (Year)	Included	Reason for inclusion or exclusion
	Yes/No	
Gotschi	No	US study. Already identified in economic database, and
(2011)		excluded on the basis that it was a study of the effects of
		investment in infrastructure.
Avineri and	No	Think-piece on behaviour change commissioned by the UK
Goodwin		Department for Transport. A discussion document on
(2010)		encouraging behavioural change, mainly by reducing car use
		rather than increasing walking and cycling.
		No specific interventions analysed
Buehler et al.	No	Analysis of prevalence of walking and cycling in Germany
(2011)		related to physical activity levels. Active Travel in Germany
		and the U.S. Contributions of Daily Walking and Cycling to
		Physical Activity
		No specific interventions analysed
Department	Yes	Cycling Demonstration Towns Development of Benefit-Cost
for Transport		Ratios
(2010)		Included
de Hartog et	No	Analysis of health benefits of increased cycling in terms all
al. (2010)		cause mortality using a hypothetical behaviour change with no
		discussion of means or cost.
		No specific interventions analysed

European	No	Quantifying CO ₂ savings of Cycling
Cyclists		A discussion of the environmental herefits of a mode shift to
Federation		A discussion of the environmental benefits of a mode shift to
(2011)		cycling. No monetary costs of specific interventions
		No specific interventions analysed & no cost-effectiveness
Grabow et al	No	U.S. What if analysis of benefits of increased physical activity
(2011)		if 50% of short trips were made by bicycle using HEAT.
		No specific interventions analysed
Graham-	No	Can we reduce car use and, if so, how?
Rowe et al.		A systematic review of studios interventions designed to
(2011)		reduce car use. No costing of individual studies included
		reduce car use. No costing of individual studies included.
		No cost-effectiveness
Hankey et al.	No	Health Impacts of the Built Environment: Within-urban
(2011)		Variability in Physical Inactivity, Air Pollution, and Ischemic
		Heart Disease Mortality. Modelling estimated IHD mortality
		risks among US neighbourhoods based on "walkability" scores
		No specific interventions analysed & no cost-effectiveness
Jones &	No	US simulation to evaluate cost-benefit of walking, varying level
Eaton (1994)		of benefit from exercise, frequency of exercise to achieve
		benefit, participation rates, and costs of exercise (shoes &
		physician physical examination for exercise-related
		counselling). Assessment of the potential benefits of an
		increase in walking.
		No specific interventions to achieve behaviour change
		evaluated
Woodcock et	No	Lancet series paper on links between fossil-fuel-based
al (2007)		transportation, greenhouse-gas emissions, and health.
		Linking car use to air pollution.
		No specific interventions analysed & no cost-effectiveness

Woodcock	No	Londoners' physical activity discussion paper
(2007)		No specific interventions analysed & no cost-effectiveness
Webappend 3		
Various	No	Health and Climate Change 2009 Special Focus in the Lancet
(2009)		with papers on household energy, urban transport, electricity generation, agriculture, and short-lived greenhouse pollutants
		Most have no specific interventions analysed & no cost- effectiveness
Woodcock et al (2009)		Comparative Risk Assessment methods to estimate the health effects of alternative urban land transport scenarios for London and Delhi comparing a business-as-usual 2030 projection with lower-carbon-emission motor vehicles, increased active travel, and a combination of the two
		Broad policy of CO2 reduction and active travel encouragement, not specific analyses of community walking / cycling promotion interventions.
LSE	No	The British cycling economy. 'Gross Cycling Product' Report.
		Mainly a consideration of the cycling industry in the economy. Some health benefits considered, but no interventions to promote cycling presented as a cost-benefit analysis.
		No specific interventions analysed & no cost-effectiveness
Fordham & Barton (2008)	Yes	NICE project on Promoting physical activity for children: Cost effectiveness analysis – included the walking bus analysis but not other interventions.
Nordic Council of Ministers, Copenhagen (2005)	No	CBA of Cycling Mostly discussion of methods and some general assessments in Nordic countries, much focussed on infrastructure

Sælensminde	No	Cost-benefit analyses of walking and cycling track networks in
(2004)		three Norwegian cities
		Focus is infrastructure
Scarborough	No	Economic burden of ill health due to diet, physical inactivity,
et al (2011)		smoking, alcohol and obesity in the UK: an update to 2006–07
		NHS costs
		No specific interventions analysed & no cost-effectiveness
Daldaura	NI-	Demonstrate of each contraction is maintained to a term of
Bekkum,	NO	Perceptions of cycle commuting barriers in relation to stage of
Williams &		change, gender and occupational role
Morris (2011)		No enceitia interventione analyzed 9 no east offectiveness
		No specific interventions analysed & no cost-effectiveness
Weichenthal	No	Traffic-Related Air Pollution and Acute Changes in Heart Rate
(2011)		Variability and Respiratory Function in Urban Cyclists
		No specific interventions analysed & no cost-effectiveness

7.3 Appendix: Evidence Tables for Included Studies in Health Economic Literature Review

Authors: Roux	Population:	Intervention	Primary outcomes:	Primary	Limitations identified by authors:
Year:2008	Simulated	description:	Increase in	analysis:	Uses utility values for entire
Aim of study:	cohort	Organised walking	physical activity	Benefits	population rather than subgroup
	representative	groups	and associated	Costs	Limitations identified by review
Community	of the		decrease in risk of	00313	toom:
based physical	population		mortality and	ICER	leam.
activity	Sotting: U.S.	Comparator/control/des	morbidities	O a seconda ma	Evidence gaps and/or
interventions	Setting: 0.5.	cription:	Casardan	Secondary	recommendations for future
	Data source:		Secondary	analysis:	research:
Type of		From underlying	outcomes:		
economic	Three	studies	Time horizon: 40		Source of funding:
analysis:	underlying		years		Not stated
Cost-benefit	studies				
		Sample size:	Discount rates:		
Economic		Total: Various from	3% per vear		
perspective:		underlying studies			
aggiotal		undenying studies	Modelling method:		
Societai		Intervention:	Markov		
Quality score: +		Control:			
Authors: Cobiac	Source	Intervention	Primary outcomes:	Primary	Limitations identified by authors:
-------------------	----------------------	---------------------------------	--------------------	------------------------	------------------------------------
Year:2009	Population:	description:	Increase in steps	analysis:	Reliance on observational studies
Aim of study:	General population	Pedometer interventions	taken	Benefits	Time lag in change in physical
Modelling			Increase in active	Costs	activity affecting risk
interventions to		TravelSmart	travel trips made	ICERs	Limitations identified by review
promote	Setting:	programme	Secondary		team:
physical activity	Australia	Comparator/control/des	outcomes:	Secondary analysis:	Evidence gaps and/or
Type of	Data source:		Time horizon:		recommendations for future
economic	Data source.	From underlying	One vear		research:
analysis:	Published	studies	intervention		Source of funding:
Cost utility	studies	Sample size:	Lifetime model		Australian National Health and
Economic	8 RCTs on pedometers	Total:	Discount rates:		Medical Research Council Health
Not stated	21 TravelSmart	Various from underlying studies	3% per year		
Quality score:+	sites.	Intervention:	Modelling method:		

		Control:	MCMC		
Authors: Pringle	Population:	Intervention	Primary outcomes:	Primary	Limitations identified by authors:
Year:2010	General	description:	Increase in	analysis:	Difficulties in collecting data
	population	Promotion of walking	physical activity	Benefits	Wide range of field-based settings
Aim of study:	Setting:	and cycling by printed media and led walking	Secondary outcomes:	Costs	Low sample size
Modelling	U.K.	groups		ICERs	Model sensitive to presumptions
interventions to	Data source:	Comparator/control/des		Secondary	Limitationa identified by review
improve	Underlying	cription:	Time horizon:	analysis:	team:
physical activity	studies	Not stated	Lifetime		Evidence gaps and/or
Type of economic		Sample size:	Discount rates:		recommendations for future
analysis:		Total:	Implicit to model		researcn:
Cost utility		Printed maps: 14	used		Source of funding:
Economic		Walking groups: 8	Modelling method:		Department for Health
perspective:		Intervention:	Matrix model		Natural England
Not stated		Control:			Sport England

Quality score:+					
Authors:	Population:	Intervention	Primary outcomes:	Primary	Limitations identified by authors:
Cycling	General urban	description:	Increase in cycling	analysis:	Difficulty in measuring changes in
Demonstration	population	Infrastructure and		Reduced	cycling behaviour
Towns	Setting:	personalised travel	Casandan	mortality	Limitations identified by review
Year:2010	811K towns	auvice	Secondary	Decongestion	team:
	0 U.N. 10WIIS	Comparator/control/des	outcomes.	Costs	Evidence gaps and/or
	Data source:	cription:			recommendations for future
Aim of study:	Study	Before and after	Time horizon:	Benefit/cost ratio	research:
Promotion of	monitoring		Three years	. .	Design data collection with benefit
cycling		O and a size of	intervention	Secondary	cost analysis in mind
Type of		Sample size:	10.00	analysis:	
economic		No sample	10-20 years		Assess the persistence of
analysis:		Totol	appraisai		intervention enects
Cost utility		i Olai.	Discount rates:		Source of funding:
Economic		Intervention:	Rate not stated		Department for Transport

perspective:		Control:	Modelling method:		
Not Stated			No modelling explicitly stated		
			Direct analysis of results		
Authors:	Population:	Intervention	Primary outcomes:	Primary	Limitations identified by authors:
Fordham	Schoolchildren	description:	Increase in number	analysis:	Range of uncertainty in costs QoL
Year:2008	Sotting	Provision of supervised	of walking journeys	QoL Benefits	measure and take-up
Aim of study:	Schools	walking buses	to school	Costs	Limitations identified by review
NICE guidelines	Data source:	Comparator/control/des cription:	Secondary outcomes:	ICERs	team:
Type of economic	Published	None		Secondary analysis:	Evidence gaps and/or recommendations for future
analysis:	studies	Sample size	Time horizon:		Tesearch.
Cost utility		Total: 3-16 per bus	One year		Source of funding:
Economic		Intervention:	Discount rates:		NICE
perspective:		Control:	None		

Not stated	Modelling method:		
Quality score:+	No model		
Applicability:			