Brentuximab vedotin with doxorubicin, dacarbazine and vinblastine for previously untreated late-stage classical Hodgkin lymphoma

For committee – Redacted

Technology Appraisal Committee C [5th November 2024]

Chair: Stephen O'Brien

Lead team: Stella O'Brien, Clare Offer, Kate Ren

External assessment group: BMJ-TAG

Technical team: Harsimran Sarpal, Albany Chandler, Ross Dent

Company: Takeda

© NICE 2025. All rights reserved. Subject to Notice of rights.

Brentuximab vedotin with doxorubicin, dacarbazine and vinblastine (A+AVD) for previously untreated late-stage classical Hodgkin lymphoma

- ✓ Background and key issues
- Clinical effectiveness
- Modelling and cost effectiveness
- Other considerations
- □ Summary

A+AVD (intervention) and ABVD (comparator) combinations

A+AVD

A=Brentuximab vedotin (= Adcetris)

Adriamycin (=Doxorubicin)

Vinblastine

Dacarbazine

BEACOPP (Dac) Bleomycin Etoposide Adriamycin (=doxorubicin) Cyclophosphamide Oncovin (=vincristine) Procarbazine Prednisolone (Dacarbazine)

Key issues

Issues for committee discussion	ICER impac	ct				
Generalisability of ABVD clinical data to practice	Unknown	?				
Bimodal age patient population not adequately accounted for in model	Large					
Use of one-knot spline model for OS survival modelling	Large					
Use of different standardised mortality ratios for A+AVD and ABVD	Moderate					
Life-long peripheral neuropathy not included in model	Large					
Health-related quality of life/adverse event disutilities	Small	Q				
Other issues						
Subsequent treatment use	Small					

Background on classical Hodgkin lymphoma

Causes and epidemiology

- Cancer of the lymphatic system containing Hodgkin Reed-Sternberg (HRS) cells
- 1,861 new cases of HL in England in 2021 (822 cases stage 3 or 4)
- Classical HL (or CD30+ HL) is the most common type of HL (95% of cases)
- Highest incidence in young adults (20 to 24 years) and older adults (75 to 79 years)

Symptoms and prognosis

- Symptoms include lymph node swelling, fatigue, weight loss, high fevers and night sweats
- 3-year progression-free survival of 83% and 80% for stages 3 and 4 respectively
- Aim of first-line treatment for people with stage 3 or 4 HL is to cure without the need for additional therapy with current standard of care, first-line cure rate is around 70%

Patient perspectives: Submission from Lymphoma Action

Young people often face long-term side effects including infertility & require emotional support

Living with classical Hodgkin Lymphoma

- People often rely on family and friends while enduring long-term side effects like fatigue, fever, sweats, pain, swollen lymph nodes & frequent medical visits
- Fatigue is particularly troublesome and difficult to tolerate

Current treatment options and unmet need

NICE

- Current treatment options have significant side effects including nausea, vomiting, bowel changes, fatigue, lung and breathing problems
- Long-term post-treatment effects include lung damage and infertility
- Always need for more treatment options which are easy to administer and well tolerated
- Brentuximab vedotin adds a targeted cancer treatment to first-line treatment which is only currently available at later lines

"My husband has had to come to terms with the fact I can no longer have children and that we will go through rest of our lives together childless"

"We are currently going through the assisted fertility pathway, but there are no guarantees of children"

"It was decided that I would have AVD as bleomycin could cause lung damage and I only had one lung"

Clinical perspectives: Submissions from 2 clinical experts

Aim of treatment

• To cure the disease for most people with HL

Unmet need/current treatment options

 People who are not cured undergo intensive therapy including stem cell transplant which can have psychological and emotional impact on people and their families and is associated with significant long-term side effects

"The technology would allow the substitution of bleomycin (which causes lung toxicity and should be avoided in most patients over 60years) by brentuximab"

Brentuximab vedotin

- Would increase the chance of cure and overall survival which will improve the quality of life
- Expect A+AVD to replace ABVD and not BEACOPDac (both treatment choices in current care) more impactful for older people who would otherwise get ABVD
- Minimal investment needed and may have a reduced impact on respiratory services (due to a decrease in lung side effects with bleomycin)
- Increased risk of peripheral neuropathy & sepsis careful monitoring required with dose adjustments as required

Brentuximab vedotin (Adcetris, Takeda)

Marketing authorisation	 In February 2019, brentuximab vedotin was granted marketing authorisation for: 'Previously untreated CD30+ Stage 4 HL, in combination with AVD'
	 In September 2024, brentuximab vedotin was granted a licence extension (relevant to this evaluation): 'For the treatment of adult patients with previously untreated CD30+ Stage 3 or 4 HL in combination with doxorubicin, vinblastine, and dacarbazine (AVD)'
Mechanism of action	 Anti-CD30 monoclonal antibody attached to a chemotherapeutic agent, monomethyl auristatin E (MMAE) Targets CD30-expressing cancer cells
Administration	 1.2 mg/kg administered as an IV infusion over 30 minutes on days 1 and 15 of each 28-day cycle for six cycles
Price	 List price: £2,500 per 50 mg vial Cost per 28-day treatment cycle: £11,231 Average cost per course of treatment (based on 5.5 cycles of brentuximab vedotin and 5.6 cycles of AVD): £61,793 There is a confidential patient access scheme discount

NICE

Treatment pathway: untreated Stage 3 or 4 CD30+ HL

Company positioned A+AVD only when ABVD is suitable

RATHL trial approach

NICE Abbreviations; HL, Hodgkin lymphoma; PET, Positron emission tomography; RATHL - Response-Adapted Therapy for advanced Hodgkin Lymphoma

Brentuximab vedotin with doxorubicin, dacarbazine and vinblastine (A+AVD) for previously untreated late-stage classical Hodgkin lymphoma

- Background and key issues
- Clinical effectiveness
- Modelling and cost-effectiveness
- □ Other considerations
- □ Summary

Key clinical trial – ECHELON-1 (NCT01712490)

Clinical trial designs and outcomes

	ECHELON-1
Design	Open label, randomised, controlled two-arm phase 3 trial
Population	Treatment-naïve adult patients (≥18 years old) with histologically confirmed CD30+ Stage 3 or 4 HL (based on Ann Arbor staging)
Intervention	A+AVD: brentuximab vedotin (A) plus doxorubicin (A; also called Adriamycin), vinblastine (V), and dacarbazine (D)
Comparator	ABVD: doxorubicin (A), bleomycin (B), vinblastine (V), and dacarbazine (D)
Duration	Median PFS follow-up: 89.2 months (95% CI: 86.4–90.1) Median OS follow-up: 89.3 months (95% CI: 87.0–90.2)
Primary outcome	Modified PFS per IRF
Key secondary outcomes	OS, PFS per INV, ORR, TEAEs, QoL
Locations	218 sites, 21 countries including the UK and EU
Used in model?	Yes

ECHELON-1: Progression-free survival

Statistically significant improvement in PFS-INV for A+AVD compared with ABVD Median PFS not estimable

Figure: Kaplan-Meier plot for PFS for ECHELON-1 (Mar 2023 DCO)

ECHELON-1: Overall survival

Statistically significant improvement in OS for A+AVD compared with ABVD Median OS not estimable

Figure: Kaplan-Meier plot for OS for ECHELON-1 (Mar 2023 DCO)

_	1.0 -			}	Reve u:			30 - 980 9 8 - 0 4	÷C39-C39 5000090	₽ 00		300C 1000 20000 100	90 9 9 9 9 9 9 9			A+AVD ABVD				OS probability timepoints	A+AVD (n=664)	ABVD (n=670)
obability of erall Surviva	0.6 -	н	HR (95% CI) 0 617 (0 42-0 9)																12 months (95% CI)	97.2 (95.7–98.3)	96.7 (95.1–97.9)	
μŞ	0.4	P value 0.011													48 months (95% CI)	94.9 (92.9 to 96.4)	92.1 (89.7–94.0)					
	0.0 -	0	6	12	18	24	30	36	42	48	54	60	66	72	78	84	90	96	102	84 months (95% CI)	93.5 (91.1 to 95.2)	88.8 (85.8–91.1)
A+/ Al	AVD - 6 BVD - 6	664 670	638 634	626 614	612 604	598 587	584 567	Time 572 545	(Mont 557 527	ths) fro 538 505	m Ran 517 479	494 455	472 426	443 398	416 372	378 340	310 268	200 178	117 97	102 months (95% CI)	91.9 (89.0–94.1)	87.5 (84.2–90.2)

Clinical experts

• Survival data effectively highlights the benefit: consider remarkable for this population

NICE Abbreviations: CI, confidence intervals; HR, hazard ratio, DCO, data cutoff; INV, investigator; OS, overall survival

ECHELON-1: Safety

NICE

More grade ≥3 drug-related TEAEs and peripheral neuropathy for A+AVD

	A+AVD (n=662)	ABVD (n=659)
Drug-related TEAEs with at least one grade ≥3, n (%)	528 (80)	393 (60)
Neutropenia	344 (51.96)	242 (36.72)
Febrile neutropenia	120 (18.13)	46 (6.98)
Neutrophil count decreased	81 (12.24)	64 (9.71)
Anaemia	46 (6.95)	18 (2.73)
People with ≥1 treatment-emergent grade ≥3 PN event, n (%)	68 (10)	11 (2)
Peripheral sensory neuropathy	32(5)	3 (<1)
Neuropathy peripheral	28 (4)	6 (<1)
Peripheral motor neuropathy	13(2)	0
Muscular weakness	2 (<1)	1 (<1)
Others (hypoesthesia, neuralgia, polyneuropathy, autonomic neuropathy)	3 (<1)	2 (<1)

RATHL results: survival outcomes (PFS and OS)

- RATHL trial results show no significant difference in outcomes between ABVD or AVD for people who deescalate treatment after a negative PET scan after cycle 2
- 86% ABVD arm PET-2 negative in ECHELON-1 would be de-escalated from ABVD to AVD in clinical practice
- 9% ABVD arm PET-2 positive in ECHELON-1 would be escalated to escBEACOPDac in clinical practice
- But, 6 cycle ABVD used for all participants in ABVD arm in ECHELON-1 regardless of PET-2 status so, no head-to-head evidence for A+AVD vs PET-adapted ABVD

NICE Abbreviations: CI, confidence intervals; HR, hazard ratio; OS, overall survival; PET, positron emission tomography PFS, progressionfree survival

Key issues: Generalisability of ABVD clinical data to practice

Company

- Assumed equal efficacy between 6-cycle and PET-adapted ABVD
- Equal efficacy supported by unanchored MAIC informed by RATHL trial outcomes, reflective of PET-adapted ABVD in UK (includes PET+ve escalation and PET-ve de-escalation)
- Results of unanchored MAIC driven by age, as RATHL population younger than ECHELON-1; when adjusting for age, residual differences in MAIC outcome may be due to differences in treatment practices across regions
 - conducted further MAIC removing adjustment for age but still adjusted for all other variables

EAG

- Insufficient justification for removal of age from MAICs
- Proportional hazards assumption not shown to hold for fully adjusted MAICs reported HRs should be interpreted with caution; also concerns around face validity of results from MAICs
- Agrees most robust source of evidence for A+AVD vs ABVD is ECHELON-1 but raises concerns around use of 6-cycle ABVD in ECHELON-1 when PET-adapted ABVD is clinical practice and equivalence not proven

Brentuximab vedotin with doxorubicin, dacarbazine and vinblastine (A+AVD) for previously untreated late-stage classical Hodgkin lymphoma

- Background and key issues
- Clinical effectiveness
- Modelling and cost-effectiveness
- □ Other considerations
- □ Summary

Confidential Company's model overview Affects

Affects **QALYs** by:

- Decreasing the probability of disease progression
- Increasing rate of survival and probability of adverse events

Affects **costs** by:

- More costly and more people requiring adverse event treatments
- Fewer people require subsequent treatments, treatment administration, monitoring and follow-up care

EAG

- 3 health states, with relapsed and refractory PD people included within a single health state
- Previous TAs modelled 5 health with relapsed and refractory being considered separately

Company

 Previous TAs informed by short data (24.9 months vs 89.3 months), so in absence of mature data higher health states more appropriate

Abbreviations: PD, progressed disease; ICER, Incremental costeffectiveness ratio; OS, overall survival; QALY, quality-adjusted life years; SMR, standardised mortality rate; TA, technology appraisal

Key issues: Late-stage cHL affects the population bimodally

Figure: Distribution of ECHELON-1 ages

- Age-specific incidence rates rise sharply during childhood and peak around age 20-29 with a second peak between age 75-84
- Highest rates are in the 20 to 24 age group for females and the 75 to 79 age group for males

Is age a treatment effect modifier?

NICE

Key issues: Late-stage cHL affects the population bimodally

Background

- Company used mean age from ECHELON-1 in model (39.53 years)
- EAG prefer age-weighted ICER using mean age in subgroups <60 and ≥60 years

Company

- Age-weighted ICER not appropriate: age would not impact how the disease is treated
- Subgroup data breaks randomisation and a smaller population informs subgroup analyses vs ITT (≥60 subgroup: A+AVD n=84, ABVD n=102 vs. ITT: A+AVD n=664, ABVD n=670)
- May lead to population subgroups being considered separately and does not fully characterise uncertainty as specified in NICE manual (only provides deterministic ICER): previous TAs have not modelled based on age
- Provided probabilistic analysis randomly sampling age from ECHELON-1 IPD to account for bimodal age

EAG

- Crucial to account for the age bimodal population to allow generalisability to clinical practice
- Uncertainty introduced by breaking randomisation and assessing subgroups outweighed by benefits of accounting for subgroups; can be effectively managed to produce reliable probabilistic outcomes
- Age distribution in ECHELON-1 is not bimodal company's probabilistic analysis sampling from trial will not
 account for age bimodal population
- EAG's probabilistic ICER uses weighted samples from both subgroups can be considered probabilistic

Abbreviations; cHL, classical Hodgkin lymphoma; ICER, Incremental costeffectiveness ratio; IPD, individual patient data; ITT, intent-to-treat;

Supplementary slide

Key Issue: Use of a spline model for OS modelling

Background

- Company extrapolated A+AVD and ABVD PFS KM survival data using MCM based on trial results, literature and clinical opinion but used one-knot spline model to extrapolate OS data
- EAG consider no clear reason not to use MCM for OS, so used MCM for OS extrapolation in its base case

Company

- Proportional hazard assumption violated
- Flexible parametric modelling appropriate, so used one-knot spline model to extrapolate OS in base case
- In probabilistic analysis MCM leads to implausible estimated cure rates due to wide CI
- Gompertz MCM produced implausible probabilistic cure fractions; exponential MCM CIs were narrower than Gompertz, but led to ABVD cure fraction exceeding that of A+AVD - clinically implausible

Abbreviations: CI, confidence interval; KM, Kaplan-Meier, MCM, mixed sure model, CS, overall survival, FFS, progression-free survival

Key Issue: Use of a spline model for OS modelling

EAG

- Cure fraction not estimated by spline model but spline modelled around assumed cure fraction, leading to bias and potential overfitting of model to KM data: so consider MCM more appropriate – supported by mature data and cure fraction well established in literature and supported by ECHELON-1 data
- Company's arguments to dismiss exponential MCM lack evidence:
 - deterministic A+AVD mean cure fraction >ABVD. probabilistic variance reflects uncertainty of treatment effect in trial
 - exponential curve aligns with clinical opinion: 70%-80% achieve cure
 - although poor statistical fit to A+AVD, provides clinically plausible extrapolation and robust probabilistic cure fractions
- EAG used exponential-MCM for both arms in <60 years subgroup and ABVD arm in \geq 60 years subgroup; used lognormal for A+AVD arm in ≥60 years subgroup due to no curve being a good visual fit, but providing most optimistic long-term survival

Abbreviations: KM; Kaplan-Meier ;MCM, mixed sure model; OS, overall survival

Background

- Higher SMR rates applied to ABVD (1.1) than A+AVD (1.05) based on clinical opinion to company
- EAG applied equal SMR rates to both ABVD and A+AVD (1.05)

Company

- ABVD bleomycin-containing treatment associated with increased pulmonary toxicity, second malignancies, higher rates of disease progression and subsequent treatment toxicity than A+AVD
- Due to a lack of evidence, it applied SMR to mortality rates based on clinical opinion and in line with previous TAs
- Conducted a rapid review to explore alternative SMRs on EAG's request

Table: Second malignancies & pulmonary toxicity ECHELON-1 and RATHL							
Treatment	A+AVD	6-cycle ABVD	PET-ABVD				
%Second malignancies	4.98%	5.92%	4.58%				
Pulmonary toxicity	5 (<1%)*	21 (3%)*	17 (3.6%)**				
Grade ≥3 drug-related	000/	60%					
TEAE	00%	00 /0					

* Grade≥ 3 (DCO 2017); **Grade≥ 3 RATHL Abbreviations: SMR, standard mortality ratio; TA, technology appraisal

EAG

- Same SMR should be applied to both arms
- Second malignancies broadly similar between treatments and A+AVD arm recorded more grade ≥3 adverse events compared to ABVD in ECHELON-1
- 4 relevant publications identified by company's targeted review, only study by Glimelius et al 2015 considered relevant to decision problem of SMR
- Glumelius et al measured a 1.05 rate of mortality after 15 years compared to the Swedish general population
- EAG clinical opinion considers mortality of cured individuals similar to general population with SMR of 1.05 and different SMR in each arm not clinically plausible

CONFIDENTIAL

Large impact

Key issue: Treatment-related lifelong peripheral neuropathy

Background

• Proportion of people with lifelong peripheral neuropathy (PN) not accounted for in company base case

Company

- Consider proportion of people with lifelong PN overestimated by EAG; without long-term follow-up & have limited data on duration of PN because of loss to follow-up or people withdrawing
- Only people alive with >3 years grade ≥3 PN at the last follow-up should be considered to have lifelong PN
- EAG's disutility for PN (-0.33, Swinburn et al), remaining constant for life lacks face validity (greater than disutility for progression; may improve over time) and sourced from vignette study
- Conducted multivariate utility analysis of ECHELON-1 and identified -0.0836 grade ≥3 PN specific disutility
- Validated calculated disutility values against literature from Hirose et al. 2020 showing sensory PN reduced utility by -0.06 but had limitations (Japanese population with multiple diseases with lymphoma only 6.7%)
- PN was included in previous TAs using Swinburn et al disutility but did not include lifelong PN

	A+AVD (n=662)	ABVD (n=659)
Grade ≥3 PN at last follow-up, n (%)	16 (2.4%)	4 (0.6%)
Grade ≥3 PN, alive at end of follow-up, n (%)	13 (2.0%)	2 (0.3%)
Grade \geq 3 PN, alive at end of follow-up <u>and</u> had grade \geq 3 PN for at least 3 years prior to their last follow-up date		
NICE Abbreviations: PN , peripheral neuropathy	Compa	ny EAG 2

Key Issue: Treatment-related lifelong peripheral neuropathy

EAG

- People with ongoing grade ≥3 PN at last follow-up should be considered to have lifelong PN; only including those alive would exclude people with chronic PN who died before the end of the study; only including if >3 years prior PN excludes people who progress within 3 years of end of study
- Trial length was 2—3 years in previous TAs, compared to ECHELON-1 (~13 years); longer study duration safety data indicates a proportion of people have lifelong PN that might not be seen in shorter studies
- Company's original regression analysis lacked face validity and underestimated PN disutility raising concerns around validity of company's regression and its outcomes
- Hirose et al not relevant to grade ≥3 PN: included only 36 Japanese people with grade ≥2 PN, not
 providing disutility by grade or proportion of people with each grade and only included sensory PN
- Swinburn et al most appropriate in the absence of alternative sources

How should lifelong PN be included:appropriate proportion of people

appropriate disutility associated with PN?

Health-related quality of life

Company

- Used with duration derived by taking the mean of a regression model to derive health state utility values for different health states and applied them to everyone except the cured population
- Applied one-off disutility to cover all AEs using a regression model relevant AEs from previous

EAG

- Utility values lack face validity: lower in progression-free, on-treatment health states than progressed disease with worse disease
- A+AVD shows lower rate of disease progression than ABVD, high utility value for progressed disease reduces incremental QALYs for A+AVD compared with ABVD
- Disutilities sourced from previous TAs incorrect
- Used disutilities from literature as allows decrement of AEs to be applied individually rather than weighted—results in larger one-off QALY decrement for AEs

baseline
0.781
0.861
0.791

Grade ≥3			Disutilit	y				
AEs	Company			EAG				
	Base case*	Literature**	Source	Literature	Source			
Anaemia	-0.03	-0.17		-0.069	Doyle et al			
Febrile neutropenia	-0.03	-0.12		-0.115	Lloyd et al			
Neutropenia	-0.03	-0.09	TA (641 & 874)	-0.048				
Neutrophil count decrease	-0.03	-0.05		-0.048	Nafees et al			
Which approach to derive disutility values is more appropriate? 27								

*regression ** scenario

Brentuximab vedotin with doxorubicin, dacarbazine and vinblastine (A+AVD) for previously untreated late-stage classical Hodgkin lymphoma

- Background and key issues
- Clinical effectiveness
- Modelling and cost effectiveness
- ✓ Other considerations
- □ Summary

Other considerations

Equality considerations and severity: no issues identified

- Severity: company submission notes no severity modifier should be applied given the calculated QALY shortfall
- Equality: no equality issues were identified relevant to the access of brentuximab vedotin
- Managed access: company has not submitted a managed access proposal for brentuximab vedotin with doxorubicin, dacarbazine and vinblastine:

• May not be appropriate since ECHELON-1 has over 7 years follow-up

Brentuximab vedotin with doxorubicin, dacarbazine and vinblastine (A+AVD) for previously untreated late-stage classical Hodgkin lymphoma

- Background and key issues
- Clinical effectiveness
- Modelling and cost effectiveness
- □ Other considerations
- ✓ Summary

Summary of company and EAG base case assumptions

Assumption	Company preferred assumptions	EAG preferred assumptions
Bimodal age	 Mean-age based ICER 	Age-weighted ICER
OS modelling	 One-knot spline model 	 Mixed cure model Separate survival curves were fit to <60 and ≥60-year-old OS data
SMR	 Separate for both treatments A+AVD= 1.05 ABVD = 1.10 	 Same SMR for both treatment arms = 1.05
Utility values		 Literature-based approach to calculate adverse event disutility
Adverse events	 Utility regression analysis 	 Applying treatment specific mean time to PN resolution Accounting for people with lifelong PN
Subsequent treatment	 Based on ECHELON-1 	 Company clinical expert opinions 5% of people with progressed disease will require radiation therapy

Key issues and questions for committee

	Issues for committee discussion	Slide
Clinical evidence	 Is the clinical data for ABVD from ECHELON-1 generalisable to clinical practice? 	See slide
	 Is the company or the EAG's approach accounting for bimodal age appropriate? 	See slide
	 Which model is more appropriate for modelling OS? 	See slide
	 Which SMR rates are more appropriate for decision-making? 	See slide
Cost-effectiveness	 How should lifelong PN be included: appropriate proportion of people appropriate disutility associated with PN? 	See slide
	 Which approach to deriving disutility values is more appropriate? 	See slide
	 Is the EAG's approach to subsequent treatment estimates appropriate? 	See slide

Abbreviations: OS, overall survival; PN, peripheral neuropathy; ICER, incremental cost-effectiveness ratio; SMR, standardised mortality rate

Cost-effectiveness results

All ICERs are reported in PART 2 slides because they include confidential prices for other treatments in the pathway:

Analyses to be presented include:

- Company and EAG base cases
 - Company base suggests A+ AVD is more effective and more expensive than ABVD (ICER above £30,000/QALY gained)
 - EAG base case suggests A+AVD is more effective and more expensive than ABVD (ICER above £30,000/QALY gained)
- EAG scenario analyses

Abbreviations; ICER, incremental cost-effectiveness; QALY, quality-adjusted life years

NICE National Institute for Health and Care Excellence

Thank you.

© NICE [2024]. All rights reserved. Subject to Notice of rights.

Brentuximab vedotin with doxorubicin, dacarbazine and vinblastine (A+AVD) for previously untreated late-stage classical Hodgkin lymphoma

Supplementary appendix

NICE National Institute for Health and Care Excellence

Abbreviations

- **A+AVD** brentuximab vedotin in combination with doxorubicin, vinblastine, and dacarbazine
- **ABVD** doxorubicin, bleomycin, vinblastine, dacarbazine
- **BEACOPDac** Bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, prednisolone, dacarbazine
- **BEACOPP** bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisolone
- **BEACOPP-14** 14-day bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisolone regimen
- **G-CSF** Granulocyte-colony-stimulating factor
- HL- Hodgkin lymphoma

- HR- Hazard ratio
- ICER Incremental cost-effectiveness ratio
- MAIC Matched adjusted indirect comparison
- MCM Mixture cure model
- **OS** Overall survival
- **PET** Positron emission tomography
- **PFS** Progression-free survival
- PN Peripheral neuropathy
- **QALY** Quality-adjusted life year
- RATHL Response-Adapted Therapy for advanced Hodgkin Lymphoma
- **TEAE** Treatment-emergent adverse event

Decision problem Abbreviations; CD30, cell membrane receptor 30HL, HRQoL, heath- related quality of life; MA, marketing authorisation; NA, not applicable; PET - Positron emission tomography

	Final scope	Company	EAG	Clinical experts
Population	People with previously untreated late-stage classical Hodgkin lymphoma	Adults previously untreated CD30+ Stage 3 or 4 Hodgkin lymphoma Adjusted in line with MA	Narrow to those eligible for ABVD	A+AVD likely to replace ABVD
Intervention	Brentuximab vedotin with doxorubicin, dacarbazine and vinblastine	As in scope	Appropriate	NA
Comparators	Single or combination chemotherapy including but not limited to drugs such as doxorubicin, bleomycin, dacarbazine and vinblastine	 Combination chemotherapy with doxorubicin, bleomycin, vinblastine and dacarbazine (ABVD-based regimens) In line with proposed positioning (previously untreated patients with CD30+ Stage 3 or 4 HL who would otherwise be suitable for treatment with ABVD) Weighted average use of PET-adapted ABVD (90%) and ABVDx6 cycles (10%) 	Agreed with comparator ABVD- based regimen but PET- adapted approach is widely used in clinical practice – 100% PET- adapted ABVD appropriate	PET adapted RATHL widely used in clinical practice
Outcomes	OS, PFS, response rate, adverse effects of treatment, HRQoL	As in scope	Appropriate but final data cut-off not provided in clinical- effectiveness	NA

Baseline characteristics- ECHELON-1 & RATHL

EAG

- Stage 3 and 4 RATHL subgroups are potentially more representative than ECHELON-1 who are likely to be eligible for A + AVD
- Similar proportion of people aged <60 years and ≥60 years in ECHELON and stage 3 and 4 RATHL trial

Baseline characteristics		ECHELON-1			RATHL
		A+AVD (n=664)	ABVD (n=670)	Total (n=1,334)	Stage 3 &4
Sex,n (%)	Female	378 (56.9)	398 (59.4)	776 (58.2)	
	Male	286 (43.1)	272 (40.6)	558 (41.8)	
Mean age – years (SD; range)		38.8 (15.8)	40.2 (16.1)	39.5 (15.9)	
Age group (years) – n (%)	≤60	585 (88.1)	579 (86.4)	1,164 (87.3)	
	>60	79 (11.9)	91 (13.6)	170 (12.7)	
Cancer stage n (%)	Stage 3	237 (35.8)	246 (36.9)	483 (36.3)	
	Stage 4	425 (64.2)	421 (63.1)	846 (63.7)	

*Median

NICE Abbreviations: CI, confidence intervals; ORR, Overall response rate; RATHL - Response-Adapted Therapy for advanced Hodgkin Lymphoma; SD, standard deviation; QoL, quality of life

ECHELON-1: PET status after Cycle 2

Higher rate of PET2 negative people in A+AVD arm

Stage 4 had greatest difference* between A+AVD vs. ABVD

		A+AVD (n=664)	ABVD (n=670)	
ITT population	PET2 negative	588 (89)	577 (86)	
	PET2 positive	47 (7)	58 (9)	
	Missing PET at Cycle 2	29 (4)	35 (5)	
PET2 negative status relative risk (95% CI)		1.028 (0.99 to 1.07)		
Stage 3	PET2 negative	209 (88)	219 (89)	
	PET2 positive	13 (5)	15 (6)	
	Missing PET at cycle 2	15 (6)	12 (5)	
PET2 negative status relative risk (95% CI)		0.991 (0.93 to 1.06)		
Stage 4	PET2 negative	379 (89)	358 (85)	
	PET2 positive	34 (8)	42 (10)	
	Missing PET at Cycle 2	12 (3)	21 (5)	
PET2 negative status relative risk (95% CI)		1.049 (1.00 to1.10)		

*Not adequately powered to demonstrate statistically significant differences

NICE Abbreviations: CI, confidence interval; ITT, intent-to-treat; PET, positron emission tomography

How company incorporated evidence into model

Table: Summary of evidence used to inform the company's model

	Assumptions and evidence source			
Model Structure	Partition survival model			
Baseline characteristics	ECHELON-1 (mean age:39.53)			
Time horizon Cycle length	Lifetime (60 years) 7 days			
Treatment PFS	Mixture cure model to extrapolate PFS			
effectiveness OS	One-knot splines to extrapolate OS			
Utilities	ECHELON-1			
Mortality	SMRs of 1.05 and 1.10 are applied to background mortality in A+AVD and ABVD respectively			
Cost	eMIT, BNF, NHS Reference Costs, published literature for second malignancy costs, previous NICE appraisals (TA462, TA478, and TA524) for subsequent therapy costs			
Perspective	NHS and PSS			

Abbreviations: ICER, incremental cost-effectiveness ratio; BNF, British National Formulary; eMIT; electronic Market Information Tool; OS - overall survival; PFS, progression-free survival; SMR, standardised mortality; TA, technology appraisal

Source: EAG report, table 21

Main slide

Key issues: Generalisability of ABVD clinical data to practice (2)

Background

- SmPC recommends using G-CSF primary prophylaxis for all previously untreated Hodgkin lymphoma from cycle 1 but only 13% of people in A+AVD arm of ECHELON-1 had G-CSF primary prophylaxis from cycle 1
- AE data from RATHL used in model to capture AEs related to PET-adapted ABVD

EAG

- G-CSF used in ECHLEON-1 does not align with UK clinical practice, and may have resulted in more neutrophil-related AEs with A+AVD than expected
- 81% people in A+AVD arm had G-CSF in trial at anytime
- Large discrepancies in grade ≥3 AE incidences for ABVD in ECHELON-1 vs PET-adapted ABVD from RATHL
- AE data from RATHL used in model uses all (rather than drug-related) TEAEs; escalation treatment used in RATHL (escBEACOPP) doesn't align with escalation treatment used in clinical practice (escBEACOPDac)
- Overall, difficult to predict the direction of resulting bias in AE data used in the model

Outcome	G-CSF primary prophylaxis	No G-CSF primary prophylaxis
Neutropenia	35%	73%
Febrile neutropenia	11%	21%
Grade ≥3 neutropenia	29%	70%

Main slide

Abbreviations: AE, adverse events; G-CSF, granulocyte-colony-stimulating factor; RATHL - Response-Adapted Therapy for advanced Hodgkin Lymphoma

NICE

Key Issue: Use of a spline model for OS modelling

EAG

 ≥60 years old ABVD OS MCM curves show minimal variation and aligned with KM data, with exponential curve providing best fit; so preferred to use in its base case

Figure: OS age subgroup survival modelling using MCMs and EAG preferred extrapolation

Key issue: Use of different SMR for A+AVD and ABVD

Figure: comparison of observed hazards for OS in ECHELON-1 with UK lifetables

NICE

Key issue: Use of different SMR for A+AVD and ABVD

Publication	Population and disease setting	SMR	
Glimelius et al. 2015 ³⁹	1,947 Swedish HL patients diagnosed between 1992-2009, aged 18-59 years old	1.01 for relapse free patients at five years and 1.05 at 15 years	
Núñez-García et al. 2023 ⁴⁰	338 HL Spanish patients with up to 45 years of follow-up	Overall SMR was 3.57. The SMR of those diagnosed after 2000 was 2.73 when excluding HL as the cause of death	
Dores et al. 2016 ⁴¹	20,007 US patients aged 20 to 74 years old with HL diagnosed between 2001 and 2009	2.4 for advanced HL when excluding cancer related mortalities	
Perez-Callejo et al. 2018 ⁴²	595 Spanish patients diagnosed with HL between 1966 and 2014	Excluding the primary tumour as the cause of death, the SMR obtained was 2,266	

Abbreviations: HL, Hodgkin lymphoma; SMR, standardised mortality rate

NICE

EAG

- Used proportion of people having subsequent treatment based on company's clinical expert's opinion to reflect clinical practice
- Proportion of people who have radiotherapy would be higher than 0% suggested by company's clinical experts; EAG assumed 5% receive radiotherapy after progression

Proportion receiving each treatment

Treatment	A+AVD (ECHELON-1)	ABVD (ECHELON-1)	A+AVD (clinical opinion)	ABVD (clinical opinion)
ASCT	31.25%	33.96%	57.9%	60.08%
Pembrolizumab	1.55%	3.65%	65.85%	52.04%
Nivolumab	13.16%	14.59%	8.05%	8.24%
Brentuximab vedotin monotherapy	8.09%	44.03%	23.53%	47.88%
alloSCT or donor lymphocyte infusion	7.72%	14.47%	3.13%	3.82%
Multiagent chemotherapy	78.68%	87.42%	106.59%	108.26%
Radiation	8.58%	9.1%	0%	0%

Abbreviations: alloSCT: allogenic stem cell transplant; ASCT: autologous stem cell transplant