Technology Assessment Report commissioned by the NHS R&D HTA Programme on behalf of the National Institute for Health and Clinical Excellence

Ranibizumab and pegaptanib for the treatment of age-related macular degeneration: a systematic review and economic evaluation

Produced by	Southampton Health Technology Assessments Centre
Authors	JL Colquitt, Senior Research Fellow
	J Jones, Senior Research Fellow
	SC Tan, Research Fellow
	A Takeda, Research Fellow
	AJ Clegg, Professor / Director of SHTAC
	A Price, Information Scientist
Correspondence to	Dr JL Colquitt
	Southampton Health Technology Assessments Centre
	Wessex Institute for Health Research and Development
	University of Southampton
	Mailpoint 728, Boldrewood
	Southampton SO16 7PX
Date completed	November 2006

Note: This document and any associated economic model are protected by intellectual property rights (IPR), which are owned by the University of Southampton. Anyone wishing to modify, adapt, translate, reverse engineer, decompile, dismantle or create derivative work based on the economic model must first seek the agreement of the property owners.

Source of funding: This report was commissioned by the NHS R&D HTA Programme as project number 04/24/01.

Declared competing interests of the authors

None.

Acknowledgements

We would like to thank members of our advisory group panel who provided expert advice and comments on the protocol and/or a draft of this report:

- Professor Andrew Lotery*, Professor of Ophthalmology, University of Southampton
- Professor Usha Chakravarthy, Directorate of Ophthalmology, Royal Victoria Hospital, Belfast
- Professor David Wong, Chair of the Royal College of Ophthalmologists Scientific Committee
- Mrs Janet Marsden, Chair of the Royal College of Nursing Ophthalmic Nursing Forum
- Dr Catherine Meads, Director of MSc in EBH & HTA, University of Birmingham
- Mr Tom Bremridge[†], Chief Executive of the Macular Disease Society

We are also grateful to Liz Hodson, Library Assistant, WIHRD, University of Southampton and Jackie Bryant, Senior Research Fellow, SHTAC, University of Southampton for retrieving references and reviewing a draft of this report, respectively.

*Andrew Lotery has received research support from Novartis and Pfizer for attending advisory board meetings for them and has received travel support to attend research meetings. He has also provided advice to the one of the consultees (RNIB) for this appraisal. †Tom Brembridge represents the Macular Disease Society as one of the consultees for this appraisal.

Rider on responsibility for report

The views expressed in this report are those of the authors and not necessarily those of the NHS R&D HTA Programme. Any errors are the responsibility of the authors.

Contributions of authors

Development of protocol	Jill Colquitt, Jeremy Jones, Seng Chuen Tan, Andrea
	Takeda, Andrew Clegg
Epidemiology / background	Andrew Clegg
Literature searching	Alison Price
Inclusion screening	Andrea Takeda, Jill Colquitt

Data extraction / critical appraisal	Andrea Takeda, Jill Colquitt
Health economics	Jeremy Jones, Seng Chuen Tan
Drafting of report	Jill Colquitt, Jeremy Jones, Seng Chuen Tan, Andrea
	Takeda, Andrew Clegg
Project Co-ordinator	Jill Colquitt

TABLE OF CONTENTS

D	EFINITION OF TERMS AND LIST OF ABBREVIATIONS	8
E	XECUTIVE SUMMARY	. 10
	Background	. 10
	Objectives	. 10
	Methods	. 10
	Results	. 11
	Discussion	. 18
	Conclusions	. 19
1	BACKGROUND	. 22
	1.1 Description of health problem	. 22
	1.2 Current service provision	. 39
~	1.3 Description of technology under assessment	. 42
2	DEFINITION OF THE DECISION PROBLEM	. 46
	2.1 Decision problem	. 46
2	2.2 Overall aims and objectives of assessment	. 4/
3	ASSESSMENT OF CLINICAL EFFECTIVENESS	. 48
	3.1 Methods for reviewing effectiveness	. 48
	3.1.1 Search strategy	. 48
	3.1.2 Inclusion and data extraction process	. 48
	3.1.3 Quality assessment.	. 49
	2.1.5 Data grathagia	. 49
	2.2 Data synthesis	. 30
	3.2 Results	. 50
	3.2.1 Quality and quality of research available	. 50
	3.2.2 Assessment of effectiveness	. 57
	3.2.2.1 Visual deutry	. 57
	3.2.2.2 Subgroup analysis of visual acuity by resion type	. 07
	3.2.2.5 Change in contrast sensitivity	. 70
	3.2.2.4 Anatomical changes	73
	3 2 3 Compliance with treatment	75
	3.2.5 Compliance with dedunient	76
	3.3 Discussion of clinical effectiveness	82
	3.4 Summary of clinical effectiveness	85
4	ASSESSMENT OF COST-EFFECTIVENESS	89
•	41 Systematic review of existing cost-effectiveness evidence	89
	4.1.1 Results of the systematic review: cost-effectiveness of pegaptanib and	
	ranibizumab	. 90
	4.1.2 Other treatments for AMD: published economic evaluations	. 92
	4.1.3 Review of research on quality of life in AMD	. 95
	4.1.4 Review of manufacturers' submissions	. 98
	4.1.4.1 Pfizer submission to NICE: ¹⁰⁴ cost-effectiveness analysis	. 99
	4.1.4.2 Novartis submission to NICE: ⁹¹ cost-effectiveness analysis	109
	4.2 Independent economic assessment.	122
	4.2.1 Methods	122
	4.2.2 Results	135
	4.2.2.1 Cost-effectiveness of pegaptanib – base case analysis	135
	4.2.2.2 Cost-effectiveness of pegaptanib – deterministic sensitivity analysis	137
	4.2.2.3 Cost-effectiveness of pegaptanib – probabilistic sensitivity analysis	140
	4.2.2.4 Cost-effectiveness of ranibizumab – base case analysis	142
	4.2.2.5 Cost-effectiveness of ranibizumab – deterministic sensitivity analysis	146

	4.2.2.6	Cost-effectiveness of ranibizumab – probabilistic sensitivity	analysis 153
	4.2.3 Dis	scussion	
5	ASSESSM	ENT OF FACTORS RELEVANT TO THE NHS AND OTHE	R PARTIES
6	DISCUSSI	ON	166
	6.1 State	ment of principle findings	
	6.2 Stren	gths and limitations of the assessment	
	6.3 Unce	rtainties	
	6.4 Other	relevant factors	
7	CONCLUS	SIONS	
	7.1 Impli	cations for service provision	
	7.2 Sugge	ested research priorities	
8	REFEREN	CES	

Appendices

Appendix 1 Protocol methods	192
Appendix 2 Literature search strategies	198
Appendix 3 Quality assessment	208
Appendix 4 Data extraction tables	209
Appendix 5 List of selected excluded studies	253
Appendix 6 List of eligible abstracts	254
Appendix 7 List of ongoing studies	255
Appendix 8 Critique of industry submissions	257
Appendix 9 Ocular adverse events in study eye: CIC information from ranibizumab studi	ies
	263
Appendix 10 Non ocular adverse events: CIC information from ranibizumab studies	267
Appendix 11 Summary of measures reported in studies included in the review of quality	of
life in AMD	268
Appendix 12 Critical appraisal checklist of economic evaluation in Pfizer submission	272
Appendix 13 Critical appraisal checklist of economic evaluation in Novartis submission.	274
Appendix 14 Variables included in probabilistic sensitivity analysis	276

Tables

24
28
29
50
31
33
33
37
1
4
52
55
50
54
56
58
0'
'2

Table 3.9 Change from baseline in NEI VFQ-25 scores	74
Table 3.10 Adverse events: pegaptanib VISION study	77
Table 3.11 Adverse events: ranibizumab MARINA and ANCHOR studies	81
Table 4.1 Mean utility with time trade off and standard gamble for ophthalmologists and	d for
AMD patients	
Table 4.2 Utility scores in mean and 95% confidence interval by AMD severity	98
Table 4.3 Assessment of Pfizer submission against NICE reference case requirements	103
Table 4.4 Summary of sensitivity analyses using manufacturer's model (negantanib)	109
Table 4.5 ANCHOR – Predominantly classic lesions: Ranibizumah 0.5mg vs. PDT	113
Table 4.6 ANCHOR – Predominantly classic lesions: Indirect comparison of Panihizum	115 19h
0 5mg vs BSC	113
Table 4.7 PIER All type of AMD lesions: Panihizumah 0.5mg vs BSC	113
Table 4.8 MAPINA — Occult no clossic losions: Panihizumah 0.5mg vs DSC	113
Table 4.0 MARINA – Occur no classic lesions: Rambizumab 0.5mg vs BSC	114
Table 4.9 MARINA – Minimany classic resions. Randizuna 0.5mg vs BSC	114
Table 4.10 Assessment of Novarus submission against NICE reference case requirement	121
Table 4.11 Summary of sensitivity analyses using manufacturer's model (ranioizumad).	121
Table 4.12 Transition probabilities used to model effectiveness of pegaptanib, derived fi	rom
the VISION study	124
Table 4.13 Disease modifying effect of pegaptanib	125
Table 4.14 Injection-related adverse events in Year 1 of VISION trial	125
Table 4.15 Transition probabilities used in model, derived from the ANCHOR trial	126
Table 4.16 Transition probabilities used in model, derived from the MARINA trial	126
Table 4.17 Injection-related adverse events in ANCHOR trial	127
Table 4.18 Injection-related adverse events in MARINA trial	127
Table 4.19 Health state utilities used in economic model	128
Table 4.20 Management costs for injection-related adverse events	131
Table 4.21 Additional costs associated with vision loss below best corrected visual acuit	ty of
6/60 in better-seeing eye	133
Table 4.22 Cost-effectiveness of pegaptanib against usual care. Base case analysis	136
Table 4.23 Breakdown of total costs for each cohort by major categories. Base case anal	lysis
	137
Table 4.24 Deterministic sensitivity analysis - pegaptinib	138
Table 4.25 Medium, high and low estimates of uptake of services and unit costs include	d in
costs of blindness adopted in sensitivity analysis	140
Table 4.26 Cost effectiveness of ranibizumab against PDT or best supportive care. Trial	-based
analysis	143
Table 4.27 Cost effectiveness of ranibizumab against PDT or best supportive care. Ten	year
time horizon	144
Table 4.28 Breakdown of total costs for each cohort by major categories. Ranibizumab	base
case analysis	146
Table 4.29 Deterministic sensitivity analysis - ranibizumab against PDT for patients wit	h
predominantly classic lesions	148
Table 4.30 Deterministic sensitivity analysis - ranibizumab against best supportive care	for
patients with predominantly classic lesions.	148
Table 4.31 Deterministic sensitivity analysis - ranibizumab against best supportive care	for
patients with minimally classic or occult no classic lesions	150
1 J J J J J J J J J J J J J J J J J J J	

Figures

Figure 3.1 Flowchart of identification of published studies for inclusion in the systematic	
review of clinical effectiveness	. 51
Figure 4.1 State transition diagram	123
Figure 4.2 Treatment pathways for patients with AMD referred for specialist care	132

Figure 4.3 Cost effectiveness plane – incremental cost and incremental QALYs for	
pegaptanib compared with usual care14	11
Figure 4.4 Cost effectiveness acceptability curve – pegaptanib probabilistic sensitivity	
analysis results	12
Figure 4.5 Cost effectiveness plane - incremental cost and incremental QALYs, ranibizumat)
for patients with predominantly classic lesions compared with PDT15	53
Figure 4.6 Cost effectiveness acceptability curve, ranibizumab for patients with	
predominantly classic lesions compared with PDT15	54
Figure 4.7 Cost effectiveness plane - incremental cost and incremental QALYs, ranibizumat)
for patients with predominantly classic lesions compared with best supportive care 15	54
Figure 4.8 Cost effectiveness acceptability curve, ranibizumab for patients with	
predominantly classic lesions compared with best supportive care	55
Figure 4.9 Cost effectiveness plane - incremental cost and incremental QALYs, ranibizumat)
for patients with minimally classic and occult no classic lesions compared with best	
supportive care	55
Figure 4.10 Cost effectiveness acceptability curve, ranibizumab for patients with minimally	
classic and occult no classic lesions compared with best supportive care	56

DEFINITION OF TERMS AND LIST OF ABBREVIATIONS

Technical terms and abbreviations are used throughout this report. The meaning is usually clear from the context, but a glossary is provided for the non-specialist reader.

AMD	Age-related macular degeneration
AREDS	Age-related eye disease study
ARM	Age-related maculopathy
BNF	British National Formulary
CI	Confidence interval
CNV	Choroidal neovascularisation
CVI	Certificate of vision impairment
DA	Optic disc areas (measurement of lesion size: $DA = 2.54 \text{mm}^2$)
ETDRS	Early Treatment Diabetic Retinopathy Study
FA	Fluoroscein angiography
ICER	Incremental cost-effectiveness ratio
LogMAR	Log ₁₀ of the minimum angle of resolution
MAR	Minimum angle of resolution
МС	Minimally classic lesion
NEI-VFQ	National Eye Institute Visual Function Questionnaire
ОСТ	Optical coherence tomography
РС	Predominantly classic lesion
PDT	Photodynamic therapy
QALYs	Quality-adjusted life years
RCT	Randomised controlled trial
RPE	Retinal pigment epithelium
SPC	Summary of Product Characteristics
ТАР	Treatment of Age-Related Macular Degeneration with
	Photodynamic Therapy trial
μm	Micrometer (micron)
VAR	Visual acuity rating
VEGF, VEGF-A	Vascular endothelial growth factor. This is a protein that plays a
	critical role in angiogenesis (development of new blood vessels)
	and serves as one of the contributors to physiological or
	pathological conditions that can stimulate the formation of new

	blood vessels.
VIP	Verteporfin in Photodynamic Therapy trial

EXECUTIVE SUMMARY

Background

Age-related macular degeneration (AMD) causes loss of central vision and is one of the leading causes of irreversible sight loss among adults registered blind. The decrease in vision is associated with a loss of independence, an increased risk of depression, falls and fractures, and a decrease in health related quality of life. There are different types of AMD, which have different manifestations, prognoses and treatment strategies. Neovascular or wet AMD has a more variable course than other types and can progress much more quickly. Neovascular AMD is due to choroidal neovascularisation (CNV), which can be subdivided into different disease types according to its appearance on fluorescein angiography: 100% classic, predominantly classic (>50% classic), minimally classic (<50% classic), or occult with no classic. AMD lesions can also be classified according to where they occur in relation to the fovea: subfoveal, juxtafoveal or extrafoveal. Geographic atrophy (or dry AMD) is associated with gradual, progressive loss of visual function, and is not considered in this report.

Treatment options for AMD are limited. Photocoagulation therapy may be used for those with extrafoveal CNV, but only a small proportion of patients have extrafoveal lesions. Photodynamic therapy with verteporfin has been recommended by NICE for those with classic no occult subfoveal CNV and may be used in patients with predominantly classic lesions as part of clinical studies. While these treatments may be effective in treating established lesions, they do not prevent new CNV formation and are limited to certain subgroups of patients. Ranibizumab and pegaptanib aim to alter the progression of vision loss in patients with subfoveal CNV, and may improve vision in some patients.

Objectives

To assess the clinical effectiveness and cost-effectiveness of ranibizumab and pegaptanib for subfoveal CNV associated with wet AMD.

Methods

Data sources

Electronic databases were searched from inception to September 2006. Bibliographies of included studies and related papers were checked for relevant studies. Experts were contacted

for advice and peer review and to identify additional studies. Manufacturer submissions to the National Institute for Health and Clinical Excellence were reviewed.

Study selection

Titles and abstracts were screened for eligibility by two reviewers. Inclusion criteria were applied to the full text of selected papers by one reviewer and checked by a second reviewer, with differences resolved though discussion. Inclusion criteria:

- Patients: subfoveal CNV associated with wet AMD.
- Interventions: ranibizumab, pegaptanib, combinations of these with photodynamic therapy where the licensed indication allows.
- Comparators: best supportive care, photodynamic therapy with verteporfin for the subgroup with classic no occult lesions. If insufficient evidence was found using these comparators, sham injection was to be included for all subgroups, and photodynamic therapy with verteporfin was to be included for the subgroup with predominantly classic lesions.
- Outcomes: visual acuity, contrast sensitivity, adverse effects, adherence to treatment, health-related quality of life, costs, cost/QALY.
- Types of studies: RCTs, systematic reviews and meta-analyses of RCTs, economic evaluations. Abstracts were considered if sufficient information was presented. Non-English language studies were excluded.

Data extraction and quality assessment

Data extraction and quality assessment were undertaken by one reviewer and checked by a second, with differences resolved though discussion. The quality of included studies was assessed using criteria by NHS Centre for Reviews and Dissemination (CRD).

Data synthesis

The clinical-effectiveness data were synthesised through a narrative review with full tabulation of results. Meta-analysis was not undertaken due to differences in study populations and comparators.

Results

Number and quality of studies

The combined analysis of two RCTs of pegaptanib (0.3 mg [licensed dose], 1.0 mg and 3.0 mg) versus sham injection in patients with all lesion types was reported by three publications

(the VISION study). Two published RCTs of ranibizumab were identified, and two additional unpublished RCTs were provided by the manufacturer, comparing:

- 0.3 mg and 0.5 mg ranibizumab versus sham injection in patients with minimally classic or occult lesions (MARINA)
- 0.3 mg and 0.5 mg ranibizumab versus PDT with verteporfin in patients with predominantly classic lesions (ANCHOR)
- A reduced dose frequency regimen of 0.3 mg and 0.5 mg ranibizumab versus sham injection in patients with any lesion type (PIER, unpublished)
- 0.5 mg ranibizumab plus PDT versus PDT plus sham injection in patients with predominantly classic lesions (FOCUS, unpublished)

The quality of the pegaptanib VISION study was generally good. The two published ranibizumab trials and the two unpublished trials were also of good methodological quality.

Summary of benefits and risks

Pegaptanib

- *Visual acuity:* Statistically significantly more pegaptanib patients (0.3 mg: 70% of patients; 1.0 mg: 71% of patients; 3.0 mg: 65% of patients) lost less than 15 letters of visual acuity at 12 months than sham injection patients (55% of patients). Doses of 0.3 mg or 1.0 mg also showed statistically significant improvements in all secondary measures of visual acuity, but the 3.0 mg dose was not consistent in producing a statistically significant difference. The proportion of patients gaining 15 letters or more was statistically significantly greater in the 0.3 mg (6%, p=0.04) and the 1.0 mg group (7%, p=0.02), but not the 3.0 mg group (4%, p=0.16) compared with the sham injection group (2%). A gain of 15 letters in visual acuity is a clinically important outcome and would have a significant impact on quality of life. Pegaptanib patients lost statistically significantly fewer letters after 12 months of treatment than the sham group (mean letters lost: 7.5 [0.3 mg], 6.5 [1.0 mg] or 10 [3.0 mg] vs 14.5 [sham]).
- Legal blindness: Significantly fewer pegaptanib patients deteriorated to legal blindness (38% [0.3 mg], 43% [1.0 mg], 44% [3.0 mg] versus 56% [sham], p<0.001).
- Subgroup analysis: A statistically significant difference in mean change in visual acuity
 was found between all doses of pegaptanib and sham injection for patients with minimally
 classic or occult with no classic lesions. Only the licensed 0.3mg dose was significantly
 more effective in reducing visual acuity loss in people with predominantly classic lesions.
 The publications did not report subgroup analyses of the primary outcome.
- Anatomical changes: The 1.0 mg dose had a statistically significant effect on change in size of lesion, change in size of CNV and change in size of leakage, but the 0.3 mg dose

had a significant effect on change in size of lesion only, and the 3.0 mg dose was not statistically significantly different from sham for any of these anatomical measures.

Adverse events: Most adverse events were mild to moderate transient events.
 Endophthalmitis was experienced by 1.3% of patients receiving pegaptanib in the first year.

Ranibizumab

Visual acuity: Significantly more patients receiving ranibizumab (0.3 mg: 94.3% to 94.5%; 0.5mg: 94.6% to 96.4%) lost less than 15 letters of visual acuity after 12 months compared with sham injection (62.2%, p<0.0001) or PDT (64.3%, p<0.0001). 0.5 mg of ranibizumab plus PDT significantly increased the proportion losing less than 15 letters compared with PDT plus sham injection (90.5% versus 67.9%, p=0.0003) in patients with predominantly or minimally classic lesions. A reduced dosing frequency was

patients losing less than 15 letters injection The proportion of patients gaining 15 letters or more of visual acuity was statistically significantly higher in the ranibizumab groups (MARINA and ANCHOR, 0.3 mg: 24.8% and 35.7%, 0.5 mg: 33.8% and 40.3%, respectively) compared with sham injection (4.6%, p<0.0001) or PDT (5.6%, p<0.0001). This was for patients receiving<u>*</u>0.5 mg ranibizumab plus PDT compared with PDT plus sham injection (23.8% vs 5.4%, p=0.033). There was patients gaining 15 letters or more between ranibizumab and sham injection in the reduced dose frequency study. In

the MARINA and ANCHOR trials, ranibizumab patients gained letters of visual acuity (mean 6.5 to 11.3) at 12 months while patients with sham injection or PDT lost about 10 letters (p<0.001). In the PIER study, patients lost on average 1.6 letters (0.3 mg) or 0.2 letters (0.5 mg) compared with a loss of 16.3 letters in the sham injection group (p<0.0001).

Legal blindness: Significantly fewer patients receiving ranibizumab deteriorated to legal blindness (MARINA and ANCHOR, 0.3mg: 12.2% and 22.1%, 5 mg: 11.7% and 16.4%, respectively) versus sham injection (42.9%) or PDT (60.1%), p<0.0001.

patients receiving_0.5mg ranibizumab plus PDT deteriorated to legal blindness compared with PDT plus sham

injection	The difference between <u>*</u> ranibizumab and
sham injection was	in the reduced dose PIER
study	

 Subgroup analysis: In the MARINA, FOCUS and ANCHOR trials, the difference in the primary outcome between the ranibizumab groups and the comparator group was statistically significant for each lesion subgroup. In the reduced dose frequency PIER study, the difference between 0.5mg

	ranibizumab versus sham
	injection was
	for the group of patients with
•	Contrast sensitivity: Contrast sensitivity
	groups
	in the sham injection PDT
	groups The reduced dose frequency PIER study
	found
	in contrast sensitivity compared
	with
•	Anatomical changes: The MARINA, and ANCHOR trials demonstrated
	statistically significant differences between 0.3 mg or 0.5 mg ranibizumab and the
	comparator for the area of CNV, area of leakage from CNV plus intense progressive
	retinal pigment epithelium staining, or area of classic CNV.
•	Visual function questionnaire scores: results were reported
	for a second ranibizumab compared with sham
	injection NEI VFQ-25
	, and and
	A in was found
	with when compared with
	PDT. There were between
	ranibizumab and sham injection in the reduced dose PIER study.
•	Adverse events: Adverse events were common but most were mild to moderate. Serious
	ocular events were rare in the MARINA and ANCHOR trials. Incidences of severe ocular
	inflammation varied between treatment arms, and were highest in the 0.5mg ranibizumab
	groups. The rate of serious ocular adverse events was
	in the ranibizumab plus PDT group compared
	with PDT. Endophthalmitis was reported by very few patients in
	the active treatment arms of the ranibizumab trials and none in the control arms. The
	condition occurred in up to 1.4% of 0.5mg dose ranibizumab patients in the ANCHOR
	trial, and the rate per injection was 0.05% in the MARINA trial. Endophthalmitis
	occurred in of patients across the and and trials

Very few deaths were reported in the ranibizumab trials, with numbers of deaths being

approximately equal between trial arms. More people died from vascular causes than from non-vascular causes.

Summary of costs

The drug acquisition costs for one year's treatment with pegaptanib was estimated as £4,626, assuming that nine injections are provided during the year at six-weekly intervals as indicated in the Summary of Product Characteristics (SPC) for pegaptanib. The drug acquisition costs for one year's treatment with ranibizumab was estimated as £9,134, assuming that twelve injections are provided during the year, at four-weekly intervals. In addition to drug costs are the costs of administering the injection, repeat vision assessments, fluoroscein angiography for identifying lesions, optical coherence tomography and fluoroscein angiography for monitoring response to treatment, as well as outpatient visits prior to initiation of therapy and for follow-up during treatment. These account for an additional £2,585 for one year's treatment with pegaptanib (36% of total treatment costs) and £3,362 for ranibizumab (21% of total treatment costs).

Further costs of treatment are associated with the management of injection-related adverse events – while the proportion of injections associated with adverse events are low, costs of managing each event range from $\pounds1,200$ to $\pounds2,100$. Injection-related adverse events are also associated with significant risks of severe loss of visual acuity.

Summary of cost-effectiveness

With no economic evaluations identified in the systematic review of cost-effectiveness, a model was developed to estimate the cost-effectiveness separately of ranibizumab and of pegaptanib, compared to current practice or best supportive care, from the perspective of the NHS and Personal Social Services.

Two time horizons were adopted for each model. The first (short-term analysis) adopted time horizons determined by the available trial data. In this analysis, no attempt was made to extrapolate costs or effects beyond the period of follow-up in clinical trials of ranibizumab and of pegaptanib. The second analysis extrapolated effects of treatment beyond the clinical trials, adopting a time horizon of ten years, the approximate life expectancy for the cohort of AMD patients being modelled.

The proportions of patients gaining and losing visual acuity reported in the clinical trials were converted to three-month transition probabilities in the model and combined with published estimates of health state utilities to estimate the QALYs associated with each intervention.

Categories of costs included in the model were drug costs, drug administration and patient monitoring while on treatment, management of treatment-related adverse events and coadministration of PDT (if appropriate). Since the cost-effectiveness analysis adopted an NHS and Personal Social Services perspective, costs of services provided to people with visual impairment were included in the model. These included costs of blind registration, provision of low vision aids and low vision rehabilitation as one-off costs as, well as recurring costs such as community care, residential care and costs of morbidity associated with impaired vision (depression and fractures).

The incremental cost-effectiveness ratio (ICER) for pegaptanib compared to usual care in the short-term model is £163,603. This high ICER arises due to a relatively small QALY gain at two years and because treatment costs are realised in the first two years, whereas the reduction in patients' progression to blindness, which would be expected to lead to reduced use of services for visual impairment, is not apparent over this short time scale. In the longer-term model a larger QALY gain (0.26) is realised. By this stage costs of services for visual impairment between the pegaptanib-treated and usual care cohorts is not large enough to fully offset treatment costs, the ICER is reduced to £30,986.

For ranibizumab we undertook separate analyses for patients with predominantly classic lesions (based on clinical data from the ANCHOR trial}) and for patients with minimally classic and occult no classic lesions (based on clinical data from the MARINA trial. Total costs and the quality adjusted life years associated with each intervention were estimated. The incremental cost per QALY gained for ranibizumab against best supportive care, for all lesion types, and against PDT for patients with predominantly classic lesions was estimated.

The ICERs in the trial-based analyses are between £150,000 and approximately £200,000. The high ICER arises due to relatively small QALY gains (0.04 QALYs and 0.07 QALYs after one year of treatment for patients with predominantly classic lesions in comparison with PDT and best supportive care, respectively) and high incremental costs (approximately £8,000 for the comparison with PDT and £11,500 for the comparison with best supportive care). The QALY gain after two years of treatment for patients with minimally classic and occult no classic lesions is 0.14 QALYs and the incremental cost is £22,400.

The QALY gain at ten years is larger (0.34 and 0.57 for patients with predominantly classic lesions compared with PDT and best supportive care, respectively). The incremental costs

16

have reduced to £5,391 and £6,457, giving ICERs of £15,638 for the comparison with PDT and £11,412 for the comparison with best supportive care. The QALY gain at ten years for patients with minimally classic and occult no classic lesions is 0.69 QALYs and the incremental cost has reduced to £17,314, giving an ICER of £25,098.

Sensitivity analyses

Deterministic sensitivity analysis showed that the cost-effectiveness estimates in the base case were sensitive to some key assumptions. As discussed above the model time horizon has a large impact on cost-effectiveness of treatment (the longer the time horizon, the more likely the treatment is cost-effective). Visual acuity of the cohort at baseline had an impact in the analysis of pegaptanib (the lower the visual acuity the less likely the treatment is cost-effective), but was less influential on the cost effectiveness estimates for ranibizumab.

Analysis of non-response (patients losing at least 15 letters of visual acuity from baseline) in patients randomised to discontinue pegaptanib after one year of treatment and followed up for a year suggests that pegaptanib may have a disease modifying effect rather than simply treating AMD symptoms. If this effect is included in the model only for the year after treatment stops, the ICER falls to $\pounds 26,896 - if$ we assume that the effect persists for the patient's lifetime the ICER falls to $\pounds 20,467$.

The cost-effectiveness estimates were particularly sensitive to assumptions over the cost of services for visual impairment and the uptake of these services. Using extreme values produced a situation where treatment with pegaptanib or ranibizumab was cost-saving over a ten year time horizon (assuming high cost and high uptake) or alternatively could be associated with a 30% to 70% increase over the base case estimate for incremental cost (assuming low cost and low uptake). Further analysis suggested that the cost-effectiveness estimates were most sensitive to assumptions over uptake, estimated as the proportion of eligible cases receiving services.

In a probabilistic sensitivity analysis for pegaptanib, where probabilities of losing or gaining visual acuity, the size of disease modifying effect, health state utility values, cost of outpatient attendances, fluoroscein angiography and optical coherence tomography and costs of services for visual impairment were sampled probabilistically, the majority of simulations produced incremental cost effectiveness estimates that were in the north-east quadrant of the cost-effectiveness map. That is, the majority of simulations were associated with increased QALYs

but also increased costs. In this analysis, pegaptanib had a probability of being cost-effective (compared with usual care) of 17% at a willingness to pay threshold of £20,000 per QALY and 58% at a willingness to pay threshold of £30,000 per QALY.

In a probabilistic sensitivity analyses for ranibizumab (conducted separately for lesion types and alternative comparators) where probabilities of losing or gaining visual acuity, health state utility values, cost of outpatient attendances, fluoroscein angiography and optical coherence tomography and costs of services for visual impairment were sampled probabilistically, the majority of simulations produced incremental cost effectiveness estimates that were in the north-east quadrant of the cost-effectiveness map. That is, the majority of simulations were associated with increased QALYs but also increased costs. In this analysis, ranibizumab for patients with predominantly classic lesions had a probability of being cost-effective (compared with PDT) of 72% at a willingness to pay threshold of £20,000 per QALY and 97% at a willingness to pay threshold of £20,000 per QALY and 97% at a threshold of £30,000 per QALY. For patients with minimally classic and occult no classic lesions the probabilistic sensitivity analysis shows a 15% probability of ranibizumab being cost-effective at a willingness to pay threshold of £20,000 per QALY and 81% at a willingness to pay threshold of £30,000 per QALY.

Discussion

We applied the same model, using the same health state utilities and assumptions over resource use at each contact, to estimate cost effectiveness for each drug. Resource use assumptions were developed with advice from clinical experts who advised on the development of this review.

Clinical evidence relevant to each drug has been extracted from good quality RCTs included in the systematic review. Response to treatment was assessed using an accepted measure of significant clinical difference (fifteen letters of visual acuity), to model cost and outcome differences over the time horizons of the clinical trials and over patients' lifetimes. The age of patients in the clinical trials reflect the age-specific incidence and prevalence of AMD reported in epidemiological studies, and would be expected to be broadly representative of patients presenting for treatment. The majority of the data included in the model are in the public domain. The model structure and data inputs are clearly presented in this report. This should facilitate replication and testing of our model assumptions.

We used aggregate data to derive the transition probabilities used in the model. This requires an underlying assumption that the probability of gaining or losing visual acuity is independent of the patients' baseline visual acuity. This may not hold – the survival models developed in the Pfizer submission included three initial visual acuity levels. It is possible that the poorer the initial visual acuity (i.e. greater disease progression at baseline) the less likely patient is to respond to treatment.

The validity of assumptions underlying our extrapolation from trial results to ten years may be open to question. We assumed that progression in the best supportive care cohorts (observed at the end of the trials) can be used to model progression in the treated cohort. In the absence of evidence of post-treatment effects and with a lack of long-term follow up of treated patients, we cannot rule out the possibility of a rebound effect (where all benefit, in terms of delayed progression and visual improvement, is lost shortly after treatment ends). An additional assumption, implicit in our extrapolated analysis, is that the utility associated with visual acuity in the better-seeing eye is constant over time. This may be questioned, given research suggesting that patients adapt to their reduced visual function. This might be expected to reduce the QALY gain associated with treatment. However it is unclear how this can be quantified.

Conclusions

Implications for service provision

Current estimates suggest that around 30% of patients with neovascular AMD are eligible for PDT. The implication of recommendations in interim guidelines on the management and treatment of AMD from the Royal College of Ophthalmologists that intraocular injection of anti-VEGFs should be considered for patients with minimally classic, occult no classic and for predominantly classic subfoveal CNV is that the number of patients eligible for active treatment is likely to increase substantially. One estimate is that patient numbers could increase from 7,000 to 26,000 per year. Workload in ophthalmic services may increase up to six-fold since treatment with anti-VEGFs requires more frequent attendance and monitoring than does PDT.

Many organisations, including the Royal College of Ophthalmolgists and patient advocacy groups, have argued that current services will be unable to cope with this increased workload and there is a likelihood that this introduction of intravitreal therapy will have an effect on the ability of departments to deliver ophthalmic services overall. Guidelines emphasise the need for a multi-disciplinary team to deliver these treatments, including ophthalmologists experienced in injection procedures, specialist nurses, optometrists and technicians. The increase in patient load and frequency of assessment associated with treatment with pegaptanib and ranibizumab is likely to require additional specialist imaging equipment (for fluoroscein angiography and optical coherence tomography) as well as provision of clean rooms for performing the injection procedure.

Suggested research priorities

- This report has established that ranibizumab is clinically effective for delaying vision loss and improving vision in AMD. Bevacizumab (Avastin), which is biologically similar to ranibizumab, is being increasingly used off-label for the treatment of AMD. The US National Eye Institute of the National Institutes for Health announced in October 2006 that it will be funding a new multicentre clinical trial to compare ranibizumab and bevacizumab for AMD. In the UK, an application to the HTA Clinical Trials Programme for a trial of bevacizumab versus ranibizumab with further randomisation to PDT has been short-listed. These trials should establish whether bevacizumab is a clinically and cost-effective alternative to ranibizumab.
- Pegaptanib is clinically effective for delaying vision loss associated with AMD. Although
 the proportion of patients experiencing improvements in vision appears less with
 pegaptanib than ranibizumab, no head to head RCTs have been conducted. A trial
 comparing pegaptanib with ranibizumab and bevacizumab is recommended. The role of
 verteporfin PDT in combination with these drugs should also be investigated.
- A study to assess adverse events outside the proposed RCTs is also required.
- Further research is required on the optimal dosing regimes of these drugs and the benefits of re-treatment after initial treatment.
- More detailed costing work is required, for example an independent survey of the costs associated with vision loss.
- Further research is required into health state utilities and their relationship with visual acuity and contrast sensitivity. Further research is required to reduce uncertainty over the relationship between duration of vision loss and the quality of life and functional impact of vision loss.

• The genetic cause of AMD can be detected in 50% of patients. Research to determine whether being identified as genetically at risk will alter behaviour, for example, inspire people to stop smoking, would be useful.

1 BACKGROUND

1.1 Description of health problem

Age-related macular degeneration (AMD) is one of the leading causes of irreversible sight loss among adults registered blind.¹ The disease causes loss of central vision resulting in sufferers being unable to read, recognise faces or drive a vehicle, and is associated with a decrease in quality of life and an increased risk of falls.

AMD is the late stage of age-related maculopathy (ARM), which is a disorder of the macular area of the retina and is most often clinically apparent after 50 years of age.² There are different types of late age-related maculopathy (or AMD), which have different manifestations, prognoses and treatment strategies. AMD can itself be classified into early and late stages; the early stage is associated with minimal visual impairment³ and is not discussed further here.

Late stage AMD can be either of the geographic, atrophic form or of the neovascular exudative form, also known as wet AMD. Geographic atrophy is a form of extensive atrophy (wasting of cells) which results in patterns of damage that look similar to a map, and is associated with gradual, progressive loss of visual function. Neovascular AMD is due to choroidal neovascularisation (CNV), which involves the formation of immature blood vessels that grow between the retinal pigment epithelial cells and the photoreceptor cells in the centre of the retina. Wet AMD has a more variable course than geographic atrophy, and can progress much more quickly, sometimes within days or weeks.³

An international classification system for ARM has been proposed as follows:²

ARM

- Soft drusen ≥ 63 μm (drusen are discrete lesions consisting of lipids deposited under the retina⁴)
- Areas of increased pigment or hyperpigmentation (in the outer retina or choroid) associated with drusen
- Areas of depigmentation or hypopigmentation of the retinal pigment epithelium (RPE), most often more sharply demarcated than drusen, without any visibility of choroidal vessels associated with drusen.

Late ARM (AMD): Geographic atrophy or dry AMD

 Any sharply delineated roughly round or oval area of hyperpigmentation, or apparent absence of RPE in which surrounding vessels are more visible than in surrounding areas that must be at least 175 µm

Late ARM (AMD): Neovascular AMD, wet AMD, disciform AMD or exudative AMD

- RPE detachment(s), which may be associated with neurosensory retinal detachment, associated with other forms of ARM
- Subretinal or sub-RPE neovascular membrane(s)
- Epiretinal (with exclusion of idiopathic macular puckers), intraretinal, subretinal or subpigment eoithelial scare/glial tissue or fibrin-like deposits
- Subretinal haemorrhages that may be nearly black, bright red, or whitish-yellow and that are not related to other retinal vascular disease (haemorrhages in the retina or breaking through into the vitreous may also be present)
- Hard exudates (lipids) within the macular area related to any of the above, and not related to other retinal vascular disease

Approximately two-thirds of late stage AMD cases⁵⁻⁷ and the majority of patients with legal blindness due to AMD⁸ have the neovascular form of the disease. This report is concerned with neovascular AMD.

CNV associated with neovascular AMD can be subdivided into different disease types according to its appearance on fluorescein angiography (a technique used for examining blood vessels in the retina). Leakage patterns examined using this technique can be described as classic or occult, or both classic and occult. In classic CNV, discrete areas hyperfluoresce early in the fluorescein photographic study, and continue to leak progressively. Occult CNV is characterised by stippled hyperfluorescence and late leakage, or leakage of undetermined origin.⁹ A further subdivision has been created since the Treatment of Age-related Macular Degeneration with Photodynamic Therapy (TAP) trial,¹⁰ so that lesions can be classified as either 100% classic, predominantly classic (classic CNV at least 50% of lesion), minimally classic (classic CNV < 50% but > 0% of lesion) or occult (no classic).

Subdivisions can also be made according to where the lesions occur in relation to the fovea, which is the central part of the macula and the area of highest visual acuity: subfoveal (located behind the middle of the fovea); juxtafoveal (located within 200 μ m of the fovea, but not the middle of it); and extrafoveal (located >200 μ m outside the fovea). Assessment of the location of lesions in people with neovascular AMD showed that 78.5% were subfoveal,

16.5% juxtafoveal and 5% extrafoveal.¹¹ The type of lesion appeared to vary by location. For those people with subfoveal lesions, 73% were occult with no classic, 20% were predominantly classic and 7% were minimally classic. In contrast, for those with juxtafoveal or extrafoveal lesions, 51% were occult with no classic, 47% were predominantly classic and only 2% were minimally classic.¹¹

Aetiology

The cause of AMD is not well defined, and conflicting evidence exists for many of the potential risk factors. It is evident from the studies examining the incidence and prevalence of AMD that age is a key risk factor.¹² The Age-Related Eye Disease Study (AREDS) Research Group¹² examined the risk factors for AMD through a prospective clinic based cohort study of 3294 people aged 55 to 80 years. Multivariate logistic regression analysis confirmed the importance of age on the incidence of neovascular AMD, with older people having a significantly higher incidence than younger people (Table 1.1). However, other demographic, behavioural and medical risk factors have been shown to determine the occurrence of AMD and its neovascular form.

			Odds ratios (95% CI)	
Risk Factor	Exposure		Bilateral drusen (n=2506)	Unilateral advanced AMD (n=788)
Age (yrs)	65-69	<65	1.67 (1.05-2.67)	1.65 (1.00-2.72)
	>70	<65	2.37 (1.52-3.71)	1.94 (1.24-3.04)
Gender	Male	Female	0.83 (0.61-1.14)	0.70(0.51-0.96)
AREDS	Antioxidants	Placebo	0.72 (0.47-1.09)	0.73 (0.48-1.11)
treatment	Zinc	Placebo	0.85 (0.57-1.28)	0.53 (0.35-0.81)
	Antioxidants +	Placebo	0.83 (0.55-1.25)	0.39 (0.25-0.59)
	zinc			
Race	White	Other	6.77 (1.24-36.90)	
Smoking	>10 pack-years	\leq 10 pack-years	1.55 (1.15-2.09)	
Diabetes	Present	Absent		1.88 (1.07-3.31)
Antacid use	Present	Absent	1.70 (0.99-2.95)	
Refractive error	Hyperopic	Myopic		1.70 (0.89-3.25)

 Table 1.1 Odds ratios for selected significant risk factors for neovascular AMD¹²

Oxidative processes and factors affecting these are thought to play a role in the development of AMD.⁴ The most frequently cited modifiable risk factor for AMD is cigarette smoking. Smoking reduces plasma antioxidant levels, which leave the body more susceptible to oxidative stress.¹³ The AREDS Research Group¹² found that the incidence of neovascular AMD was significantly higher for people who smoke more than 10 pack-years (average of 1 pack of cigarettes smoked per day for a year; Table 1.1). Another study ¹⁴ found that current and former smokers had a 3.6 and 3.2 greater risk, respectively, of AMD compared with people who had never smoked. Schmidt and colleagues¹⁵ reported statistical evidence for a gene-environment interaction, which suggests that people who are genetically susceptible to AMD and smoke cigarettes are at significantly higher risk of AMD than people with only one of these two risk factors.

A Cochrane review ¹⁶ found no overall link between dietary antioxidants and reduction in risk of AMD. However, there is some evidence that progression in people who already have AMD could be reduced by dietary intervention. The AREDS group¹⁷ found that people with intermediate AMD or advanced AMD in one eye and non AMD in the other eye reduced the risk of developing advanced stage AMD by about 25% when treated with a high-dose combination of vitamins C and E, beta-carotene and zinc. Another Cochrane review,¹⁸ which included further results from AREDS, indicated that supplementation with antioxidants and zinc may be of modest benefit in delaying progression in people with AMD.

Higher body mass index and waist circumference have been linked with a statistically significant increased risk for progression to advanced AMD.¹⁹ Analysis of AREDS data²⁰ found modifiable factors such as high body mass index altered the genetic susceptibility of people at high risk of AMD. There is some evidence that the incidence of neovascular AMD is significantly higher among people with diabetes.¹²

Other risk factors which have been suggested for AMD include family history of the condition, vascular disease,²¹ hypertension,²¹ gender (some studies indicate a slightly higher risk for women) and having light coloured irides⁹ (the coloured part of the eye). Some studies¹² indicate that being of white race is a risk factor for wet AMD, but there is conflicting evidence for this.⁹

Natural history

Subfoveal CNV due to AMD has a poor prognosis for vision loss, particularly among people with predominantly classic CNV or occult with no classic CNV. ²² A review²² found that between 60% and 80% of eyes in patients with untreated subfoveal classic CNV (which could also have an occult CNV component) lost three or more lines of visual acuity during two years' follow-up. For untreated eyes with subfoveal occult with no classic CNV, approximately 60% lost three or more lines of visual acuity through the two year follow-up period. Losing three lines of visual acuity would have a significant impact on the patient's quality of life and, depending on the starting point, could mean the difference in being able to drive, to read or watch television, or to live independently.

Bilateral AMD (i.e. the development of AMD in the patient's other eye) developed within five years in 43% of patients in the AREDS study¹⁷ who had advanced AMD in one eye. The Royal College of Ophthalmologists²³ estimates that for people with AMD-related visual loss affecting one eye, the risk of losing vision in the other eye increases by 7-10% annually. Factors such as lesion composition, number or size of drusen, hyperpigmentation, pigment epithelial tear and definite systemic hypertension might affect the risk of developing AMD in the second eye.^{22,23}

Klaver and colleagues⁵ identified a strong association between incident AMD and the stage of ARM at baseline, with the more advanced stages of ARM having a greater incidence of ARM at follow-up. While no people with ARM stage 0 or 1 at baseline progressed to AMD within 2 years, people in stage 2 and stage 3 had overall incidences of 14.0 per 1000 person years (2-year cumulative incidence 3%) and 48.2 per 1000 person years (2-year incidence 9%), respectively. They also found that for those with AMD in only one eye at baseline, involvement of the second eye was likely with an incidence rate of 170.6 per 1000 person-years (2 year cumulative incidence 28.9%). Van Leeuwen and colleagues⁶ assessed the risk of developing AMD as a function of early fundus signs. The risk of developing AMD in the second eye appeared high, with an incidence rate of 97.8 per 1000 person-years (5 year cumulative incidence 38.7% (95% CI: 22.5%, 60.9%) and 89% chance it would be the same type of AMD as in the first eye.

Epidemiology of macular degeneration

Despite the importance of macular degeneration as a public health concern, difficulties persist in assessing the likely current and future burden of the condition. Available routine data tend to use the International Classification of Disease Definition (ICD10) and focus on disease registers. The wide variety of conditions encompassed within the ICD10 definition that includes macular degeneration and the inherent problems of under-reporting of registrations have rendered their use problematic. As a consequence, assessment of the incidence and prevalence of macular degeneration and its different forms has tended to rely on the use of representative population based clinical surveys. These too are affected by differences in methods used for diagnosing and assessing macular degeneration, variations in the definitions of AMD and its sub-classifications, methods used within the studies and different geographical and socio-demographic factors. Notwithstanding these difficulties, several studies have been undertaken within Europe, USA, Australia and other countries. This section discusses key meta-analyses and population surveys assessing the incidence and prevalence of AMD and its neovascular form. Also it uses these to provide some provisional estimates of the burden of disease.

Incidence

The incidence of AMD appears to vary, with rates differing depending on the type of AMD, the demographic composition of the population studied, the stage of the disease at outset and on the methods used to diagnose the condition and to assess its incidence (Table 1.2). In a population based incidence study in Rotterdam in The Netherlands, Klaver and colleagues⁵ examined the incidence and progression of AMD in a cohort of 4953 people aged 55 years and older. They found an overall incidence rate for AMD of 1.2 per 1000 person years (2 year cumulative incidence 0.24%). The incidence increased with age from under 1.0 per 1000 person years for those aged less than 75 years to 8.80 per 1000 person years for those aged 85 years and over. Women (1.37 per 1000 person years) tended to have a higher incidence of AMD than men (1.00 per 1000 person years), though differences were not statistically significant (p=0.99). Van Leeuwen and colleagues⁶ extended the analysis of Klaver and colleagues,⁵ assessing the incidence of AMD after 5 years follow-up. The overall incidence for AMD was higher at 1.8 per 1000 person-years. Although Van Leeuwen and colleagues⁶ found a similar increase in incidence of AMD with age (Table 1.2), the rates by sex did vary. Men (2.0 per 1000 person years) had a higher incidence than women (1.6 per 1000 person years), although differences were not statistically significant. Also, the risk of suffering from neovascular AMD was shown to be higher than that for atrophic AMD with a ratio of 1.4:1.

Similar associations between age and gender and the incidence of AMD were identified by Klein and colleagues²⁴ and Mitchell and colleagues.²⁵ In a 10-year study of 4926 people aged 43 to 86 years in Beaver Dam, Wisconsin, USA (Table 1.2), Klein and colleagues²⁴ found a 10-year incidence of 2.1%. Incidence rates were higher among women (2.4%) than men (1.7%) and increased with age for all persons from 1.0% or less for those aged 64 or under to 9.5% for those aged 75 years and over. Mitchell and colleagues²⁵ examined the incidence of AMD in a 5 year study among 2335 people aged 49 years or older in the Blue Mountains area of Sydney, Australia. They found a 5-year incidence of 1.1%, with rates higher among women than men at all age groups, and an increasing incidence with age (Table 1.2).

In the UK, incidence studies have been limited to register based studies of blindness, its causes and temporal patterns.^{1,26} During the period between 1950 and 1990, Evans and Wormald¹ noted a 1.2 fold increase in registrations for blindness from 11,144 people to 13,566 people and a 5 fold increase in registrations of AMD from 1329 people to 6580 people. Whilst the increase in registrations for blindness were shown to reflect an ageing

population in Britain and differences in overall registrations, 30% of the increase for AMD was not explained by these factors. Bunce and Wormald²⁶ examined the incidence in England and Wales between March 1999 and April 2000 noting an increase in those people registered as blind to 13788 people, with 57.2% (7887 people) suffering from degeneration of the macula and posterior pole thought largely to be due to AMD. Although reasons for these changes were unclear, Bunce and Wormald²⁶ thought an ageing population, post-war smoking patterns and differences in data recording may have had an effect. As with previous studies, Bunce and Wormald²⁶ identified age and gender differences in the registrations of AMD per 100,000, with higher rates with increasing age and among women (Table 1.2).

Table 1.2 Age specific incidence of Al	MD (95% conf	fidence interv	als (95% CI))	
Study	Age Group	Persons	Male	F

Study	Age Group	Persons	Male	Female
Klaver et al, 2001 ⁵	55-64	0.0 (0-1.0)		
(Rotterdam, The Netherlands)	65-74	0.75 (0.15-2.2)		
Design: population-based prospective	75-84	3.07 (1.1-6.7)		
cohort study (n=4953)	85+	8.80 (1.8-25.8)		
Follow-up: 2 years	Total	1.22 (0.6-2.1)	1.00	1.37
Outcome: age-specific incidence				
(95%CI) per 1000 person-years				
Van Leeuwen et al, 2003 ⁶	55-59	0.0		
(Rotterdam, The Netherlands)	60-64	0.2 (0.0-1.1)		
Design: population-based prospective	65-69	0.8 (0.3-1.8)		
cohort study (n=6418)	70-74	1.8 (1.0-3.4)		
Follow-up: 5 years	75-79	3.9 (2.3-6.6)		
Outcome: age-specific incidence	≥ 80	6.8 (4.2-11.0)		
(95% CI) per 1000 person-years	Total	1.8 (1.3-2.4)	2.0	1.6
Klein et al, 2002 ²⁴	43-54	0.1	0.0	0.1
(Beaver Dam, USA)	55-64	1.0	1.5	0.6
Design: population-based prospective	65-74	4.4	4.6	4.3
cohort study (n=2946)	75+	9.5	5.8	11.3
Follow-up: 10 years	Total	2.1	1.7	2.4
Outcome: age-specific incidence per				
100 persons				
Mitchell et al, 2002 ²⁵	49-60	0	0	0
(Blue Mountains, Sydney Australia)	60-69	0.6	0.5	0.8
Design: population-based prospective	70-79	2.4	2.4	2.4
cohort study (n=2335)	80+	5.4	0	8.8
Follow-up: 5 years	Total	1.1	0.7	1.4
Outcome: age-specific incidence per				
100 persons				
Bunce and Wormald 2006 ²⁶	0-15	0.01	0.00	0.02
(England and Wales)	16-64	1.01	0.91	1.10
Design: Register study (n=32895)	65-74	39.69	31.10	46.47
Follow-up: 1 year	75-84	251.53	208.76	275.70
Outcome: Registrations per 100,000	≥85	699.02	682.94	697.37
	All	31.78	19.96	42.44

The incidence of neovascular AMD was examined by Van Leeuwen and colleagues⁶ and Mitchell and colleagues²⁵ (Table 1.3). As with AMD, incidence rates for neovascular AMD increased with age and were higher among women than men. Van Leeuwen and colleagues⁶ found that people aged under 70 years had incidence rates below 1.0 per 1000 person years compared with those aged 80 and over having rates 3.6 per 1000 person years. The overall incidence of wet AMD was 1.1 per 1000 person years. Mitchell and colleagues²⁵ found an overall incidence of wet AMD of 1.0%. Again incidence increased with age and women had higher incidence rates of AMD than men.

Table 1.5 Age specific meldence of ne	ovascular Alvi	Table 1.5 Age specific incluence of neovascular And (5576 CI)					
Study	Age Group	Persons	Male	Female			
Van Leeuwen et al, 2003 ⁶	55-59	0.0					
(Rotterdam, The Netherlands)	60-64	0.2 (0.0-1.1)					
Design: population-based prospective	65-69	0.3 (0.1-1.2)					
cohort study (n=6418)	70-74	1.3 (0.6-2.7)					
Follow-up: 5 years	75-79	2.5 (1.3-4.8)					
Outcome: age-specific incidence	≥ 80	3.6 (1.9-6.9)					
(95% CI) per 1000 person-years	Total	1.1 (0.7-1.5)					
Mitchell et al, 2002 ²⁵	49-60	0.0	0.0	0.0			
(Blue Mountains, Sydney Australia)	60-69	0.5	0.2	0.8			
Design: population-based prospective	70-79	2.4	2.4	2.4			
cohort study (n=2335)	80+	3.6	0.0	5.9			
Follow-up: 5 years	Total	1.0	0.6	1.2			
Outcome: age-specific incidence per							
100 persons							

Table 1.3 Age specific incidence of neovascular AMD (95% CI)

Prevalence

A systematic review of the prevalence of AMD was undertaken by Owen and colleagues²⁷ in 2003. The systematic review pooled data from six studies encompassing 22,206 people aged 65 to 79 years, including the Beaver Dam Eye Study,²⁸ Blue Mountains Eye Study,²⁹ Copenhagen City Eye Study,^{30,31} North London Eye study,³² Rotterdam Study³³ and Melbourne Visual Impairment Study.³⁴⁻³⁶ The prevalence of AMD was shown to increase exponentially with age, whether considering the visual impairment caused by AMD or the type of AMD. Also, it showed that the prevalence of AMD varied by sex, although the specific relationship depended on the type of AMD. The meta-analysis showed a pooled prevalence of 0.35% (95% CI: 0.14; 0.57) for people aged 65 to 79 years old with AMD-related partial sight.

The variation in the prevalence of AMD by age and sex shown by Owen and colleagues was also evident in other prevalence studies (Table 1.4). All showed a positive relationship between age and prevalence.^{7,8,28,29,33,37,38} Ferris and colleagues,⁸ Mitchell and colleagues²⁹ and Augood and colleagues⁷ found that women consistently had higher prevalence rates at all age

groups than males, although specific rates varied between the different studies. The overall prevalence for all persons ranged from 0.85% for those aged 60 to 80 years³⁷ to 8% for those aged over 65 years,³² reflecting differences in the characteristics of populations included and methodology of the studies and the definition of AMD. Augood and colleagues⁷ also noted a difference in prevalence between the different countries involved in their study, with prevalence rates ranging from 1.34% (95% CI: 0.42%; 2.23%) in Spain to 4.71% (95% CI: 2.44%; 6.97%) in Greece.

Study	Age	Persons	Male	Female
	Group			
Vingerling et al, 1995 ³³	55-64	0.2		
(Rotterdam, The Netherlands)	65-74	0.8		
Design: population-based	75-84	3.7		
prospective cohort study (n=6251)	85+	11.0		
Outcome: age-specific prevalence				
per 100 person-years				
Klein et al, 1992 ²⁸	43-54	0.1		
(Beaver Dam, USA)	55-64	0.6		
Design: population-based	65-74	1.4		
prospective cohort study (n=4771)	75+	7.1		
Outcome: age-specific prevalence				
per 100 persons				
Bressler et al, 1989 ³⁸	70-79		4.3	
(Chesapeake Bay, USA)	80+		13.6	
Design: population-based				
prospective cohort study (n=755				
men only)				
Outcome: age-specific prevalence				
per 100 persons				
Mitchell et al, 1995 ²⁹	49-54	0.0	0.0	0.0
(Blue Mountains, Australia)	55-64	0.2	0.0	0.3
Design: population-based	65-74	0.7	0.6	0.9
prospective cohort study (n=3654)	75-84	5.4	4.3	6.1
Outcome: age-specific prevalence	85+	18.5	12.5	21.8
per 100 persons	Total	1.9	1.3	2.4
Ferris et al, 1984 ⁸	52-64	1.2	0.8	1.4
(Framingham, USA)	65-74	6.4	4.3	7.9
Design: population-based	≥75	19.7	16.9	21.6
prospective cohort study (n=2361)	Total	5.7	4.2	6.7
Outcome: age-specific prevalence				
per 100 persons				
Augood et al, 2006 ⁷	65-69		0.90 (0-2.08)	1.03 (0.11-1.96)
(European Eye Study)	70-74		1.97 (0.77-3.17)	2.36 (1.00-3.73)
Design: population-based cross	75-79		4.07 (1.86-6.27)	3.15 (2.02-4.28)
sectional study (n=5040)	≥ 80		6.94 (1.06-12.83)	15.00 (9.63-
Outcome: age-specific prevalence				20.37)
per 100 persons(95% CI)	All	3.32 (2.52-4.13)	2.49 (2.07-2.91)	4.00 (2.86-5.14)
Buch et al, 2001 ³⁷	60-64	0 (0.0-1.6)		
(Copenhagen, Denmark)	65-69	0 (0.0-1.5)		

Table 1.4 Age specific prevalence of AMD

Design: population-based cross sectional study (n=944) Outcome: age-specific prevalence per 100 persons (95% CI)	70-74 75-80 All	0.8 (0.1-3.1) 2.4 (0.9-5.1) 0.85 (0.3-1.7)
Reidy et al, 1998 ³² (North London, UK) Design: cross sectional survey (n=13371) Outcome: prevalence per 100 persons (95% CI)	≥ 65	8 (5.8-10.8)

Two studies examined the prevalence of neovascular AMD (Table 1.5).^{7,27} Owen and colleagues²⁷ pooled prevalence rates for neovascular AMD for people aged 65 to 79 years,²⁸⁻ ^{31,33-36} estimating a prevalence of 1.05% (95% CI: 0.57%; 1.52%). The meta-analysis showed that women had a higher prevalence (1.03%; 95% CI: 0.49%, 1.58%) than males (0.81%; 95% CI: 0.52%; 1.11%). Owen and colleagues²⁷ noted differences in the prevalence rates between the included studies. Prevalence rates for males aged 65 to 79 years ranged from 1.45% (95% CI: 0.56%; 2.34%) from the Beaver Dam Eye Study²⁸ to 0.53% (95% CI: 0.14%; 0.92%) in the Rotterdam Eye Study,³³ although differences were not statistically significant. In contrast, the differences in the prevalence of neovascular AMD for females aged 65-79 years were statistically significant, with prevalence ranging from 2.14% (95% CI: 1.23%; 3.04%) in the Beaver Dam Eye Study²⁸ to 0.50% (95% CI: 0.18%; 0.83%) in the Rotterdam Eye study.³³ Also Owen and colleagues²⁷ found that prevalence increased with age group, ranging from under 1% for those aged less than 75 years to 11.27% for those aged 90 years and older. Augood and colleagues⁷ found similar relationships between age, sex and the prevalence of neovascular AMD. The overall prevalence of neovascular AMD was 2.29% (95% CI: 1.73%; 2.86%).

Study	AgeGroup	Persons	Male	Female
Owen et al, 2003 ²⁷	<50	0.0 (0.0-0.18)		
Age specific prevalence (%)	50-54	0.06 (0.0-0.32)		
(95% CI)	55-59	0.03 (0.0-0.19)		
Design: Systematic review of	60-64	0.26 (0.12-0.49)		
population-based studies (6	65-69	0.33 (0.16-0.59)		
studies, n=22206)	70-74	0.85 (0.55-1.27)		
Outcome: age-specific prevalence	75-79	2.29 (1.70-3.02)		
per 100 persons (95% CI)	80-84	4.65 (3.49-6.05)		
	85-89	6.99 (4.73-9.88)		
	90+	11.27 (6.58-17.65)		
Augood et al, 2006 ⁷	65-69		0.38 (0-1.01)	0.92 (0.04-1.80)
(European Eye Study)	70-74		1.40 (0.51-2.29)	1.42 (0.34-2.50)
Design: population-based cross	75-79		2.63 (0.78-4.49)	2.17 (0.96-3.37)
sectional study (n=5040)	≥ 80		5.56 (0-11.48)	10.50 (6.65-14.35)
Outcome: age-specific prevalence	All	2.29 (1.73-2.86)	1.69 (1.11-2.27)	2.78 (2.09-3.47)
per 100 persons (95% CI)			. ,	

 Table 1.5 Age specific prevalence of neovascular AMD

Burden of Disease

Despite the lack of evidence on the epidemiology of AMD and its neovascular form, the information on the incidence and prevalence found provides some indication of the likely need and demand for treatment. The review of the epidemiology showed differing incidence and prevalence rates depending on the nature of the study and the characteristics of the population examined. Using the studies of the incidence and prevalence that had similar designs and population estimates for England and Wales,³⁹ it is possible to provide some provisional estimates of the number of people who might require treatment and care (Table 1.6). Given the differences in the studies it will be important to interpret the figures with caution. Estimates of the incidence of AMD suggested that there could be between 18,000 and 46,000 new cases annually in England and Wales, with between 13,000 and 37,000 cases of neovascular AMD. Estimates of the prevalence of AMD ranged from around 70,000 to 300,000 cases, with the actual prevalence thought to be closer to the higher estimate. For neovascular AMD the estimated prevalence was thought to be around 200,000 cases. Owen and colleagues²⁷ have applied prevalence data from their meta-analysis to the UK population trend data to assess the burden of neovascular AMD (Table 1.7). They estimated that there were 245,000 (95% CI 163,000 to 364,000) people with neovascular AMD in the UK in 2001. It was estimated that the prevalence of neovascular AMD would increase by 2011 with 271,000 (95% CI 179,000 to 405,000) cases.

Meads and colleagues⁴⁰ provided estimates for the incidence and prevalence of AMD and neovascular AMD for a standard health authority with a population of 500,000. They estimated a 1-year incidence for AMD ranging from 186 cases to 537 cases and for neovascular AMD from 103 cases to 158 cases. Meads and colleagues thought the prevalence of neovascular AMD would be approximately 1946 cases in a standard health authority.

Study	Age group	Absolute annual incidence or prevalence of AMD (per 100 people)	Population in England and Wales (mid- 2004) ³⁹	No. of AMD patients
Incidence			·	
AMD				
Klaver et al, 2001 ⁵	Age 55 yrs and over	0.12	14811.6	17774
Van Leeuwen et al, 2003 ⁶	Age 55 yrs and over	0.148	14811.6	21921
Klein et al, 2002^{24}	Age 43 to 84 yrs	0.21	22122.6	46457
Mitchell et al, 2002^{25}	Age 49 yrs and over	0.22	18719.5	41183
Neovascular AMD				
Van Leeuwen et al, 2003 ⁶	Age 55 yrs and over	0.088	14811.6	13034
Mitchell et al, 2002^{25}	Age 49 yrs and over	0.2	18719.5	37439
Prevalence				
AMD				
Mitchell et al, 1995 ²⁹	Age 49 yrs and over	1.94	18719.5	72632
Augood et al, 2006^7	Age 65 yrs and over	3.32	8579.3	284833
Buch et al, 2001 ³⁷	Age 60 to 80 yrs	0.85	9246.5	78595
Neovascular AMD				
Augood et al, 2006^7	Age 65 yrs and over	2.29	8579.3	196466

Table 1.6 Estimates of the number of patients with AMD in England and Wales

Table 1.7 Predicted prevalence of neovascular AMD (in thousands) (95% CI) for 2001 and 2011 in the $\rm UK^{27}$

Age Range	2001	2011
50-54	2 (0 to 13)	2 (0 to 13)
55-59	1 (0 to 6)	1 (0 to 7)
60-64	7 (3 to 14)	10 (5 to 19)
65-69	8 (4 to 15)	10 (5 to 18)
70-74	20 (13 to 30)	21 (13 to 31)
75-79	45 (33 to 59)	45 (33 to 59)
80-84	61 (46 to 79)	67 (50 to 87)
85-89	53 (36 to 74)	60 (41 to 85)
90+	47 (27 to 74)	55 (32 to 86)
Total	245 (163 to 364)	271 (179 to 405)

Adapted from Owens and colleagues²⁷

Impact of health problem

Previous studies have suggested three main impacts of AMD for patients:

- Increased risks of mortality and reduced life expectancy
- Increased morbidity, particularly in relation to accidents and psychological ill-health
- Reduced quality of life.

Studies have also demonstrated that patients with visual impairment tend to have longer hospitalisations,⁴¹ make greater use of health and community care services⁴² and are more likely to be admitted to nursing homes.⁴³

In a population cohort aged 49 years or older at baseline, the Blue Mountains Eye study reported age and sex standardised seven-year cumulative mortality rates of 26% for people with visual impairment compared with a rate of 16% for those without visual impairment.⁴⁴ The relative risk of mortality associated with visual impairment was 1.7 (95% CI, 1.2 - 2.3)after adjusting for factors such as age, male sex, low self-rated health and low socio-economic status found to be significantly associated with mortality. Studies that have investigated associations between visual impairment and mortality for people with AMD or other causes of vision loss^{45,46} suggest that AMD is not an independent risk factor for mortality. In a retrospective analysis of the standard analytical sample of Medicare beneficiaries,⁴⁷ Zhou and colleagues⁴⁵ estimated a 50% excess mortality for people with wet AMD and blindness compared with those in the dataset without an AMD diagnosis, but no excess mortality for people with AMD and less severe vision loss. In contrast, Thiagaranjan and colleagues⁴⁶ found that adjusting for confounding factors reduced the mortality rate ratio for people with any cause of visual impairment from 1.6 (95% CI, 1.47 to 1.74) to 1.17 (95% CI, 1.07 to 1.27). For people whose impairment was due to AMD or cataract, there was no excess allcause or cardiovascular mortality following adjustment.

A number of studies have reported on the association between falls or fall-related fracture and visual impairment.⁴⁸⁻⁵⁴ Legood and colleagues⁵⁰ summarised the evidence from 20 studies assessing falls (of which eight related to hip fractures). The majority of the studies were in elderly populations and found that those with reduced visual acuity were 1.7 times more likely to have a fall and 1.9 times more likely to have multiple falls. The odds of a hip fracture were found to be between 1.3 and 1.9 times greater for those with reduced visual acuity. Ivers and colleagues⁵¹ found that visual impairment was strongly associated with risk of hip fracture in the two years following eye examination, but not over a longer period of time. None of these studies was specific to visual impairment due to AMD.

Several studies have identified a strong association between low vision and depression⁵⁵⁻⁶⁰ with prevalences of between 7%⁵⁹ and 39%⁶⁰ for major depression. Prevalence estimates for all depression are typically around 30%.^{55,57-59} These are substantially higher (two-to-four times) than among control groups within studies⁵⁷ or in similar community-dwelling populations without visual impairment⁵⁵ and are comparable with those reported by people with other chronic illnesses.⁵⁶ Depression in elderly patients with reduced vision has been shown to be independently associated with functional impairment^{57,58,60} suggesting that treatment of depression may reduce disability irrespective of the level of vision loss.

Studies have reported that quality of life scores, using either generic or condition-specific instruments, are lower for people with AMD compared with those without disease.^{56,61-64} The results of studies using generic instruments have generally been less consistent than those using instruments based on visual function. For example, Hassell and colleagues⁶⁵ reported that mean SF-12 scores for physical and mental health were similar to those reported for Americans of a similar age group from the general public. A complication of any simple view of declining quality of life with vision loss secondary to AMD is the recognition of patients ability to adapt to vision loss and cope with disability.^{66,67} A full review of the literature on quality of life and AMD is included in section 4.1.3.

Measurement of disease

Initial signs and symptoms of AMD include recent change in visual function affecting reading and face recognition, difficulties with change of lighting and distortion. Some people experience a dark patch on waking that fades rapidly. Assessment of visual function includes measurement of visual acuity, contrast sensitivity and visual field measurement. Other tests may include reading performance, colour contrast sensitivity, flicker sensitivity, macular sensitivity and adaptation.⁶⁸

Visual acuity

Visual acuity can be defined as the capacity of the visual system to resolve fine detail and, specifically, to read small high contrast letters.⁶⁹ It is a measure of the minimum angle of resolution (MAR),⁷⁰ which in normal vision is accepted as one minute of arc (one minute of arc is 1/60th of a degree, 360 degrees in a circle).⁴⁰ A number of charts are used to measure visual acuity. The most widely used is the Snellen chart, which consists of seven rows of letters which get smaller down the chart, and the smallest line of letters correctly read is recorded. In each row of letters the width of the lines forming the letter subtends an angle of one minute of arc at a certain specific distance.⁴⁰ For the largest letter the distance is 60 m, the next line is 36 m, then 18 m, 12 m, 9 m, 6 m, and the smallest letter is 4 m. The outcome is expressed as a pseudofraction, where the numerator describes the chart viewing distance (usually six metres in Europe and 20 feet in the USA). The denominator refers to the 'size' of the letter as measured in distances. Normal vision is assumed to be 6/6 (or 20/20 if measured in feet). If a person could only read the top line of the chart when at a distance of 6 m, their visual acuity would be recorded as 6/60. This can be interpreted as the person being able to see at 6 m what someone with normal vision could see from 60 metres away. If they are unable to read the largest letter on the chart they are moved closer, so for example 3/60 would mean they could read the largest letter at 3 m.

The Snellen chart has a number of limitations:

- The number of letters per row varies from one letter (6/60) to 8+ (6/4). It is easier to read a letter on its own than one surrounded by other letters (known as 'crowding' or 'contour interaction').⁶⁹
- The spacing of the letters on each row bears no systematic relationship to the letter width, and the vertical spaces between the rows of letters are not logically related to the height of the letters. This means the contour interaction varies between rows, which affects the difficulty of the task.⁶⁹
- There is an irregular progression of letter sizes. For example 6/5 to 6/6 represents an increase in size of 120%, whereas the jump from 6/36 to 6/60 is 167%. Statements such as 'a two line change in acuity' are meaningless, because it will depend on where those two lines are. ⁶⁹
- The chart is scored by recording the lowest line of letters which the patient can recognise. Sometimes the patient can read some letters but not others on a given line, and if this spreads over more than one line there is no satisfactory way of recording the result.⁶⁹

The Bailey-Lovie chart has emerged as the preferred alternative to the Snellen chart, and employs the letter set specified in the British Standard.⁷⁰ It has five letters on each row, which ensures that the task is equivalent for each row, helps to ensure equal contour interaction, and provides more letters for patients with poorer visual acuity. The letter spacing on each row is equal to one letter width and the row spacing is equal to the height of the letters below, so contour interaction is scaled in relation to letter size. Regular progression of letter sizes allows inter-line interpolation, improving the precision of the measurement. The letter size follows a logarithmic progression, increasing in 0.1 LogMAR (Log₁₀ of the Minimum Angle of Resolution) steps. Normal vision (6/6) equates to a LogMAR of 0, with negative scores for smaller letter sizes (see Table 1.8 for Snellen equivalents). Other LogMAR charts are available; most cover the range -0.30 (6/3) to +1.00 (6/60). The drawbacks of the Bailey-Lovie and LogMAR charts are that some mental arithmetic is required for the inter-line interpolation scoring, and also that good visual acuity is represented by negative LogMAR scores which may seem counterintuitive.⁷⁰ Visual Acuity Rating (VAR) has been proposed as an alternative method of scoring to avoid these drawbacks, and is calculated as VAR = 100 -(50 x LogMAR). With this system, normal vision (6/6 or LogMAR 0) would score 100, 6/60 (logMAR 1.0) would score 50, and 6/3 (logMAR -0.3) would score 115.70

A chart developed for the Early Treatment Diabetic Retinopathy Study (ETDRS) is a variant of the Bailey-Lovie and is used in the ranibizumab and pegaptanib trials. The letters in the ETDRS chart area are all square, while the letters of the Bailey-Lovie chart are rectangular.
Snellen (metres)	Snellen (feet)	logMAR	VAR	
6/3	20/10	-0.3	115	
6/6	20/20	0.0	100	(normal vision)
6/7.5	20/25	0.1	95	
6/9	20/30	0.2		Legal limit for driving
6/12	20/40	0.3	85	
6/15	20/50	0.4	80	
6/18	20/60	0.5		
6/24	20/80	0.6	70	
6/30	20/100	0.7	65	
6/36	20/120	0.8		
6/60	20/200	1.0	50	Legal blindness in USA (used in trials)
6/96	20/320	1.2	40	
6/120 (3/60)	20/400	1.3	35	UK definition of severely sight impaired (blind)
6/240	20/800	1.6	20	(

Table 1.8 Snellen and logMAR equivalents^{69,71}

Contrast sensitivity

Contrast sensitivity refers to the ability of the visual system to distinguish between an object and its background. A person with low contrast sensitivity may have vision difficulties such as trouble seeing traffic lights or cars at night, not being able to see spots on clothes, counters or dishes, missing facial gestures, not seeing whether a flame is burning on a stove, or needing a great deal of light to read. While acuity measures only size, contrast sensitivity measures two variables, size and contrast. Contrast sensitivity readings are presented as a curve, which plots the lowest contrast level at which a person can detect a target of a given size. The higher the contrast sensitivity, the lower the contrast level at which an object can be seen.⁷² The Pelli-Robson chart was developed to measure contrast sensitivity in a clinical setting. It can be used in a similar way to visual acuity letter charts and has been shown to be reliable and sensitive.⁶⁸

Visual field

The visual field is the total area in which objects can be seen in the peripheral vision while the eye is focused on a central point. Perimetry is the systematic measurement of differential light sensitivity in the visual field by the detection of the presence of test targets on a defined background.⁷³ In a confrontation visual field examination, a basic evaluation of the visual

field is undertaken by the patient looking at the examiner's eye and stating when the examiner's hand can be seen. Perimetry more carefully maps and quantifies the visual field. With Goldmann or kinetic perimetry the patient stares at a central target and an object is brought into the peripheral vision until it can be seen. Static automated perimetry involves a computer-driven program, which flashes small lights of different brightness at different locations within a dome. A button is pressed when the patient can see the small lights. The patient's responses are compared with age-matched controls to determine the presence of defects within the visual field. Scanning laser opthalmoloscopy provides an accurate means of determining visual field extent and assessing foveal and eccentric fixation (where the image falls outside the macula).⁶⁸ The ophthalmoscope takes a picture of the patient's retina and is able to map exactly where scotomas (holes in vision) exist. However, this is usually used as a research tool, and is not used routinely in clinical practice due to resource constraints.

Amsler grid

An Amsler grid is a detection method for patients. It consists of a grid of thick back lines and can be used to detect subtle abnormalities in central vision caused by fluid in the subretinal space. Macular abnormalities may be manifested as distortions in the lines of the grid.³

Definition of blindness

In the UK patients are registered as severely sight impaired (blind) or sight impaired (partially sighted) using the Certificate of Vision Impairment. The National Assistance Act 1984 states that a person can be certified as severely sight impaired if they are 'so blind as to be unable to perform any work for which eye sight is essential'. This is assessed by testing visual acuity with appropriate spectacle correction if necessary. People can be certified as severely sight impaired if their visual acuity falls into one of three groups:⁷⁴

- Below 3/60 Snellen.
- 3/60 but below 6/60 Snellen, and have a very contracted field of vision.
- 6/60 Snellen or above, and have a contracted field of vision especially if the contraction is in the lower part of the field.

There is no legal definition of sight impairment. The guidelines are that a person can be sight impaired if they are 'substantially and permanently handicapped by defective vision caused by congenital defect or illness or injury'. To be certified as sight impaired (partially sighted) visual acuity should be:⁷⁴

- 3/60 to 6/60 Snellen with a full visual field
- Up to 6/24 Snellen with moderate contraction of the field, opacities in media or aphakia (absence of eye's lens)

 6/18 Snellen or above but with a gross defect, for example hemianopia, or if there is a marked contraction of the visual field.

1.2 Current service provision

Management of disease

Treatment options for people with AMD are limited. For most patients with AMD, management consists of social support, visual rehabilitation and provision of low-vision aids. For those with extrafoveal CNV, laser photocoagulation therapy may be used to halt the rapid vision loss caused by the proliferation of blood vessels, however only a small proportion of patients with wet AMD present with extrafoveal lesions.¹¹ Laser photocoagulation uses high-intensity thermal energy to coagulate CNV, however it does not restore lost vision.⁷⁵ The main limitations of photocoagulation are firstly, only 10 to 15% of all neovascular lesions are small enough and sufficiently delineated to be eligible. Secondly, there is at least a 50% chance that leakage will recur during the following two years. Thirdly, at least half of patients have some CNV beneath the centre of the fovea, and laser treatment leads to an immediate reduction in central vision.³ It is rarely used as the first treatment choice for subfoveal CNV due to associated loss of vision.⁷⁶

Photodynamic therapy (PDT) involves intravenous injection of verteporfin, a photosensitive drug that remains in the new blood vessels, before treatment with a low-powered laser that activates the drug causing cell death.⁴⁰ The aim is to destroy CNV lesions without damaging the overlying retina, thereby slowing or halting the progression of vision loss. PDT with verteporfin has been recommended by NICE⁷⁷ for the subgroup of individuals with a confirmed diagnosis of classic with no occult subfoveal CNV, and for the subgroup with predominantly classic subfoveal lesions in the context of clinical trials. The main disadvantages include: the photosensitive drug remains in the body for up to 48 hours, therefore patients are required to avoid direct sunlight; adverse events from injection of the drug; long-term effects are unknown; recurrence is common; and over-dose of the drug or laser can result in permanent irreversible vision loss.⁴⁰ Moreover, while PDT may be effective in treating established pathological vessels, it does not prevent new vessel formation.⁷⁸

Bevacizumab (Avastin®, Roche) may be used off-label for AMD,⁷⁹ although its use is controversial.⁸⁰ Off-label use means the licensed drug is used for an indication other than the one for which is it labelled. Bevacizumab is a humanised monoclonal antibody against VEGF and is biologically similar to ranibizumab, being derived from the same mouse monoclonal

antibody precurser.⁸¹ It is licensed for first-line treatment of metastatic colorectal cancer and is given by intravenous infusion.⁸² Intravitreal bevacizumab for AMD is currently widely used in private practice (A. Lotery, personal communication, August 2006) and is beginning to become available on the NHS.⁸³ There is no long-term information on safety and efficacy, and the minimum effective dose, optimum dose or dose frequency are not known. However, preliminary data are described by the Royal College of Ophthalmologists as 'encouraging'.⁸³

Current service cost

Diagnosis of AMD requires a specialist consultation during which a detailed history identifying changes in visual function and a clinical examination (including assessment of visual acuity, Amsler grid and slit lamp fundus examination) should be conducted. Fluorescein angiography may be required to confirm diagnosis and should always be undertaken prior to initiating active treatment. Costs of diagnosing neovascular AMD are estimated based on the NHS Reference Cost⁸⁴ for an initial outpatient attendance for ophthalmology and for fluorescein angiography (outpatient HRG B01op). Annual costs of diagnosing and confirming neovascular AMD, assuming the range of new cases per year in England and Wales, estimated in Section 1.1 (Burden of Disease) of between 13,000 and 37,000, would be between £2.9 million and £8.2 million.

A number of estimates of the cost of PDT in UK practice have been reported as part of costof-illness studies⁸⁵ or within economic evaluations of PDT.^{40,86,87} While the categories of cost included have been the same in all cases, there are slight differences in unit costs and assumed treatment intensity that have given rise to differences in the estimated cost of PDT, from £4,015 for one year of treatment⁸⁶ to between £6,545⁸⁵ and £6,666⁴⁰ for two years.

Bonastre and colleagues⁸⁵ estimated that there would be 4,655 new cases per year eligible for PDT in the UK, based on the assumption that 15% of all new cases of AMD were of the neovascular form and that 30% of these would be eligible for PDT. Combining this with the estimated cost for two years PDT treatment they derived a budget impact of PDT treatment of \notin 51.0 million (£30.5 million) for a cost year of 2001, or \notin 35.4 million (£21.2 million) for one year of treatment. Meads and colleagues⁴⁰ derived an estimate of £20.1 million, for the first year of treatment for a cohort of 5,000 new cases of classic AMD in England and Wales, assuming the same frequency of treatment as in the TAP study.^{10,88} Assuming that patients continue to receive PDT in the second and third years, and that treatment is initiated for a further 5,000 new cases each year, costs would rise to £33.1 million in year two and £41.3 million in the third year.

As discussed in the previous section, PDT is only recommended for a proportion of patients with the wet form of AMD – those with classic with no occult or predominantly classic subfoveal lesions. For patients experiencing vision loss secondary to other forms of wet AMD, current service provision consists of low vision rehabilitation and the provision of low vision aids. Estimates of the cost of low vision rehabilitation and of low vision aids for the UK are variable, see Table 1.9

Table 1.7 Unit costs and up	JUAKE UI 10 W VI	sion alus anu		avintation n		
	Meads and c	colleagues ⁴⁰	Bonastre and colleagues ⁸⁵			
	Unit cost (£)	Uptake	Unit cost (£)	Uptake		
Low vision aids	136.33	33%	30	90%		
Low vision rehabilitation	205.30	11%	251	20%		

On the basis of these assumptions and a prediction of 103,437 new cases of AMD per year Bonastre and colleagues⁸⁵ estimated the annual cost of low vision rehabilitation for the UK at \notin 5.2 million (£3.1 million) and low vision aids at \notin 2.8 million (£1.7 million). Meads and colleagues⁴⁰ estimated that it would cost £5.4 million to provide low vision aids and low vision rehabilitation to all new wet AMD patients in England and Wales.

Relevant national guidelines

The most recent guidelines from the Royal College of Ophthalmologists were published in 2000.²³ They are now considered to be out of date so are in the process of being updated. Definitive guidelines will be published following the appraisal of ranibizumab and pegaptanib for AMD by NICE, but in the meantime interim guidelines are being produced. The current draft AMD interim guidelines make the following recommendations for treatment of subfoveal CNV, but these may be updated before the definitive guidelines are produced (Wong, D, Royal College of Ophthalmologists, personal communication, November 2006):

- Predominantly classic subfoveal CNV: patients may be offered PDT in the first instance.
 Where there is poor response to treatment in the treated eye, or in the other eye previously, trial of licensed anti-VEGFs may be used where available. In the absence of such availability then the use of unlicensed products including Avastin may be justified.
- Occult subfoveal CNV: PDT may be considered for occult no classic CNV if costs are covered by local commissioning arrangements. In the absence of such arrangements then the use of anti-VEGFs is recommended as above.
- Minimally classic subforeal CNV: PDT is not recommended. Intraocular injections of anti-VEGFs should be considered as first line treatment.
- When recommending intraocular bevacizumab it is extremely important to inform patients that it is unlicensed for this indication and that it has not undergone the usual

rigorous clinical trials and independent evaluation by regulatory authorities. Adequate follow-up information must also be maintained on these patients, and recorded appropriately.

1.3 Description of technology under assessment

Summary of interventions

Ranibizumab

Ranibizumab (Lucentis, Genentech, Inc. (US) / Novartis Pharmaceutical Ltd) was approved by the US Food and Drug Administration for the treatment of patients with neovascular (wet) AMD in June 2006. A UK licence for the improvement and maintenance of visual acuity and function, and for the reduction of vascular leakage and retinal oedema in patients with wet AMD is expected at the end of 2006. Ranibizumab is a humanized therapeutic antibody fragment designed to bind and inhibit vascular endothelial growth factor-A (VEGF-A). Ranibizumab is designed to block new blood vessel growth and leakiness, which lead to wet AMD disease progression and vision loss.⁸⁹ It is administered at a dose of 0.5mg (0.05 mL) by intravitreal injection once a month according to the product prescribing information.⁹⁰ A slightly different proposed posology for ranibizumab in the EU and UK has been accepted in principle by the Committee for Medicinal Products for Human Use, whereby treatment is initiated with a loading phase of three monthly injections followed by a maintenance phase in which patients should be monitored for visual acuity on a monthly basis. If the patient experiences a loss of greater than five letters in visual acuity, ranibizumab should be administered. The interval between two doses should not be shorter than one month.⁹¹ Contraindications are ocular or periocular infections, and hypersensitivity. Endophthalmitis (severe infection inside the eye) and retinal detachments may occur following intravitreal injections, therefore patients should be monitored during the week following the injection. Increases in intraocular pressure have been noted within 60 minutes of injection with ranibizumab, therefore intraocular pressure as well as the perfusion of the optic nerve head should be monitored and managed appropriately. There is a theoretical risk of arterial thromboembolic events as a low rate (<4%) was observed in the clinical trials. The most common adverse reactions (reported \geq 6% higher in ranibizumab-treated subjects than control subjects) are conjunctival haemorrhage, eve pain, vitreous floaters, increased ocular pressure and intraocular inflammation.⁹⁰

Pegaptanib

Pegaptanib sodium (Macugen, Pfizer Ltd) was granted marketing authorisation by the European Medicines Agency on 31st January 2006 for the treatment of neovascular (wet) AMD. Pegaptanib is a pegylated modified oligonucleotide that binds with high specificity and affinity to extracellular vascular endothelial growth factor (VEGF165) inhibiting its activity. VEGF165 is the VEGF isoform preferentially involved in pathological ocular neovascularisation. Pegaptanib blocks VEGF165 so there is less growth of blood vessels, and less bleeding and leakage. It is administered at a dose of 0.3mg once every six weeks (9 injections per year) by intravitreal injection into the affected eye.⁹² Contraindications are active or suspected ocular or periocular infection, and hypersensitivity. Transient increases in intraocular pressure may be seen with intravitreal injections, therefore the perfusion of the optic nerve should be verified and elevation of intraocular pressure should be managed appropriately post injection. Immediate and delayed intravitreous haemorrhages may occur following pegaptanib injections. The incidence of endophthalmitis, which is associated with intravitreal injection procedures, was found to be 0.1% per injection in clinical trials. Cases of anaphylaxis/anaphylactoid reactions, including angioedema have been observed within several hours after administration in post-marketing experience. Serious ocular adverse events reported in clinical trials included retinal haemorrhage (<1%), vitreous haemorrhage (<1%) and retinal detachment (<1%). Very common ($\geq 1/10$) ocular adverse reactions were anterior chamber inflammation, eye pain, increased intraocular pressure, punctate keratitis, vitreous floaters and vitreous opacities.⁹²

Place in the treatment pathway

Ranibizumab and pegaptanib would be administered as soon as possible after diagnosis to minimise damage. Guidelines from the American Academy of Ophthalmology report the criteria for treatment with pegaptanib as described in the trial publications.⁷⁶ Both drugs can be given in combination with PDT with verteporfin, and a change in treatment regimen, for example from PDT with verteporfin to pegaptanib or vice versa may be appropriate depending on the clinical response of a given patient.⁷⁶ Ranibizumab and pegaptanib are administered for as long as the patient benefits, but how this is determined in practice has not yet been agreed.

Current usage in the NHS

A UK license for ranibizumab is expected towards the end of 2006 and it is therefore not currently available on the NHS, although it may be obtained on a named patient basis (A.Lotery, personal communication, August 2006). Pegabtanib was licensed in the UK in January 2006, but it has not been made widely available on the NHS. The availability of pegaptanib on the NHS has been highlighted by the media, with headlines such as 'thousands denied eye drug over NHS costs,' and claims that Primary Care Trusts are waiting for NICE to make a ruling on its effectiveness before they approve the treatment. ^{93,94}

Anticipated costs associated with intervention

The net price for a 300 microgram vial of pegaptanib quoted in the current BNF^{82} is £514. The recommended frequency of administration at this dosage is every six weeks. This corresponds to nine injections per year giving an annual acquisition cost of £4,626. Since ranibizumab has not received marketing authorisation for the UK there is no quoted price. The best publicly available estimate of the drug acquisition cost is based on a currency conversion from the US price of \$1,950. At a current exchange rate of 1 US dollar to 0.5354 pounds sterling the UK cost of ranibizumab would be £1,044 per injection. Assuming that injections are provided monthly, this corresponds to twelve injections per year, at an annual cost of £12,528.

In addition to the drug acquisition are costs of administration of the drugs, since intra-ocular injection requires aseptic procedures beyond those required for a standard outpatient appointment, and patient monitoring. Patients require fluorescein angiography prior to initiation of treatment to type and localise the lesion, and would be expected to have futher fluorescein angiography at least once every six months while on treatment. Patients would also have optical coherence tomography and a vision assessment at each follow-up visit. It is anticipated that patient follow-up and drug administration would typically be carried out in outpatients. Assuming the frequency of dosage for each drug described above, and that the initial out-patient appointment to assess patients and initiate treatment would be longer than follow-up appointments, the cost of twelve months treatment with pegaptanib would be £7,240 while for twelve months treatment with ranibizumab would cost £15,917 (Table 1.10).

	Outp Initial visit & vision	atient Follow-up & vision	FA	ОСТ	Drug	Injection procedure	Total
	assessment	assessment					
Unit cost	£ 154.20	£ 117.52	£ 124.88	£ 50.86		£ 90.20	
Pegaptanib	£ 154.20	£ 940.16	£ 249.75	£ 457.74	£ 4,626	£ 811.80	£ 7,240
Ranibizumab	£ 154.20	£ 1,292.72	£ 249.75	£ 610.32	£ 12,528	£ 1,082.40	£ 15,917

Table 1.10 Cost of first year of treatment with pegaptanib and ranibizumab

Intra-ocular injections are associated with adverse events, some of which will require treatment. Clinical trials reports on each $drug^{95-97}$ show similar proportions of patients experiencing adverse effects associated with intra-ocular injection. Adverse events include endophthalmitis (1.4% patients, retinal detachment (0.4 - 0.7%) and lens damage (0.4 -

0.67%). Each of these is associated with treatment costs (from £1,400 for lens damage to £2,500 for endophthalmitis) and risk of severe vision loss for an individual patient, particularly for endophthalmitis. However given the low event rates $(0.07 - 0.16\% \text{ per injection for pegaptanib}^{95})$, on average these costs are minor compared with the costs of treatment described above.

Both pegaptanib and ranibizumab have annual costs greater than would be predicted for PDT with verteporfin (using the treatment intensity of 3.4 PDT treatments in the first year of the TAP study¹⁰ and costing assumptions outlined in the earlier section on Current Service Cost, the cost of the first year of PDT would be £4,551). Since both drugs are likely to be indicated for all patients with neovascular AMD, rather than the selected sub-groups identified in the TAP study⁸⁸ (and as recommended by NICE⁷⁷), the budget impact is likely to be substantially higher than suggested by this comparison of annual costs of treatment. Ophthalmology services may anticipate an approximate tripling in the number of patients eligible for active treatment of neovascular AMD, using the assumption adopted by Bonastre and colleagues⁸⁵ that only 30% of incident cases are eligible for PDT. Taking this increase in patient numbers along with the increased frequency of treatment with pegaptanib (six weekly) and ranibizumab (monthly), compared with PDT (three-monthly), ophthalmology departments estimate total workload may increase by six to seven times its current level. This degree of increase in workload has significant implications on demand for specialist imaging services (fluoroscein angiography and optical coherence tomography) and capacity for providing vision assessments.

2 DEFINITION OF THE DECISION PROBLEM

2.1 Decision problem

The aim of therapy for people with wet AMD is to alter the progression of vision loss and improve vision if possible, but treatment options are limited. The clinical-effectiveness and cost-effectiveness of ranibizumab and pegaptanib for AMD remain uncertain.

Interventions

The drugs included in this assessment are ranibizumab and pegaptanib.

Population including sub-groups

The study population is adults with subfoveal CNV associated with wet AMD. Subfoveal lesions are the most common type, accounting for almost 80% of lesions.¹¹

Potential subgroups can be described according to the appearance of the lesion (classic no occult, predominantly classic, minimally classic or occult no classic), however the interpretation of fluorescein angiography may differ between readers,⁹⁸ therefore there may be some uncertainty regarding these diagnoses. Comment will only be made on the effectiveness of pegaptanib and ranibizumab for these patients if appropriate subgroup analyses are presented in the included studies.

Relevant comparators

Comparators for the interventions under assessment are those suitable for patients with subfoveal CNV associated with wet AMD used in the NHS. These would be:

- Best supportive care, which includes provision of and training with low vision aids, information about support charities (e.g. the Macular Disease Society and local societies for the blind or visually impaired), registration as visually impaired or blind depending on the level of acuity, and advice about not smoking and vitamin supplementation.
- 2) Photodynamic therapy with verteporfin for the subgroup of patients with classic no occult subfoveal wet AMD, in accordance with NICE guidance.⁷⁷ PDT has also been recommended for people with predominantly classic subfoveal CNV (≥ 50% classic CNV with some occult CNV present), but only as part of clinical studies, while no recommendation has been made regarding the use of PDT in occult CNV, as the

photosensitising agent (verteporfin) was not licensed for this indication when the appraisal began.⁷⁷ If insufficient evidence is found using PDT limited to patients with classic no occult CNV, then PDT for patients with predominantly classic subforeal lesions will be considered.

Sham injection will also be considered as a comparator for the review of clinical effectiveness if insufficient evidence is found using the above comparators. Photocoagulation therapy will not be included as a comparator, because although photocoagulation therapy may be considered for new or recurrent subfoveal CNV with poor visual acuity, it is rarely used as the first treatment of choice due to associated loss of vision.⁷⁶

Outcomes

Clinical outcomes will include visual acuity, contrast sensitivity, adverse effects of treatment, adherence to treatment, health-related quality of life and costs. Fifteen letters (3 lines) on the ETDRS chart is generally accepted as a clinically significant change in visual acuity. This could lead to a significant change in quality of life, and could represent the difference in being able to drive, to live independently, and to read or watch television, depending on the starting level of visual acuity. Direct costs will include estimates of all health care resources consumed in the provision of the interventions – drug acquisition, administration and monitoring costs – as well as consequences of those interventions, such as treatment of adverse effects.

2.2 Overall aims and objectives of assessment

The aim of this report is to assess the clinical effectiveness and cost-effectiveness of ranibizumab and pegaptanib for subfoveal CNV associated with wet AMD.

3 ASSESSMENT OF CLINICAL EFFECTIVENESS

3.1 Methods for reviewing effectiveness

The *a priori* methods for systematically reviewing the evidence of clinical effectiveness are described in the research protocol (Appendix 1), which was sent to experts for comment. Although helpful comments were received relating to the general content of the research protocol, there were none that identified specific problems with the methods of the review. The methods outlined in the protocol are briefly summarised below.

3.1.1 Search strategy

A sensitive search strategy was developed, tested and refined by an experienced information scientist. Separate searches were conducted to identify studies of clinical effectiveness, cost-effectiveness, quality of life, resource use/costs and epidemiology/natural history. Sources of information and search terms are provided in Appendix 2. The most recent search was carried out in September 2006.

Searches for clinical and cost effectiveness were from database inception to the current date. Electronic databases searched included: The Cochrane Database of Systematic Reviews (CDSR); The Cochrane Central Register of Controlled Trials; NHS CRD (University of York) Database of Abstracts of Reviews of Effectiveness (DARE), Health Technology Assessment (HTA) database and the NHS Economic Evaluation Database (NHS EED); Medline (Ovid), Medline In-Process (Ovid), Embase (Ovid); National Research Register; Current Controlled Trials; ISI Proceedings; Web of Science ISI Science Citation Index; and BIOSIS. Ophthalmology conferences were searched for recent abstracts (from 2004). The searches were restricted to English language. Bibliographies of related papers were screened for relevant studies, and the manufacturers' submissions to NICE were assessed for any additional studies. Experts were also contacted for advice and peer review, and to identify additional published and unpublished references.

3.1.2 Inclusion and data extraction process

Titles and abstracts of studies identified by the search strategy were assessed for potential eligibility by two reviewers. The full text of relevant papers was then obtained and inclusion

criteria were applied by one reviewer and checked by a second reviewer. Data were extracted by one reviewer using a standard data extraction form and checked by a second reviewer.

3.1.3 Quality assessment

The quality of included RCTs and systematic reviews was assessed using criteria recommended by NHS Centre for Reviews and Dissemination (CRD)⁹⁹ (Appendix 3). Quality criteria were applied by one reviewer and checked by a second reviewer. At each stage, any differences in opinion were resolved through discussion or consultation with a third reviewer.

3.1.4 Inclusion criteria

Patients

People with subfoveal CNV associated with wet AMD.

Interventions

Studies reporting the following interventions were eligible for inclusion:

- Ranibizumab (Lucentis, Genentech / Novartis Pharmaceuticals UK Ltd)
- Pegaptanib sodium (Macugen, Pfizer Ltd)
- Combination of the drugs with photodynamic therapy where the licensed indication and evidence allow.

Comparators

- Best supportive care.
- For the subgroup of individuals with a confirmed diagnosis of classic with no occult subfoveal wet AMD, photodynamic therapy with verteporfin was also a comparator.
- If insufficient evidence was found using the above comparators, the following comparators were also to be considered:
 - Sham injection (systematic review of clinical effectiveness only)
 - Photodynamic therapy with verteporfin for patients with subfoveal wet AMD with predominantly classic lesions.

Outcomes

Studies were included if they reported one or more of the following outcome measures:

- Visual acuity
- Contrast sensitivity
- Adverse effects of treatment

- Adherence to treatment
- Health-related quality of life

Types of studies

Systematic reviews and meta-analyses of RCTs and RCTs were included. Studies published only as abstracts or conference presentations were considered if sufficient information was presented to allow an appraisal of the methodology and assessment of results. Non-English language studies were excluded.

Full economic evaluations of the specified interventions were also included. A range of designs for studies on quality of life, epidemiology and natural history were considered.

3.1.5 Data synthesis

Data were synthesised through a narrative review with tabulation of results of all included studies. Full data extraction forms are presented in Appendix 4. It was not considered appropriate to combine the included RCTs in a meta-analysis due to heterogeneity in the patient groups and comparator treatments.

3.2 Results

3.2.1 Quantity and quality of research available

The number of published papers identified at each stage of the systematic review is shown in Figure 3.1. Selected references which were retrieved but later excluded are listed in Appendix 5. Abstracts of RCTs eligible for inclusion but which reported insufficient details to allow an appraisal of the methodology and assessment of the results are listed in Appendix 6. A list of ongoing studies can be seen in Appendix 7.

Figure 3.1 Flowchart of identification of published studies for inclusion in the systematic review of clinical effectiveness

The searches identified three full publications^{95,100,101} which reported the combined results of two RCTs of pegaptanib (the VISION study). Two fully published RCTs^{96,97} of ranibizumab were identified. In addition, the ranibizumab manufacturers supplied full reports of two unpublished RCTs of ranibizumab, as well as full details and further results for the published RCTs. The key characteristics of the included studies are shown in Table 3.1. Further details are provided in the data extraction tables in Appendix 4. Industry submissions were received from Pfizer Ltd (pegaptanib) and Novartis Pharmaceuticals UK Ltd (ranibizumab); a critique of these can be seen in Appendix 8.

Study	Intervention	Participants
Pegaptanib		
VISION study year 1 ⁹⁵ VISION year 2 ^{100,101} 2 concurrent RCTs	 0.3mg pegaptanib (n=297) 1.0mg pegaptanib (n=305) 3.0mg pegaptanib (n=302) 4. sham injection (n=304) 	Target population: All angiographic subtypes of lesions. Angiographic subtype of lesion at baseline Design deminently Chemic (2, 50%, chemic)
117 centres	Injections every 6 weeks, total of 9 treatments.	Predominantly Classic (\geq 50% classic): 1) 24%, 2) 26%, 3) 27%, 4) 26% Minimally classic (<50% classic):
Primary outcome: Proportion losing < 15 letters at week 54. Length of follow-up: 54 weeks, plus further 48 weeks treatment after re- randomisation.	Patients re-randomised after 54 weeks 0.3mg: - 0.3mg n=133 - discontinue n=132 1.0mg: - 1.0mg n=133 - discontinue n=131 3.0mg: - 3.0mg n=125 - discontinue n=127 Sham: - 0.3mg n=53 - 1.0mg n=55 - 3.0mg n=57 - 3.0mg n=57	1) 38%, 2) 35%, 3) 35%, 4) 34% Occult with no classic 1) 38%, 2) 38%, 3) 38%, 4) 40%
	- sham n=53 - discontinue n=54	
Ranibizumab		
MARINA ⁹⁷	1. 0.3 mg ranibizumab monthly (n=238)	<i>Target population:</i> Occult CNV or minimally classic CNV
RCT	2.05 mg ranibizumah monthly (n-	Angiographic subtype of logion at
96 centres Primary outcomes: proportion losing < 15 letters at 12 months; safety and tolerability Length of follow-up: 24 months	 2. 0.5 mg ranibizumab monthly (n=240) 3. Sham injection monthly (n=238) 	Anglographic subtype of teston at baseline Predominantly classic (≥ 50% classic): 1) 0.4%, 2) 0%, 3) 0% ^a Minimally classic (<50% classic):
ANCHOR ⁹⁰	1. 0.3 mg ranibizumab monthly + sham PDT every 3 months if needed $(n=140)$	<i>Target population:</i> Predominantly classic lesions
RC1 83 centres Primary outcomes: proportion losing < 15 letters;	 (n-140) 2. 0.5 mg ranibizumab monthly + sham PDT every 3 months if needed (n=140) 3. sham injection monthly + verteporfin PDT every 3 months if needed (n=143) 	Angiographic subtype of lesion at baseline Predominantly Classic (\geq 50% classic): 1) 95.7%, 2) 96.4%, 3) 98.6% Minimally classic (<50% classic): 1) 3.6%, 2) 3.6%, 3) 1.4% Occult no classic 1) 0.7%, 2) 0, 3) 0
<i>Length of follow-up:</i> 24 months (ongoing)		
PIER	1. 0.3 mg ranibizumab monthly for 3 doses, then doses every 3 months	<i>Target population:</i> Any lesion type
	2. 0.5 mg ranibizumab monthly for 3 doses, then doses every 3 months	Angiographic subtype of lesion at baseline Predominantly Classic

Table 3.1 Characteristics of included studies

Study	Intervention	Participants
Primary outcomes: mean change in best corrected visual acuity	3. Sham injection monthly for 3 doses, then doses every 3 months	Minimally classic Occult with no classic
Length of follow-up: 12 months (ongoing)		Unclassified
FOCUS	1. 0.5 mg ranibizumab* monthly +	Target population:
DOT	verteporfin PDT (n=106)	Predominantly classic lesions
	2. sham injection + verteporfin PDT (n=56)	Angiographic subtype of lesion at baseline
<i>Primary outcomes:</i> proportion losing <15		Minimalla
letters,		classic
Length of follow-		Occult with no
up:		classic Unclassified:
*a lyophilised formulat	ion of ranibizumab was	
used.		

^a The numbers for the lesion subtype of the sham injection group appear to be incorrect in the MARINA publication ⁹⁷ as they add up to n=239 not n=238. The clinical study report from the manufacturer's submission gives the number of patients in the sham injection group with occult no classic lesions as 151 (63.4%) as in the publication.

The pegaptanib VISION study publications ^{95,100,101} reported the combined results of two concurrent RCTs (one in the USA and Canada [study 1004], the other at centres worldwide [study 1003]). The studies compared 0.3mg (the licensed dose), 1.0mg and 3.0mg doses of pegaptanib with sham injection. Patients were also permitted to receive PDT where appropriate. At year one, both trials showed a significant difference between 0.3mg of pegaptanib and the sham injection for the primary efficacy end point (visual acuity loss of <15 letters), so the patients from the two trials were combined for analysis, as stated in the protocol, giving a total of 1208 patients. However, it has been noted that although study 1004 demonstrated efficacy at two years, study 1003 did not show efficacy for any of the active doses at two years.^{102,103} Inclusion criteria for this study allowed patients with all angiographic subtypes of lesions to be eligible for the trial. Approximately 24-27% of the patients had predominantly classic (\geq 50% classic) lesions; between 34% and 38% had minimally classic (<50% classic) lesions, and 38-40% had lesions classified as occult with no classic. The lesion subtypes were well balanced between treatment arms.

After 54 weeks, pegaptanib patients in the VISION study^{100,101} were re-randomised to receive continued therapy or to discontinue treatment. Patients who had received sham injection in the first year were re-randomised to discontinue, continue with sham injection, or receive one of the three study doses of pegaptanib. Updated safety analyses following the second year of treatment (after re-randomisation)¹⁰¹ and efficacy data for the second year¹⁰⁰ were reported. The distribution of lesion subtypes in the re-randomised groups was not presented.¹⁰⁰

Patients who were re-randomised to discontinue therapy in the second year were allowed to resume treatment at any point in year two if they had demonstrated benefit from treatment in the first year but then lost ten or more letters of visual acuity during the second year. Of the 132 patients in the 0.3mg dose randomised to discontinue in the second year, 28 (21%) resumed therapy, at a mean of 73.7 (SD 12.4) weeks into the study. Of the 54 patients who received sham injection in the first year and were randomised to discontinue in the second year, eight (15%) chose to resume therapy (with sham injection). The mean week during which therapy was reinstated was week 72.8 (SD 10.8). Patients who resumed treatment following randomised discontinuation appear to have been included in efficacy analyses in the appropriate 'discontinued' (i.e. as randomised) group.

Two of the ranibizumab RCTs (MARINA and PIER) compared 0.3mg and 0.5mg ranibizumab with sham injection. The MARINA trial used monthly injections of ranibizumab, whereas people in the PIER trial received monthly injections for the first three months, followed by a reduced schedule of injections every three months. The ANCHOR trial compared 0.3mg and 0.5mg ranibizumab plus sham PDT with sham injection and active verteporfin PDT. The FOCUS trial compared 0.5mg ranibizumab plus verteporfin PDT with sham injection plus verteporfin PDT. A lyophilised formulation of ranibizumab was used for the months of the FOCUS trial.

Inclusion criteria for the MARINA trial stated that patients should have occult or minimally classic lesions. Almost two thirds of the patients had occult with no classic lesions, with the remainder having minimally classic lesions. A single patient had a predominantly classic lesion at baseline. The inclusion criteria for the ANCHOR trial stated that patients should have predominantly classic lesions, and almost all of the patients' lesions were classified as such. In the PIER study, which included any lesion type, **Sector** of the patients receiving ranibizumab and **Sector** the patients in the **PIER** study had **Sector** the **Secto**

FOCUS trial stated

There was a

in the treatment arms for the number of patients whose lesions were

classified as

The included trials were quality-assessed using standard criteria⁹⁹ (Table 3.2). Methodological quality and quality of reporting were generally good in the VISION study,⁹⁵ and adequate randomisation would have protected against selection bias.

Study	Randomisation	Concealment of allocation	Baseline characteristics	Eligibility	Blinding of assessors	Care provider blinding	Patient blinding	Reporting outcomes	Intention-to-treat analysis	Withdrawals explained
Pegaptanib										
VISION ⁹⁵	Ad	Ad	Rep	Ad	Ad	Ad	Ad	Ad	In	Par
Ranibizumab										
MARINA ⁹⁷	Ad	Ad	Rep	Ad	Ad	Ad	Ad	Ad	Ad	Ad
ANCHOR ⁹⁶	Ad	Ad	Rep	Ad	Ad	Ad	Ad	Ad	In	Ad
PIER										
FOCUS										

Table 3.2 Quality assessment of included studies

or

Ad = adequate, In = inadequate, Par = partial, Rep = reported, Un = unknown

Baseline characteristics were reported for the VISION study, and the treatment groups were similar at the start of the study.⁹⁵ However, when patients were re-randomized at the start of the second year, the resulting groups were unbalanced in terms of visual acuity levels. This was reported to have occurred purely by chance,¹⁰⁰ but might have an underlying influence on outcomes measured at the end of year two. If patients in one treatment group appear to have better visual acuity than others in another group at week 102, their week 54 levels would also have to be compared to see if this reflects differences at the start of year two or represents a real treatment difference.

The double-blind VISION study ⁹⁵ reported adequate masking of assessors, care providers and patients, which would have minimised any performance bias. Appropriate outcome measures

were reported, although strict intention to treat (ITT) analysis was not performed. Small numbers of patients were missing from the analyses due to not receiving at least one dose of the study drug, or not having a sufficiently standardized assessment of visual acuity completed at baseline. Three patients in the 0.3mg pegaptanib group, five patients in the 1.0mg group, six patients in the 3.0mg group and six in the sham injection group were missing for these reasons.

Withdrawals among patients within the assessed population were balanced between the treatment arms in the VISION trials.⁹⁵ Approximately 1% of patients receiving pegaptanib or sham injection discontinued owing to adverse events, and approximately 2% of patients receiving either the study drug or the sham injection died. Since both arms lost the same proportion of patients, the results should be free from attrition bias.

The MARINA and ANCHOR trials were of good methodological quality, as were the unpublished PIER and FOCUS trials. The MARINA trial and the other three ranibizumab studies described an adequate method of randomisation which would have protected the studies from selection bias. Baseline characteristics were reported by the published ranibizumab studies and the PIER trial, with similar ocular and demographic characteristics in the trial arms (within studies). In the FOCUS study, mean visual acuity was the sham+PDT group than in the ranibizumab+PDT group Males, the sham+PDT group the for subjects were were while in the ranibizumab+PDT group the form of subjects were were while in the ranibizumab+PDT group the form of subjects and were were were studies. Otherwise, the groups were studies of the studies of the groups were studies and the groups were studies.

baseline characteristics.

To protect against bias, outcome assessors, care providers and patients in the published trials and the study were masked to treatment, and all injections were performed by separate ophthalmologists who were unmasked to treatment assignment. FOCUS was a

measures, and ITT analysis was used by MARINA and _____. ANCHOR and ______from efficacy analyses, so these were not strictly ITT.

Withdrawals from the published ranibizumab studies were unbalanced, suggesting that attrition bias could have affected the results of the trials. In the MARINA study, discontinuations from treatment were approximately twice as high in the sham injection group as in the ranibizumab groups (28.6% sham injection vs. 12.6% 0.3mg ranibizumab and 13.8%

0.5mg ranibizumab). The most common reasons for the higher figures in the sham injection group were patient decision or patient's condition mandated other treatment. In the ANCHOR trial, 9.8% of patients in the PDT group discontinued treatment early, compared with 9.3% of the 0.3mg ranibizumab group and 6.4% of the 0.5mg ranibizumab group. The most common reason for discontinuation of treatment was adverse event, followed by patient's decision. Some patients who discontinued treatment in these trials remained in the studies, although study withdrawals followed the same pattern as treatment withdrawals. In the FOCUS trial, for the sham+PDT arm and for the ranibizumab +PDT arm for the ranibizumab +PDT arm for the piER study of the sham of the same in MARINA, with study and treatment for the sham of the sham being for the

injection groups than in the ranibizumab groups.

3.2.2 Assessment of effectiveness

3.2.2.1 Visual acuity

The primary outcome for the included studies was visual acuity, measured by the proportion of patients losing fewer than 15 letters on the ETDRS chart (VISION, MARINA, ANCHOR and FOCUS) (Table 3.3), or mean change in best corrected visual acuity (PIER) (Table 3.4). Other reported measures of vision change in terms of number of letters gained/lost are also shown in Table 3.3, and Table 3.5 shows deterioration in the study eye to the level of legal blindness (\leq 6/60 Snellen equivalent). The proportion of patients with a Snellen equivalent of 6/12, which is about equivalent to the legal limit for driving, is also reported. The studies included in this systematic review reported Snellen measures in feet, but these have been converted to the UK standard of metres to maintain consistency throughout the report (see Table 1.8).

After the second year of re-randomised pegaptanib treatment, the VISION study¹⁰⁰ reported mean visual acuity from weeks 54 to 102, change in standardized area under the curve of visual acuity, progression to legal blindness, lines of vision gained, and proportion of people losing fewer than 15 letters of visual acuity. The second year results are presented below (Table 3.3 - Table 3.5) for the group who continued on 0.3mg pegaptanib compared with those who received sham injection in the first year and were randomised either to discontinue or to receive a second year of sham injections. Responder rates (proportion losing < 15 letters) (Table 3.3) are also shown for those who were randomised to discontinue the 0.3mg dose and for those patients in the sham injection group who were re-randomised to receive one of the three doses of pegaptanib. Further results for those pegaptanib patients re-randomised to other doses of pegaptanib in the second year of the study are also reported,¹⁰⁰ but are not included in this review. Discussion of the second year results is limited to the licensed 0.3mg dose of pegaptanib.

The primary outcome measure for the MARINA and ANCHOR and FOCUS studies was the proportion of patients losing fewer than 15 letters of visual acuity from baseline to 12 months, at a starting test distance of 2m. The ranibizumab manufacturers also

Proportion of patients losing fewer than 15 letters of visual acuity

All pegaptanib doses performed statistically significantly better than sham injection for the primary outcome measure of loss of fewer than 15 letters between baseline and week 54 in the VISION study⁹⁵ (Table 3.3). The difference between pegaptanib doses was not significant for this outcome measure, but a slightly higher percentage of people receiving the 0.3mg or 1.0mg dose of pegaptanib lost fewer than 15 letters compared with the 3.0mg group.

The proportion of people responding to treatment decreased for all arms of the VISION study during the second year.¹⁰⁰ The groups for the second year did not have equal proportions of responders at re-randomisation. Those who received pegaptanib for the first year of the study but were re-randomised to discontinue for the second year happened by chance to have a higher proportion of responders than those randomised to continue treatment with 0.3mg pegaptanib for year two (76% vs. 66%). By the end of the second year, the proportion of responders had dropped by 7% in the group who continued with pegaptanib, compared with a decrease of 14% in the group who discontinued 0.3mg pegaptanib. So although the group who discontinued pegaptanib had a higher proportion of responders at week 102 than the continued treatment group, the group actually saw a greater decline. The group of patients who received sham injection for the first year and any dose of pegaptanib during the second year had a decrease in the number of responders of 8%. By contrast, the group of patients who either continued with sham injections or discontinued sham treatment had a decrease in

response rate of 14%. In summary, treatment with 0.3mg pegaptanib during the second year halved the underlying decline in response rate seen in the groups who discontinued treatment. The manufacturer's submission to NICE reported that the difference between the group of patients who had two years of pegaptanib treatment and those who received sham injection during year one and either discontinued sham or received a second year of sham injections was statistically significant (p=0.0385).¹⁰⁴

In the MARINA trial, approximately 95% of the two ranibizumab groups had lost fewer than 15 letters of visual acuity at 12 months, compared with about two thirds of the sham injection group (p<0.0001). The difference was still significant at 24 months, with approximately 90% of ranibizumab patients and just over half of the sham injection group having lost fewer than 15 letters (p<0.0001). In the PIER study, patients received monthly injections for the first three months of the study, but this was then reduced to an injection every three months. Results were not as good in this study as in the MARINA study; approximately 83% of the 0.3mg group and 90% of the 0.5mg group in the PIER study lost fewer than 15 letters, compared with around half of the people in the usual care group.

ANCHOR and FOCUS reported statistically significant differences between ranibizumab groups and verteporfin PDT groups in terms of the proportion of patients losing fewer than 15 letters of visual acuity. In the ANCHOR trial, approximately 95% of people receiving either 0.3mg or 0.5mg ranibizumab lost fewer than 15 letters, compared with approximately two thirds of the verteporfin PDT group (p<0.0001). Similarly, approximately 90% of those receiving 0.5mg ranibizumab plus PDT in the FOCUS trial lost fewer than 15 letters compared with around two thirds of the sham injection plus verteporfin PDT group (p=0.0003).

	No. of patients	(%) g	aining or lo	sing letters		
Pegaptanib	•	<u> </u>	8			_
VISION study year 1 ⁹⁵	0.3mg	1.0 ı	ng	3.0mg		sham injection
Lesion type: all	pegaptanib	pega	aptanib pegapta		b	(n=296)
	(n=294)	(n=3	00) (n=296)			
Loss of <15 letters at week 54	206 (70%)	213	(71%) 193 (65%)			164 (55%)
P value vs. sham	p<0.001	p<0.	001	p=0.03		
Maintenance or gain ≥ 0 letters	98 (33%) 110 ((37%)	93 (31%)		67 (23%)
P value vs. sham	P=0.003 p<0.		001	p=0.02		
Gain \geq 5 letters	64 (22%)	69 (2	23%)	49 (17%)		36 (12%)
P value vs. sham	p=0.004	p=0.	002	p=0.12		17 ((0))
$Gain \ge 10$ letters	33 (11%)	43 ([4%)	31 (10%)		17 (6%)
P value vs. sham $C_{ain} > 15$ latters	p=0.02	p=0	001 70/)	p=0.03		6 (20/)
$Gain \ge 15$ letters	18 (6%)	20 (/%)	13(4%)		6 (2%)
P value vs. snam	p=0.04	p=0.	02	p=0.16		(5 (220/)
$10SS \ge 30$ letters	28(10%)	24(a)	8%0) 001	40(14%)		65 (22%)
F value vs. shann	p<0.001	p<0.	001	p=0.01		Cham
(Patients ve vendomised)	0.3mg –	U.SI diso	ig –	Snam – ar	19	Snam – discontinuo or
(1 attents re-randomised)	(n=133)	(n=1)	32)	(n=165)		uiscontinue of usual cara(n=107)
Loss of < 15 letters	(11-133)	(1-1)	52)	(11-103)		usual care(II-107)
Week 54	66%	76%		56%		59%
Week 102	50% 62%			48%		45%
P vs usual care at 102 weeks 104	n=0.0385		40/0			-1.5 / 0
VISION study year 2 ¹⁰⁴	0.3mg = 0.3mg (n=133)		3)	Sham _ discontinue or usual co		ue or usual care
(Patients re-randomised)			(n=107)			
Loss of \geq 30 letters at 102 weeks	17 (13%)			28 (26%)		
P vs usual care	p=0.0058			20 (2070)		
VISION study year 2 ¹⁰⁰	0.3mg – 0.3 mg		0.3mg – discontinue		Sham – discontinue or	
(Patients re-randomised)	(n=133)		(n=132)		usual care (n=107)	
Lines of vision gained (estimated	()		(-)			
from graph)						
≥ 0 lines	35%		27%		26%	
≥ 1 lines	22%		19%		14%	
≥ 2 lines	15%		8%		6%	
\geq 3 lines	10%		8%		4%	
Ranibizumab						
MARINA ⁹⁷	0.3mg ranibizu	mab	0.5mg rai	nibizumab	Sham	(n=238)
Lesion type: occult/MC	(n=238)		(n=240)			
Loss of <15 letters						
12 months (primary outcome)	225 (94.5%)		227 (94.69	%)	148 (6	52.2%)
95 CI of the %						
P value (vs sham)	P<0.0001		P<0.0001		10	
24 months	219 (92.0%)		216 (90.09	%)	126 (5	52.9%)
95 CI of the %	88.6%, 95.5%		86.2%, 93.8%		46.6%, 59.3%	
P value (vs sham)	P<0.0001		P<0.0001			
Gain of \geq 15 letters	50 (24 90/)		01 (22 00/)	11 /4	(0/)
12 monuns 050/CL of the 0/	39(24.8%)		δ1 (<i>33</i> .8%	70/	11 (4.	0%0) 7 20/
D value (vs sham)	17.070, 30.370 D<0.0001		21.070, 39 D<0.0001	./70	∠.0%0,	1.370
24 months	$1 \sim 0.0001$ 62 (26 1%)		1 \0.0001 80 (22 20/)	0 (2 0	0/2)
24 monuls 95% CL of the %	62(26.1%)		27 40% 20	30/2	7 (3.8 1 /1%	6.2%
P value (vs sham)	20.370, 31.070 P<0.0001		27. ₹70, 39 P<0.0001		1.4%, 6.2%	
ANCHOR ⁹⁶	0.3 mg		0.0001		Sham	injection + PDT
Lesion type PC	v.v mg ranihizumah +		v.Jing ranihizur	nah+	(n=1/	3)
Lesion type. I C	sham PDT (n=1	40)	sham PD'	Γ (n=130 ^a)	(11-14	
			JIMMILL D	- (11 - 10/)		

Table 3.3 Proportion of patients with changes in visual acuity

submission.

Proportion of patients gaining letters of visual acuity

A small number of patients in the pegaptanib VISION study experienced an improvement in visual acuity, as measured by a gain in letters (Table 3.3). Statistically significantly more patients in the 0.3mg and 1.0mg pegaptanib groups gained at least five letters (22% and 23%, respectively), compared with 12% of the sham injection group.⁹⁵ Gains of at least ten letters were statistically significantly more common in people treated with all doses of pegaptanib, compared with the sham injection group. Improvements of this kind were reported for 11% (p=0.02), 14% (p=0.001) and 10% (p=0.03) of the 0.3mg, 1.0mg and 3.0mg pegaptanib groups, respectively, compared with 6% of sham injection group. Very few people experienced gains of at least 15 letters of visual acuity. For the 0.3mg and 1.0mg pegaptanib groups, gains of this magnitude were significantly higher than for the sham injection group (6% and 7% vs. 2%, p=0.04 and p=0.02, respectively). There was no statistically significant difference between the 3.0mg group (4%) and the sham injection group (2%).

The MARINA study found that approximately a quarter of the 0.3mg ranibizumab group and a third of the 0.5mg ranibizumab group gained at least 15 letters of visual acuity at 24 months, compared with just under 4% of the sham injection group. Differences between the

ranibizumab groups and the sham injection group were statistically significant at both 12 and 24 months. ______patients in the PIER study gained at least 15 letters of visual acuity, and these were evenly balanced between both ranibizumab arms and the sham injection group.

Both the ANCHOR and FOCUS studies showed a statistically significant difference between the numbers of people who gained at least 15 letters of visual acuity in the ranibizumab groups compared with the verteporfin PDT groups. Approximately 36% of the 0.3mg ranibizumab group and 40% of the 0.5mg ranibizumab group gained at least 15 letters, compared with about 6% of the PDT sham injection plus verteporfin PDT group (p<0.0001 for both groups). In the FOCUS study, 24% of the ranibizumab+PDT group and 5% of the sham injection+PDT group gained at least 15 letters (p=0.0033).

Mean change in visual acuity

The mean change in visual acuity, reported as the mean number of letters lost or gained, for people receiving 0.3mg or 1.0mg pegaptanib was approximately half that of people receiving sham injection (Table 3.4). Losses of 7.5 and 6.5 letters were observed in the respective pegaptanib groups, compared with a mean loss of 14.5 letters in the sham injection group by the end of 54 weeks follow-up.⁹⁵ People receiving 3.0mg pegaptanib lost an average of 10 letters of visual acuity, which was still significantly fewer letters than those lost in the sham injection group. The VISION study⁹⁵ also reported mean loss of visual acuity from baseline to each six-weekly study visit. This was significantly lower for all pegaptanib groups than for the sham injection group (p<0.002 at each time point for 0.3mg or 1.0mg, p<0.05 at each time point for 3.0mg).

The mean change in standardized area under the curve of visual acuity for patients rerandomised to continue or discontinue treatment in the second year of the VISION study was reported¹⁰⁰ (Table 3.4). The average decline from baseline to week 102 in people randomised to continue with 0.3mg treatment was 5.88 letters, compared with a decline of 11.24 letters in those who received sham injection for two years or discontinued treatment after a year of sham injections (p=0.0012). There was little change between week 54 and week 102 in the group who continued with 0.3mg pegaptanib treatment, with a decline of only 0.6 letters. By contrast, those who discontinued treatment after a year of 0.3mg pegaptanib injections experienced a mean decrease of 3.04 letters (p=0.0041). The group who continued for a second year of 0.3mg pegaptanib treatment maintained an average of approximately 44 letters of visual acuity. Those who received 0.3mg pegaptanib in the first year but discontinued during the second year lost approximately five letters of visual acuity on average, and those who did not receive pegaptanib at all during the two year study lost an average of four letters during the second year.

The MARINA and ANCHOR and FOCUS trials reported a mean increase from baseline in the number of letters of visual acuity in ranibizumab treated patients and a mean decrease in visual acuity for the comparator arms (Table 3.4). At 12 months, increases in visual acuity in the MARINA and ANCHOR studies ranged from a mean of 6.5 to 11.3 letters with ranibizumab, compared with a decrease of 10.5 letters with sham injection and 9.5 letters with PDT. At 24 months, the increase from baseline with ranibizumab was 5.4 letters (0.3 mg) and 6.6 letters (0.5 mg) versus a decline of almost 15 letters with sham injection (p<0.0001). Patients in the FOCUS trial gained on average 4.9 letters with 0.5 mg ranibizumab plus PDT compared with an average loss of 8.2 letters with PDT and sham injection (p<0.0001).

In the PIER study, patients received monthly injections for the first three months of the study, but this was then reduced to an injection every three months. For the first three months, ranibizumab patients experienced an increase in visual acuity, with a mean increase from baseline to month three of 2.9 and 4.3 letters for 0.3mg and 0.5mg doses, respectively, compared with a decline in visual acuity in the sham injection group. However, this was not maintained once the frequency of injections was reduced. Whereas ranibizumab patients in the MARINA, ANCHOR and FOCUS studies experienced a mean increase in visual acuity, people in the PIER study who received ranibizumab reported declining visual acuity at 12 months. However, the average decline in visual acuity from baseline was still statistically significantly lower with 0.3mg and 0.5 mg ranibizumab than with sham injection (p=0.0001 and p<0.0001, respectively). People in the sham injection group lost an average of 16.3 letters by 12 months, compared with 1.6 letters in the 0.3mg ranibizumab group, and 0.2 letters in the 0.5 mg ranibizumab group (Table 3.4).

	Mean (SD) no. o	fletters	of visual	acuity, unle	ss stated otherwise
Pegaptanib					
VISION study year 1 ⁹⁵	0.3mg	1.0 mg		3.0mg	sham injection
Lesion type: all	pegaptanib	pegapt	anib	pegaptanib	(n=296)
<i></i>	(n=294)	(n=300))	(n=296)	· · ·
Change in VA at 54 weeks *	-7.5	-6.5	,	-10	- 14.5
P vs sham	p<0.002	p<0.002	2	P=0.05	
VISION study year 2 ¹⁰⁰	0.3mg - 0.3mg	0	.3mg – di	scontinue	Sham – discontinue
(Patients re-randomised)	(n=133)	(1	n=132)		or usual care
``````````````````````````````````````	· · ·	,	,		(n=107)
Mean change in standardized area					
under the curve of VA					
Week 0 to week 54					
LS mean (SE)	-4.54 (1.18)				-8.16 (1.32)
<i>P</i> vs usual care	P=0.0129				
Week 0 to week 102					
LS mean (SE)	-5.88 (1.33)				-11.24 (1.49)
P compared with usual care	P=0.0012				
Week 54 to week 102					
LS mean (SE)	-0.60 (0.61)	-3	3.04 (0.60	)	
<i>P</i> vs discontinuing	P=0.0041				
Mean VA*					
Week 54	44	4	7		39
Week 102	44	4	2		35
Ranibizumab					
MARINA ⁹⁷	0.3mg ranibizun	nab 0	.5mg ran	ibizumab	Sham (n=238)
Lesion type: occult/MC	(n=238)	()	n=240)		
Change in VA	<pre></pre>	-			10.5
12 months	6.5	7	.2		-10.5
95% CI of mean	4.9, 8.1	5	.4, 9.1		-12.6, -8.3
P value (vs sham)	P<0.0001	Р	< 0.0001		14.0
24 months:	5.4	6	.6		-14.9
95% CI of mean	3.5, 7.4	4	.5, 8.7		-17.3, -12.5
P value (vs sham)	P<0.0001	P	<0.0001		
ANCHOR	0.3 mg ranibizu	mab 0	.5mg		Sham injection +
Lesion type: PC	+ sham PDT	r	anibizum	ab+ sham	PDT (n=143)
	(n=140)	P	DT(n=1, 1)	39")	0.5 (1.6.4)
Change in VA	8.5	1	1.5		-9.5 (16.4)
95% CI of mean	6.1, 11.0 D <0.0001	8	.9, 13.8		-12.3, -6.8
P value (vs. PD1)	P<0.0001	P	<0.0001		<b>CI</b> • • • •
	0.3mg ranibizun	nab U	.5mg ran	ibizumab	Sham injection
Lesion type: all			0.2		16.2
Office of the second se		-(	J.Z	•	-10.3
95% CI for mean D volue vs show		D	<0.0001		
r value vs snam	0.5	P	~0.0001	CL DD/	
rucus	v.5mg	DT		Snam+PD	
Change in VA	ranibizumab+P			0.0	
	4.7			$-\delta.2$	

# Table 3.4 Mean changes in visual acuity

VA=visual acuity, PC= predominantly classic, MC=minimally classic, LS=least squares * Data estimated from figure ^a 1 patient excluded______

#### Severe vision loss and deterioration to legal blindness

Legal blindness was defined by the studies as a Snellen equivalent of 20/200 (6/60) or worse. Significantly fewer patients in the VISION study ⁹⁵ receiving pegaptanib lost 30 or more letters (Table 3.3) or reached a reduced level of visual acuity the equivalent of legal blindness (Table 3.5), compared with patients receiving sham injection. Over half (56%) of the patients in the sham injection group were legally blind in the study eye by the end of the study, compared with 38% of the 0.3mg pegaptanib group, 43% of the 1.0mg pegaptanib group and 44% of the 3.0mg pegaptanib group.

The patient groups for the second year of the VISION study were not equal at rerandomisation (week 54) in terms of levels of legal blindness.¹⁰⁰ Approximately a third (34%) of those randomised to continue with 0.3mg pegaptanib had a Snellen equivalent of 6/60 or worse, compared with 24% of those randomised to discontinue 0.3mg pegaptanib and 47% of those in the control arm. By the end of the second year, the study eye of only one extra patient in the continued 0.3mg pegaptanib group had deteriorated to the level of legal blindness. By contrast, a further 14% of those who discontinued 0.3mg pegaptanib and 8% more of the control group deteriorated to this level of visual acuity.

Almost all of the people in the ANCHOR trial and approximately of those in the trial had predominantly classic lesions

In the ANCHOR trial, 60% of people receiving sham injection and verteporfin PDT deteriorated to the level of legal blindness in the study eye, compared with 22% of those receiving 0.3mg ranibizumab and sham PDT and 16% of people receiving 0.5mg ranibizumab and sham PDT. Differences between both ranibizumab groups and the PDT group were statistically significant (p<0.0001). The matrix trial formula found a

between people

treated with 0.5mg ranibizumab and PDT compared with those receiving sham injection plus

	Number of patie	ents (	%)		
Pegaptanib					
VISION study year 1 ⁹⁵	0.3mg	1.0 n	ng	3.0mg	sham
Lesion type: all	pegaptanib	pega	ptanib	pegaptani	b injection
	(n=294)	(n=3	00)	(n=296)	(n=296)
VA 6/60 or worse	111 (38%)	128 (	(43%)	129 (44%)	165 (56%)
P value vs. sham	p<0.001	p<0.0	001	P=0.001	
VISION study year 2 ¹⁰⁰	0.3mg – 0.3mg		<b>0.3mg – d</b> i	iscontinue	Sham – discontinue
(Patients re-randomised)	(n=133)		(n=132)		or usual care
			(		(n=107)
Baseline VA better than 6/60	(n=111)		(n=116)		(n=93)
VA 6/60 or worse	20 (240/)		20 (240/)		44 (470/)
Week 54	38 (34%)		28 (24%)		44 (4/%)
Week 102	39 (35%)		44 (38%)		51 (55%)
Kanibizumab			0 =		
MARINA	0.3mg ranibizur	nab	0.5mg ran	ibizumab	Sham (n=238)
Lesion type: occult/MC	(n=238)		(n=240)		
VA 6/60 or worse	20(12,20/)		20 (11 70/)	``	102 (42 00/)
12 months: 059/CL of the 9/	29(12.2%)		28(11.7%)	) /0/	102(42.9%)
95% CI OI the $%$	8.0%, 10.5% D<0.0001		7.0%, 13.7 D<0.0001	70	50.0%, 49.1%
24 months:	F < 0.0001 35 (14 7%)		F < 0.0001 36 (15 0%)	<b>`</b>	114 (47 0%)
95% CL of the %	10 2% 19 2%		10.5% 19	) 5%	41.6% 54.2%
P value (vs sham)	P<0.0001		P<0.0001	570	41.070, 34.270
ANCHOR ⁹⁶	0.3 mg		0 5mg ran	ihizumah	Sham injection +
Lesion type: PC	<u>oto ing</u> ranihizumah +		+ sham P	DT	PDT $(n=143)$
	sham PDT (n=1	(40)	$\frac{(n=139^{a})}{(n=139^{a})}$		
VA 6/60 or worse	31 (22.1%)		23 (16.4%)	)	86 (60.1%)
95% CI of the %	15.3%, 29.0%		10.3%, 22.	.6%	52.1%, 68.2%
P value (vs PDT)	P<0.0001		P<0.0001		,
PIER	0.3mg		0.5mg		Sham
Lesion type: all	ranibizumab		ranibizum	ab	
VA 6/60 or worse					
95% CI for %					
P value (vs sham)					
FOCUS	0.5mg			Sham+PD	Т
Lesion type:	<u>ranibizuma</u> b+P	DT			
VA 6/60 or worse					
95% CI of the %					
P value					

Table 3.5 Deterioration to	legal blindness (	visual acuity 6/6	50 (20/200) or worse)
		•/	

VA=visual acuity, PC= predominantly classic, MC=minimally classic,

^a 1 patient excluded due to

# Proportion of patients with Snellen equivalent of 6/12 or better

The MARINA and ANCHOR trials reported the proportion of patients whose study eye reached a Snellen equivalent of 6/12 or better, which is approximately equivalent to the legal limit for driving. At 24 months in the MARINA trial, 34.5% of the 0.3mg group and 42.1% of

the 0.5mg group had visual acuity of 6/12 or better, compared with just 5.9% of the sham injection group (p<0.001 for each comparison). Similar results were reported by the ANCHOR trial. At 12 months, only 2.8% of the sham injection + PDT group had visual acuity of 6/12 or better, compared with 31.4% of the 0.3mg group and 38.6% of the 0.5mg group (p<0.001 for each comparison).

#### 3.2.2.2 Subgroup analysis of visual acuity by lesion type

Lesion type was one of three patient characteristics pre-specified in the statistical analysis plan by Gragoudas and colleagues for subgroup analysis of mean decrease in visual acuity.⁹⁵ They found a statistically significant difference between all three pegaptanib treatment groups and the sham injection group for patients with minimally classic or occult with no classic lesion types. But for patients with predominantly classic lesions, only the 0.3mg pegaptanib dose was significantly more effective than sham injection in reducing visual acuity loss (Table 3.6). The results of multiple logistic-regression analyses found that no factor other than assignment to pegaptanib treatment was significantly associated with response (0.3mg dose, p<0.001).⁹⁵



The pegaptanib manufacturer's submission¹⁰⁴ analysed

Approximately one third of people in the MARINA trial had minimally classic lesions. There was very little difference in response between these patients and those whose lesions were occult with no classic, and both subgroups of patients receiving either dose of ranibizumab had a statistically significantly better response than those receiving sham injection at both 12 and 24 months.

The majority of people in the ANCHOR trial did not have occult CNV present. Subgroup analysis showed that ranibizumab groups both had a statistically significantly higher response rate than people receiving PDT, regardless of whether or not occult CNV was present at baseline. For patients in the control arm receiving PDT, the response rate was higher among people without occult CNV than for people with occult CNV

The PIER study reported
The
subgroups of patients who were treated with either dose of ranibizumab
showed compared with the sham injection
groupThose who received 0.3mg ranibizumab reported
a those treated with 0.5mg ranibizumab showed
Patients without occult CNV
formed
. Patients without occult CNV who received 0.3mg
ranibizumab
People without
occult CNV who received 0.5mg ranibizumab
FOCUS
of ranibizumab and PDT compared with sham injection

and PDT.

Table 2 ( C	have we are also	and of stars all	a arriter here		~~~ h 4 ~
TADIE NO NI	noronn anaiv	сес от укнят з	ясших пу	iesion	suntvne
1 4010 010 54	ogioup analys	JUS OI VISUUI (	acuity by	icoron	subtype

	Visual acuity outcome (number of letters or proportion of patients)					
Pegaptanib						
VISION study year 1 ⁹⁵	0.3mg pegaptanib	1.0 mg pegaptanib	3.0mg pegaptanib	Sham injection		
Change in VA, no. of letters:*						
Predominantly classic	(n=72)	(n=78)	(n=80)	(n=76)		
Mean decrease in VA	7.1	10.2	10.5	14		
P vs sham	P<0.05	n/s	n/s			
Minimally classic	(n=111)	(n=108)	(n=105)	(n=102)		
Mean decrease in VA	7.3	6.5	9.4	14.2		
P vs sham	P<0.001	p<0.001	p<0.05			



	Visual acuity outcome (number of letters or proportion of patients)				
P value vs sham					
FOCUS	R+PDT	Sham+PDT			
Proportion losing <15 letters					
Predominantly Classic					
Response rate n (%)					
95% CI of the percentage					
P value					
95% CI of the percentage					
P value					

*data estimated from figures, total n per group assumed to be that listed for baseline characteristics VA= visual acuity

The figures given in the clinical study report provided with the manufacturer's submission are:

These are the exact figures given in the clinical study report provided with the manufacturer's submission. Rounded figures are presented in the publication.

# 3.2.2.3 Change in contrast sensitivity

The pegaptanib VISION study did not report changes in contrast sensitivity. MARINA,



Table 3.7	' Change	in	contrast	sensitivity
-----------	----------	----	----------	-------------



#### 3.2.2.4 Anatomical changes

In addition to the outcome measures required by the inclusion criteria of this systematic review, changes in lesion size, CNV size and leakage area were reported by the studies (Table 3.8).

The VISION study⁹⁵ reported that only the 1.0mg dose of pegaptanib was statistically significantly more effective than sham injection in terms of changes in size of CNV and size of leakage between baseline and week 54 of the study. Both 0.3mg and 1.0mg showed a statistically significantly lower increase in size of lesion than was reported for the sham injection group (1.8 disc areas (DA) vs. 2.5 DA). The highest dose of pegaptanib (3.0mg) showed no statistically significant difference in anatomical changes from baseline compared with the sham injection group. The VISION study¹⁰⁰ reported individual results at two years (following re-randomisation) from the two RCTs which comprised the VISION study (trials 1003 and 1004), but did not report combined analyses. The only statistically significant angiographic difference between the continuing 0.3mg group's mean total lesion size was 5.4 DA at week 78 and 5.6 DA at week 102, compared with 7.5 DA and 8.1 DA, respectively, in the group who discontinued (p<0.05). However, the corresponding patient groups in study 1003 did not show a significant difference (Appendix 4).

People in the MARINA trial treated with ranibizumab showed either no change in area of CNV (0.5mg dose group) or a decrease in area of CNV of 0.32 DA (0.3mg dose group) between baseline and the end of two years of treatment. By contrast, people in this study who received sham injection experienced an average increase in CNV area of 2.58 disc areas over two years. The difference between the ranibizumab groups and the sham injection groups was statistically significant (p<0.0001). The mean change from baseline remained almost constant throughout 24 months in each of the ranibizumab groups, but the mean in the sham injection group increased further from 12 months to 24 months. As a result, the difference between each ranibizumab group and the sham group at 24 months (Table 3.8 ) was somewhat greater than at 12 months. However, differences between groups were statistically significant at both 12 and 24 months (p<0.0001).

People in the PIER study received fewer injections than those in the MARINA trial, and The mean from baseline in

for people in the PIER study who we	ere treated with ranibizumab
was	people in the sham injection
group 3.8 People in the ANCHOR trial and	trial who were treated with
ranibizumab showed a statistically significant reduction in	area of classic CNV compared
with increases in mean area for those in the sham injection	with verteporfin PDT groups,
p<0.0001 (ANCHOR) and	

Treatment with ranibizumab significantly reduced the mean area of leakage from CNV and intensive progressive retinal pigment epithelium (RPE) staining, compared with a mean increase in people in the control group in the MARINA, ANCHOR and (p<0.0001 for all groups compared with sham injection or PDT). In the MARINA trial, the difference between each ranibizumab group and the sham group was similar at 12 and 24 months.

# People who received ranibizumab and PDT experienced

# compared with

Ę	Mean (SD) dis	sc areas (DA)		
Pegaptanib				
VISION study year 1 ⁹⁵	0.3mg	1.0mg	3.0mg	Sham
Lesion type: all	pegaptanib	pegaptanib	pegaptanib	injection
	(n=294)	(n=300)	(n=296)	Ū
Mean change in size of lesion, DA	1.8	1.8	2.5	2.5
P vs. sham	p<0.01	p<0.01	n/s	
Mean change in size of CNV, DA	1.6	1.2	1.8	2.1
P vs. sham	n/s	p<0.01	n/s	
Mean change in size of leakage, DA	1.0	0.5	1.2	1.6
P vs. sham	n/s	p<0.01	n/s	
Ranibizumab				
MARINA ⁹⁷	0.3mg	0.5mg	S	Sham (n=238)
Lesion type: occult/MC	ranibizumab	ranibizu	mab	
	(n=238)	(n=240)		
Month 12:				
Area of CNV, DA	-0.29	-0.03	1	.93
95% CI of mean	-0.55, -0.02	-0.27, 0.2	21 1	.57, 2.29
P value vs sham	P<0.0001	P<0.0001	l	
Area of leakage from CNV + intense				
progressive RPE staining, DA	-1.96	-1.88	1	.14
95% CI of difference	-2.28, -1.64	-2.18, -1.	58 0	0.68, 1.59
P value vs sham	P<0.0001	P<0.0001	l	
Month 24:				
Area of CNV, DA	-0.32	0.00	2	2.58
95% CI of mean	-0.63, -0.01	-0.26, 0.2	26 2	2.15, 3.02
P value vs sham	P<0.0001	l		
Area of leakage from CNV + intense				
progressive RPE staining, DA	-2.18	-2.18	C	0.76

# Table 3.8 Anatomical changes from baseline

an an
	Mean (SD) disc ar	eas (DA)	
95% CI of difference	-2.52, -1.85	-2.54, -1.83	0.23, 1.29
P value vs sham	P<0.0001	P<0.0001	
ANCHOR ⁹⁶	0.3 mg	0.5mg	Sham injection +
Lesion type: PC	ranibizumab +	ranibizumab +	PDT (n=143)
	sham PDT	sham PDT	
	(n=140)	(n=140)	
Area of classic CNV, DA	-0.52 (0.89)	-0.67 (1.10)	0.54 (2.37)
95% CI of mean	-0.67, -0.37	-0.86, -0.49	0.15, 0.93
P value vs PDT	P<0.0001	P<0.0001	
Area of leakage from CNV + intense			
progressive RPE staining, DA	-1.80 (1.72)	-2.05(1.98)	0.32 (3.09)
95% CI of mean	-2.09, -1.51	-2.38, -1.72	-0.19, 0.83
P value vs PDT	P<0.0001	P<0.0001	
PIER	0.3mg	0.5mg	Sham
Lesion type: all	<u>ranibiz</u> umab	<u>ranibiz</u> umab	
Area of CNV, DA			
95% CI of mean			
P value vs sham			
Area of leakage from CNV			
P value vs sham			
FOCUS	0.5mg ranibizuma	b+PDT Sham+l	PDT (n=56)
Lesion type	(n=105)		
Area of lesion, DA			
95% CI of the mean			
P value			
Area of classic CNV, DA			
95% CI of the mean			
P value			
Area of leakage from CNV + intense			
progressive RPE staining. DA			
95% CI of the mean			
P value			

P values are change from baseline in treatment group vs. change from baseline in comparator arm. VA=visual acuity, PC= predominantly classic, MC=minimally classic,

#### 3.2.2.5 Change in Visual Function Questionnaire scores

Health-related quality of life changes in the VISION study, as assessed by the National Eye Institute Visual Function Questionnaire-25 (NEI VFQ-25), was reported for a subgroup of 569 patients. However, this was only reported in abstract form¹⁰⁵ with very limited data presented, and is therefore not discussed further here.

MARINA and

NEI VFQ-25. The full questionnaire comprises 25 questions to assess vision-related functioning and well-

being

	MARINA
	NEI VFQ-
25	
3.9	
The ANCHOR trial found	
	<u>.</u>

Table 3.9 Change from baseline in NEI VFQ-25 scoresMean score (SD)



PC= predominantly classic, MC=minimally classic

# 3.2.3 Compliance with treatment

The pegaptanib manufacturer reported treatment compliance for the full 102 weeks of the pegaptanib study. A mean of 15.6 of 17 possible treatments were administered to patients receiving pegaptanib 0.3 mg, and 16.3 of 17 possible treatments were administered to patients receiving usual care¹⁰⁴ (Appendix 4).

4
Awas
observed in the MARINA trial, with at least 89% of patients being treated per protocol during
the first year and 76% or more in the second year. A greater number of
. The ANCHOR trial found
that ranibizumab or sham injection at each visit. In
the trial trial ranibizumab subjects verteporfin
subjects

# 3.2.4 Adverse events

# Pegaptanib

All patients in the VISION study⁹⁵ underwent the same preparation procedure, regardless of their randomised group allocation. This included an ocular antisepsis procedure and an injection of subconjunctival anaesthetic, and it is possible that these procedures may themselves be related to ocular adverse effects. Table 3.10 shows adverse events reported for patients in the pegaptanib VISION study.

Adverse Event (AE)	Number of patients (%)				
	VISION study year 1 ⁹⁵ VISION study year 2 ¹⁰¹				
				(re-randomised)	
	All	Sham	P value	Pts cont	inued with:
	doses	n=296		0.3mg	Sham
	n=890			(n=128)	(n=51)
Individuals with AE				122 (95)	46 (90)
Individuals with ocular AE (study eye)				92 (72)	39 (76)
Individuals with serious AE				22 (17)	14 (27)
Rate of discontinuation due to AE	1%	1%	n/s	5 (4)	2 (4)
Death rate	2%	2%	n/s	1(1)	0
Vascular hypertensive disorders	10%	10%	n/s		
Hemorrhagic AE	2%	3%	n/s		
Thromboembolic events	6%	6%	n/s		
Endophthalmitis	1.3%	0%	nr	0	0
Eye pain	34%	28%	n/s	27 (21%)	9 (18%)
Vitreous floaters	33%	8%	p<0.001	28 (22%)	2 (4%)
Punctuate keratitis	32%	27%	n/s	31 (24%)	14 (27%)
Cataract	20%	18%	n/s	14 (18%)	8 (24%)
Vitreous opacities	18%	10%	P<0.001	13 (10%)	6 (12%)
Anterior-chamber inflammation	14%	6%	P=0.001		
Visual disturbance	13%	11%	n/s	4 (3%)	5 (10%)
Eye discharge	9%	8%	n/s		
Corneal edema	10%	7%	n/s	12 (9%)	4 (8%)
Increased intracocular pressure				26 (20%)	4 (8%)
Lacrimation increased				6 (5%)	6 (12%)
Eye redness				9 (7%)	6 (12%)

Table 3.10 Adverse events: pegaptanib VISION study

n/s = not statistically significant; nr=not reported

The number of deaths during the study and rate of discontinuation due to adverse events were equal in the combined dose pegaptanib group and the sham injection group. The study did not provide details of the adverse events leading to discontinuation, other than to state that they were diverse and not clustered in relation to a particular system or organ.

Reported adverse events were similar between treatment arms, with the exception of: vitreous floaters (33% in pegaptanib groups vs. 8% in sham injection group, p<0.001); vitreous opacities (18% vs. 10%, respectively, p<0.001); and anterior-chamber inflammation (14% versus 6%, p=0.001). Year one of the VISION study⁹⁵ reported that the majority of adverse effects in the study eyes were transient and mild to moderate in severity, and attributed these to the injection procedure rather than to the study drug. They also found that eye-related adverse events were more common in the study eyes than in the other eyes among patients in the sham-injection group. This suggests that the preparation procedure itself could be associated with adverse effects, even if no study drug is administered.

The VISION study also reported safety analyses for patients who received further treatment with pegaptanib beyond the initial study year.¹⁰¹ The second year patient groups are not directly comparable with those in the first year, since the patients were re-randomised. However, the incidence of common ocular adverse events appears to be similar to those reported in year one. Most adverse events reported in the study eyes were transient, mild-to-moderate in severity, and attributed to the injection procedure itself rather than to the study drug. The rate of discontinuation due to adverse events in the second year was higher for both those who continued 0.3mg pegaptanib and those who were randomised to usual care (4% for both groups).

There were 7545 injections in 890 patients in the first year of the VISION trial, and 2663 injections in 374 patients in the second year. Endophthalmitis is the presence of extensive severe infection inside the eye, typically caused by eye surgery or trauma. It is an ocular emergency requiring immediate medical care and often surgery. Symptoms include floaters, light sensitivity, eye pain or discomfort, a red or pink eye and vision loss. Twelve patients experienced endophthalmitis in the first year (1.3% of patients), and approximately 75% of these remained in the trial. Two thirds of the patients with this condition had been affected by a protocol violation, generally the result of failure to use an eyelid speculum to prevent bacteria from the eyelashes from contaminating the injection site. Five of the 890 patients experienced traumatic injury to the lens, and six had retinal detachment in the study eye.

There were no cases of endophthalmitis or traumatic cataract reported by patients who were randomised to receive pegaptanib for more than one year. However four cases of endophthalmitis and one case of traumatic cataract were reported among patients who either received sham injection in the first year and pegaptanib in the second year or who were randomised to discontinue pegaptanib in the second year but were later retreated. The rate of retinal detachment in the second year of treatment for those patients who received two years of pegaptanib was 0.15% per injection (4 cases out of 2663 injections). There was no evidence of cataract progression or persistent intraocular pressure elevation following multiple pegaptanib injections.

#### Ranibizumab

Published data on adverse events for the ANCHOR and MARINA trials are shown in Table 3.11. Appendix 9 shows CIC information on ocular adverse events for PIER, FOCUS, MARINA and ANCHOR studies, restricted to events experienced by at least two people in an individual study arm and reported by at least two of the trials. The data extraction tables in Appendix 4 contain complete listings of reported adverse events for each trial.

78

Incidences of severe ocular inflammation varied between treatment arms (Table 3.11). In the 24 month MARINA trial, reported rates were highest in the 0.5mg ranibizumab group (20.9%) followed by the 0.3mg group (16.8%) and the sham injection group (12.7%). Rates were lower in the 12 month ANCHOR results; 17.1% in the 0.5mg ranibizumab group; 12.4% in the 0.3mg ranibizumab group and 3.5% in the PDT group. No statistical test results were reported for the differences between trial arms. Serious ocular events were rare in the MARINA and ANCHOR trials. Three patients in each of the ranibizumab arms of the MARINA trial, and one patient in the 0.5mg ranibizumab arm of the ANCHOR trial reported uveitis.

Endophthalmitis was reported by very few ranibizumab patients in the ranibizumab trials and none in the control arms. Five people in the MARINA trial (2 in the 0.3mg group and 3 in the 0.5mg group, approximately 1% overall) and two people in the ANCHOR trial (0.5mg ranibizumab dose group, approximately 0.7% of all ranibizumab patients)

endophthalmitis cases in the 0.5 mg group of the MARINA trial was reported as uveitis by an investigator. It is assumed that this is the reason for the discrepancy between the figures in Table 3.11 9 The rate per injection was five events out of 10,443 injections (0.05%) in the MARINA trial. The rate per injection was not reported for the ANCHOR trial.

patients in the 24 month MARINA trial and the 12 month ANCHOR
and trials experienced at least one ocular adverse event
with of the 0.3mg
ranibizumab group % of the 0.5mg ranibizumab group and for the sham injection
group experiencing at least one ocular adverse event. Intraocular
nflammation

Conjunctival haemorrhage was the most widely reported ocular adverse effect, but its incidence varied between trials (Appendix 9) for the participants for the trial were affected by this condition for the procedure or sham/ranibizumab injections were the likely cause. Rates of conjunctival haemorrhage in the other trials were higher in the ranibizumab groups than in the control arms, but people receiving sham

injection still experienced this event in high numbers

trials and Higher proportions of ranibizumab patients than those in the control arms experienced (Appendix 9). A post-operative intraocular pressure of 30mmHG or more was reported by higher numbers of ranibizumab patients than those in the control arms (Table 3.11). Some adverse events, such as vitreous detachment and eye irritation, were reported in higher proportions in some ranibizumab trials but not others. Retinal haemorrhage, eye pain and subretinal fibrosis were consistently reported in higher proportions of the control arms than of the treatment arms of (Appendix 9). The overall incidence of ocular serious adverse events was mixed in the four ranibizumab studies (Appendix 9). In the FOCUS trial. in the ranibizumab plus PDT arm as in the sham injection plus PDT arm. patients discontinued the study or treatment due to adverse events. The rate of discontinuation from study or treatment due to adverse events was Severe adverse events were reported between approximately % and % of the patients in the four trials in Appendix 9. PIER and MARINA reported , and the FOCUS trial reported a The ANCHOR trial had Conjunctival haemorrhage was the . Increased intraocular pressure and iritis were

Selected non-ocular adverse events (not classified as 'severe') are shown in Table 3.11 for the MARINA and ANCHOR studies. Hypertension was reported by 16.1 to 17.2% of patients in the MARINA trial, and by between 2.2% and 8.4% of patients in the ANCHOR trial. Whereas the incidence of hypertension was balanced between treatment arms in the MARINA trial, it was more common in the PDT arm than in the ranibizumab groups in the ANCHOR

#### trial. The incidence of non-ocular serious adverse events was



Very few deaths were reported in the ranibizumab trials, with numbers of deaths being approximately equal between trial arms (Table 3.11 and Appendix 10). The highest number of deaths occurred in the longer MARINA trial, as would be expected given the demographic profile of the study population. There were 17 deaths in the MARINA trial, ten due to vascular causes and seven due to nonvascular causes. Seven people died during the first year of the ANCHOR trial, four from vascular causes and three from nonvascular causes.

	Number of patients (%)					
Adverse event (AE)	MARINA ⁹⁷ 24 months ANCHOR ⁹⁶ 12 months			onths		
	Les	ion type: occul	lt/MC	Lesion type: PC		
	0.3mg	0.5mg	Sham	0.3mg +	0.5mg +	Sham + PDT
	(n=238)	(n=239)	(n=236)	sham PDT	sham PDT	(n=143)
				(n=137)	(n=140)	
Serious ocular event						
Presumed endophthalmitis	2 (0.8)	3 (1.3)	0	0	2 (1.4)	0
a	1 (0.4)	0	0	0	1 (0.7)	0
Culture not obtained	1 (0.4)	$3(1.3)^{b}$	0	0	0	0
Culture negative	0	0	0	0	1 (0.7) ^a	0
Culture positive		_			_	
Uveitis	3 (1.3)	$3(1.3)^{e}$	0	0	$1(0.7)^{e}$	0
Rhegmatogenous retinal	0	0	1 (0.4)	1 (0.7)	0	$1(0.7)^{\circ}$
detachment						
Retinal tear	1 (0.4)	1 (0.4)	0	0	0	0
Vitreous haemorrhage	1 (0.4)	1 (0.4)	2 (0.8)	1 (0.7)	0	0
Lens damage	0	1 (0.4)	0	0	0	0
Most severe ocular						
inflamation						
None	198 (83.2)	189 (79.1)	206 (87.3)	120 (87.6)	116 (82.9)	138 (96.5)
Trace	19 (8.0)	35 (14.6)	24 (10.2)	11 (8.0)	13 (9.3)	4 (2.8)
1+	14 (5.9)	8 (3.3)	6 (2.5)	3 (2.2)	8 (5.7)	1 (0.7)
2+	2 (0.8)	2 (0.8)	0	1 (0.7)	1 (0.7)	0
3+	2(0.8)	2(0.8)	0	2(1.5)	1 (0.7)	0
4+	3 (1.3)	3 (1.3)	0	0	1 (0.7)	0
Ocular adverse event						
Post-injection IOP						
$\geq$ 30mmHg						
$\geq$ 40mmHg						
$\geq$ 50mmHg				NK	NK	NK

Table 3.11 Adverse events: ranibizumab MARINA and ANCHOR studies

	Number of patients (%)					
Adverse event (AE)	MARINA ⁹⁷ 24 months Lesion type: occult/MC			ANCHOR ⁹⁶ 12 months Lesion type: PC		
	0.3mg (n=238)	0.5mg (n=239)	Sham (n=236)	0.3mg + sham PDT (n=137)	0.5mg + sham PDT (n=140)	Sham + PDT (n=143)
% with cataract						
Non-ocular adverse						
event						
Investigator-defined	41 (17.2)	39 (16.3)	38 (16.1)	3 (2.2)	9 (6.4)	12 (8.4)
hypertension						
Key arterial non-fatal						
thromboembolic events						
Myocardial infarction	$6(2.5)^{c}$	3 (1.3)	4 (1.7)	1 (0.7)	3 (2.1)	1 (0.7)
Stroke	3 (1.3)	6 (2.5)	2 (0.8)	0	1 (0.7)	0
Cerebral Infarction	NR	NR	NR	1 (0.7)	0	1 (0.7)
Death	5 (2.1)	6 (2.5)	6 (2.5)	3 (2.2)	2 (1.4)	2 (1.4)
Vascular cause (APTC						
criteria)	3 (1.3)	3 (1.3)	4 (1.7)	1 (0.7)	2 (1.4)	1 (0.7)
Nonvascular cause	2 (0.8)	3 (1.3)	2 (0.8)	2 (1.5)	0	1 (0.7)
Nonoccular haemorrhage						
Total	22 (9.2)	21 (8.8)	13 (5.5)	2 (1.5)	3 (2.1)	0
Serious adverse event	3 (1.3)	5 (2.1)	2 (0.8)	7 (5.1)	9 (6.4)	3 (2.1)
Serious non-ocular AE	NR	NR	NR	20 (14.6)	28 (20.0)	28 (19.6)

APTC =Antiplatelet Trialists' Collaboration; NR=not reported; MC=minimally classic;

PC=predominantly classic; IOP=intraocular pressure

^a Events were categorized as presumed endophthalmitis in cases in which intravitreal or systemic antibiotics were administered.

^bOne event was reported as uveitis by an investigator

^c One patient had two episodes

^d Vitreous culture was positive for Staphylococcus epidermis

^e One patient had 2 episodes of intraocular inflammation that were reported as uveitis, but one of the episodes was classified as presumed endophthalmitis because it was treated with systemic antibiotics. In neither of these 2 episodes was a vitreous culture obtained, and neither was treated with intravitreal antibiotics.

#### 3.3 Discussion of clinical effectiveness

#### Pegaptanib

Methodological quality and quality of reporting were generally good in the VISION study.⁹⁵ The randomised nature of the trial would have prevented selection bias. The study reported adequate blinding of assessors, care providers and patients, which would have minimised any performance bias. However, results of the trial were not analysed on an intention to treat basis. A small number of patients in each arm did not receive study treatment or an adequate baseline assessment, and so they were excluded from analyses. Although there are slight differences in the number of such patients between treatment arms, there are no obvious imbalances or biases which would have affected results. There do not appear to have been systematic withdrawals from the VISION study, so the results should be free from attrition bias.

The published data for the VISION study is based on the combined results of two RCTs (study 1003 and 1004) and data for these are not presented separately.⁹⁵ However, it has been noted¹⁰² that the Food and Drug Administration (FDA) Medical Officer Review of the two-year results states that although study 1004 demonstrates efficacy for all active doses of pegaptanib sodium at week 102, 'this effect is not replicated in study 1003 which does not show efficacy for any of the active doses'. The FDA also state that 'for the combined data set, the results are equivocal concerning the need for further injections beyond the first year of treatment'.¹⁰³ The reasons for the discrepancy between the RCTs at year two are unclear; one possible explanation is that the use of PDT confounded the results, and PDT may be more likely to be used in the US (study 1004) (A. Lotery, personal communication, October 2006).

The time horizon of 54 weeks follow-up for the first study report is appropriate for assessing the effect of treatment on this condition. Patients treated with any of the three doses of pegaptanib (0.3mg, 1.0mg or 3.0mg) were significantly more likely to lose fewer than 15 letters of visual acuity than people who received sham injection by the end of year one. Fifteen letters is generally accepted to be a clinically significant change in visual acuity. It could have a significant impact on quality of life, and could represent the difference (depending on the starting point) in being able to live independently, drive, read or watch TV. The eyesight of people receiving pegaptanib was also significantly less likely to deteriorate to the level of legal blindness by the end of year one than that of people who received sham injection.

Patients were re-randomised to continue or discontinue treatment for the second year of the VISION study.¹⁰⁰ Although all patients were less likely to have lost fewer than 15 letters of visual acuity by the end of the second year of the study, the decrease was lower among patients who received a second year of pegaptanib treatment. The decline in the proportion of responders (i.e. those losing fewer than 15 letters of visual acuity) from week 54 to week 102 reported by the VISION study¹⁰⁰ was the same for those who discontinued 0.3mg pegaptanib as for those who never received the drug (14%).

Subgroup analyses by lesion subtype were reported for the mean number of letters change in visual acuity at one year, rather than for the primary outcome (proportion of patients losing fewer than 15 letters). A letter to the Editor of Ophthalmology¹⁰² notes that the data for subgroup analysis of the primary outcome can be found on the FDA website.¹⁰⁶ These data show that for the licensed 0.3 mg dose of pegaptanib, the proportion of patients losing fewer than 15 letters was not statistically different from sham injection for either predominantly

classic lesions (p=0.15) or occult with no classic lesions (p=0.14).¹⁰⁶ This is in contrast to the data in the VISION study publication,⁹⁵ which demonstrates a statistically significant difference between 0.3 mg pegaptanib and sham injection for each of the three lesion subgroups, when looking at the mean change in visual acuity. Subgroup analyses are also presented separately for the individual RCTs on the FDA website.¹⁰⁶ Differences in statistical significance among the subgroups were evident between the two trials, with no obvious pattern apparent.

Although injection-related adverse events were rare, treatment with pegaptanib was linked with a greater likelihood of experiencing vitreous floaters, vitreous opacities, and anteriorchamber inflammation. These are all mild events, and not considered to be clinically important.

On the basis of the only published study identified by this review (the VISION study), pegaptanib appears to be clinically effective for the treatment of AMD. The generally good methodological quality of the study indicates that the results are likely to represent an unbiased estimate of the effect of pegaptanib on people with AMD who met the study entry criteria.

#### Ranibizumab

The systematic review identified two published RCTs of ranibizumab, and the manufacturer supplied trial reports for two unpublished studies. The published and unpublished studies were of good methodological quality. Adequate methods of randomisation were used, which would have protected the studies from selection bias. The published trials and the maxematic trial masked outcome assessors, care providers and patients to treatment, which should have prevented bias in the reporting of results. Whilst the MARINA trial analysed results on an ITT basis, the ANCHOR and trials excluded one or more patients. Withdrawals from the MARINA study were unbalanced, with more people in the sham injection groups choosing to discontinue. People in either the sham injection group or the 0.3mg ranibizumab group were more likely to withdraw than those in the 0.5mg injection group in the ANCHOR trial.

The studies were designed to include patients with different types of lesions, and they demonstrated that ranibizumab is effective for all types of lesion. Loss of fewer than 15 letters was demonstrated to be statistically significantly more likely in patients who received ranibizumab compared with the control arms, and this will have a significant impact on daily life. People in the ANCHOR and MARINA trials who received ranibizumab were also more

likely to have a level of visual acuity that is approximately equivalent to the legal limit for driving. One of the trials

visual acuity outcomes for patients in this trial were those those in the other studies. Adverse effects with ranibizumab were common but most were mild to moderate. More serious ocular adverse events such as endophthalmitis were rare.

The good methodological quality of these studies provides a strong evidence base for the effectiveness of ranibizumab. Ranibizumab appears be clinically effective for the treatment of AMD, with a greater proportion of patients losing less that 15 letters of visual acuity and patients gaining on average an improvement in vision.

### 3.4 Summary of clinical effectiveness

#### Pegaptanib

- The systematic review identified three publications^{95,100,101} which reported the combined results of two good quality RCTs (the VISION study) comparing pegaptanib with sham injection in patients with all lesion types.
- The primary outcome measure of visual acuity, measured by loss of fewer than 15 letters, was statistically significantly better in all the pegaptanib dose groups than in the sham injection group. People who continued to receive 0.3mg pegaptanib were significantly more likely to have lost fewer than 15 letters by the end of a second year of treatment than those who discontinued pegaptanib after one year.
- For all secondary measures of visual acuity, 0.3mg pegaptanib or 1.0mg pegaptanib was statistically significantly better than sham injection after one year of treatment. With the exception of gains in visual acuity of at least 5 letters or at least 15 letters, the 3.0mg pegaptanib dose was also statistically significantly better than sham injection after one year of treatment. A gain of at least 15 letters of visual acuity is generally accepted as a clinically important outcome which could have a significant impact on quality of life. Few people gained at least 15 letters of visual acuity, but for the 0.3mg and 1.0mg doses, this was statistically significantly more than for sham injection.
- Significantly fewer patients receiving pegaptanib lost 30 or more letters or reached a reduced level of visual acuity the equivalent of legal blindness, compared with patients receiving sham injection. Continued treatment with 0.3mg pegaptanib for a second year of treatment reduced the likelihood of deterioration to the level of legal blindness.
- Analysis of subgroups defined *a priori* found a statistically significant difference in mean change in visual acuity between all doses of pegaptanib treatment and sham injection for

patients with minimally classic or occult with no classic lesions. Only the licensed 0.3mg pegaptanib dose was significantly more effective than sham injection in reducing visual acuity loss in people with predominantly classic lesions after one year of treatment. Subgroup analyses were not performed on the primary outcome measure (proportion of patients losing fewer than 15 letters).

- The 1.0 mg dose of pegaptanib was associated with a statistically significantly lower increase from baseline in the size of the lesion, size of CNV and the size of leakage compared with sham injection. The effect of the 0.3 mg dose was statistically significant for the change in the size of the lesion only, while the 3.0 mg showed no statistically significant effects on these anatomical changes.
- Reported adverse events were similar between treatment arms in the pegaptanib study, with the exception of: vitreous floaters; vitreous opacities; and anterior-chamber inflammation which were all statistically significantly more common in patients treated with pegaptanib after one year of treatment.
- Injection-related adverse events were rare in patients treated with pegaptanib in the first year of the study. Only 12 patients (1.3%) experienced endophthalmitis; five experienced traumatic injury to the lens, and six had retinal detachment in the study eye.

#### Ranibizumab

- The systematic review identified two good quality published RCTs of ranibizumab compared with sham injection⁹⁷ or PDT.⁹⁶ The manufacturer submitted two additional unpublished good quality RCTs which met the inclusion criteria for this systematic review.
- MARINA and ANCHOR assessed the use of ranibizumab in people with different lesion subtypes (occult/minimally classic lesions and predominantly classic lesions, respectively). Patients in the PIER trial received a reduced frequency of ranibizumab injections. One trial (FOCUS) was a randomised, controlled phase I/II study comparing 0.5 mg of ranibizumab plus PDT with sham injection plus PDT in patient with predominantly classic lesions.
- People treated with ranibizumab in the two published and two unpublished RCTs were significantly more likely than those in the comparator arms to lose fewer than 15 letters of visual acuity.
- Between about 25% to 40% of patients receiving ranibizumab

gained at least 15 letters of visual acuity,

significantly more than in the control groups (about 5% at 12 months). This is a clinically important outcome which could have a substantial impact on quality of life.

• Results from MARINA, ANCHOR and indicated that treatment with a monthly injection of ranibizumab led to an increase in mean number of letters visual acuity, compared with an average decrease in comparator arms. However, results from the PIER study suggest that a reduced frequency of one injection every three months is insufficient to maintain an average increase in visual acuity.

- The study eyes of people treated with either 0.3mg or 0.5mg ranibizumab in the MARINA and ANCHOR trials were statistically significantly less likely to deteriorate to the level of legal blindness than those in the control arms.
- Subgroup analysis in the MARINA and ANCHOR trials found that the difference between the ranibizumab groups and the comparators in proportion of patients losing fewer than 15 letters was statistically significant for every lesion subgroup.

A mean reduction or no change in the area of CNV and/or classic CNV and in the area of leakage from CNV plus intense progressive RPE staining was found with both doses of ranibizumab
 The changes were statistically different from the increases in area found in the comparator

group.



. Higher proportions of ranibizumab patients than those in the control arms experienced increased intraocular pressure and vitreous

floaters.

related to use of the study drug. The incidence of non-ocular serious adverse events was reasonably balanced between treatment arms, and these were not generally reported to have been linked to the study drug. Serious ocular events were rare in the MARINA and ANCHOR trials, and endophthalmitis was reported by very few ranibizumab patients (approximately 1% of the ranibizumab patients in the MARINA trial and 0.7% of the ranibizumab patients in the ANCHOR trial).

# 4 ASSESSMENT OF COST-EFFECTIVENESS

#### Introduction

The aim of this section is to assess the cost-effectiveness of pegaptanib and ranibizumab compared to existing treatments (PDT for patients with a confirmed diagnosis of classic with no occult subfoveal CNV and best-corrected visual acuity 6/60 or better) or best supportive care in patients with AMD in England and Wales. The economic analysis comprises:

- a systematic review of the literature on the cost-effectiveness of pegaptanib and ranibizumab, of approaches to modelling disease progression and effects of treatment for patients with AMD and of quality of life for patients with AMD (Section 4.1.1 to 4.1.3);
- a review of the manufacturer submissions (cost-effectiveness section) to NICE (Section 0);
- presentation of our economic model and cost-effectiveness evaluation (Section 4.2).

As discussed in Section 1.1 (Measurement of disease), visual acuity may be expressed in metres or feet. In our economic model and cost-effectiveness evaluation visual acuity will be expressed in metres. However, the majority of economic evaluations and quality of life studies reviewed in Sections 4.1 and 0 use measurements in feet, therefore these have been converted to metres for consistency (see Table 1.8).

#### 4.1 Systematic review of existing cost-effectiveness evidence

#### Methods for the systematic review

A systematic literature search was undertaken to identify economic evaluations comparing pegaptanib and ranibizumab to existing treatments (PDT as described above) or best supportive care in patients with AMD. The details of the search strategy are documented in Appendix 2. The manufacturers' submissions to NICE were reviewed for additional studies.

Titles and abstracts of studies identified by the search strategy were assessed for potential eligibility by two health economists independently. Economic evaluations were eligible for inclusion if they reported on the cost-effectiveness of pegaptanib and/or ranibizumab versus existing treatments (PDT) or no treatment (best supportive care) in patients with AMD. Studies reporting the economic evaluation of comparator treatments were also identified and

reviewed to highlight key methodological issues in economic evaluation of treatment for AMD.

# 4.1.1 Results of the systematic review: cost-effectiveness of pegaptanib and ranibizumab

A total of 421 publications relating to cost-effectiveness in AMD were identified through our searches. None of these was a fully published economic evaluation of either drug. No additional publications were identified from the manufacturer submissions. Three related conference abstracts, by Earnshaw and colleagues,¹⁰⁷⁻¹⁰⁹ that reported model-based evaluations of pegaptanib were identified and are reviewed in outline.

The analyses used a six state Markov model, defined for a US population, to estimate the lifetime costs and outcomes for cohorts of patients receiving pegaptanib or comparator treatments. The three abstracts present:

- 1. an overview of the model, including input data and assumptions for modelling treatments for subfoveal CNV secondary to AMD from a population perspective,¹⁰⁹
- 2. cost-effectiveness estimates for pegaptanib and PDT using verteporfin for AMD,¹⁰⁷
- 3. a cost-effectiveness analysis to determine the optimal timing of treatment with pegaptanib, based on initial visual acuity.¹⁰⁸

As the three abstracts report analyses conducted using the same model we do not distinguish between the abstracts when reviewing the model or methods of analysis. Individual sources will be identified when reporting results extracted from the abstracts or accompanying posters.

Health states in the model were defined in terms of visual acuity in the treated eye, with approximately three-line range: greater than 6/12, 6/12 to >6/24, 6/24 to >6/60, 6/60 to >3/60 and  $\le 3/60$ . Transitions between states were based on a gain of three or more lines, three-to-six line loss or loss of six or more lines on the visual acuity scale. This means that patients' vision could improve by one health state, worsen by one or two health states or remain the same in each model cycle. Mortality probabilities were based on age and sex-specific rates from US National Vital Statistics (2002), with a relative risk of mortality due to blindness (visual acuity less than or equal to 6/60) of 1.5.

The effectiveness of pegaptanib was based on published one-year results⁹⁵ and unpublished data for a second year of treatment. Disease progression in subsequent years was based on the

efficacy in the sham arm of the VISION trial.⁹⁵ Effectiveness of PDT using verteporfin was based on two years of efficacy results from the Treatment of Age-Related Macular Degeneration with Photodynamic Therapy (TAP)^{10,88,110} and the Verteporfin in Photodynamic Therapy (VIP)¹¹¹ trials. To extrapolate outcomes beyond the clinical trials, data from the placebo arms of both trials^{10,88,110,111} was used. Utilities applied to life expectancy in each of the model's health states were taken from a published source.¹¹²

The model used a three month cycle and adopted a lifetime horizon. Three month transition probabilities were calculated based on the proportions of patients gaining or losing vision reported from the VISION,⁹⁵ TAP,^{10,88,110} and VIP¹¹¹ trials. The method for converting annual proportions to three-month transition probabilities is not reported in the abstracts or accompanying posters. It was assumed in the model that treatment was discontinued once visual acuity fell below 3/60.

Costs included in the model were drug costs, AMD-related procedures (though these were not specified), excess costs associated with vision-loss (depression and fracture treatment as well as specialist nursing care and residential care), costs of visual rehabilitation and low-vision aids and costs of treating adverse events. Insufficient information is presented to judge the comprehensiveness of cost estimates – the main components of overall costs reported in the comparison of pegaptanib and PDT with verterporfin are "other medical costs" (77% and 88% of total average costs, respectively) and drug costs (18% and 8% of total average costs, respectively) as reported in the accompanying poster.

The model outputs are expressed as vision years, quality-adjusted life years (QALYs) as well as drug costs, costs of treating adverse events and other costs. The analysis suggested that early treatment (visual acuity between 6/12 and 6/24) with pegaptanib was more cost-effective, compared to usual care, than delaying till disease had progressed, with an estimated incremental cost-effectiveness ratio (ICER) of \$49,480.¹⁰⁸

No incremental analysis was reported for the comparison of pegaptanib with PDT with verterporfin,¹⁰⁷ the abstract reports the average cost per vision year and average cost per QALY for each intervention. This may be due to the absence of any reports of head-to-head comparison between pegaptanib and PDT with verterporfin, acknowledged by the abstract's authors. A further drawback (not acknowledged by the abstract's authors) is that the post-trial extrapolation of pegaptanib effectiveness is based on the sham arm of the VISION trial, in which a proportion of patients were reported as receiving PDT after baseline, whereas for

PDT the post-trial extrapolation is based on the placebo arms of the TAP and VIP trials. This may overstate the average benefit of pegaptanib reported in the abstract.

#### 4.1.2 Other treatments for AMD: published economic evaluations

In the absence of fully published economic evaluations of pegaptanib or ranibizumab this section presents a brief review of economic evaluations of other treatments for age-related macular degeneration. We present an overview of methods used to model disease progression, estimate benefits/ outcome and to estimate costs.

#### Overview

Eight fully published evaluations of treatments for subfoveal CNV secondary to AMD were identified.^{40,86,87,113-117} A further five evaluations were identified that were reported only in abstract form; three of these are discussed in the previous section as they relate to one of the drugs being appraised.¹⁰⁷⁻¹⁰⁹ The remaining two abstracts are not covered in this review as insufficient detail is reported in the abstracts.^{118,119}

All the included evaluations are concerned with estimating the cost-effectiveness of PDT with verteporfin. However one is also concerned with evaluating newer treatments for AMD.¹¹⁶ Seven of the included evaluations used outcome data from the TAP study^{10,88} to estimate the effectiveness of PDT, but used data from different reporting periods (1 year⁸⁶, 2 years^{40,115}, or longer^{113,114}) or from selected sub-groups of patients within the trial cohort.^{87,113-115}

The principal treatment effect included in the models is the rate of decline of visual acuity for patients in the PDT and placebo group, and in all cases disease progression in the placebo group is treated as typical of that for patients receiving best supportive care. Differences in outcome are estimated using QALYs, by associating visual acuity states with published estimates of relevant health state utilities, or vision years, by estimating patient life expectancy in health states with a visual acuity greater than 6/60. None of the evaluations modelled survival differences between PDT and best supportive care cohorts since PDT, in itself, is not expected to have any impact on life expectancy. Where patients' risk of death associated with sight loss was included in evaluations, the same life expectancy was assumed for PDT treated as untreated patients.¹¹⁴

Approaches to modelling the treatment effect for PDT varied substantially between included studies. The majority of evaluations are based on analysis of aggregate data from trial reports^{40,86,113-115}. Simple models seeking to extrapolate the effectiveness of PDT over

patients' lifetimes have tended to assume that treatment effects observed at two or more years can be projected forward over the patient's remaining life expectancy,¹¹⁴ though there may be an assumed reduction in effectiveness over time.¹¹⁵ Two studies^{87,117} used a survival function derived from analysis of patient-level trial data for a sub-group of patients with predominantly classic lesions in the TAP trial. Transition probabilities derived from the survival analysis were used in a Markov model to estimate outcomes for PDT and placebo (supportive care) cohorts. Smith and colleagues(98} report "trial-based" (i.e. two year) analyses as well as results using a longer time horizon (5 years) for a patient cohort with initial visual acuity of 6/12 and another with initial visual acuity of 6/30.

In contrast, Meads and Moore⁸⁶ and Meads and colleagues⁴⁰ only conducted costeffectiveness studies using trial data and made no attempt to extrapolate effects beyond the clinical trial reports. These gave the least favourable estimates of the effectiveness of PDT for all the evaluations, except for Smith and colleagues²⁸⁷ trial-based analysis for a cohort of patients with initial visual acuity of 6/30. In the earlier publication⁸⁶ there is no discussion of possible approaches to extrapolation nor of the advantages, disadvantages or likely impact of estimating cost-effectiveness in a longer-term model. In the later publication⁴⁰ there is limited discussion on the possibility of modelling costs or outcomes beyond the clinical trial data. However an addendum to the monograph discusses the benefits and limitations of extrapolation in detail.

Quality adjusted outcomes in each of the evaluations were derived by applying health state utilities to relevant health states (defined by visual acuity levels). In each model the utility declined with declining visual acuity. None of the evaluations reported primary empirical studies to develop health state utilities for patients with AMD and the majority^{40,86,87,115,117} used the same published health state utility estimates that were derived using the time trade-off method in 72 patents with AMD.¹¹²

None of the evaluations used prospectively collected data on resource use for clinical trial patients, nor were data from observational studies used to develop intervention or health state costs. As discussed in section 1.2, treatment costs for PDT were typically based on the reported frequency of treatment in the TAP study. There is some variation in estimated costs depending on assumed duration of treatment. Unit costs of PDT treatment used in the evaluations vary by year and by currency, though in all cases cost of verteporfin is the major component of the unit cost (ranging from around 70%^{86,113} to approximately 80%^{40,114,115}).

The evaluations vary as to whether additional health state costs, associated with disease progression, are included. Three studies¹¹³⁻¹¹⁵ included only direct costs of treatment. Meads and Moore⁸⁶ developed costs of blindness based on NHS and Personal Social Services provided to people with visual acuity below 6/60. Incorporating these into their short term model had minimal effect and did not offset the additional costs of PDT.^{40,86} Smith and colleagues⁸⁷ found that including costs of blindness estimates (£8,823 per QALY gained for a cohort with baseline best corrected visual acuity of 6/12, compared with £89,464 when including only the costs of PDT treatment and adopting a two year time horizon for the same cohort).

#### Summary and conclusions of systematic review of cost-effectiveness studies

- No fully published economic evaluations of the interventions included in this review were found. Three related abstracts reporting model-based evaluations of pegaptanib were identified and briefly reviewed. Eight fully published economic evaluations of treatments for subfoveal CNV secondary to AMD were identified and briefly reviewed.
- The placebo arms of clinical trials have been taken as the source of data on disease progression under best supportive care and have typically been used as source data on disease progression in models extrapolating beyond clinical trial data.
- All but one of the models estimated final outcomes in QALYs by mapping utility values to visual acuity. The majority of evaluations of treatments for subfoveal CNV secondary to AMD have used previously published utility values to translate changes in visual acuity to QALYs.
- Evaluations have differed in the perspective adopted, including direct costs only or adopting a third party payer perspective and including costs of blindness borne by health and social services. In the case of PDT, choice of perspective (on its own) did not have a substantial impact on cost-effectiveness estimates.
- Evaluations have also differed in time horizon adopted. Three studies reported on models that used trial data only.^{40,86,116} Two studies reported both "trial-based" and extrapolated analysis.^{87,115} The remainder reported only extrapolated analyses based on trial data or observational studies. Generally, time horizon has the greatest impact on cost-effectiveness estimates. Short-term models suggest that PDT is not cost-effective whereas extrapolated models suggest that PDT may be cost-effective, especially for patients with higher initial visual acuity.

#### 4.1.3 Review of research on quality of life in AMD

The search strategy outlined in Appendix 2 identified 245 articles that were potentially relevant to this review. Each study was then categorised on the basis of its title and abstract where available following the criteria outlined below:

- A. The study reports primary research (i.e. original data collected specifically for the study) on quality of life or health related quality of life.
- B. The study reports primary research on health state utilities.
- C. The study reviews study research on A or B or both.
- D. The study does not have any relevance to the research on quality of life in AMD.

Twenty one studies classified as A, four studies classified as B, three studies classified as C and the remaining studies classified as D.

Studies in the review included both treated and untreated patients with AMD. A variety of quality of life instruments were used – including both condition-specific, related to visual function, and generic measures – and these are briefly summarised in tables in Appendix 11.

Studies using condition-specific instruments have reported quality of life scores that are lower for people with AMD compared with those without disease.^{61,62} The quality of life impact is associated with lower visual acuity,^{61,120-125} poorer contrast sensitivity and colour recognition,¹²⁵ severity of disease¹²⁶ and severity of visual loss.^{65,127} Differences in overall score on NEI-VFQ (and in subscales such as near activities, dependency, driving, role difficulties, distance activities, mental health and general vision) were shown to be significantly related to differences in visual acuity of better-seeing eyes.^{61,120-123} Berdeaux and colleagues¹²⁴ also reported that these scores were also significantly related to visual acuity of the worse-seeing eye. However, NEI-VFQ has been shown to be sensitive to differences in general health¹²⁰, therefore adjustment for general health should be considered when comparing scores between patient groups.

Findings have been inconsistent regarding other factors that may be associated with lower quality of life scores for AMD patients, using condition-specific measures which focus on visual function. Neither patient's age nor gender was reported as an important explanatory variable in studies using the NEI-VFQ¹²³ and the Impact of Vision Impairment (IVI) Questionnaire.¹²⁶ However, Cahill and colleagues⁶³ showed that important quality of vision subscales (general vision, difficulty with distance tasks, difficulty with near tasks) and vision-

specific subscales (dependency, role difficulties, mental health, social function limitations) tended to correlate negatively with patient's age and duration of vision loss. There has been some inconsistency in the association between severity of visual loss and quality of life scores. Ambrecht and colleagues¹²⁷ found some patients reporting significant improvement in some quality of life aspects despite experiencing progressive vision loss. This may reflect patients' adaptation to their visual disability at 12 month follow-up.^{66,127}

Several studies have identified a strong association between AMD and depression. Forty nine out of 151 (32.5%) patients with AMD and visual acuity of 6/18 or worse in the better-seeing eye enrolled in a randomized trial met the criteria for depression in the structured clinical interview for the Diagnostic and Statistical Manual, 4th Edition.⁵⁵ This was approximately double the prevalence observed in age-matched community controls. Williams and colleagues⁵⁶ reported that the average score for emotional distress amongst people with AMD was significantly worse than for similarly aged community-dwelling adults, using the Profile of Mood States (POMS), and was comparable with scores reported by people with other chronic illnesses. This study also reported that those blind in one eye were more significantly distressed than those blind in both eyes. This may reflect anxiety surrounding future vision loss in patients with one eye affected as well as a greater acceptance and ability to adapt in those with both eyes affected.⁶⁶

Studies using generic instruments have been less consistent in their findings. Studies have reported lower quality of life scores for people with AMD compared with communitydwelling adults of similar age and people with chronic disabling diseases. Williams and colleagues⁵⁶ reported a mean Quality of Well-Being (QWB) score of 0.581 for AMD patients with average age of 79 years compared to a mean score of 0.77 for adults with similar average age and a mean score of 0.659 for older adults with severe chronic obstructive pulmonary disease.⁵⁶ They also reported significant associations between visual acuity and quality of life, as measured using Self-Rated General Health Status, and also activities of daily living, using Instrumental Activities of Daily Living Index. Cahill and colleagues⁶³ reported that mean SF-12 scores were correlated with patient age, duration of vision loss and visual function. They also found that patients with bilateral severe AMD reported similar vision-related quality of life to patients with low vision, but significantly poorer quality of life compared to people with varying severity of AMD and those without eye disease. In contrast, Hassell and colleagues⁶⁵ reported that mean SF-12 scores for physical and mental health were similar to those reported for Americans of a similar age group from the general population. Similarly, inconsistent findings are reported using the SF-36 where some authors have reported

significant associations between SF-36 domains scores and visual impairment ⁶⁴ and others have not.^{61,126}

An alternative approach to estimate the impact of disease is the use of preference-based techniques, such as time trade-off and standard gamble, to derive health state values or utilities. Table 4.1 reports the mean utility values derived using the two methods for ophthalmologists and for patients with visual loss from AMD.¹²⁸

	Time Trade-off Method					
Visual acuity in better eye	Patients		Ophthalmologists			
	Mean	95% CI	Mean	95% CI	p value	
6/6-6/7.5	0.89	0.82 - 0.96	0.992	0.986 - 0.998	0.01	
6/9-6/15	0.81	0.73 - 0.89	0.97	0.96 - 0.98	< 0.001	
6/18-6/30	0.57	0.47 - 0.67	0.89	0.86 - 0.92	< 0.001	
6/60-3/60	0.52	0.38 - 0.66	0.77	0.71 - 0.83	0.008	
Counting fingers to hand motions	0.40	0.29 - 0.50	0.69	0.64 - 0.74	0.004	
Overall mean	0.72	0.66 - 0.78	0.86	0.84 - 0.88	NA	
	Standard Gamble Method					
Visual acuity in better eye	Patients		Ophthalmologists			
	Mean	95% CI	Mean	95% CI	p value	
6/6-6/7.5	0.96	0.92 - 1.00	0.998	0.993 - 1.00	0.06	
6/9-6/15	0.88	0.83 - 0.93	0.99	0.98 - 1.00	0.005	
6/18-6/30	0.69	0.52 - 0.86	0.96	0.94 - 0.98	0.01	
6/60-3/60	0.71	0.57 - 0.85	0.88	0.84 - 0.92	0.03	
Counting fingers to hand motions	0.55	0.36 - 0.74	0.77	0.71 - 0.83	0.08	

Table 4.1 Mean utility with time trade off and standard gamble for ophthalmologists and for AMD patients

These results suggest that there is a highly significant difference between the utilities obtained from clinicians who are familiar with AMD and those from patients who live with visual loss from AMD. Brown and colleagues¹²⁸ also reported a statistically significant difference between utility values derived using time trade-off and standard gamble methods, for both physicians and patients with AMD. Most typically, utilities obtained with the latter method are higher than those obtained with the time trade-off method. This has been attributed to the greater risk aversion associated with the standard gamble method.¹²⁹

Similar large differences between utility values derived using the time trade-off method from clinicians and patients were reported by Stein and colleagues,¹³⁰ in a study which also included a sample of community members. AMD patients were stratified into three groups on the basis of best corrected visual acuity in the better-seeing eye of 6/9, 6/12 to 6/30 and 6/60 or worse as mild, moderate and severe AMD, respectively.

Mean valuations by respondent group, reported in Table 4.2, suggest that members of the general public and clinicians both considerably underestimate the impact that mild, moderate and severe AMD has on the quality of life when compared with values reported by the AMD patients. The study's authors did not exclude potential bias due to differences in demographic characteristics such as age (mean age for AMD patients was 75 in comparison to 44 for the general public sample and 29 for the clinicians), sex and ethnic makeup between the respondents from the various groups. The values obtained by Stein and colleagues¹³⁰ are generally higher than those derived, using the same method and similar respondents, by Brown and colleagues.¹²⁸

I dole li 2 c	Tuble 112 Comey scores in mean and ye ye connactice meet var by Thomes Severity						
	General Public	Clinicians	Patients	p value			
Mild	0.960 (0.950, 0.970)	0.929 (0.904, 0.954)	0.832 (0.762, 0.901)	< 0.0001			
Moderate	0.918 (0.902, 0.934)	0.877 (0.846, 0.909)	0.732 (0.669, 0.795)	< 0.0001			
Severe	0.857 (0.834, 0.879)	0.821 (0.785, 0.857)	0.566 (0.487, 0.645)	< 0.0001			

Table 4.2 Utility scores in mean and 95% confidence interval by AMD severity

#### Summary and conclusion of review of research on quality of life in AMD

Evidence from a variety of studies using a range of instruments and valuation techniques shows that quality of life is lower with progression of visual loss associated with AMD. Central field loss impairs the ability of patients to conduct a wide range of daily activities. Visual disability is associated with an increased risk of emotional distress and clinical depression. However, some patients may adapt and cope with visual disability so that the quality of life impact may vary according to duration of vision loss.

Different measures indicate different relationships between visual acuity and quality of life. General quality of life measures may be less sensitive to the impact of vision loss due to AMD than vision specific instruments. While the majority of published studies have used visual acuity as the primary outcome, there are other measurable aspects of vision (e.g. contrast sensitivity or colour recognition) that have an impact on quality of life. In addition, ophthalmologic outcomes assessment is complicated by the need to consider visual function in each eye and the interaction between them. The impact on quality of life of AMD in one eye may be profoundly affected by the status of the fellow eye.

#### 4.1.4 Review of manufacturers' submissions

We received two manufacturers' submissions each consisting of a written report and an electronic model supporting cost-effectiveness analyses reported within the submissions. See Appendix 8 for more details on each submission and discussion of the clinical data presented.

The economic assessments within the manufacturers' submissions are reviewed in turn. The reviews consist of a brief overview of the cost-effectiveness analyses, including the approach taken to modelling disease progression and effects of treatment, followed by a critical appraisal of the cost-effectiveness analysis.

# 4.1.4.1 Pfizer submission to NICE:¹⁰⁴ cost-effectiveness analysis

#### Overview

The submission contains a brief review of the socio-economic burden of AMD and a costeffectiveness analysis of pegaptanib for patients with AMD. The stated objective of the economic analysis in the submission is to assess the cost-effectiveness of the licensed dosage of pegaptanib (0.3mg at six week intervals) relative to usual care for patients, in England and Wales, with subfoveal neovascular AMD in their better-seeing eye. Usual care in this evaluation is identified as best supportive care (visual rehabilitation and provision of visual aids) for all patients with the addition of PDT with verteporfin in patients with predominantly classic lesions. This corresponds to the pattern of care for patients in the control arm of the VISION trials.⁹⁵ Patients in the active treatment arm of the trials were also eligible for PDT treatment alongside treatment with pegaptanib (reported as 17% of the pegaptanib treated cohort in Year 1 by Gragoudas and colleagues⁹⁵).

The submission does not report whether a systematic search was undertaken for studies of the socio-economic burden of AMD, nor is any systematic search reported for economic evaluations of pegaptanib or other treatments for AMD. The submission makes no reference to the conference abstracts reporting CEAs for pegaptanib discussed in section 4.1.1.

The base case analysis is presented for a cohort of all lesion types, with a best-corrected visual acuity in their better seeing eye of 6/12 to 6/96. Sub-group analyses by lesion type and lesion size are also reported, later in the submission. In the base case patients are treated with pegaptanib for a maximum of two years, with treatment discontinuing before this point if patients' visual acuity falls below 6/96 or has dropped by six or more lines from baseline level at the end of year 1. This is labelled scenario A in the submission. Cost-effectiveness of treatment adopting an alternative stopping rule, labelled scenario B, with a higher threshold visual acuity (6/60) for discontinuing pegaptanib treatment is also reported in the submission.

The perspective of the analysis is clearly stated as being that of the NHS and personal social services, capturing direct costs and benefits only. The submission reports lifetime costs and

outcomes (reported as vision years and QALYs) for each treatment arm and the incremental costs and outcomes for pegaptanib (with or without PDT) compared with usual care.

#### Model on cost-effectiveness of pegaptanib

The submission does not report any literature search for modelling studies relevant to the economic evaluation of treatment for AMD, nor does it discuss existing economic models for pegaptanib in this patient group. A new model was developed for this submission, following a similar approach to that adopted by Smith and colleagues.⁸⁷ Their study is referenced in the body of the submission (page 32), but not discussed there or in the methodological appendix (Appendix 2 of the manufacturer's submission).

Below we outline the approach taken for the model and provide an outline review based on a checklist suggested for the critical appraisal of cost-effectiveness analysis by Drummond and colleagues,¹³¹ the requirements of NICE for submissions on cost-effectiveness (reference case)¹³² and a suggested guideline for good practice in decision modelling by Philips and colleagues.¹³³

#### **Modelling approach**

A Markov state transition model was developed to estimate the difference in decline in visual acuity (including excess morbidity and costs resulting from declining visual acuity associated with progression of AMD) and treatment costs (over a maximum treatment duration of two years) between pegaptanib and usual care. The model has twelve states defined by declining visual acuity, plus an absorbing state (death). The majority of the non-absorbing health states correspond to a single line of visual acuity (6/12 through to 6/96). The states representing the best and worst visual acuity cover a range of values ( $\geq 6/10$  and  $\leq 3/60$ , respectively). The rationale for these groupings is not discussed in the submission. However a visual acuity value of 6/12 is regarded clinically as a threshold at which the impact of disease progression is more likely to have impact as it is the point where the patient cannot drive.

The model has a cycle length of six weeks, corresponding to treatment intervals for patients receiving pegaptanib and the frequency of assessment of patients' visual acuity in the VISION trial, and a ten year time horizon. The model time horizon is equivalent to a lifetime horizon for patients with a mean age at diagnosis of 77, which was the mean age at baseline in the registration trial. The effect of shorter time horizons, on cost-effectiveness estimates, was tested in a sensitivity analysis and reported in Figure 3.11 of the submission.

Two forms of adverse events are incorporated into the model: those associated with treatment, which affect the treated eye only, and adverse events associated with declining visual acuity.

Adverse events associated with pegaptanib treatment are included in the model using probabilities derived from the proportion of patients experiencing endophthalmitis, traumatic lens injury and retinal detachment in the first year of the registration trial (Table 5⁹⁵). It does not appear that any adjustment was made to quality of life scores for patients experiencing adverse events. Only the cost impact of adverse effects is assessed based on treatment protocols based on expert opinion. No adverse events were assumed in the usual care cohort, though some adverse events may be expected with PDT, and no adverse effects of PDT were included for the pegaptanib cohort.

Health state utility values used in the model are taken from a published source.¹¹² These values have been widely used in cost-utility models of treatments for AMD, and were adopted in many of the evaluations of PDT^{40,86,87,115} reviewed in section 4.1.2 (and are discussed in our review of research on quality of life in AMD, section 4.1.3).

The costs applied in the submission were made up of two components. Costs of active treatment (pegaptanib and PDT) and monitoring of patients on-treatment were estimated separately from health states costs. The latter principally relate to service use associated with blindness and are applied to visual acuity states below 6/60.

Drug usage for pegaptanib was based on a dosage of 0.3mg every six weeks for a maximum of two years (the licensed dosage and treatment frequency in the VISION trials). Resource use associated with pegaptanib treatment was estimated based on management protocols developed using expert opinion and assumed that all assessments and drug administration took place in outpatients. These gave a cost per cycle of treatment of £880.84 for first treatment and £659.32 for each subsequent treatment cycle. Costs in the usual care cohort were £276.64 for the first cycle and zero for subsequent cycles.

PDT costs consist of verteporfin plus the cost of the PDT procedure and fluoroscein angiography to localise the lesion. The cost per PDT session used in the submission is slightly lower than in Meads and colleagues⁴⁰ and Smith and colleagues,⁸⁷ which also included the cost of a follow-up outpatient consultation. It appears that such follow-up may have been assumed to occur during consultations for pegaptanib treatment. The same cost per PDT session has been used for the pegaptanib and usual care cohorts, so has not biased the evaluation. Also, the cost of an out-patient follow-up appointment would be a comparatively small component of the cost of a PDT session. The PDT cost per cycle for the pegaptanib cohort is £39.26 in Year 1 and £9.66 for Year 2. Equivalent figures for the usual care cohort are £53.64 and £19.42.

The scope of services (low vision aids, low vision rehabilitation, community care and residential care) included in the cost of blindness are the same as in previous UK evaluations.^{40,87} The proportion of patients with visual acuity below 6/60 receiving services are taken from Meads and colleagues.⁴⁰ Unit costs used to estimate costs of blindness are taken from Meads and colleagues⁴⁰ and unit costs of community care.¹³⁴ Unit costs from different base years (2003 to 2005) have been included in the model. The cost year for the model is 2005 and, where required, costs have been inflated to 2005 values using HCHS Pay and Prices Index.

#### Model/ Cost-effectiveness Results

The submission reports total costs (broken down by drug and administration/monitoring, management of adverse events, PDT co-administration, services for the blind, excess depression and excess fracture costs) and outcomes (vision years and QALYs) for each arm of the model separately, as well as an incremental analysis in Tables 3.10 and 3.11 of the manufacturer's submission. These tables correspond to the alternative stopping rules for pegaptanib. Both analyses use a 10 year time horizon and identical assumptions regarding the cohort of patients entering the model.

The results for both scenarios are very similar with a 0.298 QALY gain for pegaptanib treatment over ususal care in scenario A and a 0.289 QALY gain in scenario B. The incremental cost-effectiveness ratios for the two scenarios are also similar at £15,819 per QALY and £14,202 per QALY for scenario A and scenario B respectively.

The submission concludes that pegaptanib is likely to be a cost-effective treatment, relative to usual care, though this finding holds for treatment of patients' better-seeing eye only. ICERs for treatment of the worse-seeing eye, or both eyes, would be expected to be considerably higher.

The largest component of total cost in each scenario is NHS and Personal Social Services care for the blind, at 55-56% of total costs in the pegaptanib cohort and 93% for usual care. Drugs and administration costs in each scenario are 41% of total costs in the pegaptanib cohort. Management of adverse events and the excess costs of depression and fractures are minor components of total costs.

The mean number of pegaptanib treatments over two years estimated in the model in scenario A (12.6) and scenario B (11.7) are both lower than the mean number of treatments reported in the trial (15.3, 8.4 in Year 1 and 6.9 in Year 2).

#### Outline appraisal of the cost-effectiveness analysis undertaken

A summary of the manufacturer's submission compared with the NICE reference case requirements can be seen in Table 4.3.

# Table 4.3 Assessment of Pfizer submission against NICE reference case requirements NICE reference case requirements (see detail in NICE report): Included in

NICE reference case requirements (see detail in NICE report).	menuaeu m
	Submission
Decision problem: As per the scope developed by NICE	?†
Comparator: Alternative therapies routinely used in the UK NHS	$\checkmark$
Perspective on costs: NHS and PSS	$\checkmark$
Perspective on outcomes: All health effects on individuals	$\checkmark$
Type of economic evaluation: Cost effectiveness analysis	✓ (CUA)
Synthesis of evidence on outcomes: Based on a systematic review	?
Measure of health benefits: QALYs	$\checkmark$
Description of health states for QALY calculations: Use of a standardised and	o‡
validated generic instrument	[
Method of preference elicitation for health state values: Choice based method (e.g.	1
TTO, SG, not rating scale)	v
Source of preference data: Representative sample of the public	X*
Discount rate: 3.5% pa for costs and health effects	$\checkmark$
Notes:	
[†] pegaptanib versus "usual care" not best supportive care. Makes sense given the data	available
$^{\pm}$ utilities taken from published study using SG and TTO valuations (TTO valuations u	sed in base case)

* utilities taken from ARMD patients, not general public

See Appendix 12 for tabulation of critical appraisal of submission against Drummond and colleagues¹³¹ checklist.

#### Outline review of modelling approach

#### Model structure/ structural assumptions

The model is similar in structure to that developed by Smith and colleagues⁸⁷ to model the cost-effectiveness of PDT, though this latter model used 15 visual acuity states, all of which corresponded to a single line of visual acuity (except for that indicating the worst sight, which was for visual acuity  $\leq 6/240$ ).

The effect of active treatment for AMD is to reduce the probability of disease progression compared to no active treatment (i.e. visual rehabilitation and low vision aids), these latter interventions are intended to reduce the impact of disease progression on usual activities rather than affect disease progression itself.

There is no evidence in the submission that the manufacturer undertook a systematic review of epidemiological studies to populate model with assumptions on the excess risk of fractures, depression, or mortality associated with visual loss. There is no discussion or justification in the submission of the values used to model these risks.

The time horizon adopted for the model appears to be appropriate to allow for differential effects of disease progression in the pegaptanib-treated and usual care cohorts. The cycle length of six weeks appears to be driven primarily by the treatment interval for pegaptanib and frequency of assessment of visual acuity in the VISION trial, rather than any consideration of its appropriateness to the rate of disease progression in either cohort in the model. There is no discussion or justification of the model cycle length in the submission.

The five health state valuations that were used in the model were defined over ranges of visual acuity. This means that the twelve visual acuity states in the model were collapsed down to these five states for calculation of QALYs. It is not clear from the submission whether this has any effect on the results presented – there is no discussion of possible impacts of this mapping on the cost-effectiveness estimates. Similarly, odds ratios used to estimate excess costs of treating depression and fractures required the visual acuity states in the model to be collapsed. Categories of vision loss reported by Zhou¹³⁵ were mapped to visual acuity categories in order to be applied in the model. Again, there is no discussion in the submission on any impact this mapping may have on cost-effectiveness estimates.

#### Data inputs

Patient-level data from the VISION trials⁹⁵ were analysed in a collection of survival models to estimate the probability of gaining or losing lines of visual acuity during treatment, based on the method used by Smith and colleagues.⁸⁷

Based on partitioned analyses that suggested "the data represent a mixed population, a proportion of which are at very low risk of losing visual acuity" the patient populations were split into those who gained one or more lines and those who lost one or more lines of visual acuity from baseline to their final assessment. Those who neither gained nor lost were included in both populations. Separate time-dependent survival models were estimated for the loss (from 1 to 10 lines) and gain (from 1 to 4 lines) of visual acuity. The model coefficients are presented in Appendix 2 of the submission as is the method for deriving transition probabilities from the survival estimates.

A separate set of survival models were estimated to model disease progression for pegaptanib-treated patients once treatment was discontinued. These used data for patients treated with all dosages (0.3mg, 1mg and 3mg) of pegaptanib. There were sufficient data to estimate models for 1 to 3 line gain and 1 to 5 line loss in visual acuity, values beyond these needed to be imputed. It was assumed that these models, derived for the year following treatment discontinuation could be applied for the patients' remaining life expectancy.

The estimates of the resources used in monitoring patients while on treatment are low compared to those suggested by clinical experts who assisted in the development of this review. In the Pfizer model patients have a single fluoroscein angiogram prior to treatment and no further imaging. Patients also have no vision assessments during their treatment. In contrast, the clinical experts we consulted stated that patients would have optical coherence tomography and vision assessment performed at every attendance. Moreover they suggested that patients would have repeat fluoroscein angiography every six months, though it may be good practice to consider offering fluoroscein angiography every three months. The effect of adding these additional items of resource use on the cost-effectiveness estimates in the manufacturer's model was tested and is reported at the end of this section.

Health state valuations used in the model were derived from a sample of AMD patients, rating their own current state of health, rather than the general population. This seems appropriate, in the absence of credible published valuations derived from a general population sample. Health state valuations, estimated using both standard gamble and the time trade-off technique, decrease with declining visual acuity. The mean values, elicited using the time trade-off technique, for each of the visual acuity states reported by Brown and colleagues¹¹² were used in the base case. Standard deviations were extracted from the study report and used in estimating the parameters beta distributions used in the probabilistic sensitivity analysis.

Adverse effects associated with declining visual acuity appear to be incorporated in the model in different ways for their impact on cost and on outcomes. Odds ratios for fracture and treated depression associated with declining visual acuity were taken from an unpublished analysis¹³⁵ and were applied to age and sex-specific prevalence of treated depression¹³⁶ and annual fracture rates.¹³⁷ It appears that the odds ratios have been treated as relative risks and multiplied by the age/sex specific rates to estimate rates for patients with declining visual acuity due to AMD. These rates appear only to have been used to derive estimates of the cost impact of the adverse events, not their impact on efficacy or quality adjusted life expectancy. The effect of morbidity and mortality due to these adverse events seems to have been captured in the model by applying a 50% elevated risk of all-cause mortality to all visual

105

acuity states below 6/60 in the model. This elevated risk of mortality is taken from an analysis which is currently available only as an abstract.⁴⁵

#### Assessment of uncertainty

Uncertainty is addressed using deterministic and probabilistic sensitivity analysis. The deterministic sensitivity analysis addresses issues of methodological uncertainty (varying discount rates, using alternative parametric forms of the post-treatment survival function, and varying the model time horizon) and parameter uncertainty (using alternative assumptions for utility weights, number of pegaptanib treatments, number of fluoroscein angiographies, method of monitoring adverse events, costs and probabilities of receiving services for visual impairment, and excluding patients receiving PDT). Only the incremental cost-effectiveness ratio is reported for these sensitivity analyses, so no comment can be made on change in total cost or outcomes. However the ICERs were largely insensitive to changes assessed in the deterministic sensitivity analysis, and were consistently lower for scenario B (though the difference is small). Exceptions to this were variation in estimates of costs and probabilities of receiving services for visual impairment and model time horizon. The ICER was between £55,000 and £60,000 per QALY for a three year time horizon, reducing to around £30,000 per QALY when the time horizon was increased to 5 years. This reflects the fact that treatment costs are incurred in the first two years whereas benefits are expected to extend over the patient's lifetime. Also the difference in costs of services to the blind between the pegaptanib cohort and usual care cohort, which would be expected to partially offset costs of treatment, are around £1,000 at 2 years and around £2,500 at 5 years (approximately 30% and 70%, respectively, of the difference estimated at 10 years). If costs and probabilities of receiving services for visual impairment are set at their upper limits then pegaptanib treatment dominates usual care, whereas if they are set to their lower limits the ICER is £25,358 for scenario A and £24,188 for scenario B.

In the assessment of parameter uncertainty in the deterministic sensitivity analysis, it is only in the case of costs and probabilities of receiving services for visual impairment, that upper and lower for parameter values tested (though the submission does not state what those upper and lower limits were). In other cases the changes in assumption are relatively small and may explain the relatively insensitivity of ICER to these changes.

Parameter uncertainty is also addressed in a probabilistic sensitivity analysis. However only a limited number of variables are included. For example, costs and probabilities of receiving services for visual impairment, which were shown to be influential in the deterministic sensitivity analysis, were not included. Variables included in the probabilistic sensitivity

analysis were: the number of pegaptanib treatments (normal distribution using mean and standard deviation observed in Year 1 and Year 2 of the trial), utility weights (beta distribution using mean and standard deviation of time trade-off valuations from published study¹¹²) and transition probabilities for vision loss and vision gain. To sample the transition probabilities for vision loss and vision gain correlation between parameters in the survival function was handled using Cholesky decomposition. The choice of distribution and handling of correlation in the PSA is generally appropriate. However the submission recognises that use of a normal distribution for the number of pegaptanib treatments is likely to produce overestimates, since the distribution observed in the trial was highly skewed with amedian of 9 treatments and range of 1 to 9 treatments. No patient would be expected to have more than 9 treatments. The use of a normal distribution is justified in the submission as an acceptable simplification, which biases the evaluation against pegaptanib treatment.

Heterogeneity in the study population has been taken into account through sub-group analyses presented in section 3.5 of the submission. Sub-groups examined were defined by patient age, sex, lesion type and lesion size. Very little variation in ICER was reported by these sub-groups, except that the ICER was reduced to £10,940 (£9,454 for scenario B) for patients aged under 75 compared to £18,863 (£17,128 for scenario B) for patient aged 75 and over. The submission reports that this difference was largely due to different mortality rates between the two age groups.

#### Summary of general concerns

- The analysis assumes that the post-treatment effect, estimated in the first year following discontinuation of treatment can be applied for all subsequent years of model. This may over-estimate the benefit associated with pegaptanib treatment.
- The model uses a ten year time horizon, which is the approximate lifetime for 75 year old in the UK, but the baseline population in the model is based on a mixed cohort with ages raning from 45 to 75. The time horizon in the model is not varied when conducting sensitivity analyses by patient age. This may be appropriate, as extrapolating from treatment effects estimated in two years of trial data and one year of data on post-treatment effects to longer time horizons may be questionable.
- The methods for deriving the parameters estimates used in the model, through survival analysis of patient level data is generally made clear in the submission. However the number of cases contributing data for each survival model (of which there are 14 separate models for on-treatment effects and appear to be 8 for posttreatment) are not reported. Since visual acuity was assessed at each attendance for

treatment, not continuously, patients' visual acuity may have changed by more than one state between observations. The date of this transition was estimated by linear interpolation – the submission does not report how many of the observations included in the survival analyses were derived by this interpolation procedure and what effect this procedure may have on the validity of their model results.

- The resource use protocols used to populate the model with treatment costs were missing some components that clinical experts suggested would be required during active treatment. The protocols did not include vision assessments and optical coherence tomography at each attendance. The reference case assumed the fluoroscein angiography was only performed prior to initiation of treatment, whereas clinical advisors suggested that it may occur every three to six months while patients are receiving active treatment.
- The model is very complex and requires a great deal of navigating between sheets to understand how calculations are constructed.

#### Further analysis by TAR team using the manufacturer's model

Table 4.4 reports the results of further analyses undertaken using the manufacturer's model. These were mainly concerned with testing the sensitivity of the cost effectiveness estimates to changes in assumptions on resource use for patient monitoring. Adding in costs for OCT increases incremental cost by around £650 and the ICER rises by around £2,000. Adding in the cost of vision assessments at each attendance increases incremental cost and ICER by the same order of magnitude as for OCT. Assuming that patients have fluoroscein angiography every six months, while on treatment, increases incremental costs by slightly less than OCT and vision assessments. The cumulative effect of all these changes is to increase the ICER from £15,815 per QALY gained, in the reference case, to £22,266 per QALY gained.

If the injection procedure is costed as if it were a day case procedure, incremental costs rise by almost  $\pounds$ 4,000 and the ICER increases to  $\pounds$ 35,197.
	Incremental cost	Incremental QALYs	ICER
OCT cost at each attendance	£ 5,356	0.298	£ 17,974
Vision assessment cost at each attendance	£ 6,099	0.298	£ 20,467
Fluoroscein angiography every six months	£ 6,635	0.298	£ 22,266
Cost injection as day case procedure	£ 10,489	0.298	£ 35,197
Costs as in submission. Utilities from Novartis submission	£ 4,705	0.279	£ 16,863

Table 4.4 Summary of sensitivity analyses using manufacturer's model (pegaptanib)

The utility values used in the submission suggest a large reduction in utility when visual acuity drops from the range 6/12 - 6/24 (0.81) to 6/24 - 6/60 (0.57) and a second large reduction when moving from 6/60 - 3/60 (0.52) to less than 3/60 (0.40). Unpublished utility values developed for the Novartis submission do not show such "steps" in the utility function, in relation to visual acuity. When these alternative utility values, derived from a general population and that have a more gradual decline, are used in the model the QALY difference reduces slightly 0.279 but the ICER is little changed, at £16,863.

# 4.1.4.2 Novartis submission to NICE:⁹¹ cost-effectiveness analysis

# Overview

The economic assessment of ranibizumab submitted by Novartis includes a cost-effectiveness analysis using 'vision years gained' (defined as years spent with a visual acuity >6/60) and a cost-utility analysis using utility values for AMD-specific health states derived in a study sponsored by the manufacturer.

The different types of wet AMD (minimally classic, occult no classic and predominantly classic) were analysed separately. The comparators include best supportive care for patients with minimally classic or occult no classic and both PDT with verteporfin and best supportive care for patients with predominantly classic lesions. Transition probabilities used to model patients' movement between health states when receiving treatment with ranibizumab, PDT or under best supportive care were derived for each lesion type using outcomes of visual assessments performed every three months during the relevant trials (ANCHOR for predominantly classic, MARINA for minimally classic and occult no classic). Since the ANCHOR trial did not include a sham arm, comparison of treatment with ranibizumab against best supportive care for patients with predominantly classic lesions required an

indirect comparison against data from the TAP study (discussed later in this review). Indirect comparison was also used to extrapolate outcomes for patients with predominantly classic lesions beyond the time horizon of the ANCHOR trial. Data from the sham arm of the MARINA trial was used as an estimate of the natural history of disease progression for extrapolating from trial outcomes to a ten-year time horizon for minimally classic and occult no classic lesion types. Two-years of clinical trial data are available for the MARINA study and one-year data is available for the ANCHOR and PIER studies. Resource use estimates in the model were derived from the literature and

#### from

The submission is not always clear on the source of unit costs. The majority appear to be derived from routine sources, such as NHS Reference Costs.

The maximum duration of treatment in the model was that observed in the relevant clinical trial – one year for patients with predominantly classic lesions (based on the ANCHOR trial) and two years for patients with minimally classic or occult no classic lesions (based on the MARINA trial). For all patients a stopping rule was applied so that patients whose visual acuity declined below 3/60 ceased active treatment with ranibizumab. A lower frequency of dosage (than used in the trials) was assumed in the model, with patients receiving 8 injections in the first year and 6 injections in the second year. This assumption was derived from

and it was assumed that the treatment effective persisted for up to six months after the end of treatment.

Since (at the time of writing this report) ranibizumab does not have marketing authorization for this indication, there is no unit cost available in the BNF⁸² or MIMS¹³⁸. The price of a vial of Lucentis 0.5mg used in the model was based on the manufacturer's target price for the UK of  $\in$ 1,100 (converted at an exchange rate  $\in$ 1 = £0.692, giving a sterling price of £761.20). In addition to treatment and administration costs, the model also includes costs of managing treatment related ocular adverse events and cost associated with blindness.

The study was undertaken from the perspective of NHS and personal social services in England and Wales. An annual discount rate of 3.5% was applied to both costs and outcomes.

#### Model on cost-effectiveness of ranibizumab

It appears in the submission that no systematic search for cost effectiveness studies had been undertaken and a novel model was developed based on the clinical data reported in ANCHOR, MARINA and PIER studies.

Below we outline the approach taken for the model and provide an outline review based on a checklist suggested for the critical appraisal of cost-effectiveness analysis by Drummond and colleagues,¹³¹ the requirements of NICE for submissions on cost-effectiveness (reference case)¹³² and a suggested guideline for good practice in decision modelling by Phillips and colleagues.¹³³

#### **Modelling approach**

A Markov model was developed to simulate the change in visual acuity levels for cohorts of patients with subfoveal CNV receiving treatment with ranibizumab or, where appropriate, PDT and for a cohort of patients receiving best supportive care. Wet AMD subtypes (minimally classic, occult no classic and predominantly classic) were modelled separately. The model consists of five health states defined by visual acuity level and an absorbing death state. The visual acuity ranges for the health states are 6/15 or better (least severe), 6/18 to 6/30, 6/38 to 6/48, 6/60 to 3/60 and less than 3/60 (most severe) – though there is some inconsistency between the model and written submission on the definition of these ranges. The baseline cohort in the model has a mean age of 77 and is male. The initial distribution of the cohort across visual acuity states uses the proportions observed at baseline in the relevant clinical trials. Transitions probabilities for movement between visual acuity states, which allow for improvement or deterioration by as much as health states, were derived from each of the clinical trials. As the ANCHOR trial compared ranibizumab treatment with PDT, there is no direct comparison of ranibizumab treatment with best supportive care for patients with predominantly classic lesions. As a result, the model includes an indirect comparison using data from the ANCHOR trial and TAP study. The mortality risk included is based on UK age and sex-specific mortality rates (source not given) with an assumed relative risk of mortality of 1.5 for patients with visual acuity less than 6/60.

The model has a three month cycle length and a time horizon of ten years.

The dosing schedule for ranibizumab applied in the model is different from that used in the clinical trials. Both ANCHOR and MARINA trials involved monthly injections, continuing for a maximum of one year in ANCHOR (12 injections) and for a maximum of two years in MARINA (24 injections). For the base case scenario in the economic analysis a schedule of 8 injections in year 1 and 6 injections in year 2 was modelled with the assumption that the same

clinical efficacy would be achieved with this lower dosing frequency. This may be
questioned. The in both the
MARINA and ANCHOR trials showed difference between ranibizumab and
sham injection group
in
However, sh
owed in the PIER trial. This latter trial used monthly injections
for the first three months (the "loading dose") followed by quarterly injections, corresponding
to a total of 6 injections over 12 months. The submission argued that results
from using
the and
has suggested
This corresponds to
the that were assumed in the
according model. The submission included constitution and these

economic model. The submission included sensitivity analyses on this assumption and these are discussed in the results section of this review.

The model also assumes there is continued benefit, in terms of an increased probability of improvement and lower probability of deterioration in visual acuity, for six months following cessation of treatment with ranibizumab. It was assumed that for three months 89% of the full (i.e. on-treatment) efficacy of ranibizumab would continue, which would reduce to 66% of full benefit for a further three months. After this time the same efficacy as those receiving best supportive care was assumed. The submission does not mention how these post treatment benefits were derived. Simple **Content of a support of the submission and the submission included sensitivity analyses on this assumption and this is discussed in the results section of this review.** 

The utility values applied in the submission were obtained from a study, sponsored by the manufacturer, to derive appropriate health state valuations from a general population. Participants completed a time trade off exercise prior to insertion of contact lenses that would mimic visual impairment due to AMD.

fter this they underwent a vision assessment which was followed by completion of a health

questionnaire and a time trade-off valuation of their changed visual state. The mean age of			
participants was	with the oldest being	An analysis reported with the	
submission states that were found			
between			

and time trade off values.

#### **Model/** Cost-effectiveness Results

The submission reports total costs and outcomes (vision years and QALYs) of ranibizumab treatment for three lesion types separately (predominantly classic, minimally classic and occult no classic) compared to best supportive care in Tables 3.5, 3.7 and 3.8, for all lesion types together compared to best supportive care (based on data from the PIER trial) in Table 3.6 and for predominantly classic lesions compared to PDT in Table 3.4. These tables also report incremental analyses with incremental cost per vision year gained and incremental cost per QALY gained.

The incremental cost effectiveness ratios for ranibizumab are variable by lesion type and by comparator. The ICER for patients with predominantly classic lesions are £4,489 per QALY gained for the comparison with PDT (Table 4.5) and £14,781 per QALY gained when compared with best supportive care (Table 4.6). The ICERs are less favourable for occult no classic and minimally classic at around £26,000 per QALY gained (Table 4.8 and Table 4.9). The ICER for patients with all types of lesions, derived from the PIER study where fewer injections were provided, is £12,050 per QALY gained (Table 4.7).

 Table 4.5 ANCHOR – Predominantly classic lesions: Ranibizumab 0.5mg vs. PDT

	Costs (£)	QALY	Cost /QALY (£)
Ranibizumab	35,501	4.21	
PDT	34,584	4.01	
Incremental	917	0.20	4,489

Table 4.6 ANCHOR –	Predominantly	classic les	sions: Indii	ect comp	arison of
Ranibizumab 0.5mg v	s BSC			_	

	Costs (£)	QALY	Cost /QALY (£)
Ranibizumab	35,501	4.21	
Best supportive care	31,432	3.94	
Incremental	4,068	0.28	14,781

#### Table 4.7 PIER - All type of AMD lesions: Ranibizumab 0.5mg vs BSC

	Costs (£)	QALY	Cost /QALY (£)
Ranibizumab	31,323	3.89	

Best supportive care	28,202	3.63	
Incremental	3,120	0.26	12,050

	o court no chussie resionst rumbillumus otomis (5 25 c		
	Costs (£)	QALY	Cost /QALY (£)
Ranibizumab	31,326	4.71	
Best supportive care	22,201	4.36	
Incremental	9,125	0.34	26,454

Table 4.8 MARINA – Occult no classic lesions: Ranibizumab 0.5mg vs BSC

	Costs (£)	QALY	Cost /QALY (£)
Lucentis	34,408	4.52	
Best supportive care	25,914	4.19	
Incremental	8,494	0.33	25,796

The submission concludes that ranibizumab is cost-effective when compared with either PDT (for patients with predominantly classic lesions) or best supportive care for all lesion types. Similar results to the base case analyses are reported for the probabilistic sensitivity analyses with a probability of 100% of ranibizumab being cost-effective at a willingness to pay threshold of £30,000 for patients with predominantly classic lesions when compared with PDT. Equivalent values for the comparison with best supportive care are 96% for predominantly classic, 59% for minimally classic, and 57% for occult no classic for a willingness to pay threshold of £30,000.

The results reported here are based on the assumption that frequency of dosage of ranibizumab can be reduced, from twelve to eight injections (the latter including a loading dose of monthly injections for the first three months) in year 1 and from twelve to six injections in year 2, **Sector** The submission reports less favourable ICERs if the frequency of dosage observed in the trials (monthly injections or 12 per year) is used in the model – see later section on Assessment of Uncertainty.

# Outline appraisal of the cost-effectiveness analysis undertaken

A summary of the manufacturer's submission compared with the NICE reference case requirements can be seen in Table 4.10.

See Appendix 13 for tabulation of critical appraisal of the submission against Drummond and colleagues¹³¹ checklist.

NICE reference case requirements (see detail in NICE report):	Included in
	Submission
Decision problem: As per the scope developed by NICE	✓
Comparator: Alternative therapies routinely used in the UK NHS	$\checkmark$
Perspective on costs: NHS and PSS	✓
Perspective on outcomes: All health effects on individuals	✓
Type of economic evaluation: Cost effectiveness analysis	✓ (CEA and CUA)
Synthesis of evidence on outcomes: Based on a systematic review	X*
Measure of health benefits: QALYs	$\checkmark^+$
Description of health states for QALY calculations: Use of a standardised	<b>1</b>
and validated generic instrument	·
Method of preference elicitation for health state values: Choice based	
method (e.g. TTO, SG, not rating scale)	· ·
Source of preference data: Representative sample of the public	✓^
Discount rate: 3.5% pa for costs and health effects	$\checkmark$
Notes:	
* The efficacy data inputs were derived from patient level data in clinical stud	lies. However there
are no descriptions about the derivation. The inputs for BSC for patients with	predominantly
classic wet AMD were derived using simple indirect comparison method.	
⁺ Also included vision year gained as a health benefit measurement.	

# Table 4.10 Assessment of Novartis submission against NICE reference case requirements

^ from Brazier, J. Appendix 1 of manufacturer's submission

# Outline review of modelling approach

# Model structure/ structural assumptions

The use of a Markov cohort model seems appropriate given the need to track deterioration or improvement of visual acuity, in order to apply different utility values and expected costs to each of the health states within the model. Defining health states by visual acuity is consistent with clinical evidence and reflects the underlying pathological process of wet AMD.

No rationale was given in the submission for the chosen cycle length. However the cycle length of three months is believed to be the minimum interval over which visual acuity levels are likely to alter for patients receiving these interventions, and therefore for transitions to occur between the health states in the model. The model's time horizon of 10 years is reasonable and would be the approximate life expectancy for a patient entering the model at the mean age of 77. As the intervention being assessed is indicated for at least this time horizon is long enough to show important differences between interventions. Both the cost and benefits assigned to each health state over the modelled time horizon have been appropriately discounted at an annual rate of 3.5%.

One of the key inputs to the model is the time-to-event data derived from the clinical trials, which are used to model the rate of disease progression (or improvement) for patients

receiving active treatment or best supportive care in the model. These data are used to derive the transition probabilities for patients' movement between health states. There is no description in the submission of the methods used to derive these transition probabilities other than a statement that the transition probabilities between the health states are the mean values that were derived from the patient level data and the impact of treatment duration on transition probabilities was assessed in order to determine which time intervals should be analysed separately. On the basis of this analysis it was reported that the first quarter of AMD treatment, the second to final quarter of the first treatment year, and the second year were identified as requiring separate analysis. A clarification from manufacturer indicates that the 3-monthly transition probabilities were assessed in a multinomial logistic regression model (MLRM). For each observation, the value of the previous month was included in the MLRM as a predictive variable. Hence the MLRM estimated the probability of being in the current state based on the previous state. The residuals of MLRM were used to assess whether certain time periods required specific modelling. Between the time points where the residuals showed increased deviance, subgroups of time were made, and this variable was added into the model as a predictive variable.

The resource use assumptions for PDT in the model include an estimate that <u>%</u>% of patients will receive intravitreal injection of triamcinolone. No reference could be found for this level of use of intravitreal triamcinolone in the clinical trials or in the supporting documents in the submission. This may be an estimate derived from

This

contributed % of the total cost of administering PDT, excluding verteporfin, or % if the cost of verteporfin is included. A further analysis was undertaken by the TAR team after removing this cost and is reported later in this review.

The cost of administering sham injection to patients in the PDT and best supportive care cohorts were as were the costs of

Since sham injections were administered to these patients in the clinical trials only to ensure treatment blinding and not for any therapeutic purpose it seems inappropriate to include these in the economic model which aims to reflect the clinical practice. A further analysis was undertaken by the TAR team after removing this cost for patients in the PDT or best supportive care cohorts and is reported later in this review. It should be noted that the impact

is not taken into account in the submission.

# Data inputs

of

The derivation of transition probabilities is unclear in the report and the subsequent explanation from the manufacturer has not clarified this issue.

It is reported in the submission that pooled data from the MARINA and ANCHOR trials show an

approximately	
for patients receiving 0.5mg	
ranibizumab	
No indication of the statistical significance of this	was included
in the submission. The cost of	was not included
in the model.	

As no direct comparison to best supportive care is available for patients with predominantly classic lesions, an indirect comparison was carried out using data from the ANCHOR trial and TAP studies. Since the TAP study population included patients with all lesion types (predominantly, minimally classic and occult no classic) the comparability of patient populations in the data used for the indirect comparison would need to be established (specifically whether the efficacy of PDT was based on only the subgroup of patients with predominantly classic lesions in the TAP study) before generating efficacy estimates for the comparison of ranibizumab and best supportive care. The equations in the model reveal that

	were applied to
the	in order to
estimate	among the patients with predominantly classic
AMD. This method resulted in some of the es	timated transition probabilities being smaller
than 0 and greater than 1. Where this occurred	the values were corrected to 0 and 1,
respectively. To avoid this problem the log ris	sk ratio or log odds ratio, rather than risk
difference, could be considered when perform	ing indirect comparison.

The cost of concomitant therapy for the PDT cohort was included as part of the AMD treatment and yet a separate concomitant treatment component was added when estimating the average total cost for each treatment cycle. This double counting error caused the comparator to be more costly by f in each treatment cycle, which meant that the cost difference between PDT and ranibizumab was underestimated.

As discussed earlier the utility values applied in the submission were obtained from a sample of the general population in a study sponsored by the manufacturer. Custom made contact lenses were used to simulate the visual impairment resulting from AMD. Participants attempted common daily activities while wearing the lenses and also had a vision assessment. While experiencing visual impairment, participants valued their current level of visual acuity using the time trade off. The valuations were reported for ranges of visual acuity used in the manufacturer's economic model. The valuations elicited by

and used in the manufacturer's model are consistently those derived by Brown and colleagues¹¹² using the time trade off method in a sample of AMD patients. The health state utilities derived by

also show a

values elicited by Brown and colleagues¹¹² show a rapid decline between 6/9-6/15 and 6/18-6/30 and a smaller decrease between 6/18-6/30 and 6/60-3/60 (see Table 4.1). The values derived by **Stein and colleagues**¹³⁰ in AMD patients (see Table 4.2).

#### Assessment of uncertainty

One-way sensitivity analyses and probabilistic sensitivity analyses were reported in the submission. One-way sensitivity analyses were conducted for number of ranibizumab injections per year and duration of post-treatment effect for ranibizumab.

Probabilistic sensitivity analysis was conducted to explore the impact of uncertainty around the input parameters on incremental cost effectiveness ratios for ranibizumab. Parameters included for probabilistic sensitivity analysis are

and

the

at each model cycle.

Uncertainty around the occurrence of adverse events is not included. The choice of distributions assigned to parameters in the probabilistic sensitivity analysis is appropriate. Formulae in the model appear generally to be correct. However the variances for parameters included in estimating the total continuous cost of blindness have been underestimated, which may lead to overestimation of the probability that ranibizumab is cost-effective compared with PDT or best supportive care. The exclusion of uncertainty around the occurrence of adverse events and inappropriate estimation of parameter variances are unlikely to have a substantial impact given that the probability of incremental cost effectiveness ratios for ranibizumab below £30,000 per QALY was predicted to be close or equal to 1 in the submission.

#### Summary of general concerns

There are some general concerns which are discussed above. Of these the main concern is the number of ranibizumab injections considered in the model, which is lower than the number used in the clinical studies. Further analyses were conducted using the manufacturer's model.

#### Further analysis by TAR team using manufacturer's model

The manufacturer's model was checked and the reported results were able to be replicated except those using the data from PIER studies. The results from the manufacturer's model, as reported in the submission and after modification to take account of the concerns raised above are reported in Table 4.11.

The table presents the incremental costs, incremental QALYs and ICERs for patients with predominantly classic lesions (using PDT as comparator) after removing the double counting error and for all comparisons after removing the costs of administering sham injections. The final entry for each comparison shows the incremental costs, incremental QALYs and ICERs using the number of injections of ranibizumab (12 injections) given in both the MARINA and ANCHOR studies. This shows that the main driving factor for incremental cost effectiveness ratios (ICERs) is the number of ranibizumab injections. For the sub-group of patients with predominantly classic lesions the ICERs for all the scenarios are below £30,000 except in the case where the number of ranibizumab injections given in the ANCHOR trial was used. For both the minimally classic and occult no classic subgroups the ICERs are above £30,000 when more than 8 injections in the first year and 6 injections in the second year are assumed. When the number of injections given in MARINA trial are used the ICERs are £55,906 and £56,234.

These results are similar to the those presented by the manufacturer on the sensitivity of costeffectiveness estimates to assumptions over the number of injection, reported in Tables 3.9 and 3.10 of the submission._Assuming twelve injections in year 1 the manufacturer's estimate of the ICER for the comparison of ranibizumab with PDT for patients with predominantly classic lesions was £24,544 per QALY gained and the ICER for the comparison of ranibizumab with best supportive care was £29,662 per QALY gained. The manufacturer's estimate of the ICERs for the comparison of ranibizumab with best supportive care for patients with minimally classic and occult no classic lesions (assuming 12 injections in year and year 2 of treatment) were both approximately £55,000 per QALY gained.

Since the double-counting error for concomitant treatment cost and the use of intravitreal triamcinolone only applied to PDT, the change in costing assumptions has greatest effect on

119

the ICER comparing ranibizumab with PDT, which is only relevant for patients with predominantly classic lesions.

Model changes	Incremental	Incremental	ICER (£)
	Cost (£)	QALY	
Predominantly classic lesions			
(a) PDT as comparator			
As reported in submission	917	0.20	4,489
(i) Remove double counting of concomitant treatment cost	1,462	0.20	7,159
(ii) Removing the use of triamcinolone	1,095	0.20	5,361
(iii) Removing costs associated with sham injection	1,024	0.20	5,014
(iv) All the above (i) to (iii)	1,659	0.20	8,121
Using (iv) as a base case scenario for sensitivity analyses c	on number of i	njections per y	vear
(v) 9 in 1 st year ⁺	2,683	0.20	13,135
(vii) 12 in $1^{\text{st}}$ year ⁺	5,754	0.20	28,176
Predominantly classic lesions			
(b) Best supportive care as comparator			
As reported in submission	4,068	0.28	14,781
(i) Removing costs associated with sham injection	4,217	0.28	15,322
Using (i) as a base case scenario for sensitivity analyses or	n number of in	jections per ye	ear
(ii) 9 in $1^{\text{st}}$ year ⁺	5,241	0.28	19,042
(iii) 12 in $1^{\text{st}}$ year ⁺	8,313	0.28	30,203
+ Injections were assumed in first year only the as observed in ANCHOR trial			
Minimally classic lesions			
BSC as comparator			
As reported in submission	8,494	0.33	25,796
(i) Removing costs a/w sham injection	8,947	0.33	27,174
Using (i) as a base case scenario for sensitivity analyses or	ı number of in	jections per ye	ear
(ii) 9 in $1^{\text{st}}$ year ; 6 in $2^{\text{nd}}$ year	9,952	0.33	30,227
(iii) 9 in 1 st year; 9 in 2 nd year	12,672	0.33	38,488
(iv) 12 in $1^{st}$ year ; 6 in $2^{nd}$ year	12,967	0.33	39,384
(v) 12 in $1^{\text{st}}$ year ; 12 in $2^{\text{nd}}$ year	18,408	0.33	55,906
Occult no classic			
BSC as comparator			
As reported in submission	9,125	0.34	26,454
(i) Removing costs a/w sham injection	9,578	0.34	27,767
Using (i) as a base case scenario for sensitivity analysis on	number of inj	iections per ye	ar
(ii) 9 in $1^{\text{st}}$ year ; 6 in $2^{\text{nd}}$ year	10,616	0.34	30,777
(iii) 9 in 1 st year; 9 in 2 nd year	13,450	0.34	38,990
(iv) 12 in 1 st year ; 6 in 2 nd year	13,731	0.34	39,806
(v) 12 in $1^{\text{st}}$ year ; 12 in $2^{\text{nd}}$ year	19,398	0.34	56,234

 Table 4.11 Summary of sensitivity analyses using manufacturer's model (ranibizumab)

#### 4.2 Independent economic assessment

# **Statement of the decision problem and perspective for the cost-effectiveness analysis** We developed a model to estimate the cost-effectiveness of ranibizumab and of pegaptanib compared to current practice or best supportive care in a UK cohort of adults with AMD. The perspective of the cost-effectiveness analysis is that of the NHS and personal social services.

Each of the interventions is analysed separately – no comparisons are made between the costeffectiveness of ranibizumab and pegaptanib.

#### Strategies/ comparators

The scope for the appraisal, as issued by NICE, states that the interventions to be considered are ranibizumab and pegaptanib within their licensed indications. The comparators for these interventions are best supportive care and, for the sub-group with a confirmed diagnosis of classic, no occult subfoveal AMD, PDT with verteprofin. Best supportive care in this group of patients will include blind registration, provision of low vision aids, visual rehabilitation and may also include provision of residential and nursing care as a result of patients' loss of vision.

#### 4.2.1 Methods

#### Model type and rationale for the model structure

The primary outcome in the clinical trials reviewed in Section 3.2 was loss of fewer than 15 letters of visual acuity (for pegaptanib⁹⁵ and for ranibizumab in the MARINA⁹⁷ and ANCHOR⁹⁶ trials) or mean change in best corrected visual acuity (for ranibizumab in the PIER trial). Among the secondary outcomes reported for each trial were the proportion of patients gaining 15 letters, losing between 15 and 30 letters and losing more than 30 letters of visual acuity. These endpoints are interpreted clinically as being categories of response (loss of less than 15 letters), intermediate vision loss (loss of 15 to 30 letters) and severe vision loss (loss of more than 30 letters). To estimate the impact of these changes in visual acuity we required an appropriate model of disease progression with AMD and its effect on patients' quality of life. We conducted a systematic search of the literature to identify source material on the natural history, epidemiology and treatment of AMD (see Appendix 2 for details of the databases searched and the search strategy). References identified by these searches, along with previous economic evaluations reviewed in section 4.1, informed the development of a Markov state transition model.

The state transition diagram describing the six health states within the model and the allowable transitions between these states is shown in Figure 4.1. This description of the model was discussed with clinicians involved in the care and treatment of patients with AMD to ensure its comprehensiveness and clinical validity. In this diagram ellipses indicate health states and arrows indicate allowable transitions between health states. Each of the health states in the diagram correspond to approximately three lines (or fifteen letters) of visual acuity, which (as stated in section 1.2 **Outomes**) is generally accepted as a clinically significant difference.



Figure 4.1 State transition diagram

The state transition model indicates that an individual with AMD, in any of the health states defined by visual acuity, may remain at their current health state or may experience further vision loss. Individuals experiencing vision loss may progress by one or two states in any cycle. The primary aim of treatment for AMD is to reduce the rate of disease progression (as reflected in the primary endpoints for clinical trials of treatment for AMD) and would be expressed in this model as a reduced probability of progressing to a lower visual acuity health state in each model cycle. Subjects in each health state are exposed to risks of mortality. For visual acuity greater than 6/60 these were assumed to be the general population mortality risks; we assumed that states indicating lowest visual acuity would be associated with excess mortality risks.

While the primary aim of treatment to date has been to reduce the probability of disease progression, clinical trials have shown some patients experiencing improvements in visual acuity. Patients in both arms in the TAP study showed improvement of at least three lines of visual acuity at 12 month follow-up (6.0% and 2.4% respectively for the PDT and placebo arms). The dotted lines from each visual acuity state to the next higher state indicate the possibility of improvement.

The model adopts a three month cycle length and is used initially to estimate costeffectiveness over the time horizon of the clinical trials providing input data (i.e. 1 or 2 years). The model is also used to extrapolate the effects from the clinical trials over the patient's lifetime.

# Baseline cohort of patients with AMD

The baseline cohort comprises patients with AMD with an initial visual acuity between 6/12 and 6/24, who have a mean age of 75 and 50% of whom are male.

# **Data Sources**

# Effectiveness data

We have reported on the findings from our systematic review on the clinical effectiveness of ranibizumab and pegaptanib (Section 3.2) and also the findings of the review of natural history models and clinical effectiveness data used in economic evaluations of interventions included in this report (Section 4.1).

Table 4.12 reports the transition probabilities applied in the model to estimate the effectiveness of pegaptanib. These were derived from the proportion of patients in the VISION study experiencing transitions indicated in the state transition diagram and are based on changes in visual acuity from baseline, reported for each year of the study (see Table 3.3 for Year 1 and Year 2 results from the VISION study).

<b>Table 4.12 Transition probab</b>	lities used to mode	l effectiveness o	of pegaptanib,	derived
from the VISION study				

	Year 1 ⁹⁵		Year $2^{104}$	
	Pegaptanib	Control	Pegaptanib	Control
Gain at least 3 lines	0.0157	0.0051	0.0128	0.0048
Gain or lose less than 3 lines	Default			
Lose between $3 \& 6$ lines [†]	0.0555	0.0626	0.0412	0.0419
Lose at least 6 lines	0.0247	0.0601	0.0169	0.0372
Notes				
[†] not reported in Gragoudas and colleagues ⁹⁵ or manufacturer's submission. This was				

estimated as the difference between the total number of patients in the trial arm and those responding (i.e. losing less than 15 letters visual acuity) or losing at least six lines, as reported in Table 3.3.

The annual proportion of patients in the VISION study reported as gaining or losing visual acuity were transformed to cycle probabilities using the density method proposed by Miller and Homan,¹⁴⁰ assuming that the transition rate remains constant during the period of observation. Transition probabilities applied in year 1 of the model were based on the

proportions of patients gaining at least 3 lines, losing at least 3 and less than 6 lines and those losing at least 6 lines of visual acuity in the first year of the study. Year 2 transition probabilities were based on the proportions observed from baseline to year 2 of the study. These data are used directly in the short term (i.e. trial-based) analysis. To extrapolate effects beyond the trial period the transition probabilities estimated for year 2 in the usual care cohort were applied to each arm of the model in years 3 to 10. Given that treatment with pegaptinib had stopped at this point it meant that the benefits would decline at the same rate as those for usual care, although from a higher level of visual acuity. This assumption suggests that the benefits of pegaptanib are predominantly symptomatic. Mills and colleagues¹⁴¹ in an unpublished analysis of the VISION trial contend that pegaptanib has a disease modifying effect. They showed that patients re-randomised from treatment with pegaptanib at doses 0.3mg, 1mg and 3mg after 54 weeks to discontinuing treatment, continued to experience statistically significant benefit after another 48 weeks compared to those who received the sham treatment throughout the study period (see Table 4.13). Although the study is unpublished and concerns remain about the validity of the analysis, we included a disease modifying effect for pegaptanib through sensitivity analysis in the model.

Table 4.15 Diseas	e mounying enect of pegaptamb	
	Relative risk of non-response (95% CI)	p value
All doses pooled	0.70 (0.56, 0.86)	p=0.001
0.3 mg	0.68 (0.51, 0.90)	p=0.008
1 mg	0.62 (0.46, 0.83)	p=0.001
3mg	0.79 (0.61, 1.03)	p=0.09

1 a D C = 1.13 D D C C C C C C C C C C C C C C C C C
------------------------------------------------------

Adverse events associated with intraocular injection of pegaptanib were reported for the first year of the VISION trial and are discussed in Section 3.2.4 of this report. Three serious adverse events (endophthalmitis, traumatic lens injury and retinal detachment), associated with significant risk of severe loss of visual acuity as well as health care management costs, were identified⁹⁵ and their frequencies of occurrence are reported in Table 4.14. The proportion of adverse events, per injection, were treated as the probability of each adverse event occurring, per injection received by patients in the pegaptanib cohort in the model.

Adverse event	Events per patient (n=890)	Events per injection (n=7545)
Endophthalmitis	1.35%	0.16%
Traumatic injury to lens	0.56%	0.07%
Retinal detachment	0.67%	0.08%

This may over-estimate the adverse event rate for pegaptanib, since the majority of endophthalmitis cases were associated with protocol violations. A reduced proportion of

adverse events was reported following a change in aseptic procedures in the trial. However we adopted the conservative assumption of using the proportion of adverse events observed during the trial.

Table 4.15 and Table 4.16 report the transition probabilities applied in the model to estimate the effectiveness of ranibizumab in the treatment of patients with predominantly classic or minimally classic/ occult no classic lesions, respectively. These were derived from the proportion of patients in the ANCHOR and MARINA trials experiencing the transitions indicated in the state transition diagram and are based on changes in visual acuity from baseline reported for each year of each study (see Table 3.3).

Table 4.15 Transition probabilities used in model, derived from the ANCHOR trial

	Year 1			
	Ranibizumab	Control		
Gain at least 3 lines	0.0624	0.0143		
Gain or lose less than 3 lines Default				
Lose between $3 \& 6$ lines [†]	0.0046	0.0614		
Lose at least 6 lines 0.0000 0.0351				
Notes [†] not reported in trial publication ⁹⁶ . The proportion of patients losing between 3 and 6 lines was estimated by subtracting the proportion of patients responding (i.e. losing less than 15 letters visual acuity) plus the proportion losing at least six lines from 1.				

Table 4.16 Transition probabilities used in model, derived from the MARINA tria	al
---------------------------------------------------------------------------------	----

	Year 1		Year 2	
	Ranibizumab	Control	Ranibizumab	Control
Gain at least 3 lines	0.0503	0.0127	0.0494	0.0096
Gain or lose less than 3 lines	Default			
Lose between $3 \& 6$ lines [†]	0.0053	0.0648	0.0097	0.0675
Lose at least 6 lines	0.0016	0.0378	0.0032	0.0623
Notes				
[†] not reported in trial publication ⁹⁷ . The proportion of patients losing between 3 and 6 lines				
was estimated by subtracting the proportion of patients responding (i.e. losing less than 15				
letters visual acuity) plus the proportion losing at least six lines from 1.				

The annual proportion of patients in each trial reported as gaining or losing visual acuity were transformed to cycle probabilities using the density method as described above.

For patients with predominantly classic lesions two analyses were undertaken. The first analysis used data from the ANCHOR trial to estimate the cost-effectiveness of treatment with ranibizumab compared with PDT. Since PDT is not currently recommended by NICE for patients with predominantly classic lesions, other than in clinical trials,⁷⁷ a second analysis

was undertaken comparing ranibizumab with best supportive care, based on an indirect comparison with the placebo arm of the TAP study, using data reported for the subgroup of patients with predominantly classic lesions.¹¹⁰

Transition probabilities derived from the MARINA trial were used to model the effectiveness of ranibizumab for patients with minimally classic and occult no classic lesions. Transition probabilities applied in year 1 of the model were based on the proportions of patients gaining at least three lines, losing at least three and less than 6 lines and those losing at least 6 lines of visual acuity in the first year of the trial. Transition probabilities applied in the second year of the model were based on the proportions observed from baseline to year 2 in the trial. These data are used directly in the short term (i.e. trial-based) analysis. To extrapolate effects beyond the trial period the transition probabilities estimated for year 2 in the control arm of the trial were applied to each arm of the model in years 3 to 10.

Adverse events reported in the ANCHOR and MARINA trials are discussed in Section 3.2.4 of this report. The proportion of patients experiencing serious adverse events during the ANCHOR trial are reported in Table 4.17. These annual proportions are converted to cycle probabilities using the density method.¹⁴⁰ The probabilities of experiencing an injection-related adverse event are applied in each model cycle during which treatment by intraocular injection occurs.

J				
Adverse event	Events per patient (n=140)			
Endophthalmitis	1.43%			
Traumatic injury to lens	0.00%			
Retinal detachment	0.36% [†]			
Uveitis	0.07%			
[†] one case of retinal detachment in 0.3mg ranibizumab arm –				
proportion for the model estimated as proportion across both				
ranibuzamab arms in the trial (i.e. $1/(137+140)$ )				

Table 4.17 Injection-related adverse events in ANCHOR trial

The proportion of patients experiencing serious adverse events during the MARINA trial are reported in Table 4.18. These are two-year cumulative proportions and are converted to cycle probabilities using the density method.¹⁴⁰ The probabilities of experiencing an injection-related adverse event are applied in each model cycle during which treatment by intraocular injection occurs.

Table 4.18 Injection-related adve	erse events in MARINA trial
Adverse event	Events per patient (n=239)
Endophthalmitis	1.3%

Uveitis	1.3%
Retinal tear	0.4%
Vitreous haemorrhage	0.4%
Lens damage	0.4%

# Health state values/ utilities

The health state utilities adopted in the cost-effectiveness model are those reported by Brown and colleagues¹¹² and derived using the time trade-off method. These values were estimated in a population of consecutive patients seen at the Retina Vascular Unit at Wills Eye Hospital, Philadelphia, with vision loss due to AMD and whose visual acuity was 6/12 or worse in at least one eye. Utilities were elicited from seventy two patients using both time trade-off and standard gamble methods. For the time trade-off, patients were asked how many years of their remaining life expectancy they would be prepared to trade to receive a technology that would guarantee permanent perfect vision in each eye. Table 4.19 reports the mean time trade-off valuations relevant to health states in our model.

Visual acuity range	Mean Utility	Standard	95% CI
		deviation	
>6/12	0.89	0.16	(0.82 - 0.96)
6/12 to 6/24	0.81	0.20	(0.73 - 0.89)
6/24 to 6/60	0.57	0.17	(0.47 - 0.67)
6/60 to3/60	0.52	0.24	(0.38 – 0.66)
<3/60	0.40	0.12	(0.29 - 0.50)

Table 4.19 Health state utilities used in economic model

As noted in the review of research on quality of life in AMD, there is limited evidence on health state utilities with one group of researchers providing the majority of published valuations (Brown and colleagues^{112,128} and Sharma and colleagues¹⁴²). The time trade-off valuations reported by Brown and colleagues¹¹² were adopted in our model as theirs are the most credible published utility values for visual loss associated with AMD, and the time trade-off valuations have been the most widely used in previous cost-utility studies of treatment for AMD^{40,86,87,115} (see review in Section 4.1). To test the sensitivity of source of valuations the standard gamble values were used in the sensitivity analysis. The upper and lower confidence limits of the time trade-off valuations were used to test sensitivity of results to variation in parameter values.

# Cost data

Costs in the model were developed in two stages. First the additional resource use, in terms of diagnostic tests, investigations and outpatient visits required for drug administration and monitoring of patients while on treatment were identified, based on clinical guidelines and

discussion with ophthalmic specialists at Southampton General Hospital Trust. These are described below as intervention costs. Secondly, literature describing the costs associated with vision loss was reviewed and appropriate estimates applicable to the UK setting were extracted and used in the analysis.

#### Intervention costs

The frequency and intensity of monitoring of patients being treated with ranibizumab and pegaptanib was identified based on clinical guidelines and discussion with ophthalmic specialists. The treatment pathways for patients with AMD receiving treatment with pegaptanib, ranibizumab, PDT or supportive care are illustrated in Figure 4.2

All new patients are evaluated in the outpatient department, receiving an extended outpatient appointment for medical assessment, a vision assessment and imaging using fluoroscein angiography and optical coherence tomography (OCT). Those patients proceeding to active treatment are assumed to receive their first drug treatment immediately following their initial out-patient consultation. For subsequent treatments patients are assumed to have a standard out-patient appointment, vision assessment and OCT followed by the drug administration procedure. While patients remain on treatment they receive monitoring of their condition using OCT at each attendance and additional fluoroscein angiography every 3 to 6 months. On discontinuation of treatment (premature termination of treatment or at the scheduled end of treatment) patients are assessed using fluoroscein angiography.

Patients treated with pegaptanib would be seen seventeen times during two years of treatment (the maximum treatment duration in VISION trials). This corresponds to six-weekly visits (or nine visits in year 1 and eight visits in year 2) as stated in the Summary of Product Characteristics (SPC).⁹² Patients treated with ranubizumab would be seen twelve times during one year of treatment (the maximum treatment duration in the ANCHOR trial) and twenty four times during two years of treatment (the maximum treatment duration in the MARINA trial). This corresponds to four-weekly visits which was the frequency of treatment in the trials as stated in the Summary of Product Characteristics (SPC). Administration of both drugs is assumed to occur during the patient's hospital attendance for out-patient follow-up, but incurs additional costs since the injection procedure is carried out under aseptic conditions requiring the use of surgical hand disinfection and sterile equipment.

In addition to the excess costs of health service contacts for patients undergoing treatment, the costs of the drugs also need to be estimated. Drug unit costs for pegaptanib were taken from the BNF.⁸² Ranibizumab does not currently have marketing authorisation there is no unit cost

available, therefore for this evaluation we adopted the target price for the UK indicated by the manufacturer. This is lower than the expected price quoted in section 1.3 (**Anticipated costs**) which was based on a currency conversion form the US price of \$1,950.

Drug costs for pegaptanib were calculated for a dosage of 0.3mg administered as an outpatient procedure every 6 weeks for up to two years. A 0.3mg vial of pegaptanib costs £514 and total drug cost for one year of pegaptanib treatment is therefore £4,626 (or £9,252 for a patient receiving the maximum of two years of treatment evaluated in VISION study).

Drug costs for ranibizumab were calculated for a dosage of 0.5mg administered as an outpatient procedure every month for up to one year in analysis using ANCHOR data and up to two years in analysis using MARINA data. The manufacturer's target price for the UK is  $\notin$ 1,100, which was converted to sterling at an exchange rate of  $\notin$ 1 = £0.692. Therefore a vial of 0.5mg ranibizumab is estimated to cost £761.20 and the total drug cost is £9,134.40 for one year and £18,268.80 for two years.

The costs of managing the treatment related ocular adverse events were taken into account in our analyses. Management of endophthalmitis was assumed to require an intravitreal tap and injection, five extended out-patient visits and treatment with topical steroid. Traumatic lens injury requires cataract extraction, three extended out-patient visits and treatment with topical steroid, while retinal detachment requires cryotherapy with buckle/vitrectomy, three extended out-patient visits, and treatment with topical antibiotic as well as topical steroid. Unit costs and sources are reported in Table 4.20.

Management of adverse event	Unit cost	Source
Endophthalmitis		
Intravitreal tap and injection	£2,077	NHS Reference costs ⁸⁴
Extended out-patient visit	£96	NHS Reference costs ⁸⁴
Topical steroid	£3.21	BNF ⁸²
Traumatic injury to lens		
Cataract extraction	£1,119	NHS Reference costs ⁸⁴
Extended out-patient visit	£96	NHS Reference costs ⁸⁴
Topical steroid	£3.21	BNF ⁸²
Retinal detachment		
Cryotherapy with buckle/ vitrectomy	£1,725	NHS Reference costs ⁸⁴
Extended out-patient visit	£96	NHS Reference costs ⁸⁴
Topical steroid	£3.21	BNF ⁸²
Topical antibiotic	£1.32	BNF ⁸²

Table 4.20 Management costs for injection-related adverse events



Figure 4.2 Treatment pathways for patients with AMD referred for specialist care

# Health state costs

Health state costs associated with vision loss are based on estimates developed in the systematic review and economic evaluation by Meads and colleagues.⁴⁰ These are applied to visual acuity states in the model equal to or less than 6/60. Relevant categories of costs and the proportions of patients receiving services were taken from Meads and colleagues⁴⁰ to estimate resource use. Unit costs have been taken from Unit Costs of Community Care (Curtis and Netten¹³⁴) and NHS Reference Costs⁸⁴ as shown in Table 4.21. All costs are expressed as 2005 prices.

 Table 4.21 Additional costs associated with vision loss below best corrected visual acuity of 6/60 in better-seeing eye

 Ø 6/60 in better-seeing eye
 % receiving
 Unit Cost
 Source
 Annual

	% receiving	Unit Cost	Source	Annual			
Services	services	(£)		$\cos(t)$			
Blind registration	95	115	Meads and colleagues ⁴⁰ , Curtis and Netten ¹³⁴	109			
Low vision aids	33	150	Meads and colleagues ⁴⁰	50			
Low vision rehabilitation	11	259	Curtis and Netten ¹³⁴	28			
Community care	6	6,552	Curtis and Netten ¹³⁴	393			
Residential care	30	13,577	Curtis and Netten ¹³⁴	4,073			
Depression	39	431	Knapp and colleagues ¹⁴³	168			
Hip replacement	5	5,379	NHS reference costs, 2005 ⁸⁴	269			
Annual cost is estimated by multiplying unit costs by the proportion of eligible patients estimated as receiving each service.							

Blind registration, provision of low vision aids and low vision rehabilitation are one-off costs associated with loss of vision below 6/60. Unit costs have been estimated using the doctor's sessional fee for completing the Certificate of Vision Impairment and an initial assessment by community occupational therapist (1 hour) for blind registration. Unit costs reported by Meads and colleagues⁴⁰ (uplifted to 2005 values) have been adopted for the provision of low vision aids. The cost of an episode of care with a community occupational therapist has been adopted as the unit cost for low vision rehabilitation.

Community care costs were estimated as the annual cost for a local authority home care worker, while residential care costs were based on annual cost of private residential care (taking into account that approximately 30% of residents pay themselves).

Using the estimated annual costs in column 5 of Table 4.21 gives a cost £5,090 for the first year of blindness and £4,903 for each subsequent year, since the first three items (blind registration, provision of low vision aids and low vision rehabilitation) are assumed only to be provided in the first year when visual acuity falls below 6/60.

#### Discounting of future costs and benefits

A discount rate of 3.5% has been applied to future costs and benefits in line with current guidance from NICE.¹³² Discount rates of 0% and 6% have been applied in the sensitivity analyses.

# **Presentation of results**

We report findings on the cost-effectiveness of interventions based on analysis of a cohort of patients having age and sex characteristics, as discussed earlier. For the interventions being assessed in this report comparisons for pegaptanib are made against usual care for a cohort of patients with AMD irrespective of lesion type. For ranibizumab separate analyses are presented, based on MARINA and ANCHOR trial results, for predominantly classic, minimally classic and occult no classic lesions separately. For all comparisons a short-term analysis is presented, without extrapolation beyond clinical trial data, and a longer term analysis extrapolating to a ten year time horizon (the approximate life expectancy for patients age 75 years, with AMD but with visual acuity levels greater than 6/60).

We report the results of these comparisons in terms of the incremental gain in quality adjusted life years (QALYs) and the incremental costs determined in the cohort analysis.

#### Assessment of uncertainty in the SHTAC analysis (sensitivity analysis)

Parameter uncertainty is addressed using probabilistic sensitivity analysis. Probability distributions are assigned to the point estimates used in the base case analysis. The point estimates for state transitions are reported in Table 4.12 to Table 4.16 and for health state costs in Table 4.21. Distributions are also assigned to the health state utilities reported in Table 4.19 and these are sampled during the probabilistic analysis. Appendix 14 reports the variables included in the probabilistic sensitivity analysis, the form of distribution used for sampling and the parameters of the distribution.

Deterministic sensitivity analysis is used to address particular areas of uncertainty in the model related to:

- model structure
- methodological assumptions
- parameters around which there is considerable uncertainty or which may be expected, a priori, to have disproportionate impact on study results.

The purpose of this analysis is to identify clearly the impact of this uncertainty and to test the robustness of the cost-effectiveness results to variation in structural assumptions and parameter inputs.

#### SHTAC cost-effectiveness model - summary of methods

- We devised a Markov state transition model to estimate the cost-effectiveness of treatment for AMD, from the perspective of the NHS and Personal Social Services. This was based on our systematic review of literature on natural history, epidemiology and health-related quality of life in AMD, as well as systematic review of literature on clinical effectiveness and cost-effectiveness of treatment.
- The model includes six health states (five defined by declining visual acuity and one for death from all causes). People with AMD and visual acuity less than 6/60 have a 50% higher risk of death than the general population.
- A cohort of patients pass through these states at different rates. The baseline cohort comprises patients with AMD with an initial visual acuity between 6/12 and 6/24, who have a mean age of 75 and 50% of whom are male.
- The model has a ten year horizon (the approximate life expectancy for patients age 75 years, with AMD but with visual acuity levels greater than 6/60), with a cycle length of 3 months.
- Published quality of life weights estimated from valuations by patients with AMD were used to derive the QALYs associated with each treatment.
- To assess costs associated with treatment for AMD, resource use was estimated from clinical guidelines and advice from clinical practitioners. Where available, drug costs were taken from the current BNF.⁸² Since no quoted UK price is available for ranibizumab we used the manufatcurer's target price for the UK. To estimate costs associated with blindness values from a UK review and appropriate sources for UK unit costs were used.
- Costs and benefits were discounted at 3.5%.

#### 4.2.2 Results

# 4.2.2.1 Cost-effectiveness of pegaptanib – base case analysis

Cost-effectiveness findings are presented for a cohort of patients with AMD, having the age and sex characteristics reported in the literature and described in Section 4.2.1. Discounted costs, identifying the contribution of drugs, drug administration and monitoring while on treatment, management of adverse events, co-administration of PDT and costs associated with vision loss, are presented along with life expectancy and quality-adjusted life expectancy for patients in the cohort. Findings are presented for the incremental cost per life year gained, incremental cost per vision year gained and for incremental cost per QALY.

Costs and outcomes modelled for a cohort of AMD patients, with initial visual acuity between 6/12 and 6/24, receiving usual care or pegaptanib are presented in Table 4.22. Costs and health outcomes in the table have been discounted at 3.5%.

	•		Vision		Incremental cost
	Costs (£)	Life Years	Years	QALYs	per QALY gained
Two year time hor	izon (no extrapo	lation beyond	l trial data)		
Usual Care	£ 2,558	1.89	1.55	1.37	
Pegaptanib	£ 12,817	1.90	1.73	1.43	£ 163,603
Ten year time horiz	zon				
Usual Care	£ 16,600	6.47	3.28	3.89	
Pegaptanib	£ 24,662	6.55	3.99	4.15	£ 30,986

Table 4.22 Cost-effectiveness of pegaptanib against usual care. Base case analysis

This comparison is based on patients receiving a maximum of two years of treatment with pegaptanib, with the frequency of drug administration as reported over the two years of the VISION study.^{95,104} As expected, for the trial-based analysis and for the ten-year time horizon, there is little difference in life expectancy between the pegaptanib and usual care cohorts, despite the assumed 50% increased mortality risk for patients with visual acuity below 6/60. Outcomes measured as vision years emphasise the difference between the two cohorts in the proportion of life expectancy spent with visual acuity greater than 6/60 (difference in vision years of 0.19 for two year time horizon and 0.71 for ten year time horizon), assuming an equal weighting for time spent in all health states with visual acuity greater than 6/60. The incremental gain is lower when measuring outcome in QALYs (0.06 QALYs at two years and 0.26 at ten years).

There is a large cost difference between pegaptanib and usual care at two years. Pegaptanib costs are five times those for the usual care cohort, with an absolute difference of £10,259, which taken together with the small QALY gain leads to a large incremental cost effectiveness ratio of £163,603. The cost difference is reduced at 10 years (£8,062, with costs for pegaptanib being 49% higher than for usual care). Table 4.23 reports the breakdown of costs at two years and ten years, indicating that all excess costs of treatment are realised in the first two years whereas costs of blindness represent a small proportion of total costs. While the difference between in cost of blindness the pegaptanib-treated and usual care cohorts at ten years does not offset in full the costs of treatment with pegaptanib, the increased

proportion of total costs accounted for by costs of disease progression, together with the increased QALY gain yields a reduced ICER of £30,986.

			Adı	ministration	N	lanaging				
		Drug	and	monitoring	adv	erse events		PDT	]	Blindness
Two year time horizon (no extrapolation beyond trial data)										
Usual Care	£	-	£	220	£	-	£	590	£	1,747
Pegaptanib	£	7,388	£	4,107	£	98	£	404	£	820
Ten year time h	oriz	on								
Usual Care	£	-	£	220	£	-	£	590	£	15,789
Pegaptanib	£	7,388	£	4,107	£	98	£	404	£	12,666

 Table 4.23 Breakdown of total costs for each cohort by major categories. Base case analysis

# 4.2.2.2 Cost-effectiveness of pegaptanib – deterministic sensitivity analysis

We conducted a sensitivity analysis to consider the effect of uncertainty around model structure and for variation in certain key parameters that were expected, a priori, to be influential on the cost-effectiveness results. The method we adopted is univariate sensitivity analysis. That is, varying one parameter at a time, leaving all other variables unchanged. This is to highlight the impact, if any, of each selected parameter alone on the cost-effectiveness results. The effects of uncertainty in multiple parameters were addressed using probabilistic sensitivity analysis, which is reported later in the section.

Table 4.24 reports the results of the sensitivity analysis. Except for the sensitivity analysis with respect to time horizon, all analyses were conducted using the ten year model. The table is divided to distinguish between analyses undertaken due to uncertainties over structural assumptions in the model, uncertainties over the composition of the baseline cohort and uncertainty over parameter values.

		Incremental	Incremental	ICER
Reference case		f 8 062	0.26	f 30 986
Structural assumptions		2 0,002	0.20	2 50,900
	3 years	£ 9,589	0.11	£ 87.428
Time horizon	5 years	£ 8.719	0.18	£ 49.076
(10 years)	8 years	£ 8,170	0.24	£ 34,409
Disease modifying	Year 3 only	£ 7,710	0.29	£ 26,896
effect	Year 3 onwards	£ 6,941	0.34	£ 20,467
Stop treatment on entering	ng 6/60 state	£ 7,365	0.26	£ 28,530
Methodological uncertai	inty			
Discount rates (3.5%	0% for cost & outcome	£ 7,893	0.29	£ 26,782
for costs and outcomes)	6% for cost & outcome	£ 8,154	0.24	£ 34,029
Baseline cohort characte	eristics			
Age of cohort at start of	-15 years	£ 7,533	0.27	£ 27,537
simulation (75 years)	-10 years	£ 7,647	0.27	£ 28,108
simulation (75 years)	+5 years	£ 8,300	0.24	£ 34,040
Proportion of cohort	40%	£ 8,042	0.26	£ 30,801
that is male (50%)	60%	£ 8,062	0.26	£ 30,986
	50% 6/12 to 6/24 and			
Visual acuity at	50% 6/24 to 6/60	£ 8,063	0.22	£ 35,913
baseline (6/12 to 6/24)	6/24 to 6/60	£ 8,063	0.17	£ 46,285
Parameter uncertainty				
	9 in Year 1 (8.4)	£ 8,522	0.26	£ 32,752
Number of injections	8 in Year 2 (6.9)	£ 8,823	0.26	£ 33,910
	9 in Year 1 (8.4) and 8 in Year 2 (6.9)	£ 9,282	0.26	£ 35,676
Cost of out-patient	25 percentile	£ 7,766	0.26	£ 29,846
attendance	75 percentile	£ 8,362	0.26	£ 32,140
Cost of injection	Costed as day case	f 12 449	0.26	f 47 845
procedure	procedure	2 12,77	0.20	2 77,075
	Standard gamble values	£ 8,062	0.21	£ 38,226
Health state utilities	TTO values (Lower CI)	£ 8,062	0.28	£ 28,749
	TTO values (Upper CI)	£ 8,062	0.24	£ 33,142
	High uptake/ high costs	-£ 236	0.26	Pegaptanib dominates
	Low uptake/ low costs	£ 10,559	0.26	£ 40,582
	High costs/ medium uptake	£ 6,030	0.26	£ 23,174
Costs of blindness	Low costs/ medium uptake	£ 9,667	0.26	£ 37,154
	High uptake/ medium costs	£ 3,703	0.26	£ 14,230
	Low uptake/ medium costs	£ 9,774	0.26	£ 37,563

 Table 4.24 Deterministic sensitivity analysis - pegaptinib

As shown in Table 4.22, time horizon has a strong effect on the cost-effectiveness estimates for pegaptanib. As the time horizon increases the incremental cost of pegaptanib reduces (greater disease progression in the usual care cohort leads to increased costs associated with services for visual impairment, which offset an increasing proportion of treatment costs for the pegaptanib cohort) and incremental QALY gain increases. This occurs where the same transition probabilities between states are assumed for the pegaptianib cohort post-treatment as for usual care. An analysis reported in the manufacturer's submission,¹⁰⁴ and submitted for publication suggests that pegaptanib may have a disease modifying effect, rather than simply treating AMD symptoms, which would have an impact on cost-effectiveness estimates for any extrapolated model. Based on an analysis of non-response (i.e. loss of at least 15 letters of visual acuity from baseline) in patients randomised to discontinue treatment at year 1 and those who were never treated, it is suggested that pegaptanib treatment is associated with a 30% reduction in non-response. This relative risk reduction was applied to the estimated transition probabilities for losing three to six lines and losing greater than six lines of visual acuity in the sensitivity analysis. Since this effect has only been demonstrated for patients in the year following discontinuation of treatment, it was first applied only in year three of the ten year model. This reduced the incremental cost by approximately £350 and increased the QALY gain by 0.03, yielding an incremental cost effectiveness ratio of £26,896. Subsequently the relative risk reduction was applied to the transition probabilities for losing visual acuity from year three through to year ten reducing the ICER to £20,467.

In the base case it was assumed that treatment with pegaptanib would be stopped when patients' visual acuity falls below 3/60. An alternative stopping rule was tested with treatment stopping when visual acuity falls below 6/60. For this analysis the probability of losing visual acuity estimated for usual care was applied to patients in the pegaptanib cohort once their visual acuity fell below 6/60. This has very little impact on incremental QALYs, but reduces incremental cost by approximately £700, reducing the ICER to £28,530.

Varying the discount rates applied has comparatively little effect. Zero discount rates for costs and outcomes result in a slight reduction in incremental cost and slight increase in incremental QALYs compared with baseline values. Conversely applying a discount rate of 6% results in a slight increase in incremental cost and reduction in incremental QALYs and hence a slightly higher ICER.

Varying the composition of the initial cohort of patients in the model, by reducing the proportion of the cohort assumed to be male has little impact on cost-effectiveness. Varying the age of the cohort at the start of the model showed lower cost-effectiveness estimates for younger ages. Varying the distribution of initial visual acuity had a large impact on cost-effectiveness estimates. A cohort equally split between the 6/12 to 6/24 and 6/24 to 6/60 states

produced an ICER of approximately £37,122, while a cohort with initial visual acuity of 6/24 to 6/60 produced an ICER of approximately £46,285.

The analyses presented in Table 4.24 have assumed that the intravitreal injection is provided in out-patients, and have used an out-patient unit cost estimate. If the higher cost assumed for providing injections as day cases is used the ICER increases substantially, to £47,845.

As suggested by the cost breakdown in Table 4.23 the estimated costs of blindness have a substantial impact on cost-effectiveness estimates. Adopting the high and low estimates for costs and uptake of services estimated by Meads and colleagues,⁴⁰ listed in Table 4.25, showed wide variation in incremental cost from a situation where pegaptanib was cost saving over a ten year time horizon (assuming high cost and high uptake for each service) to a 31% increase over the base case estimate for incremental cost (assuming low cost and low uptake for each service).

Table 4.25 Medium, high and low estimates of uptake of services and unit costs included in costs of blindness adopted in sensitivity analysis

	Upt	ake of serv	ices	Unit costs of services			
	Medium	High	Low	Medium	High	Low	
Blind registration	94.5%	94.5%	50.0%	£ 115	£ 170	£ 40	
Low vision aids	33.0%	74.0%	33.0%	£ 150	£ 150	£ 56	
Low vision rehabilitation	11.0%	11.0%	11.0%	£ 259	£ 309	£ 125	
Community care	6.0%	40.0%	6.0%	£ 6,552	£ 6,552	£ 1,560	
Residential care	30.0%	56.0%	13.0%	£ 13,577	£ 23,988	£ 6,500	
Depression treatment	39.0%	50.0%	6.0%	£ 431	£ 431	£ 431	
Hip replacement	5.0%	24.7%	0.5%	£ 5,753	£ 6,886	£ 3,481	

To indicate which variable, costs or uptake, were more influential on cost-effectiveness estimates additional analyses were undertaken using the extreme values for uptake combined with medium cost and extreme values for cost combined with medium uptake. Table 4.24 shows that the cost effectiveness estimates were most sensitive to assumptions over uptake, estimated as the proportion of eligible cases (i.e. with visual acuity less than 6/60) receiving services.

Other parameters included in the sensitivity analysis had comparatively little impact on costeffectiveness of pegaptinib.

# 4.2.2.3 Cost-effectiveness of pegaptanib – probabilistic sensitivity analysis

In a probabilistic sensitivity analysis for pegaptanib, where probabilities of losing or gaining visual acuity, the size of disease modifying effect, health state utility values, cost of outpatient

attendances, fluoroscein angiography and optical coherence tomography and costs of services for visual impairment were sampled probabilistically, the majority of simulations produced incremental cost effectiveness estimates that were in the north-east quadrant of the cost-effectiveness map, see Figure 4.3. That is, the majority of simulations are associated with increased QALYs but also increased costs. However a small number of simulations have negative incremental costs. Simulations where costs for the pegaptanib cohort are lower than for the usual care cohort are most likely to be associated with extreme high values for costs of blindness.

Figure 4.3 Cost effectiveness plane – incremental cost and incremental QALYs for pegaptanib compared with usual care



In this analysis pegaptanib had a probability of being cost-effective (compared with usual care) of 17% at a willingness to pay threshold of £20,000 per QALY and 58% at a willingness to pay threshold of £30,000 per QALY, see Figure 4.4.



Figure 4.4 Cost effectiveness acceptability curve – pegaptanib probabilistic sensitivity analysis results

#### 4.2.2.4 Cost-effectiveness of ranibizumab – base case analysis

Cost-effectiveness findings are presented for a cohort of patients with AMD, having age and sex characteristics described in Section 4.2.1. Discounted costs, identifying the contribution of drugs, drug administration and monitoring while on treatment, management of adverse events and costs associated with vision loss, are presented along with life expectancy and quality-adjusted life expectancy for patients in the cohort. Separate analyses are presented for patients with predominantly classic lesions (based on clinical data from the ANCHOR trial⁹⁶) and for patients with minimally classic and occult no classic lesions (based on clinical data from the MARINA trial⁹⁷). Findings are presented showing the life years, vision years and the quality adjusted life years associated with each intervention and the incremental cost per QALY for ranibizumab against best supportive care, for all lesion types, and against PDT for patients with predominantly classic lesions.

Costs and outcomes modelled over the clinical trial time horizons, for a cohort of AMD patients, with initial visual acuity between 6/12 and 6/24, receiving best supportive care (all lesion types), PDT (predominantly classic lesions) or ranibizumab are presented in Table 4.26. Where relevant, costs and health outcomes in the table have been discounted at 3.5%.

			Vision		Incremental cost		
	Costs (£)	Life Years	Years	QALYs	per QALY gained		
Predominantly classic: ANCHOR trial. PDT as comparator							
PDT	£ 4,182	0.98	0.94	0.77			
Ranibizumab	£ 12,427	0.99	0.98	0.81	£ 202,450		
Predominantly class	sic: ANCHOR t	rial. Best sup	portive care	as comparate	Dr		
Supportive care	£ 933	0.98	0.85	0.74			
Ranibizumab	£ 12,427	0.99	0.98	0.81	£ 160,181		
Minimally classic and occult no classic: MARINA trial. Best supportive care as comparator							
Supportive care	£ 1,541	1.89	1.64	1.40			
Ranibizumab	£ 23,902	1.90	1.87	1.54	£ 152,464		

 Table 4.26 Cost effectiveness of ranibizumab against PDT or best supportive care. Trial-based analysis

The analyses presented in Table 4.26 have adopted the time horizons of the relevant clinical trial reports, hence the time horizon for the analyses of ranibizumab against PDT or against best supportive care for patients with predominantly classic lesions is one year, the reported duration of the ANCHOR trial. The time horizon for the comparison of ranibizumab against best supportive care for patients with minimally classic or occult no classic lesions is two years, the reported duration of the MARINA trial. Table 4.27 presents the same comparisons for a time horizon of ten years. In each case it is assumed that treatment (ranibizumab or PDT) was only provided over the trial time horizon. That is, treatment for patients with predominantly classic lesions continued for a maximum of a year and consisted of either 12 injections of ranibizumab or the average number PDT treatments observed in the control arm of the ANCHOR trial **maximum** of two years and consisted of 12 injections of ranibizumab annually.

			Vision		Incremental cost		
	Costs (£)	Life Years	Years	QALYs	per QALY gained		
Predominantly classic: ANCHOR trial. PDT as comparator							
PDT	£ 21,498	6.43	2.88	3.81			
Ranibizumab	£ 26,888	6.51	3.59	4.15	£ 15,638		
Predominantly class	sic: ANCHOR 1	trial. Best sup	portive care	as comparate	Dr		
Supportive care	£ 20,431	6.36	2.28	3.59			
Ranibizumab	£ 26,888	6.51	3.59	4.15	£ 11,412		
Minimally classic and occult no classic: MARINA trial. Best supportive care as comparator							
Supportive care	£ 13,787	6.52	3.78	4.10			
Ranibizumab	£ 31,096	6.67	5.19	4.79	£ 25,098		

Table 4.27 Cost effectiveness of ranibizumab against PDT or best supportive care. Ten year time horizon

In each case there is little difference in life expectancy between the ranibizumab and comparator cohorts, despite the increased risk of mortality assumed for patients with visual acuity below 6/60. Outcomes measured as vision years emphasise the difference between cohorts in the proportion of life expectancy spent with a visual acuity greater than 6/60. The difference in vision years is 0.71 at ten years for patients with predominantly classic lesions when compared with PDT and 1.31 when compared with best supportive care. For patients with minimally classic or occult no classic lesions treatment with ranibizumab is associated with a gain of 1.41 vision years over a ten year time horizon, compared with best supportive care. The incremental gains are lower when measuring outcomes in QALYs (QALY gain of 0.34 for patients with predominantly classic lesions when compared with best supportive care and a QALY gain of 0.69 for patients with minimally classic lesions when compared with best supportive care).

There is a large cost difference between ranibizumab-treated cohorts and comparator cohorts in all the "trial-based" analyses. For patients with predominantly classic lesions ranibizumab costs are approximately four times those for PDT and twelve times those for best supportive care, with an absolute difference of £8,245 and £11,495 respectively. These high incremental costs, taken together with the small QALY gains at one year, lead to large incremental cost effectiveness ratios of £202,450 for ranibizumab compared with PDT and £160,181 for ranibizumab compared with best supportive care. For patients with minimally classic and occult no classic lesions the absolute cost difference between ranibizumab-treated patients and those receiving best supportive care is even greater (at £22,361) given that treatment is provided for up to two years and yields an incremental cost effectiveness ratio of £152,464. This analysis ignores any longer-run benefits that may arise from ranibizumab treatment. It is equivalent to assuming that patients only benefit while on treatment and that all patients
experience a rapid worsening of their condition as soon as treatment stops, reverting to the state of visual deterioration they would have reached had they received no treatment

In all cases the cost difference between ranibizumab-treated patients and comparators observed in the trial-based analysis is reduced at 10 years. For patients with predominantly classic lesions the differences are £5,392 and £6,460 for comparison with PDT and best supportive care respectively (reductions of 35% and 44% respectively) and for patients with minimally classic or occult no classic lesions the difference is £17,309 (a reduction of 23%).

Table 4.28 reports the breakdown of costs in the "trial-based" analyses and at the ten year time horizon, indicating that all excess costs of treatment are realised during the first year (ANCHOR trial) or two years (MARINA trial) whereas costs associated with progression to blindness represent a small proportion of total costs in the ranibizumab-treated cohorts. At ten vears costs of blindness constitute 24% to 54% of total costs for ranibizumab-treated patients, 82% of total costs for patients with predominantly classic lesions initially treated with PDT and 98% to 99% of total costs for patients in the best supportive care cohorts. The difference in costs of blindness between ranibizumab-treated and comparator cohorts at ten years are £3,113 for patients with predominantly classic lesions in the comparison with PDT and £5,749 in the comparison with best supportive care. For patients with minimally classic and occult no classic lesions the difference in costs of blindness between cohorts is £6,254. While the difference between cost of blindness in the ranibizumab-treated and comparator cohorts at ten years does not fully offset the costs of treatment with ranibizumab, the increased proportion of total costs accounted for by progression to greater visual impairment and blindness, together with the increased QALY gain yields the lower ICERs reported in Table 4.27.

		Administration	Managing		
	Drug	and monitoring	adverse events	PDT	Blindness
Trial-based an	alyses (one or t	two year time ho	orizon)		
Predominantly of	classic: PDT as	comparator			
PDT	£ -	£ -	£ 78	£ 3,845	£ 259
Ranibizumab	<u>£</u> 8,997				
Predominantly of	classic: Best sup	oportive care as c	comparator		
BSC	£ -	£ 221	£ -	£ -	£ 712
Ranibizumab	<u>£</u> 8,997				
Minimally class	sic and occult no	o classic: Best su	pportive care as	comparator	
BSC	£ -	£ 220	£ -	£ -	£ 1,321
Ranibizumab	£ 17,314				
Ten year time	horizon				
Predominantly of	classic: PDT as	comparator			
PDT	£ -	£ -	£ 78	£ 3,845	£ 17,575
Ranibizumab	£ 8,997				
Predominantly classic: Best supportive care as comparator					
BSC	£-	£ 221	£ -	£ -	£ 20,210
Ranibizumab	<u>£</u> 8,997				
Minimally classic and occult no classic: Best supportive care as comparator					
BSC	£-	£ 220	£ -	£ -	£ 13,567
Ranibizumab	£ 17,314				

## Table 4.28 Breakdown of total costs for each cohort by major categories. Ranibizumab base case analysis

## 4.2.2.5 Cost-effectiveness of ranibizumab – deterministic sensitivity analysis

We conducted a sensitivity analysis to consider the effect of uncertainty around model structure and for variation in certain key parameters that were expected, a priori, to have a strong influence on the cost-effectiveness results. The method we adopted is univariate sensitivity analysis. That is, varying one parameter at a time, leaving all other variables unchanged. This is to highlight the impact, if any, of each selected parameter alone on the cost-effectiveness results. The effects of uncertainty in multiple parameters were addressed using probabilistic sensitivity analysis, which is reported later in section 4.2.2.6.

Table 4.29 to Table 4.31 report the results of the sensitivity analysis. Except for the sensitivity analysis with respect to time horizon, all analyses were conducted using the ten year model. The tables are divided to distinguish between analyses undertaken due to uncertainties over structural assumptions in the model, uncertainties over the composition of the baseline cohort and uncertainty over parameter values.

While the absolute values of the incremental costs, incremental QALYs and ICERs vary between the three sets of comparisons (ranibizumab versus best supportive care for patients with predominantly classic and minimally classic/ occult no classic lesions and ranibizumab versus for PDT for patients with predominantly classic lesions) the pattern of response to change in underlying assumptions is similar in each analysis, and is discussed below.

		Incremental	Incremental	ICER
		cost	QALYs	телк
Reference case	£ 5,391	0.34	£ 15,638	
Structural assumptions				
Time horizon	3 years	£ 6,860	0.19	£ 35,744
(10 years)	5 years	£ 5,922	0.27	£ 21,801
(10 years)	8 years	£ 5,435	0.33	£ 16,616
Methodological uncertai	inty			
Discount rates (3.5%	0% for cost & outcome	£ 5,078	0.38	£ 13,345
for costs and outcomes)	6% for cost & outcome	£ 5,584	0.32	£ 17,284
Baseline cohort characte	eristics			
A go of ophort at start of	-15 years	£ 4,709	0.36	£ 13,150
Age of conort at start of	-10 years	£ 4,846	0.36	£ 13,582
siniulation (75 years)	+5 years	£ 5,763	0.33	£ 17,613
Proportion of cohort	40%	£ 5,362	0.35	£ 15,510
that is male (50%)	60%	£ 5,419	0.34	£ 15,766
Vienal a quite at	50% 6/12 to 6/24 and	6 5 000	0.33	£ 15,637
Visual aculty at $(c/12 \text{ to } c/24)$	50% 6/24 to 6/60	L 3,222		
baseline (0/12 to 0/24)	6/24 to 6/60	£ 5,052	0.32	£ 15,635
Parameter uncertainty				•
Number of injections 9 in Year 1 (12)		£ 2,377	0.34	£ 6,897
Cost of out-patient 25 percentile		£ 5,201	0.34	£ 15,088
attendance 75 percentile		£ 5,582	0.34	£ 16,194
Cost of injection	Costed as day case	£ 0000	0.24	£ 26 102
procedure procedure		L 8,998	0.34	£ 26,102
	Standard gamble values	£ 5,391	0.29	£ 18,912
Health state utilities	TTO values (Lower CI)	£ 5,391	0.37	£ 14,423
	TTO values (Upper CI)	£ 5,391	0.32	£ 16,905
	High uptake/ high costs	£ 2.250	0.34	Ranibizumab
		-L 2,550		dominates
	Low uptake/ low costs	£ 7,869	0.34	£ 22,827
	High costs/ medium	C 2 472	0.24	c 10 072
	uptake	t 3,472	0.34	£ 10,072
Costs of blindness	Low costs/ medium	6 ( 002	0.34	C 10 067
	uptake	L 0,883		£ 19,907
	High uptake/ medium	C 1 0 4 4	0.24	C 2 020
	costs	t 1,044	0.34	L 3,029
	Low uptake/ medium	£ 7.007	0.24	£ 20 597
	costs	t /,097/	0.34	1 20,38/

# Table 4.29 Deterministic sensitivity analysis - ranibizumab against PDT for patients with predominantly classic lesions Incremental

## Table 4.30 Deterministic sensitivity analysis - ranibizumab against best supportive care for patients with predominantly classic lesions

		Incremental cost	Incremental QALYs	ICER
Reference case		£ 6,457	0.57	£ 11,412
Structural assumptions	7			
Time horizon	3 years	£ 8,697	0.32	£ 26,774
(10 years)	5 years	£ 7,188	0.45	£ 15,862

	£ 6,496	0.54	£ 12,035	
Methodological uncertainty				
Discount rates (3.5%	0% for cost & outcome	£ 5,960	0.62	£ 9,575
for costs and outcomes) 6% for cost & outcome		£ 6,767	0.53	£ 12,732
Baseline cohort characte	eristics			
Age of cohort at start of	-15 years	£ 5,244	0.58	£ 9,107
simulation (75 years)	-10 years	£ 5,485	0.58	£ 9,521
sinitiation (75 years)	+5 years	£ 7,134	0.54	£ 13,126
Proportion of cohort	40%	£ 6,405	0.57	£ 11,297
that is male (50%)	60%	£ 6,509	0.56	£ 11,526
Visual aquity of	50% 6/12 to 6/24 and	f 6112	0.51	£ 12,563
baseline (6/12 to 6/24)	50% 6/24 to 6/60	1 0,442	0.31	
basenne (0/12 to 0/24)	6/24 to 6/60	£ 6,426	0.46	£ 13,979
Parameter uncertainty				
Number of injections	9 in Year 1 (12)	£ 3,444	0.57	£ 6,087
Cost of out-patient 25 percentile		£ 6,216	0.57	£ 10,985
attendance 75 percentile		£ 6,702	0.57	£ 11,845
Cost of injection	Costed as day case	f 10.065	0.57	£ 17,787
procedure	procedure	£ 10,005		
	Standard gamble values	£ 6,457	0.46	£ 14,049
Health state utilities	TTO values (Lower CI)	£ 6,457	0.61	£ 10,504
	TTO values (Upper CI)	£ 6,457	0.52	£ 12,368
	High untake/ high costs	-£ 7,840	0.57	Ranibizumab
	Tingii uptake/ ingii costs			dominates
	Low uptake/ low costs	£ 11,033	0.57	£ 19,500
	High costs/ medium	£ 2012	0.57	f 51/0
	uptake	L 2,915		2 3,149
Costs of blindness	Low costs/ medium	f 0.212	0.57	f 16 281
	uptake	1 9,212		2 10,201
	High uptake/ medium	f 1571	0.57	Ranibizumab
	costs	-2 1,571	0.57	dominates
	Low uptake/ medium	f 9608	0.57	f 16 981
	costs	2 9,000		2 10,701

		Incremental	Incremental	ICFR
		cost	QALYs	ICER
Reference case	£ 17,309	0.69	£ 25,098	
Structural assumptions				
Time horizon	3 years	£ 21,259	0.27	£ 80,105
(10 years)	5 years	£ 19,422	0.45	£ 43,441
(10 years)	8 years	£ 17,800	0.62	£ 28,738
Methodological uncertai	inty			
Discount rates (3.5%	0% for cost & outcome	£ 16,833	0.79	£ 21,383
for costs and outcomes)	6% for cost & outcome	£ 17,562	0.63	£ 27,793
Baseline cohort characte	eristics			
	-15 years	£ 16,041	0.76	£ 21,196
Age of conort at start of	-10 years	£ 16,317	0.75	£ 21,858
simulation (75 years)	+5 years	£ 17,889	0.63	£ 28,416
Proportion of cohort	40%	£ 17,261	0.69	£ 24,893
that is male (50%)	60%	£ 17,355	0.69	£ 25,303
<b>X</b> 7: 1 :	50% 6/12 to 6/24 and	0.16.647	0.00	£ 25,179
Visual acuity at	50% 6/24 to 6/60	t 16,64/	0.66	
baseline $(6/12 \text{ to } 6/24)$	6/24 to 6/60	£ 15,986	0.63	£ 25,268
Parameter uncertainty				
	12 in year 1 (12) and	6 14 522	0.69	£ 21,058
	9 in year 2 (12)	£ 14,522		
Number of inications	9 in year 1 (12) and	0 11 510	0.69	£ 16,689
Number of injections	9 in year 2 (12)	£ 11,510		
	9 in year 1 (12) and	c 0777	0.69	£ 12,649
	6 in year 2 (12)	1 0,725		
Cost of out-patient 25 percentile		£ 16,833	0.69	£ 24,408
attendance	75 percentile	£ 17,789	0.69	£ 25,795
Cost of injection	Costed as day case	£ 24,246	0.69	£ 35,157
procedure	procedure			
	Standard gamble values	£ 17,309	0.56	£ 30,712
Health state utilities	TTO values (Lower CI)	£ 17,309	0.75	£ 23,044
	TTO values (Upper CI)	£ 17,309	0.63	£ 27,295
	High uptake/ high costs	£ 1,782	0.69	£ 2,583
	Low uptake/ low costs	£ 22,285	0.69	£ 32,313
	High costs/ medium	C 12 459	0.69	£ 19,514
	uptake	L 13,438		
Casts of blindness	Low costs/ medium	£ 20 207	0.69	£ 20 446
Costs of officialiess	uptake	L 20,307		L 29,440
	High uptake/ medium	£ 9 501	0.60	£ 12 456
	costs	L 0,391	0.09	L 12,430
	Low uptake/ medium	f 20 732	0.60	£ 20.062
	costs	L 20,732	0.09	L 30,002

 Table 4.31 Deterministic sensitivity analysis - ranibizumab against best supportive care for patients with minimally classic or occult no classic lesions

As anticipated, time horizon has a strong effect on cost-effectiveness estimates. As the time horizon increases the incremental cost of ranibizumab reduces (greater disease progression in the supportive care or PDT cohorts lead to increased costs associated with services for visual

impairment, which offset an increasing proportion of treatment costs for the ranibizumab cohorts) and incremental QALY gain increases.

Varying the discount rates applied has comparatively little effect. Zero discount rates for costs and outcomes result in a slight reduction in incremental cost and slight increase in incremental QALYs compared with baseline values. Conversely applying a discount rate of 6% results in a slight increase in incremental cost and reduction in incremental QALYs and hence a slightly higher ICER. The effects of applying different discount rates are most marked for the cohort of minimally classic and occult no classic patients.

Varying the age of the cohort at the start of model shows higher QALY gains for younger patients and lower incremental costs – this is particularly apparent for patients with minimally classic and occult no classic lesions. Varying the proportion of the initial cohort of patients that is male has little impact on cost-effectiveness, as does varying the distribution of initial visual acuity.

Variation in assumptions regarding intravitreal injections, both their frequency and the cost of the injection procedure, has a large impact on the cost effectiveness estimates. In the reference case for each comparison the number of injections assumed during each year of treatment was that observed during the ANCHOR and MARINA clinical trials. In the sensitivity analysis a range of different assumptions were tested - in all cases it was assumed that reduced frequency of injection had no impact on outcome. For patients with predominantly classic lesions, with an assumed maximum treatment duration of one year (as observed in the ANCHOR trial), reducing the number of injections from 12 to 9 reduces incremental cost by around 56% for the comparison with PDT and around 47% for the comparison with best supportive care. For patients with minimally classic and occult no classic lesions, with an assumed maximum treatment duration of two years (as observed in the MARINA trial), reducing the number of injections in the second year of treatment from 12 to 9 reduces incremental cost by around 16%. Reducing the number of injections in the first year of treatment from 12 to 9 (with a further 9 injections in year 2) reduces incremental cost by around 34% from the value in the reference case. If only 6 injections are given in year 2, following 9 injections in year 1, the incremental cost of ranibizumab treatment, over best supportive care, is 50% of the value in the reference case.

In the reference case we assumed that intravitreal injections were performed in outpatients. The unit cost assumed for these injections was based on the outpatient reference cost for operations on the eyelid, eyebrow and periorbital skin. This may be an underestimate of the cost of performing these injections. In the sensitivity analysis a unit cost for performing the injection as a day case procedure was adopted. This has a large impact on incremental costs - for patients with predominantly classic lesions, receiving a maximum of one years treatment incremental cost increased by around 70% for the comparison with PDT and around 60% for the comparison with best supportive care. The ICER increased from £15,638 to £26,102 for the comparison with PDT and from £11,412 to £17,787 for the comparison with best supportive care. For patients with minimally classic and occult no classic lesions, receiving a maximum of two years treatment, costing intravitreal injections as day case procedures increased incremental cost by around 40%, with the ICER for increasing from £25,098 to £35,157.

Adopting health state utilities derived from AMD patients by Brown and colleagues¹¹² using the standard gamble method yields lower estimated QALY gains and is therefore associated with an increased ICER.

Varying the costs of blindness, using the upper and lower limits of uptake of services for visual impairment and unit cost estimates produces wide variation in cost-effectiveness estimates. Using high uptake and high unit cost estimates produces a situation where ranibizumab is dominant (lower cost with better outcome) compared with either PDT or best supportive care for patients with predominantly classic lesions. For patients with minimally classic or occult no classic lesions costs are approximately equal in the ranibizumab and best supportive care cohorts. Using the low estimates for uptake and unit costs resulted in a 46% increase in incremental costs of ranibizumab treatment for patients with predominantly classic lesions compared with PDT and a 71% increase in incremental costs in the comparison with best supportive care. The increase in incremental cost for patients with minimally classic and occult no classic lesions when using the low estimates was 29%.

To indicate which variable, costs or uptake, were more influential on cost-effectiveness estimates additional analyses were undertaken using the extreme values for uptake combined with medium cost and extreme values for cost combined with medium uptake. The results shows that the cost effectiveness estimates were most sensitive to assumptions over uptake, estimated as the proportion of eligible cases (i.e. with visual acuity less than 6/60) receiving services.

## 4.2.2.6 Cost-effectiveness of ranibizumab – probabilistic sensitivity analysis

In a probabilistic sensitivity analyses for ranibizumab, where probabilities of losing or gaining visual acuity, health state utility values, cost of outpatient attendances, fluoroscein angiography and optical coherence tomography and costs of services for visual impairment were sampled probabilistically, the majority of simulations produced incremental cost effectiveness estimates that were in the north-east quadrant of the cost-effectiveness map, see Figure 4.5, Figure 4.7 and Figure 4.9. The majority of simulations, for each lesion type (and each comparison) are associated with increased QALYs but also increased costs. However a small number of simulations have negative incremental costs. Simulations where costs for ranibizumab-treated patients are lower than for the PDT or best supportive care cohorts are most likely to be associated with extreme high values for costs of blindness.

The distributions assigned to each variable included in the probabilistic sensitivity analysis and the parameters of the distribution are reported in Appendix 14. Five thousand simulations were run for each analysis. In addition to graphing the incremental cost and incremental QALYs for ranibizumab-treated patients on the cost-effectiveness plane, cost effectiveness acceptability curves were derived for each analysis, representing the proportion of simulations where ranibizumab treatment is cost effective for a range of willingness to pay thresholds, up to £50,000 (see Figure 4.6, Figure 4.8 and Figure 4.10).



Figure 4.5 Cost effectiveness plane – incremental cost and incremental QALYs, ranibizumab for patients with predominantly classic lesions compared with PDT

In this analysis ranibizumab for patients with predominantly classic lesions had a probability of being cost-effective (compared with PDT) of 72% at a willingness to pay threshold of £20,000 per QALY and 97% at a willingness to pay threshold of £30,000 per QALY, see Figure 4.6.

Figure 4.6 Cost effectiveness acceptability curve, ranibizumab for patients with predominantly classic lesions compared with PDT



Figure 4.7 Cost effectiveness plane – incremental cost and incremental QALYs, ranibizumab for patients with predominantly classic lesions compared with best supportive care



In this analysis ranibizumab for patients with predominantly classic lesions had a probability of being cost-effective (compared with best supportive care) of 95% at a willingness to pay threshold of £20,000 per QALY and 99% at a willingness to pay threshold of £30,000 per QALY, see Figure 4.8.





Figure 4.9 Cost effectiveness plane – incremental cost and incremental QALYs, ranibizumab for patients with minimally classic and occult no classic lesions compared with best supportive care



In this analysis ranibizumab for patients with minimally classic and occult no classic lesions had a probability of being cost-effective (compared with best supportive care) of 15% at a willingness to pay threshold of £20,000 per QALY and 81% at a willingness to pay threshold of £30,000 per QALY, see Figure 4.10.





## 4.2.3 Discussion

#### Summary of key results

- A systematic search of the literature found no fully published economic evaluations of pegaptanib or ranibizumab. A review of published economic evaluations of comparator treatments for wet AMD found that model time horizon appeared to have the greatest influence on cost-effectiveness estimates.
- A systematic search for published studies of quality of life for patient with AMD found that studies indicate that quality of life is lower for people with AMD compared to those without disease and that there is a strong association between vision loss and psychological illness, including depression. Published estimates of health state utilities for vision loss secondary to AMD have focussed primarily on changes in visual acuity. Utility values decline with reduced visual acuity, though when groups other than patients with AMD are included in studies they tend to give lower value to the impact of vision loss compared with patients with AMD.

- Pfizer submitted a dossier in support of pegaptanib, including an economic evaluation based on clinical data from the VISION studies. This compares pegaptanib (with or without PDT) to usual care, which consists of best supportive care for all patients as well as PDT for patients with predominantly classic lesions. In the cost utility model health state valuations are based on a published study¹¹² that has been widely used in previous evaluations of treatment for AMD.
- The QALY gain for the pegaptanib-treated cohort estimated over ten years was 0.298. The cost difference was £4,705, giving an ICER of £15,815 per QALY gained. In the reference case treatment with pegaptanib ceased when visual acuity fell below 6/96. Adopting an alternative stopping rule – treatment ceased when visual acuity fell below 6/96.
   below 6/60 – had little impact on incremental cost, QALY gain or on ICER.
- Deterministic sensitivity analysis showed that the results were sensitive to time horizon and variation in the costs of blindness.
- Further analyses by the TAR team on the comprehensiveness of the costing of patient monitoring while on treatment produced an increase in costs for the pegaptanib cohort and increased the ICER to £22,476 per QALY gained. Further analysis on the choice of utility values adopted in the model had little impact.
- Novartis submitted a dossier in support of ranibizumab which includes an economic evaluation, based on clinical data from the ANCHOR, MARINA and PIER trials, comparing ranibizumab to best supportive care for patients with all lesion types and additionally to PDT for patients with predominantly classic. Separate analyses were undertaken for predominantly classic, minimally classic and occult no classic lesions.
- For patients with predominantly classic lesions the QALY gain estimated over ten years was 0.20 for the comparison with PDT and 0.28 for the comparison with best supportive care. The cost differences were £917 (compared with PDT) and £4,068 (compared with best supportive care), giving ICERs of £4,489 and £14,781 per QALY gained, respectively.
- For patients with occult no classic lesions the QALY gain was 0.34 and for patients with minimally classic lesions the QALY gain was 0.33. The cost differences were £9,125 and £8,494, giving ICERs of £26,454 and £25,796 per QALY gained.
- Limited deterministic sensitivity analyses were undertaken, reporting the incremental cost effectiveness ratios for increasing the number of injections given, up to the values observed in the clinical trials, which increased ICER substantially (to £25,544 and £29,662 for patients with predominantly classic lesions compared with PDT and best supportive care, respectively). ICERs for patients with minimally classic and occult no classic lesions increased to around £55,000 per QALY gained. Further

analyses were undertaken by the TAR team to remove double-counting and inappropriate allocation of costs included – while these had an impact on incremental costs they would not, by themselves alter conclusions over the cost-effectiveness of ranibizumab according to conventionally accepted decision thresholds.

- We developed an independent model which includes five states of declining visual acuity and an absorbing death state. States in the model were defined to correspond to approximately three lines of visual acuity, which is generally accepted as a clinically significant difference. Individuals in the model could improve, in terms of visual acuity, by one state or deteriorate by one or two states in each model cycle.
- The proportion of trial participants gaining at least three lines, losing three to six lines and losing six lines or more of visual acuity for each year of the relevant clinical trials were extracted from clinical trial reports and used to estimate the transition probabilities for the model.
- The QALY gain after two years of treatment with pegaptanib, in the trial-based analysis, is small (0.06 QALYs) and the incremental cost is high (approximately £10,000). Given the small QALY gain and high incremental cost at two years the ICER is high (£163,603).
- The QALY gain after ten years is 0.26 QALYs and incremental cost reduces to around £8,000 giving a lower ICER of £30,986. If pegaptanib is assumed to have a disease modifying effect (analysis submitted for publication included in submission by manufacturer) then ICER may be lower estimated as £26,896 in the model.
- Deterministic sensitivity analysis suggests that ICERs are less favourable for patients with older age on entry to the model and poorer initial visual acuity. Costing the injection procedure as a day case, rather than adopting a unit cost for an outpatient procedure, has a large impact on ICER, which increases to £47,845.
- Probabilistic sensitivity analysis shows a 17% probability of pegaptanib being cost effective, compared with usual care, at a willingness to pay threshold of £20,000. The equivalent figure for a willingness to pay threshold of £30,000 is 58%.
- The QALY gain after one year of treatment with ranibizumab for patients with predominantly classic lesions, in the trial-based analysis, is small for the comparison with PDT (0.04 QALYs) and for the comparison with best supportive care (0.07 QALYs). The incremental costs are high: approximately £8,000 for the comparison with PDT and £11,500 for the comparison with best supportive care. The QALY gain after two years of treatment for patients with minimally classic and occult no classic lesions is 0.14 QALYs and the incremental cost is £22,400. The ICERs for these

comparisons in the trial-based analyses are between £150,000 and approximately  $\pounds 200,000$ .

- The QALY gain at ten years for patients with predominantly classic lesions is 0.34 for the comparison with PDT and 0.57 for the comparison with best supportive care. The incremental costs have reduced to £5,391 and £6,457, giving ICERs of £15,638 for the comparison with PDT and £11,412 for the comparison with best supportive care. The QALY gain at ten years for patients with minimally classic and occult no classic lesions is 0.69 QALYs and the incremental cost has reduced to £17,314, giving an ICER of £25,098.
- Deterministic sensitivity analysis suggests that ICERs are less favourable for patients with older age on entry to the model. However poorer initial visual acuity has little effect on cost effectiveness estimates. Costing the injection procedure as a day case, rather than adopting a unit cost for an outpatient procedure, has a large impact on ICER (which for patients with predominantly classic lesions increases to £26,102 for the comparison with PDT and £17,787 for the comparison with best supportive care, and for patients with minimally classic and occult no classic lesions the ICER increases to £35,157). The ICER is also sensitive to choice of utility values and is particularly sensitive to variation on the costs of blindness.
- Probabilistic sensitivity analysis shows a 72% probability of ranibizumab being costeffective for patients with predominantly classic lesions (compared with PDT) at a willingness to pay threshold of £20,000 per QALY and a 97% probability of being cost-effective at a threshold of £30,000 per QALY. For the comparison with best supportive care, the equivalent figures are 95% and 99%, respectively.
- For patients with minimally classic and occult no classic lesions, probabilistic sensitivity analysis shows a 15% probability of ranibizumab being cost-effective at a willingness to pay threshold of £20,000 per QALY and 81% at a willingness to pay threshold of £30,000 per QALY.

## Generalisability

• The median age of patients in the clinical trials used as sources for the clinical effectiveness in the economic models are in the range 75-84 (mean age of 76.0 and 77.7 for patients receiving ranibizumab (0.5mg) and PDT, respectively in ANCHOR trial⁹⁶ and 77 for ranibizumab and sham injection in the MARINA trial,⁹⁷ mean ages were not reported for the VISION studies). These reflect the age-specific incidence and prevalence discussed in section 1.1, and would be expected to be broadly representative of patients presenting for treatment.

- The proportion of men and women in the trial propulations are roughly equal in the VISION studies (45% male for patients receiving pegaptanib and 40% male for patients receiving usual care⁹⁵) and the ANCHOR trial (54% male for patients receiving ranibizumab (0.5mg) and 45% male for patients receiving PDT⁹⁶). However two thirds of patients in the MARINA were women (63% for patients receiving ranibizumab (0.5mg) and 67% male for patients receiving sham injection⁹⁷). Epidemiological evidence reviewed in section 1.1 reported inconsistent results between published studies on sex differences in incidence and prevalence of AMD.
- The proportion of patients with predominantly classic lesions in the VISION studies is similar to that observed in an angiographic study of patients with subfoveal neovascular lesions¹¹ reviewed in section 1.1 and also that assumed by Bonastre and colleages,⁸⁵ discussed in section 1.2 (24% of patients receiving pegaptanib and 26% of patients receiving usual care⁹⁵) The proportion of patients with minimally classic lesions in the VISION studies (38% of patients receiving pegaptanib and 34% of patients receiving usual care⁹⁵) is higher than that observed in the angiographic study, which reported that 7% of subfoveal lesions were of this type.
- Baseline populations and relative risks of mortality, fractures or depression due to
  vision loss used in the economic models are based on epidemiological studies from
  different countries. It is difficult to establish the validity of these sources for UK
  populations where no UK evidence exists, though the pattern of significant increase in
  incidence and prevalence for ages over 75 and higher proportion of women affected
  was also suggested in UK register-based studies reviewed in section 1.1.
- The economic evaluations of pegaptanib and ranibizumab discussed and presented in this review have assumed that the majority of treatment is provided in outpatients department of UK hospitals. Clinical experts who provided advice during this review confirmed that these treatments were most likely to be provided in outpatient settings. The facilities and staff required for monitoring and managing patients receiving treatment with pegaptanib and ranibizumab are available in outpatients departments, but there is limited experience in providing intravitreal injections and uncertainty over appropriate provision. It is unclear whether injections can be provided as outpatient procedures or should be treated as day case procedures since they require a nurse in attendance, a clean room, a tray of disposable specula, forceps, drapes and the use of surgical hand disinfection. An ideal treatment pathway maybe to provide an integrated clinic for AMD patients having intravitreal injections, which would include medical assessments, visual assessments, imaging by optical coherence tomography at each visit and fluoroscein angiography every 3 to 6 months, followed by the

injection procedure and post-injection care. The costings included in our economic model aim to reflect this, but may have underestimated the overhead for establishing and maintaining such clinics.

- The frequency and duration of injections observed in the clinical trials may not be reflected in normal practice. The reference case in the manufacturer's submission for ranibizumab adopted a treatment regimen with a reduced frequency of injection, based on monthly injections of three months ("loading dose") and five further injections during the first year of treatment. Reducing frequency of injection in this manner reduces drug and injection procedure costs by the reference case and reduces total cost for a year of ranibizumab treatment by The Scottish Medicines Consortium refers to the possibility of restricting pegaptanib treatment to one year.¹⁴⁴
- The economic analyses have used UK-derived resource use protocols to estimate treatment costs. Although there was general agreement on medical management and on the use of fluoroscein angiography prior to treatment, optical coherence tomography and repeat fluoroscein angiography were not included in all protocols, nor were repeat visual assessments for patients undergoing treatment. As far as possible, the economic analyses have used routinely available unit costs estimates NHS Reference Costs⁸⁴ and Unit Costs of Community Care.¹³⁴ However UK unit costs for all elements of resource use are not available. As discussed above, there is no reference cost for intravitreal injection and limited experience of providing such injections on which to base unit cost estimates. There is, therefore, considerable uncertainty over the appropriate unit cost to use.
- The economic analyses have used published UK estimates of unit costs of services for visual impairment.^{40,145}

#### Strengths and limitations

- We have applied an identical model, using the same health state utilities and assumptions over resource use at each contact for each drug. The resource use assumptions were developed with advice from clinical experts who advised on the development of this review. Our resource use assumptions and unit cost estimates were compared with those included in the manufacturers' submission to assess their comprehensiveness.
- Clinical evidence relevant to each drug has been extracted from good quality RCTs included in the systematic review. Response to treatment was assessed using an accepted measure of significant clinical difference (fifteen letters of visual acuity), to

model cost and outcome differences over the time horizons of the clinical trials and over patients' lifetimes.

- The majority of the data included in the model are in the public domain. The model structure and data inputs are clearly presented in this report. This should facilitate replication and testing of our model assumptions.
- Review of previous economic evaluations of treatments for AMD allowed identification of factors that were particularly influential on cost and outcome estimates. The impact of these factors has been tested in extensive sensitivity analyses.
- There is substantial uncertainty over treatment patterns with these drugs in normal clinical practice. Components of medical management of patients treated with ranibizumab and pegaptanib were identified by clinical experts similar and there was agreement over the frequency of monitoring of patients (optical coherence tomography and visual assessment at each attendance for injection, and fluoroscein angiography every 3-6 months). In the absence of guidance on the frequency of dosage and on re-treatment, we assumed the frequency and duration of treatment adopted in the clinical trials. It is not clear whether the treatment regimens followed in the published clinical trials will be adopted in clinical practice. There is currently limited data on post-treatment effectiveness of these drugs and no published data on response for patients who have previously been treatment with anti-VEGFs.
- There is limited use of intravitreal injection in current NHS practice and no reference cost estimate. In the model we used the reference cost for ophthalmic outpatient procedure (as a low estimate) and the cost of an inpatient non-surgical ophthalmological day case (as a high estimate). These result in large variations in cost. However it is not clear whether these are due to real resource differences that might arise from providing intravitreal injections in outpatients or in day case settings.
- We used aggregate data to derive the transition probabilities used in the model. This requires an underlying assumption that the probability of gaining or losing visual acuity is independent of the patients' baseline visual acuity. This may not hold the survival models developed in the Pfizer submission included three initial visual acuity levels. It is possible that the poorer the initial visual acuity (i.e greater disease progression at baseline) the less likely patient is to respond to treatment.
- There is substantial uncertainty over the costs of blindness. However these are key to assessing the cost effectiveness of interventions for AMD. As noted in the analysis in sections 4.2.2.1 and 4.2.2.4 there is the potential to offset a proportion of treatment

costs by averting some future demand for services for visual impairment. In the deterministic sensitivity analyses, variation in uptake and unit costs of services for visual impairment produced extremes ranging from a situation where treatment was cost-saving (using high uptake and high cost) to a situation where the incremental costs of treatment were between 29% and 71% higher than in the reference case (using low uptake and lowh cost).

- The validity of assumptions underlying our extrapolation from trial results to ten years may be open to question. We assumed that progression in the best supportive care cohorts (observed at the end of the trials) can be used to model progression in the treated cohort. In the absence of evidence of post-treatment effects and with a lack of long-term follow up of treated patients, we cannot rule out the possibility of a rebound effect (where all benefit, in terms of delayed progression and visual improvement, is lost shortly after treatment ends). In that case the ICERs would be closer to the trial-based analysis than the extrapolated results and treatment would be very unlikely to be cost-effective. On the other hand, some evidence of a disease modifying effect of pegaptanib has been provided including this in the model reduces the ICER at ten years from £30,986 to £26,896.
- Meads and colleagues⁴⁰ questioned the assumption implicit in our analysis and common in economic models extrapolating from short-term outcomes observed in clinical trials that utility associated with visual acuity in the better-seeing eye is constant over time. They argue that research suggests that utility improves over time, presumably due to patients' adaptation to their reduced visual function. This might be expected to reduce the QALY gain associated with treatment. However it is unclear how this can be quantified.

## 5 ASSESSMENT OF FACTORS RELEVANT TO THE NHS AND OTHER PARTIES

Interim guidelines on the management and treatment of AMD from the Royal College of Ophthalmologists (Wong, D, Royal College of Ophthalmologists, personal communication, November 2006) state that 'there are significant resource (including staffing), logistical and financial implications in commissioning anti-VEGF treatments for AMD'. As a result of this the College convened an AMD Provisions Sub-committee to determine AMD service configurations and distribution, staff and other resource requirements. It is generally anticipated that provision of anti-VEGF treatments will be based around the current PDT treatment centres. However, as suggested by the above statement (and others within the interim guidelines) as well as patient advocacy organisations, such as the AMD Alliance,¹⁴⁶ there are concerns about the ability of current services to deal with the anticipated increase in workload and the potential impact on the delivery of ophthalmic services overall.

It is anticipated that the number of patients eligible for treatment each year will increase from 7,000 to 26,000 (quoted by AMD Alliance¹⁴⁶ attributed to the Royal College of Ophthalmologists). This approximate trebling in patient-load will be compounded by the increased frequency of treatment, from three-monthly attendances with PDT to six-weekly for pegaptanib or monthly attendances for ranibizumab. These combined factors have given rise to an estimate that workload will increase six to seven-fold with the adoption of these treatments (Lotery, A. Southampton University Hositals Trust, personal communication, October 2006).

The increase in patient load and frequency of attendance will have implications for specialist imaging facilities. While the expected frequency of fluoroscein angiography for patients receiving pegaptanib or ranibizumab (at 3 to 6 monthly) is the same or lower than for PDT, overall workload will increase due to the increase in number of eligible patients. There is likely to be a substantial increase in workload for optical coherence tomography, which would be performed at each patient attendance, according to clinical experts advising on this review. There is also likely to be a substantial increase in workload for hospital-based optometrists and specialist nurses required to undertake vision assessments at each patient attendance.

The costing protocol developed for the economic evaluation of pegaptanib and ranibizumab identified each component of the management and treatment of patients. However, it is likely

that providers will want to develop integrated clinics for AMD patients receiving intravitreal injections with dedicated optometry, photography and imaging staff and facilities. The costings used in the evaluations may underestimate the initial costs of establishing such services.

While AMD predominantly affects people in the older age group, with approximately 90% of prevalent cases in the UK over the age of 70 (see Table 1.7, section 1.1), it also affects people in their 40s and 50s. In addition to the costs of services for visual impairment identified and incorporated into our economic model, these individuals may face disruption of their working lives and may be unable to continue in their careers, facing costs for retraining into alternative occupations or may leave the workforce. This may affect their ability to support a family and lead to family disruption. There may also be substantial impacts on carers and family of people with AMD, in terms of lost productivity, changes in lifestyle and need to support relatives during treatment and rehabilitation following vision loss. These costs are outside the scope of the economic evaluation in this report, which adopted an NHS and Personal Social Services perspective as required by NICE.¹³² However, these considerations are relevant to the wider evaluation of the impact of AMD, with associated vision loss, and the potential benefits of delaying disease progression.

There are potential equity concerns around the delays in diffusing the technology and possible delays in patients accessing treatment, if current services are unable to cope with the increase in workload. There has been much debate over delays in commissioning of anti-VEGF treatments by PCTs^{93,94,146} and a concern that patients may feel their only choice is to pursue private treatment. If these treatments are recommended for use in the NHS and should the concerns over the lack of capacity to deal with the anticipated workload prove true, this inequity of access to treatment may persist.

## **6 DISCUSSION**

### 6.1 Statement of principle findings

#### **Clinical effectiveness**

The results from six RCTs were included in this systematic review. The combined results of two RCTs of pegaptanib (the VISION study) were reported in three publications. Two published RCTs (MARINA and ANCHOR) and two unpublished RCTs (PIER and FOCUS) of ranibizumab were also included. The published and unpublished included RCTs were of good methodological quality.

The primary outcome measure for most of the studies was the proportion of patients losing fewer than 15 letters of visual acuity after 12 months of treatment. The pegaptanib trials, which included patients with all lesion types, found significantly more patients receiving pegaptanib (0.3 mg [licensed dose]: 70% of patients; 1.0 mg: 71% of patients; 3.0 mg: 65% of patients) lost less than 15 letters at 12 months than those receiving sham injection (55% of patients). Similarly, significantly more patients receiving ranibizumab (0.3 mg: 94.3% - 94.5%; 0.5mg: 94.6 - 96.4%) lost less than 15 letters after 12 months compared with sham injection (62.2%) or PDT (64.3%). The patients included in these trials had occult or minimally classic lesions or predominantly classic lesions. 0.5 mg of ranibizumab combined with PDT was found to **10** (90.5% versus 67.9%) in patients with predominantly or minimally classic lesions. A study evaluating a reduced dosing frequency (monthly intervals for three months then three monthly up to 12 months)

found losing less than 15 letters compared with sham injection

For all secondary measures of visual acuity (maintenance or gain of at least one letter, gain of at least 5, 10 and 15 letters, loss of 30 or more letters), 0.3 mg (licensed dose) or 1.0 mg of pegaptanib showed statistically significant improvements compared with sham injection. However, for the outcome measures 'gains in visual acuity of at least 5 letters' or 'at least 15 letters', the difference between the 3.0 mg dose of pegaptanib and sham injection was not statistically significant. A gain of 15 letters or more of visual acuity is a clinically important outcome, and could have a substantial impact on quality of life. Depending on the starting

point, an improvement of this magnitude could mean the difference in being able to drive, to live independently, and to read or watch television. The proportion of pegaptanib patients gaining at least 15 letters, although statistically significant, was small (0.3mg: 6% vs. sham: 2%, p=0.04). About 25% to 40% of patients receiving ranibizumab in the MARINA and ANCHOR trials gained at least 15 letters, compared with about 5% of the control groups (p<0.0001), and the mean obtained in the mean obtained in the mean obtained in this outcome between ranibizumab

and sham injection in the reduced dose PIER study.

Patients receiving pegaptanib lost on average 7.5 (0.3 mg), 6.5 (1.0 mg) or 10 (3.0 mg) letters after 12 months of treatment, which was significantly less than the 14.5 letters lost by the sham group. However, in the ranibizumab trials patients receiving ranibizumab gained on average 6.5 to 11.3 letters at 12 months compared with a loss of about 10 letters with sham injection or PDT. Ranibizumab combined with PDT resulted in a mean gain of 4.9 letters compared with a loss of 8.2 letters in the PDT group (p>0.001). An average loss of visual acuity was found with the reduced dose schedule of ranibizumab, which resulted in a mean loss 1.6 letters (0.3 mg dose) or 0.2 letters (0.5 mg dose). However, these losses were statistically significantly less than in the sham group which lost on average 16.3 letters.

The VISION, MARINA and ANCHOR and and trials reported that significantly fewer patients deteriorated to legal blindness 12 months after receiving the study drug.

The VISION study included patients with all angiographic subtypes of lesions. Subgroup analysis of lesion type defined *a priori* found a statistically significant difference in mean change in visual acuity (not reported for the primary outcome) between all doses of pegaptanib and sham injection for minimally classic or occult with no classic lesions. Only the licensed 0.3 mg dose was associated with a statistically significant difference for patients with predominantly classic lesions. Subgroup analyses for the primary outcome can be seen on the FDA website. These data show that the difference in the proportion of patients losing less than 15 letters between 0.3 mg pegaptanib and sham injection is statistically significant for minimally classic lesions only, and not for predominantly classic lesions or occult with no classic lesions.

The target population of the four ranibizumab studies was occult or minimally classic lesions; predominantly classic lesions; and any lesion type. In two of the trials and the study, the difference in visual acuity between ranibizumab and the comparator was statistically significant for every lesion subgroup. The

reduced dose schedule study, found was for the subgroup

Subgroup analysis should be viewed with caution as statistical tests may not have been powered to detect differences in small numbers of patients.

Contrast sensitivity was not reported by the pegaptanib trials. MARINA, ANCHOR and

PIER			

The three doses of pegaptanib were not consistent in producing statistically significant differences from sham injection in anatomical changes, with only the 1.0 mg dose having a statistically significant effect on all three outcome measures: change in size of lesion, change in size of CNV and change in size of leakage. MARINA and ANCHOR (and and and and a demonstrated statistically significant differences between 0.3 mg or 0.5 mg ranibizumab and the comparator for the area of CNV, area of leakage from CNV plus intense progressive RPE staining, or area of classic CNV.



Most of the adverse events reported by the pegaptanib study were mild to moderate transient events. The serious condition endophthalmitis was experienced by 1.3% of patients receiving pegaptanib in the first year. Adverse events were common for people in the ranibizumab trials, but most were mild to moderate. ______patients receiving ranibizumab in three of the trials experienced _______the moderate _______the moderate _______the moderate transient the first year.

rate was	in the	Rates
of	adverse events were	ranibizumab and sham
injection		
the rate of	adverse e	vents was
	ranibiz	umab plus PDT group compared with sham
injection plus PDT	rate of	with
ranibizumab plus PD	T may	
be		Endophtha
lmitis was reported b	y very few patients receiving	ranibizumab. The condition occurred in up
to 1.4% of 0.5mg dos	se ranibizumab patients in the	ANCHOR trial, and the rate per injection
was 0.05% in the MA	ARINA trial.	occurred in of patients
across the and	dtrials	

## **Economic evaluation**

A systematic search of the literature found no fully published economic evaluations of pegaptanib or ranibizumab. Three related abstracts of a model-based economic evaluation of pegaptanib, for a US population of AMD patients were identified and reviewed.

Published economic evaluations of comparator treatments for wet AMD were identified and briefly reviewed to identify data and assumptions used to model disease progression, healthrelated quality of life and the influence of methodological assumptions on cost-effectiveness findings. Model time horizon appeared to have the greatest influence on cost-effectiveness estimates, particularly when adopting a third party payer perspective (incorporating health and personal social services costs of services for visual impairment).

A systematic search for published studies of quality of life for patients with AMD, identifying studies estimating health state utilities for declining visual function, was undertaken. Studies indicate that quality of life is lower for people with AMD compared to those without disease and may be lower than for people with other chronic disabling diseases. There is a strong association between vision loss and psychological illness, including depression.

Studies of the quality of life impact of AMD and associated vision loss are complicated by the observation that patients may adapt to vision loss (thereby reducing the perceived impact of visual impairment, over time) and that the impact of vision loss in one eye is perceived differently to vision loss in both eyes.

Published estimates of health state utilities for vision loss secondary to AMD have focussed primarily on changes in visual acuity. Utility values decline with reduced visual acuity. Studies comparing valuations from different groups reported that clinicians and the general public gave lower estimates of the impact of vision loss compared with estimates from patients with AMD.

Pfizer submitted a dossier in support of pegaptanib which includes an economic evaluation, based on clinical data from the VISION studies, comparing pegaptanib (with or without PDT) to usual care (which consists of best supportive care for all patients as well as PDT for patients with predominantly classic lesions). The analysis was conducted using a Markov state transition model, consisting of twelve health states defined by declining visual acuity and a death state. In the base case analysis a cohort of patients of all lesion types, with best-corrected visual acuity in the better-seeing eye of between 6/12 and 6/96, received up to two years treatment with pegaptanib and were followed up for ten years. A proportion of patients in the usual care cohort received PDT (and visual rehabilitation and patients received low vision aids and visual rehabilitation once visual acuity had fallen below 6/60.

Clinical outcomes were modelled using patient-level data from the VISION studies, health state utilities from a published study of valuations by patients with AMD.¹¹² Costs were estimated based on the number of injections given to patients in the VISION studies, protocols for monitoring patient while on-treatment and on costs of services for visual impairment from a previous UK study.^{40,145}

The QALY gain estimated over ten years was 0.298 for the reference case, stopping treatment once visual acuity declined below 6/96, and 0.289 for the alternative stopping rule, where treatment ceased once visual acuity declined below 6/60. The cost difference for the reference case was £4,705, and for the alternative stopping rule was £4,109, giving ICERs of £15,815 and £14,202 per QALY gained, respectively. At ten years NHS and Personal Social Services costs are the majority of costs for each cohort in the model (55-56% of total costs for the pegaptanib cohort and 93% for the usual care cohort).

In a deterministic sensitivity analysis, results were sensitive to the model time horizon (ICER was greater than £30,000 until the time horizon was over five years) and variation in the costs of blindness. Sub-group analyses were undertaken to examine heterogeneity in the study population. Sub-groups were defined by patient age, sex, lesion type and lesion size. Very little variation in ICER was reported by these sub-groups, except that the ICER was reduced to £10,940 (£9,454 for alternative stopping rule of visual acuity less than 6/60) for patients

aged under 75 compared to £18,863 (£17,128 for alternative stopping rule of visual acuity less than 6/60) for patient aged 75 and over. The submission reports that this difference was largely due to different mortality rates between the two age groups.

Further analyses were undertaken by the TAR team using the manufacturer's model, to address specific questions that arose during our critique of their submission, these related to the comprehensiveness of the costing of patient monitoring while on treatment and the choice of utility values adopted for the analysis.

Discussion with clinical experts suggested that resource use for monitoring patients during treatment would be greater than assumed in the submission. In particular the submission did not include vision assessment or optical coherence tomography, which experts suggested would occur each time patients attended for injection. Clinical experts also suggested that patients would have fluoroscein angiography at least every six months while on treatment, though the frequency may be as high as every three months. When these assumptions are added into the model, while the QALY difference remains unchanged, incremental costs increase to  $\pounds$ 6,473 and ICER is  $\pounds$ 22,476.

The utility values used in the submission suggest a large reduction in utility when visual acuity drops from the range 6/12 - 6/24 (0.81) to 6/24 - 6/60 (0.57) and a second large reduction when moving from 6/60 - 3/60 (0.52) to less than 3/60 (0.40). Unpublished utility values developed for the Novartis submission do not show such "steps" in the utility function, in relation to visual acuity. When these utility values are used in the model, while incremental costs remain unchanged, the QALY difference becomes 0.279 and the ICER is little changed, at £16,889.

Novartis submitted a dossier in support of ranibizumab which includes an economic evaluation, based on clinical data from the ANCHOR, MARINA and PIER trials, comparing ranibizumab to best supportive care for patients with all lesion types and additionally to PDT for patients with predominantly classic.

The analysis was conducted using a Markov state transition model, consisting of five health states defined by declining visual acuity and a death state. In the base case analysis for patients with predominantly classic lesions a cohort of patients received up to one year of treatment with ranibizumab and were followed up for ten years, irrespective of whether the incremental analysis was performed against PDT or best supportive care. In the base case analysis for patients with minimally classic and occult no classic lesions cohort of patients

received up to two years of treatment with ranibizumab and were followed up for ten years. Patients in the best supportive care cohort received

below below

Clinical outcomes were modelled using patient-level data from the ANCHOR and MARINA trial, health state utilities from an unpublished study of valuations by a sample of members of the general public.¹³⁹ Costs were estimated based on

a	observed in the clinical
trials	
	and

The QALY gain estimated over ten years for patients with predominantly classic lesions was 0.20 for the comparison with PDT and 0.28 for the comparison with best supportive care. The cost difference was £917 for the comparison with PDT and £4,068 for the comparison with best supportive care, giving ICERs of £4,489 and £14,781 per QALY gained, respectively.

The QALY gain estimated over ten years for patients with minimally classic lesions was 0.34 and for patients with occult no classic lesions was 0.33. The cost difference was £9,125 and £8,494, giving ICERs of £26,454 and £25,796 per QALY gained.

Limited deterministic sensitivity analyses were undertaken, reporting the incremental cost effectiveness ratios for increasing the number of injections given, up to the values observed in the clinical trials. This increased the ICERs substantially (to £25,544 and £29,662 for patients with predominantly classic lesions compared with PDT and best supportive care, respectively, and to around £55,000 per QALY gained for patients with minimally classic and occult no classic lesions). A further sensitivity analysis is reported removing the assumption that ranibizumab has continued effectiveness after treatment ceases – this has little effect of ICERs.

Further analyses were undertaken by the TAR team using the manufacturer's model, to address specific questions that arose during our critique of their submission – these related to certain costs included for comparator treatments and the assumption that frequency of injection could be reduced below that observed in the clinical trials without affecting effectiveness.

Removing costs from the comparator treatments increases the incremental cost of ranibizumab treatment by between £ and £ and increases ICERs by per QALY gained and £ and per and None of these changes, by themselves would alter conclusions over the cost-effectiveness of ranibizumab according to conventionally accepted decision thresholds

Increasing the number of injections assumed has a large impact on incremental costs and on ICERs. Increasing the number of injections to 12 per year of treatment increases incremental costs for patients with predominantly classic lesions by around £4,000 giving an ICER of £28,176 when compared with PDT and £30,203 when compared with best supportive care. Increasing the number of injections has a greater effect for patients with minimally classic and occult no classic lesions (who receive up to two years of treatment) where incremental costs increase by between £9,500 and £10,000 and ICERs rise to £55,906 and £56,234 for patients with minimally classic and occult no classic and occult no classic lesions, respectively.

We developed an independent model which includes five states of declining visual acuity and an absorbing death state. States in the model were defined to correspond to approximately three lines of visual acuity, which is generally accepted as a clinically significant difference. Individuals in the model could improve, in terms of visual acuity, by one state or deteriorate by one or two states in each model cycle.

The model was used to estimate the cost effectiveness of pegaptanib and ranibizumab, initially using the time horizon of the trials that provide input data on clinical effectiveness, and secondly for a time horizon of ten years. This time horizon was chosen to allow for differences between interventions to become apparent and was the approximate life expectancy of patients entering the model.

The proportion of trial participants gaining at least three lines, losing three to six lines and losing six lines or more of visual acuity for each year of the relevant clinical trials were extracted from clinical trial reports and used to estimate the transition probabilities for the model. The occurrence of adverse events were also extracted from trial reports and converted to cycle probabilities for inclusion in the model.

Health state utilities used in the model were taken from a published source,¹¹² which has been widely adopted in previous economic evaluations of treatment for AMD. These valuations were derived from a sample of patients with AMD and not from the general public. However

no credible valuations from a general public sample, using sound methodology, were found in our review of the published literature.

Two main sets of resource use related to treatment and disease progression with AMD were identified and costed. Intervention costs were developed based on protocols for the management of patients on treatment developed with the assistance of clinical experts. Frequency of treatment was based on that observed in the clinical trials and dosage for pegaptanib was taken from the BNF.⁸² Drug costs for pegaptanib were also taken from the BNF. At the time of writing this report, ranibizumab does not have marketing authorisation for the UK and is not listed in the BNF or Monthly Index of Medical Specialties (MIMS). The dosage of ranibizumab submitted for marketing authorisation by the manufacturer and the manufacturer's target price for the UK have been used in this analysis. Heath state costs, calculated from estimates of the uptake and unit costs of services for visual impairment, are based on estimates published in a previous UK study^{40,145}, inflated to 2005 prices.

The QALY gain after two years of treatment with pegaptanib, in the trial-based analysis, is small (0.06 QALYs) and the incremental cost is high (approximately £10,000). All treatment costs are realised within this time horizon, but few of the expected savings in costs of blindness, that may be anticipated by delaying disease progression in a proportion of patients, are apparent at this time. Given the small QALY gain and high incremental cost at two years the ICER is high (£163,603).

The QALY gain after ten years, assuming the same rates of disease progression for patients in the pegaptanib (post-treatment) as in the usual care cohort, is 0.26 QALYs. The incremental cost has reduced to around £8,000 as differences in the proportion of patients progressing to severe visual impairment impact on the costs of blindness in each cohort. As a result the ICER at ten years has reduced to £30,986.

Deterministic sensitivity analysis emphasises the influence of time horizon on cost effectiveness, showing a sharp decline in ICER as time horizon increases beyond the clinical trial time horizon. The sensitivity analysis also suggests that ICERs are less favourable for patients with older age on entry to the model and with poorer initial visual acuity. Costing the injection procedure as a day case, rather than adopting a unit cost for an outpatient procedure, has a large impact on ICER, which increases to £47,845. The ICERs are also sensitive to choice of utility values and are particularly sensitive to variation on the costs of blindness.

Probabilistic sensitivity analysis shows a 17% probability of pegaptanib being cost effective, compared with usual care, at a willingness to pay threshold of £20,000. The equivalent figure for a willingness to pay threshold of £30,000 is 58%.

The QALY gain after one year of treatment with ranibizumab for patients with predominantly classic lesions, in the trial-based analysis, is small for the comparison with PDT (0.04 QALYs) and for the comparison with best supportive care (0.07 QALYs). The incremental costs are high: approximately £8,000 for the comparison with PDT and £11,500 for the comparison with best supportive care. The QALY gain after two years of treatment for patients with minimally classic and occult no classic lesions is 0.14 QALYs and the incremental cost is £22,400. The ICER for these comparisons in the trial-based analyses are between £150,000 and approximately £200,000.

The QALY gain at ten years for patients with predominantly classic lesions is 0.34 for the comparison with PDT and 0.57 for the comparison with best supportive care. The incremental costs have reduced to £5,391 and £6,457, giving ICERs of £15,638 for the comparison with PDT and £11,412 for the comparison with best supportive care. The QALY gain at ten years for patients with minimally classic and occult no classic lesions is 0.69 QALYs and the incremental cost has reduced to £17,314, giving an ICER of £25,098.

In deterministic sensitivity analysis the pattern of response to changes in underlying assumptions was similar for the different lesions types and for the different comparators. This analysis emphasises the influence of time horizon on cost effectiveness, showing a sharp decline in ICER as time horizon increases beyond the clinical trial time horizon. The sensitivity analysis also suggests that ICERs are less favourable for patients with older age on entry to the model. However poorer initial visual acuity has little effect on cost effectiveness estimates. Costing the injection procedure as a day case, rather than adopting a unit cost for an outpatient procedure, has a large impact on ICER (which for patients with predominantly classic lesions increases to £26,102 for the comparison with PDT and £17,787 for the comparison with best supportive care and for patients with minimally classic and occult no classic lesions the ICER increases to £35,157). The ICER is also sensitive to choice of utility values and is particularly sensitive to variation on the costs of blindness.

In probabilistic sensitivity analyses for ranibizumab, where probabilities of losing or gaining visual acuity, health state utility values, cost of outpatient attendances, fluoroscein angiography and optical coherence tomography and costs of services for visual impairment were sampled probabilistically, the majority of simulations, for each lesion type (and each

comparison) were associated with increased QALYs but also increased costs. In this analysis, ranibizumab for patients with predominantly classic lesions had a probability of being cost-effective (compared with PDT) of 72%, at a willingness to pay threshold of £20,000 per QALY, and 97%, at a threshold of £30,000 per QALY. The equivalent figures for the comparison with best supportive care were 95% and 99%, respectively. For patients with minimally classic and occult no classic lesions the probability of being cost-effective (compared with best supportive care) at a threshold of £20,000 per QALY was 15% and at a threshold of £30,000 per QALY was 81%.

## 6.2 Strengths and limitations of the assessment

The systematic review has the following strengths:

- It is independent of vested interest.
- The systematic review brings together the evidence on the effectiveness of ranibizumab and pegaptanib for subfoveal CNV associated with AMD, applying consistent methods of critical appraisal and presentation.
- A broad and thorough systematic search of the literature has identified all Englishlanguage RCTs on ranibizumab and pegaptanib, and has highlighted gaps in the literature and areas for further research.
- The systematic review was guided by the principles for undertaking a systematic review.
- Before undertaking the review, the methods were set out in a research protocol (Appendix 1), which was commented on by an advisory group. The protocol defined the research question, inclusion criteria, quality criteria, data extraction process and methods employed to undertake the different stages of the review.
- An advisory group has informed the review from its initiation, through the development of the research protocol and completion of the report.

In contrast, there were certain limitations:

- Owing to time constraints, there was a lack of follow-up with authors of the primary studies to clarify methodological details and results. However, it is unlikely that further details from the authors would have changed our conclusions.
- Inclusion was limited to English language due to time constraints. However, no non-English RCTs were identified by the manufacturers of the drugs.

## 6.3 Uncertainties

- The ANCHOR trial compared ranibizumab against PDT, with no sham control arm. In order to model the cost-effectiveness of ranibizumab against best supportive care, and in order to to make extrapolations beyond the trial data, an indirect comparison against the sham arm of the TAP study was required. Outcomes for the sub-group of patients with predominantly classic lesions were used in the indirect comparison. However the need to bring data from other trials into this analysis introduces further uncertainty.
- Treatment protocols, optimal dosing schedules and durations of treatment for pegaptanib and ranibizumab have not been established. As there is limited evidence on optimal treatment durations and on the effectiveness of retreatment we adopted the frequency of treatment in the relevant clinical trials. It is not clear whether these frequencies of treatment will be adopted in normal clinical practice.
- There is a lack of published data on valuations of visual impairment secondary to AMD from general population samples. There is substantial divergence between valuations derived from people with AMD and valuations derived from clinicians and population samples. This raises concerns over what methods would be appropriate for deriving credible health state valuations for vision loss secondary to AMD. There are further concerns in the literature regarding the appropriateness of basing QALYs for visual function on visual acuity alone, rather than contrast sensitivity (or a combination of the two).
- There is uncertainty over the appropriate configuration of services, staffing and distribution of facilities to provide anti-VEGF treatments.Given the lack of certainty over appropriate service organisation it is difficult to estimate the costs of providing appropriate care. The Royal College of Ophthalmologists has convened an AMD Provisions Sub-committee to address such issues.
- There is considerable uncertainty over the costs of services for visual impairment sensitivity analyses in the economic evaluation showed that, using extreme values for uptake and unit costs of services, treatment with pegaptanib or ranibizumab could be cost-saving (high uptake and high unit cost) or could be associated with 30% to 70% increases in incremental cost (low uptake and low unit cost).

## 6.4 Other relevant factors

• The pegaptanib publications reported the combined results of two concurrent RCTs (VISION study). Both trials showed a significant difference between 0.3 mg of

pegaptanib and sham injection for the primary efficacy endpoint at year one, so were combined for analysis as stated in the study protocol. However, FDA review of the data for the individual trials noted that one of the trials did not show efficacy for any of the active doses at two years.^{102,103} The reasons for this are not clear.

- We have attempted to discuss results according to lesion subtype where possible, but this is limited by the data presented by the studies.
- The pegaptanib trial included patients with all angiographic subtypes of lesions. The four ranibizumab trials included all subtypes (PIER), occult or minimally classic lesions (MARINA), or predominantly classic lesions (ANCHOR and December 2019). This may limit generalisability.
- The off-labelled use of bevacizumab (Avastin) for AMD (see section 1.2) is beyond the remit of this report. According to the Royal College of Ophthalmologists, one of the main drives for the rapid adoption of bevacizumab is cost, with single treatments potentially costing as little as £3.00.⁷⁹ However, there is no RCT data on the efficacy of bevacizumab compared with standard treatment nor any long-term safety data, therefore further research is required.

## 7 CONCLUSIONS

## 7.1 Implications for service provision

Interim guidelines on the management and treatment of AMD from the Royal College of Ophthalmologists (Wong, D, Royal College of Ophthalmologists, personal communication, November 2006) recommend intraocular injection of anti-VEGFs for first line treatment of minimally classic subfoveal CNV. They further recommend use of anti-VEGF for treatment of occult no classic subfoveal CNV, where PDT is not covered by local commissioning, and for predominantly classic subfoveal CNV where there has been a poor response to PDT. The implication of these recommendations is that the number of patients eligible for active treatment is likely to increase substantially. Current estimates suggest that around 30% of patients with neovascular AMD are eligible for PDT. The AMD Alliance¹⁴⁶ state, citing the Royal College of Ophthalmologists, that patient numbers could increase from 7,000 (currently eligible for treatment with PDT) to 26,000 per year and suggest that current services have insufficient capacity to deal with this volume of patients. Workload in ophthalmic services will increase beyond the approximate trebling in patient numbers, since the frequency of attendance and treatment is higher than for PDT. It has been suggested that ophthalmology services may face up to six-fold increase in workload (Lotery, A. Southampton University Hopsitals Trust, personal communication, October 2006).

The Royal College of Ophthalmolgists and patient advocacy groups have argued that current services will be unable to cope with this increased workload and there is a likelihood that this introduction of intravitreal therapy will have an effect on the ability of departments to deliver ophthalmic services overall. The Royal College guidelines indicate that, due to risks of serious adverse events intravitreal injection should only be undertaken by or under supervision of ophthalmologists experienced in the procedure. They also emphasise the involvement of a multi-disciplinary team in delivering these treatment, including specialist nurses, optometrists and technicians. The increase in patient load and frequency of assessment associated with treatment with pegaptanib and ranibizumab is likely to require additional specialist imaging equipment (for fluoroscein angiography and optical coherence tomography) as well as provision of clean rooms for performing the injection procedure.

## 7.2 Suggested research priorities

- This report has established that ranibizumab is clinically effective for delaying vision loss and improving vision in AMD. As discussed in section 1.2 and 6.4, bevacizumab (Avastin), which is biologically similar to ranibizumab, is being increasingly used offlabel for the treatment of AMD. There is no long-term data on safety and efficacy of bevacizumab and no RCTs have yet been conducted, however one of the main drives for its adoption is its low cost. The US National Eye Institute of the National Institutes for Health announced in October 2006 that it will be funding a new multicentre clinical trial to compare ranibizumab and bevacizumab for AMD. In the UK, an application to the HTA Clinical Trials Programme for a trial of bevacizumab versus ranibizumab with further randomisation to PDT has been short-listed and the applicants invited to submit a full proposal. These trials should establish whether bevacizumab is a clinically and costeffective alternative to ranibizumab.
- Pegaptanib is clinically effective for delaying vision loss associated with AMD. Although
  the proportion of patients experiencing improvements in vision appears less with
  pegaptanib than ranibizumab, no head to head RCTs have been conducted. A trial
  comparing pegaptanib with ranibizumab and bevacizumab is recommended. The role of
  verteporfin PDT in combination with these drugs should also be investigated.
- A study to assess adverse events outside the proposed RCTs is also required.
- Further research is required on the optimal dosing regimes of these drugs and the benefits
  of re-treatment after initial treatment.
- More detailed costing work is required, for example an independent survey of the costs associated with vision loss.
- Further research is required into health state utilities and their relationship with visual acuity and contrast sensitivity. Further research is required to reduce uncertainty over the relationship between duration of vision loss and the quality of life and functional impact of vision loss.
- The genetic cause of AMD can be detected in 50% of patients. Research to determine whether being identified as genetically at risk will alter behaviour, for example, inspire people to stop smoking, would be useful.
# **8 REFERENCES**

- 1. Evans J, Wormald R. Is the incidence of registrable age related macular degeneration increasing? *Br J Ophthalmol* 1996;80:9-14.
- 2. Bird AC, Bressler NM, Bressler SB, Chisholm IH, Coscas G, Davis MD *et al*. An international classification and grading system of age-related maculopathy and age-related macular degeneration. The International ARM Epidemiological Study Group. *Surv Ophthalmol* 1995;39:367-74.
- 3. Fine SL, Berger KW, Maguire MG, Ho AC. Age related macular degeneration. *New England Journal of Medicine* 2000;342(7):483-92.
- 4. Evans J. Age-related macular degeneration. In: Johnson GJ, Minassian DC, Weale R, editors. *The epidemiology of eye disease*, London: Chapman & Hall, 1998.
- 5. Klaver CCW, Assink JJM, van LR, Wolfs RCW, Vingerling JR, Stijnen T *et al.* Incidence and progression rates of age-related maculopathy: The Rotterdam Study. *Invest Ophthalmol Vis Sci* 2001;42(10):2237-41.
- 6. van LR, Klaver CCW, Vingerling JR, Hofman A, De Jong PTVM. The risk and natural course of age-related maculopathy: Follow-up at 6 1/2 years in the Rotterdam study. *Archives of Ophthalmology* 2003;121(4):519-26.
- 7. Augood CA, Vingerling JR, de Jong PT, Chakravarthy U, Seland J, Soubrane G *et al.* Prevalence of age-related maculopathy in older Europeans: the European Eye Study (EUREYE). *Archives of Ophthalmology* 2006;124(4):529-35.
- 8. Ferris FL III, Fine SL, Hyman L. Age-related macular degeneration and blindness due to neovascular maculopathy. *Arch Ophthalmol* 1984;102:1640-2.
- 9. Ambati J, Ambati BK, Yoo SH, et al. Age-related macular degeneration: etiology, pathogenesis, and therapuetic strategies. *Survey of Ophthalmology* 2003;48:257-93.
- 10. Arnold J, Blemenkranz M, Bressler NM, Bressler SB, Deslandes J, Donati G *et al.* Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: One-year results of 2 randomized clinical trials - TAP report 1. *Archives of Ophthalmology* 1999;117(10):1329-45.
- 11. Olsen TW, Feng X, Kasper TJ, Rath PP, Steuer ER. Fluorescein angiographic lesion type frequency in neovascular age-related macular degeneration. *Ophthalmology* 2004;111:250-5.
- Age-Related Eye Disease Study Research Group. Risk factors for the incidence of Advanced Age-Related Macular Degeneration in the Age-Related Eye Disease Study (AREDS) AREDS report no. 19. *Ophthalmology* 2005;112(4):533-9.
- 13. Brown MD, Bowling EL. Age-related macular degeneration A therapeutic update. *Clinical & Refractive Optometry* 2005;16(8):240-8.
- 14. Delcourt C, Diaz J, Ponten-Sanchez A, Papoz L. Smoking and age-related macular degeneration: the POLA study. *Arch Ophthalmol* 1998;116:1031-5.

- 15. Schmidt S, Hauser MA, Scott WK, Postel EA, Agarwal A, Gallins P *et al.* Cigarette smoking strongly modifies the association of LOC387715 and age-related macular degeneration. *The American Journal of Human Genetics* 2006;78(5):852-64.
- Evans, J. R. and Henshaw, K. Antioxidant vitamin and mineral supplements for preventing age-related macular degeneration [Cochrane review] DOI: 10.1002/14651858.CD000253. [Issue 4]. 1999. Chichester, John Wiley & Sons, Ltd.
- 17. The Age-Related Eye Disease Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss. AREDS Report No. 8. *Arch Ophthalmol* 2001;119:1417-36.
- Evans J. Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration. *Cochrane Database of Systematic Reviews* 2006, Issue 2. Art. No.: CD000254. DOI: 10.1002/14651858.CD000254.pub2. Chichester (UK): John Wiley & Sons, Ltd, 2006.
- 19. Seddon JM, Cote J, Davis N, Rosner B. Progression of age-related macular degeneration: association with body mass index, waist circumference, and waist-hip ratio. *Archives of Ophthalmology* 2003;121(6):785-92.
- 20. Seddon JM, George S, Rosner B, Klein ML. CFH gene variant, Y402H, and smoking, body mass index, environmental associations with advanced age-related macular degeneration. *Human Heredity* 2006;61(3):157-65.
- 21. Hyman L, Schachat AP, He Q, Leske MC, for the Age-Related Macular Degeneration Reisk Factors Study Group. Hypertension, cardiovascular disease, and age-related macular degeneration. *Arch Ophthalmol* 2000;118:351-8.
- 22. Pauleikhoff D. Neovascular age-related macular degeneration: Natural history and treatment outcomes. *Retina* 2005;25(8):1065-84.
- 23. The Royal College of Ophthalmologists. Age related macular degeneration. 2000. Guidelines.
- 24. Klein R, Klein BE, Tomany SC, Meuer SM, Huang GH. Ten-year incidence and progression of age-related maculopathy: The Beaver Dam eye study. *Ophthalmology* 2002;109(10):1767-79.
- 25. Mitchell P, Wang JJ, Foran S, Smith W. Five-year incidence of age-related maculopathy lesions: the Blue Mountains Eye Study. *Ophthalmology* 2002;109(6):1092-7.
- 26. Bunce C, Wormald R. Leading causes of certification for blindness and partial sight in England & Wales. *BMC Public Health* 2006;6(58).
- 27. Owen CG, Flethcher AE, Donoghue M, Rudnika AR. How big is the burden of visual loss caused by age related macular degeneration in the United Kingdom? *Br J Ophthalmol* 2003;87:312-7.
- 28. Klein R, Klein BE, Linton KL. Prevalence of age-related maculopathy. The Beaver Dam Eye Study. *Ophthalmology* 1992;99(6):933-43.

- 29. Mitchell P, Smith W, Attebo K, Wang JJ. Prevalence of age-related maculopathy in Australia. The Blue Mountains Eye Study. *Ophthalmology* 1995;102(10):1450-60.
- 30. Vinding T. Visual impairment of age-related macular degeneration. An epidemiological study of 1000 aged individuals. *Acta Ophthalmologica* 1990;68(2):162-7.
- 31. Vinding T. Age-related macular degeneration. An epidemiological study of 1000 elderly individuals. With reference to prevalence, funduscopic findings, visual impairment and risk factors. *Acta Ophthalmologica Scandinavica Supplement* 1995;(217):1-32.
- 32. Reidy A, Minassian DC, Vafidis G, Joseph J, Farrow S, Wu J *et al.* Prevalence of serious eye disease and visual impairment in a north London population: population based, cross sectional study. *BMJ* 1998;316(7145):1643-6.
- 33. Vingerling JR, Dielemans I, Hofman A, Grobbee DE, Hijmering M, Kramer CF *et al.* The prevalence of age-related maculopathy in the Rotterdam Study. *Ophthalmology* 1995;102(2):205-10.
- 34. Vannewkirk MR, Nanjan MB, Wang JJ, Mitchell P, Taylor HR, McCarty CA. The prevalence of age-related maculopathy: the visual impairment project. *Ophthalmology* 2000;107(8):1593-600.
- 35. Vannewkirk MR, Weih L, McCarty CA, Taylor HR. Cause-specific prevalence of bilateral visual impairment in Victoria, Australia: the Visual Impairment Project. *Ophthalmology* 2001;108(5):960-7.
- 36. Weih LM, Vannewkirk MR, McCarty CA, et al. Age-specific causes of bilateral visual impairment. *Arch Ophthalmol* 2000;118:264-9.
- Buch H, Vinding T, Nielsen NV. Prevalence and causes of visual impairment according to World Health Organization and United States criteria in an aged, urban Scandinavian population: the Copenhagen City Eye Study. *Ophthalmology* 2001;108(12):2347-57.
- 38. Bressler NM, Bressler SB, West SK, Fine SL, Taylor HR. The grading and prevalence of macular degeneration in Chesapeake Bay watermen. *Archives of Ophthalmology* 1989;107(6):847-52.
- Office for National Statistics. Mid-2005 Population Estimates: England and Wales; estimated resident population by single year of age and sex. <u>http://www.statistics.gov.uk/statbase/Expodata/Spreadsheets/D9389.xls</u> (accessed 16 October 2006)
- 40. Meads C, Salas C, Roberts T, Moore D, Fry-Smith A, Hyde C. Clinical effectiveness and cost-utility of photodynamic therapy for wet age-related macular degeneration: a systematic review and economic evaluation. *Health Technology Assessment* 2001;7(9).
- 41. Morse AR, Yatzkan E, Berberich B, Arons RR. Acute care hospital utilization by patients with visual impairment. *Archives of Ophthalmology* 1999;117(7):943-9.

- 42. Wang JJ, Mitchell P, Cumming RG, Attebo K. Impact of visual impairment on use of community support services by elderly persons: The Blue Mountains Eye Study. *Invest Ophthalmol Vis Sci* 1999;40(1):12-9.
- 43. Wang JJ, Mitchell P, Cumming RG, Smith W. Visual impairment and nursing home placement in older Australians: the *Blue Mountains Eye Study*. *Ophthalmic Epidemiology* 2003;10(1):3-13.
- 44. Wang JJ, Mitchell P, Simpson JM, Cumming RG, Smith W. Visual impairment, agerelated cataract, and mortality. *Archives of Ophthalmology* 2001;119(8):1186-90.
- 45. Zhou S, Javitt JC, Zlateva G, Shah SN. Evaluating the Risk of Mortality for Exudative (Wet) AMD Patients Compared to a Control Group. *Invest Ophthalmol Vis Sci* 2006;47(5):2213.
- 46. Thiagarajan M, Evans JR, Smeeth L, Wormald RPL, Fletcher AE. cause-specific visual impairement and mortality: results from a population-based study of older people in the United Kingdom. *Archives of Ophthalmology* 2005;123(10):1397-403.
- 47. Centers for Medicare and Medicaid Services. Standard Analytical Files Limited Data Set. <u>http://www.cms.hhs.gov/LimitedDataSets/10_StandardAnalyticalFiles.asp</u> (accessed 10 October 2006)
- 48. Jack CI, Smith T, Neoh C, Lye M, McGalliard JN. Prevalence of low vision in elderly patients admitted to an acute geriatric unit in Liverpool: elderly people who fall are more likely to have low vision.[see comment]. *Gerontology* 1995;41(5):280-5.
- 49. Tromp AM, Pluijm SM, Smit JH, Deeg DJ, Bouter LM, Lips P. Fall-risk screening test: a prospective study on predictors for falls in community-dwelling elderly. *Journal of Clinical Epidemiology* 1995;54(8):837-44.
- 50. Legood R, Scuffham P, Cryer C. Are we blind to injuries in the visually impaired? A review of the literature. *Inj Prev* 2002;8(2):155-60.
- 51. Ivers RQ, Optom B, Cumming RG, Mitchell P, Simpson JM, Peduto AJ. Visual Risk Factors for Hip Fracture in Older People. *Journal of the American Geriatrics Society* 2003;51(3):356-63.
- 52. Felson DT, Anderson JJ, Hannan MT, Milton RC, Wilson PW, Kiel DP. Impaired vision and hip fracture. The Framingham Study. *Journal of the American Geriatrics Society* 1989;37(6):495-500.
- 53. Cummings SR, Nevitt MC, Browner WS, Stone K, Fox KM, Ensrud KE *et al.* Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. *New England Journal of Medicine* 1995;332(12):767-73.
- 54. Dargent-Molina P, Favier F, Grandjean H, Baudoin C, Schott AM, Hausherr E *et al.* Fall-related factors and risk of hip fracture: the EPIDOS prospective study. *Lancet* 1996;348(9021):145-9.
- 55. Brody BL, Gamst AC, Williams RA, Smith AR, Lau PW, Dolnak D *et al*. Depression, visual acuity, comorbidity, and disability associated with age-related macular degeneration. *Ophthalmology* 2001;108(10):1893-900.

- 56. Williams RA, Brody BL, Thomas RG, Kaplan RM, Brown SI. The psychosocial impact of macular degeneration. *Archives of Ophthalmology* 1998;116(4):514-20.
- 57. Rovner BW, Ganguli M. Depression and disability associated with impaired vision: The moVIES project. *Journal of the American Geriatrics Society* 1998;46(5):617-9.
- 58. Casten RJ, Rovner BW, Tasman W. Age-related macular degeneration and depression: A review of recent research. *Current Opinion in Ophthalmology* 2004;15(3):181-3.
- 59. Horowitz A, Reinhardt JP, Kennedy GJ. Major and subthreshold depression among older adults seeking vision rehabilitation services. *American Journal of Geriatric Psychiatry* 2005;13(3):180-7.
- 60. Shmuely-Dulitzki Y, Rovner BW, Zisselman P. The impact of depression on functioning in elderly patients with low vision. *American Journal of Geriatric Psychiatry* 1995;3(4):325-9.
- 61. Dong LM. Health- and vision-related quality of life among patients with choroidal neovascularization secondary to age-related macular degeneration at enrollment in randomized trials of submacular surgery: SST report no. 4. *American Journal of Ophthalmology* 2004;138(1):91-108.
- 62. Shah VA, Gupta SK, Shah KV, Vinjamaram S, Chalam KV. TTO utility scores measure quality of life in patients with visual morbidity due to diabetic retinopathy or ARMD. *Ophthalmic Epidemiology* 2004;11(1):43-51.
- 63. Cahill MT, Banks AD, Stinnett SS, Toth CA. Vision-related quality of life in patients with bilateral severe age-related macular degeneration. *Ophthalmology* 2005;112(1):152-8.
- 64. Chia EM, Wang JJ, Rochtchina E, Smith W, Cumming RR, Mitchell P. Impact of bilateral visual impairment on health-related quality of life: the Blue Mountains Eye Study. *Invest Ophthalmol Vis Sci* 2004;45(1):71-6.
- 65. Hassell JB, Lamoureux EL, Keeffe JE. Impact of age related macular degeneration on quality of life. *British Journal of Ophthalmology* 2006;90(5):593-6.
- 66. Slakter JS, Stur M. Quality of life in patients with age-related macular degeneration: Impact of the condition and benefits of treatment. *Survey of Ophthalmology* 2005;50(3):263-73.
- 67. Moore LW, Constantino RE, Allen M. Severe Visual Impairment in Older Women. *West J Nurs Res* 2000;22(5):571-95.
- 68. Fletcher DC, Schuchard RA. Visual function in patients with choroidal neovascularization resulting from age-related macular degeneration: the importance of looking beyond visual acuity. *Optometry & Vision Science* 2006;83(3):178-89.
- 69. Thompson D. VA testing in optometric practice. Part 1: The Snellen chart. *Optometry Today / Optics Today* 2005;55-7.
- 70. Thompson D. VA testing in optometric practice. Part 2: Newer chart designs. *Optometry Today / Optics Today* 2005;22-4.

- 71. Holladay JT. Visual acuity measurements. *Journal of Cataract & Refractive Surgery* 2004;30(2):287-90.
- 72. Encycopedia contrast sensitivity. http://www.visionrx.com/library/enc/enc_contrast.asp (accessed 14 August 2006)
- 73. Perimetry. <u>http://en.wikipedia.org/wiki/Perimetry</u> (accessed 16 August 2006)
- 74. Department of Health. Certificate of Vision Impairement: explanatory notes for consultant ophthalmologists and hospital eye clinic staff. August 2005. http://www.dh.gov.uk/assetRoot/04/11/86/66/04118666.pdf
- 75. Kourlas H, Schiller DS. Pegaptanib sodium for the treatment of neovascular agerelated macular degeneration: A review. *Clinical Therapeutics* 2006;28(1):36-44.
- 76. American Academy of Ophthalmology. Age-related macular degeneration. Preferred Practice Pattern. 2000. National Guidelines Clearinghouse.
- 77. National Institute for Clinical Excellence. Guidance on the use of photodynamic therapy for age-related macular degeneration. *Technology Appraisal Guidance* 2003;68.
- 78. van Wijngaarden P, Coster DJ, Williams KA. Inhibitors of ocular neovascularization: promises and potential problems. *JAMA* 2005;293:1509-13.
- 79. Wong D. Avastin is coming? <u>http://www.rcophth.ac.uk/scientific/scientificnews</u> (accessed 10 May 2006)
- 80. Rosenfeld PJ. Intravitreal avastin: the low cost alternative to lucentis? *American Journal of Ophthalmology* 2006;142(1):141-3.
- 81. Steinbrook R. The price of sight ranibizumab, bevacizumab, and the treatment of macular degeneration. *New England Journal of Medicine* 2006;355(14):1409-12.
- 82. Joint Formulary Committee. *British National Formulary*. London: British Medical Association and Royal Pharmaceutical Society of Great Britain; 2006. No. 52
- 83. The Royal College of Ophthalmologists. The use of bevacizumab (avastin). http://www.rcophth.ac.uk/scientific/avastin (accessed 19 September 2006)
- 84. Department of Health (UK). NHS Reference Costs. 2005. <u>http://www.dh.gov.uk/PolicyAndGuidance/OrganisationPolicy/FinanceAndPlanning/</u> <u>NHSReferenceCosts/fs/en</u> (accessed 14 September 2006)
- 85. Bonastre J, Le PC, Anderson P, Ganz A, Berto P, Berdeaux G. The epidemiology, economics and quality of life burden of age-related macular degeneration in France, Germany, Italy and the United Kingdom. *European Journal of Health Economics* 2002;3(2):94-102.
- 86. Meads C, Moore D. *The clinical effectiveness and cost-utility of photodynamic therapy for wet age-related macular degeneration*. Birmingham: West Midlands Health Technology Assessment Collaboration, Department of Public Health and Epidemiology, University of Birmingham; 2001. No. Report number 24

- 87. Smith DH, Fenn P, Drummond M. Cost effectiveness of photodynamic therapy with verteporfin for age related macular degeneration: the UK case. *British Journal of Ophthalmology* 2004;88(9):1107-12.
- 88. Arnold J, Barbazetto I, Birngruber R, Blumenkranz MS, Bressler SB, Bressler NM *et al.* Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: Two-year results of 2 randomized clinical trials TAP report 2. *Archives of Ophthalmology* 2001;119(2):198-207.
- 89. Genentech Inc. Preliminary Phase III Data from Head-to-Head Study of Lucentis Shows Lucentis Improved Vision Compared to Visudyne in Patients with Wet Age-Related Macular Degeneration. Press Release 14th January 2006. <u>http://www.gene.com/gene/news/press-releases/display.do?method=detail&id=9307</u> (accessed 9 May 2006)
- 90. Genentech Inc. Full prescribing information. LucentisTM (ranibizumab injection). <u>http://www.gene.com/gene/products/information/pdf/lucentis-prescribing.pdf</u> (accessed 3 July 2006)
- 91. Novartis Pharmaceuticals UK Ltd. Lucentis (ranibizumab) therapy for the treatment of wet age-related macular degeneration. Evidence submitted to the National Institute for Clinical Excellence. August 2006.
- Pfizer Ltd. Summary of Product Characteristics. Macugen 0.3 mg solution for injection. <u>http://www.emea.eu.int/humandocs/PDFs/EPAR/macugen/H-620-PI-en.pdf</u> (accessed 5 July 2006)
- 93. Hawkes N. Thousands denied eye drug over NHS costs. <u>http://www.timesonline.co.uk/article/0,,8122-2185672_2,00.html</u> (accessed 18 May 2006)
- 94. Macugen to launch to NICE controversy. pharmatimes.com June/2006
- 95. Gragoudas ES, Adamis AP, Cunningham ET, Jr., Feinsod M, Guyer DR, VEGF Inhibition Study in Ocular Neovascularization Clinical Trial Group. Pegaptanib for neovascular age-related macular degeneration. *New England Journal of Medicine* 2004;351(27):2805-16.
- 96. Brown DM, Kaiser PK, Michels M, Soubrane G, Heier JS, Kim RY *et al.* Ranibizumab versus verteporfin for neovascular age-related macular degeneration. *New England Journal of Medicine* 2006;355(14):1432-44.
- 97. Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY *et al.* Ranibizumab for neovascular age-related macular degeneration. *New England Journal of Medicine* 2006;355(14):1419-31.
- 98. Holz FG, Jorzik J, Schutt F, Flach U, Unnebrink K. Agreement among ophthalmologists in evaluating fluorescein angiograms in patients with neovascular age-related macular degeneration for photodynamic therapy eligibility (FLAP-study). *Ophthalmology* 2003;110:400-5.
- 99. NHS Centre for Reviews and Dissemination. Undertaking Systematic Reviews of Research on Effectiveness. CRD Report 4 (2nd Edition). 2001. York, University of York.

- 100. VEGF Inhibition Study in Ocular Neovascularization (VISION) Clinical Trial Group. Year two efficacy results of 2 randomized controlled trials of pegaptanib for neovascular age-related degeneration. *Ophthalmology* 2006;113(9):1508-21.
- 101. VEGF Inhibition Study in Ocular Neovascularization (VISION) Clinical Trial Group. Pegaptanib sodium for neovascular age-related macular degeneration. Two-year safety results of the two prospective, multicenter, controlled clinical trials. *Ophthalmology* 2006;113(6):992-1001.
- 102. Spaide R. New treatments for AMD. Ophthalmology 2006;113(1):160-1.
- 103. FDA Center for Drug Evaluation and Research. Medical Officer's review of NDA 21-756 - Macugen final label. December 2004. <u>http://www.fda.gov/cder/foi/nda/2004/21-756_macugen_medr.pdf</u>
- 104. Pfizer Ltd. Macugen (pegaptanib sodium). Sumbission to the National Institute for Health and Clinical Excellence. 31st July 2006.
- 105. Zlateva G, Patel M, Shah G, VEGF Inhibition Study in Ocular Neovascularization (VISION) Clinical Trial Group. Quality of life in patients with age-related macular degeneration: results from the VISION study. *Invest Ophthalmol Vis Sci* 2006;47:E-Abstract 2152.
- 106. EyeTech Pharmaceuticals PI. Dermatologic and Ophthalmic Drugs Advisory Committee meeting. Pegaptanib sodium injection (Macugen) [PowerPoint presentation]. 2004. <u>http://www.fda.gov/ohrms/dockets/ac/04/slides/2004-405381_01_EyeTech-Main.ppt</u> (accessed 23 October 2006)
- 107. Earnshaw SR, Javitt JC, Zlateva GP, Pleil AM, Graham CN, Brogan AJ et al. Costeffectiveness model for age-related macular degeneration: Comparing Macugen to Visudyne. Value in Health 2005;8(6):A176-A177.
- 108. Earnshaw SR, Javitt JC, Zlateva GP, Pleil AM, Graham CN, Brogan AJ *et al.* Cost-Effectiveness Model for Age-Related Macular Degeneration: Comparing Early and Late Macugen Treatment. *Value in Health* 2005;8(6):A177.
- 109. Earnshaw SR, Javitt JC, Graham CN, Brogan AJ, Zlateva GP, Pleil AM et al. Modeling treatments for subfoveal choroidal neovascularization secondary to age related macular degeneration: Cost-effectiveness methods. Value in Health 2005;8(6):A179.
- 110. Bressler NM, Arnold J, Benchaboune M, Blumenkranz MS, Fish GE, Gragoudas ES et al. Verteporfin therapy of subfoveal choroidal neovascularization in patients with age-related macular degeneration: Additional information regarding baseline lesion composition's impact on vision outcomes - TAP report no. 3. Archives of Ophthalmology 2002;120(11):1443-54.
- 111. Arnold J, Barbezetto I, Birngruber R, Bressler NM, Bressler SB, Donati G *et al.* Verteporfin therapy of subfoveal choroidal neovascularization in age-related macular degeneration: Two-year results of a randomized clinical trial including lesions with occult with no classic choroidal neovascularization - Verteporfin in photodynamic therapy report 2. *American Journal of Ophthalmology* 2001;131(5):541-60.
- 112. Brown GC, Sharma S, Brown MM, Kistler J. Utility values and age-related macular degeneration. *Archives of Ophthalmology* 2000;118(1):47-51.

- 113. Brown GC, Brown MM, Campanella J, Beauchamp GR. The cost-utility of photodynamic therapy in eyes with neovascular macular degeneration--a value-based reappraisal with 5-year data. *American Journal of Ophthalmology* 2005;140(4):679-87.
- 114. Hopley C, Salkeld G, Mitchell P. Cost utility of photodynamic therapy for predominantly classic neovascular age related macular degeneration.[see comment]. *British Journal of Ophthalmology* 2004;88(8):982-7.
- 115. Sharma S, Brown GC, Brown MM, Hollands H, Shah GK. The cost-effectiveness of photodynamic therapy for fellow eyes with subfoveal choroidal neovascularization secondary to age-related macular degeneration. *Ophthalmology* 2001;108(11):2051-9.
- 116. Sharma S, Bakal J, Sharma SM, Covert D, Shah GK. Drug pricing for a novel treatment for wet macular degeneration: Using incremental cost-effectiveness ratios to ensure societal value. *Canadian Journal of Ophthalmology* 2005;40(3):369-77.
- 117. Greiner R-A. Cost of care for patients with age-related macular degeneration in Switzerland and cost-effectiveness of treatment with verteporfin therapy. *Seminars in Ophthalmology* 2001;16(4):218-22.
- 118. Barry SJ, Douglas PR, Becker DL, Hughes MS, Weinstein MC. Economic evaluation of photodynamic therapy (Visudyne (R)) compared to usual care in the treatment of age related macular degeneration (ARMD) in USA. *Value in Health* 2006;9(3):A141-A142.
- 119. Sharma S, Oliver-Fernandez A, Bakal P, Brown GC, Brown MM. Cost-utility of vitamins for the treatment of macular degeneration. *Value in Health* 2002;5(6):553-4.
- Scilley K, DeCarlo DK, Wells J, Owsley C. Vision-specific health-related quality of life in age-related maculopathy patients presenting for low vision services. *Ophthalmic Epidemiology* 2004;11(2):131-46.
- 121. Miskala PH, Hawkins BS, Mangione CM, Bass EB, Bressler NM, Dong LM *et al.* Responsiveness of the National Eye Institute Visual Function Questionnaire to changes in visual acuity: findings in patients with subfoveal choroidal neovascularization--SST Report No. 1.[erratum appears in Arch Ophthalmol. 2003 Oct;121(10):1513]. *Archives of Ophthalmology* 2003;121(4):531-9.
- 122. DeCarlo DK, Scilley K, Wells J, Owsley C. Driving habits and health-related quality of life in patients with age-related maculopathy. *Optometry & Vision Science* 2003;80(3):207-13.
- 123. Hawkins BS. Health- and vision-related quality of life among patients with ocular histoplasmosis or idiopathic choroidal neovascularization at enrollment in a randomized trial of submacular surgery: Submacular surgery trials report no. 5. *Archives of Ophthalmology* 2005;123(1):78-88.
- 124. Berdeaux GH, Nordmann JP, Colin E, Arnould B. Vision-related quality of life in patients suffering from age-related macular degeneration. *American Journal of Ophthalmology* 2005;139(2):271-9.
- 125. Mitchell J, Wolffsohn JS, Woodcock A, Anderson SJ, McMillan CV, Ffytche T *et al.* Psychometric evaluation of the MacDQoL individualised measure of the impact of

macular degeneration on quality of life. *Health & Quality of Life Outcomes* 2005;3:15.

- 126. Mangione CM, Gutierrez PR, Lowe G, Orav EJ, Seddon JM. Influence of age-related maculopathy on visual functioning and health-related quality of life. *American Journal of Ophthalmology* 1999;128(1):45-53.
- 127. Armbrecht AM, Aspinall PA, Dhillon B. A prospective study of visual function and quality of life following PDT in patients with wet age related macular degeneration. *British Journal of Ophthalmology* 2004;88(10):1270-3.
- 128. Brown GC, Brown MM, Sharma S. Difference between ophthalmologists' and patients' perceptions of quality of life associated with age-related macular degeneration. *Canadian Journal of Ophthalmology* 2000;35(3):127-33.
- 129. Wakker P, Stiggelbout A. Explaining distortions in utility elicitation through the rank-dependent model for risky choices. *Medical Decision Making* 1995;15:180-6.
- 130. Stein JD, Brown MM, Brown GC, Hollands H, Sharma S. Quality of life with macular degeneration: perceptions of patients, clinicians, and community members. *British Journal of Ophthalmology* 2003;87(1):8-12.
- 131. Drummond MF, O'Brien BJ, Torrance GW, Stoddart GL. *Methods for the economic evaluation of health care programmes*. Oxford: Oxford University Press, 1997.
- 132. National Institute for Clinical Excellence. *Guide to the Methods of Technology Appraisal*. London: National Institute for Clinical Excellence; 2004.
- Philips Z, Ginnelly L, Sculpher M, Claxton K, Golder S, Riemsma R *et al.* Review of guidelines for good practice in decision-analytic modelling in health technology assessment. *Health Technology Assessment* 2004;8(36):1-158.
- 134. Curtis L, Netten A. *Unit Costs of Health and Social Care*. Canterbury: Personal Social Services Research Unit, University of Kent, 2005.
- 135. Zhou SWD. *The economic burden of progression in vision loss in Medicare beneficiaries, 1999 to 2003.* Pfizer. Data on file; 2004.
- 136. Office for National Statistics. Key Health Statistics form General Practice 1998. Analyses of morbidity and treatment data, including time trends, England and Wales. Series MB6 No. 2. <u>http://www.statistics.gov.uk/downloads/theme_health/Key_Health_Stats_1998.pdf</u>. 2000.
- 137. Brennan J, Johansen A, Butler J, Stone M, Richmond P, Jones S *et al.* Place of residence and risk of fracture in older people: a population-based study of over 65-year-olds in Cardiff. *Osteoporosis International* 2003;14(6):515-9.
- 138. *Monthly index of Medical Specialties*. London: Haymarket Medical Publications Ltd; 2006.
- Brazier JE, Kang K, Carlton J, Czoski-Murray CJ. General population survey to obtain values for AMD visual impoairment states using lenses - Preliminary Report. 2006. Appendix 1. Lucentis (ranibizumab) therapy for the treatment of wet age-

related macular degeneration. Evidence submitted to the National Institute for Clinical Excellence. Novartis Pharmaceuticals UK Ltd. August 2006

- 140. Miller DK, Homan SM. Determining Transition-Probabilities Confusion and Suggestions. *Medical Decision Making* 1994;14(1):52-8.
- 141. A randomized trial for the treatment of age-related macular degeneration demonstrates the importance of evaluating disease modifying effects. *Journal of Clinical Epidemiology* 2006.
- 142. Sharma S, Brown GC, Brown MM, Shah GK, Snow K, Brown H *et al.* Converting visual acuity to utilities. *Canadian Journal of Ophthalmology* 2000;35(5):267-72.
- Knapp M, Beecham J, Fenyo A, Hallam A. Community mental health care for former hospital in-patients. Predicting costs from needs and diagnoses. *British Journal of Psychiatry* 1995;166((suppl 27)):10-8.
- 144. Scottish Medicines Consortium. Pegaptanib 0.3mg, solution for intravitreal injection (Macugen). No. (290/06). (accessed 6 November 2006)
- 145. Meads C, Hyde C. What is the cost of blindness?. [Review] [39 refs]. *British Journal* of Ophthalmology 2003;87(10):1201-4.
- 146. McLaughlan B, Winyard S. Left to pay for their own. How people facing sight loss from wet age-related macular degeneration are let down by the NHS. Report on the availability of anti-VEGF treatments for wet age-related macular degeneration. (accessed 27 October 2006)
- 147. Evers S, Goossens M, de Vet H, van Tulder M, Ament A. Criteria list for assessment of methodological quality of economic evaluations: Consensus on Health Economic Criteria. *International Journal of Technology Assessment in Health Care* 2005;21(02):240-5.
- 148. Brody BL, Roch-Levecq AC, Gamst AC, Maclean K, Kaplan RM, Brown SI. Selfmanagement of age-related macular degeneration and quality of life: a randomized controlled trial. *Archives of Ophthalmology* 2002;120(11):1477-83.
- Chakravarthy U, Stevenson M. Self-reported visual functioning and quality of life in age-related macular degeneration. *Current Opinion in Ophthalmology* 2005;16(3):179-83.
- 150. Stevenson MR, Hart PM, Chakravarthy U, Mackenzie G, Bird AC, Owens SL et al. Visual functioning and quality of life in the SubFoveal Radiotherapy Study (SFRADS): SFRADS report 2. British Journal of Ophthalmology 2005;89(8):1045-51.
- 151. Lindblad AS, Clemons TE. Responsiveness of the National Eye Institute Visual Function Questionnaire to progression to advanced age-related macular degeneration, vision loss, and lens opacity: AREDS Report no. 14. *Archives of Ophthalmology* 2005;123(9):1207-14.
- 152. Clemons TE, Chew EY, Bressler SB, McBee W, Age-Related Eye Disease Study Research Group. National Eye Institute Visual Function Questionnaire in the Age-Related Eye Disease Study (AREDS): AREDS Report No. 10. Archives of Ophthalmology 2003;121(2):211-7.

## **Appendix 1 Protocol methods**

## Report methods for synthesis of evidence of clinical effectiveness

### Search strategy

- A search strategy will be developed and tested by an experienced information scientist. The strategy will be designed to identify studies reporting clinical-effectiveness, costeffectiveness, health-related quality of life (HRQOL), resource use / costs, and epidemiology / natural history.
- The draft search strategy for Medline can be seen in Appendix 2.
- A number of electronic databases will be searched including: The Cochrane Database of Systematic Reviews (CDSR); The Cochrane Central Register of Controlled Trials; NHS CRD (University of York) Database of Abstracts of Reviews of Effectiveness (DARE) and the NHS Economic Evaluation Database (NHS EED); Medline (Ovid); Embase (Ovid); National Research Register; Current Controlled Trials; ISI Proceedings; Web of Science; and BIOSIS. Ophthalmology conferences will be searched for recent abstracts (from 2004). Bibliographies of related papers will be assessed for relevant studies where possible.
- The manufacturers' submissions to NICE will be assessed for any additional studies.
- Experts will be contacted to identify additional published and unpublished references.
- Searches will be carried out from the inception date of the database and will be limited to the English language. The searches will be updated around October 2006.

#### Inclusion and exclusion criteria

#### Patients

- People with the subfoveal choroidal neovascularisation (CNV) associated with wet agerelated macular degeneration.
- If appropriate, potential subgroups will be considered according to the composition of the lesion in terms of classic and occult CNV.

#### Interventions

Studies reporting evaluations of the following interventions will be included:

- Ranibizumab (Lucentis, Genentech/Novartis Pharmaceuticals UK Ltd)
- Pegaptanib sodium (Macugen, Pfizer Ltd)

• Combination of the drugs with photodynamic therapy will be considered where the licensed indication and the evidence allow.

## **Comparators**

- Best supportive care.
- For the subgroup of individuals with a confirmed diagnosis of classic with no occult subfoveal wet AMD, photodynamic therapy with verteporfin is also a comparator.
- If insufficient evidence is found using the above comparators, the following comparators will be considered:
  - Sham injection (systematic review of clinical effectiveness only)
  - Photodynamic therapy with verteporfin for patients with subfoveal wet AMD with predominantly classic lesions.

## Outcomes

Studies reporting one or more of the following outcomes will be included:

- Visual acuity
- Contrast sensitivity
- Adverse effects of treatment
- Adherence to treatment
- Health-related quality of life

## Types of studies

- Fully published randomised controlled trials (RCTs) or systematic reviews of RCTs will be included. Systematic reviews will be used as a source for RCTs and as a comparator. Indicators of a 'systematic' review include: explicit search strategy, inclusion criteria, data extraction and assessment of quality.
- Studies published only as abstracts or conference presentations will be included in the primary analysis of clinical and cost-effectiveness if sufficient details are presented to allow an appraisal of the methodology and assessment of results.
- Non-English language studies will be excluded.

## Inclusion and data extraction process

• Titles and abstracts of studies identified by the search strategy will be screened by one reviewer based on the above inclusion/exclusion criteria and checked by a second reviewer.

- The full text of relevant papers will be requested for further assessment. All full papers will be screened independently by one reviewer and checked by a second.
- Data will be extracted by one reviewer using a standard data extraction form and checked by a second reviewer.
- At each stage, any discrepancy will be resolved by discussion, with involvement of a third reviewer where necessary.

## Quality assessment

- The quality of included RCTs and systematic reviews will be assessed using NHS CRD (University of York) criteria.
- Quality criteria will be applied by one reviewer and checked by a second reviewer, with differences in opinion resolved by discussion and involvement of a third reviewer where necessary.

### Methods of analysis/synthesis

- Clinical-effectiveness studies will be synthesised through a narrative review with tabulation of results of included studies.
- Where data are of sufficient quantity, quality and homogeneity, a meta-analysis of the clinical-effectiveness studies will be performed, using appropriate software.

## Methods for synthesising evidence of cost-effectiveness

#### Search strategy

Refer to Appendix 2 for details of the draft search strategy for Medline. The sources to be searched are similar to those used in the clinical-effectiveness review. All searches will be limited to the English language.

#### Inclusion and exclusion criteria

• Full economic evaluations and systematic reviews of economic evaluations, where relevant, will be included. Inclusion and exclusion criteria will be the same as those applied for the clinical effectiveness review.

### Inclusion and data extraction process

• Titles and abstracts of studies identified by the search strategy will be screened by one reviewer based on the above inclusion/exclusion criteria and checked by a second reviewer.

- The full text of relevant papers will be requested for further assessment. All full papers will be screened independently by one reviewer and checked by a second.
- Data will be extracted by one reviewer using a standard data extraction form and checked by a second reviewer.
- Discrepancies will be resolved by discussion, with involvement of a third reviewer when necessary.

#### Study quality assessment

The methodological quality of the economic evaluations will be assessed using accepted frameworks such as the International consensus-developed list of criteria developed by Evers and colleagues,¹⁴⁷ and Drummond and colleagues.¹³¹ For any studies based on decision models we will also make use of the checklist for assessing good practice in decision analytic modelling (Philips and colleagues¹³³). Published studies carried out from the UK NHS and PSS perspective will be examined in more detail.

#### Synthesis of evidence on costs and effectiveness

#### (a) Published and submitted economic evaluations

Narrative synthesis, supported by the data extraction tables, will be used to summarise the evidence base from published economic evaluations and sponsor submissions to NICE.

#### (b) Economic Modelling

Where appropriate, an economic model will be constructed by adapting an existing model or developing a new one using best available evidence. If possible, the incremental cost-effectiveness of the interventions will be estimated in terms of cost per Quality Adjusted Life Year (QALY) gained, as well as the cost per vision year gained i.e. for an additional year of visual function, if data permit. The perspective will be that of the NHS and Personal Social Services. Both cost and outcomes (QALYs) will be discounted at 3.5%.

Model structure will be determined on the basis of research evidence and clinical expert opinion of:

- The biological disease process (i.e. knowledge of the natural history of the disease);
- The main diagnostic and care pathways for patients in the UK NHS context (both with and without the intervention(s) of interest); and
- The disease states or events which are most important in determining patients' clinical outcomes, quality of life and consumption of NHS or PSS resources.

For example, we will need to consider developing a model of vision loss due to wet agerelated macular degeneration which could reflect factors such as: patient age, visual acuity, baseline Snellen, time to vision loss, whether previous treatment is received and side effects.

Parameter values will be obtained from relevant research literature, including our own systematic review of clinical effectiveness. Where required parameters are not available from good quality published studies in the relevant patient group we may use data from sponsor submissions to NICE or experts' clinical opinion. Sources for parameters will be stated clearly.

Resource use will be specified and valued from the perspective of the NHS and PSS. Cost data will be derived from local sources, extracted from published sources or from sponsor submissions to NICE, as appropriate.

To capture health-related quality of life effects, utility values will be sought from the relevant research literature.

Analysis of uncertainty will focus on cost-utility, assuming the cost per QALY can be estimated. Uncertainty will be explored through one-way sensitivity analysis and, if the data and modelling approach permit, probabilistic sensitivity analysis (PSA). The outputs of PSA will be presented both using plots on the cost-effectiveness plane and cost-effectiveness acceptability curves.

The simulated population will be defined on the basis of both the published evidence about the characteristics of UK population with wet age-related macular degeneration, and the populations for which good quality clinical effectiveness is available. The base case results will be presented for the population of UK with wet age-related macular degeneration. The time horizon for our analysis will initially be governed by follow-up data available from included clinical trials - we will investigate the feasibility of extrapolating treatment effects beyond the clinical trials.

#### Handling the company submission(s)

All information submitted by the manufacturers/sponsors as part of the NICE appraisal process will be considered if received by the TAR team no later than 8th August 2006. Information arriving after this date will not be considered.

Industry submissions will be checked for additional studies that meet the inclusion criteria for data on clinical effectiveness, costs and on the current use of ranibizumab and pegaptanib.

Any economic evaluation included in company submission, provided it complies with NICE's advice on presentation, will be assessed for clinical validity, reasonableness of assumptions and appropriateness of the data used. Results of cost-effectiveness analyses from industry submissions will be compared with the SHTAC analysis.

Any 'academic in confidence' data or 'commercial in confidence' data taken from a company submission will be <u>underlined</u> and highlighted in the assessment report (followed by an indication of the relevant company name e.g. in brackets).

## **Appendix 2 Literature search strategies**

The following databases were searched for published studies and recently completed and ongoing research. All searches were limited to English language only. Searches were updated in September 2006.

- Cochrane Library Cochrane Database of Systematic Reviews
- Cochrane Library Central Register of Controlled Trials (Clinical Trials)
- Medline (OVID) 1966- 2006
- Medline (Ovid), In process, Other Non-indexed citations
- Embase (OVID) 1980- 2006
- Web of Science Science Citation Index 1970 2006
- Web of Science ISI Proceedings 2004 present
- BIOSIS meeting abstracts 2004 2006
- DARE (NHS CRD)
- HTA (NHS CRD)
- NHS EED (NHS CRD)
- National Research Register
- Current Controlled Trials, including MRC Trials
- Clinical Trials.gov

#### **Clinical Effectiveness searches**

The following strategies were used to search MEDLINE (OVID) 1966-2006 and EMBASE (Ovid) 1980-2006. These were translated to search the other databases listed above.

MEDLINE(R) <1966 to May Week 1 2006

Date searched: 17 May 2006

- 1 exp Macular Degeneration/ (7128)
- 2 (age related maculopath\$ or maculopath\$).mp. [mp=title, original title, abstract, name of substance word, subject heading word] (1738)
- 3 age related macula\$ degeneration.mp. [mp=title, original title, abstract, name of substance word, subject heading word] (3300)
- 4 macula\$ degeneration.mp. (6975)
- 5 ((geographic\$ adj5 macular degeneration) or GAMD).mp. [mp=title, original title,
- abstract, name of substance word, subject heading word] (30)
- 6 (geographic\$ adj5 atrophy).mp. (228)
- 7 (AMD or ARMD).mp. [mp=title, original title, abstract, name of substance word, subject heading word] (2498)
- 8 age related eye disease\$.mp. (122)
- 9 senile macula\$ degenerat\$.mp. (309)
- 10 (neovascular\$ adj5 macula\$ degeneration).mp. (814)
- 11 (disciform adj5 macula\$ degeneration).mp. (87)

12 (choroidal neovascularization or CNV).mp. [mp=title, original title, abstract, name of substance word, subject heading word] (2986)

- 13 Choroidal Neovascularization/ (1432)
- 14 (wet adj5 (macula\$ degeneration or AMD or ARMD)).mp. (87)
- 15 (exudative adj5 (macula\$ degeneration or AMD or ARMD)).mp. (442)
- 16 (dry adj5 (macula\$ degeneration or AMD or ARMD)).mp. (71)
- 17 (non-neovascular\$ adj5 macula\$ degen\$).mp. (3)
- 18 Neovascularization, Pathologic/ (16997)
- 19 or/1-18 (28360)
- 20 pegaptanib.mp. (47)

- 21 macugen.mp. (9)
- 22 ranibizumab.mp. (14)
- 23 lucentis.mp. (5)
- 24 (20 or 21) and 19 (42)
- 25 (22 or 23) and 19 (11)

Embase (OVID) <1980 to 2006 Week 19>

Date searched: 18 May 2006

- 1 exp Retina Macula Degeneration/ (9011)
- 2 Retina Macula Age Related Degeneration/ (3651)
- 3 (age related maculopath\$ or maculopath\$).mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (2427)

4 age related macula\$ degeneration.mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (3189)

- 5 macula\$ degeneration.mp. (5359)
- 6 ((geographic\$ adj5 macular degeneration) or GAMD).mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (54)
- 7 (geographic\$ adj5 atrophy).mp. (230)
- 8 (AMD or ARMD).mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (2830)
- 9 age related eye disease\$.mp. (124)
- 10 senile macula\$ degenerat\$.mp. (160)
- 11 (neovascular\$ adj5 macula\$ degeneration).mp. (895)
- 12 (disciform adj5 macula\$ degeneration).mp. (102)
- 13 (choroidal neovascularization or CNV).mp. [mp=title, abstract, subject headings,

heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (2499)

- 14 Choroidal Neovascularization/ (2429)
- 15 Subretinal Neovascularization/ (2429)
- 16 (wet adj5 (macula\$ degeneration or AMD or ARMD)).mp. (74)
- 17 (exudative adj5 (macula\$ degeneration or AMD or ARMD)).mp. (423)
- 18 (dry adj5 (macula\$ degeneration or AMD or ARMD)).mp. (73)
- 19 (non-neovascular\$ adj5 macula\$ degen\$).mp. (3)
- 20 exp "Neovascularization (Pathology)"/ (14092)
- 21 or/1-20 (24135)
- 22 Pegaptanib/ (186)
- 23 pegaptanib.mp. (197)
- 24 macugen.mp. (124)
- 25 exp RANIBIZUMAB/ (85)
- 26 ranibizumab.mp. (86)
- 27 lucentis.mp. (54)
- 28 (22 or 23 or 24) and 21 (161)
- 29 (25 or 26 or 27) and 21 (74)

#### **Cost-effectiveness searches**

The clinical effectiveness strategies above were combined with the following costeffectiveness filters and run in MEDLINE (OVID) 1966-2006, and EMBASE (OVID) (1980-2006). The strategies were translated and run in Ovid (MEDLINE) In Process; Web of Science ISI Science Citation Index 1970-2006; ISI Proceedings 2004-2006; Cochrane Database of Systematic Reviews; Central Register of Controlled Trials and the NHS CRD databases NHS EED, DARE and HTA.

Medline (OVID) <1966 to May Week 2 2006>

Date Searched: 19 May 2006

1 exp Macular Degeneration/ (7145)

2 (age related maculopath\$ or maculopath\$).mp. [mp=title, original title, abstract, name of substance word, subject heading word] (1740)

3 age related macula\$ degeneration.mp. [mp=title, original title, abstract, name of substance word, subject heading word] (3306)

- 4 macula\$ degeneration.mp. (6985)
- 5 ((geographic\$ adj5 macular degeneration) or GAMD).mp. [mp=title, original title,
- abstract, name of substance word, subject heading word] (30)
- 6 (geographic\$ adj5 atrophy).mp. (228)

7 (AMD or ARMD).mp. [mp=title, original title, abstract, name of substance word, subject heading word] (2504)

- 8 age related eye disease\$.mp. (124)
- 9 senile macula\$ degenerat\$.mp. (309)
- 10 (neovascular\$ adj5 macula\$ degeneration).mp. (814)
- 11 (disciform adj5 macula\$ degeneration).mp. (87)

12 (choroidal neovascularization or CNV).mp. [mp=title, original title, abstract, name of

- substance word, subject heading word] (2993)
- 13 Choroidal Neovascularization/ (1438)
- 14 (wet adj5 (macula\$ degeneration or AMD or ARMD)).mp. (88)
- 15 (exudative adj5 (macula\$ degeneration or AMD or ARMD)).mp. (443)
- 16 (dry adj5 (macula\$ degeneration or AMD or ARMD)).mp. (71)
- 17 (non-neovascular\$ adj5 macula\$ degen\$).mp. (3)
- 18 Neovascularization, Pathologic/ (17021)
- 19 or/1-18 (28414)
- 20 pegaptanib.mp. (47)
- 21 macugen.mp. (9)
- 22 ranibizumab.mp. (14)
- 23 lucentis.mp. (5)
- 24 (20 or 21) and 19 (42)
- 25 (22 or 23) and 19 (11)
- 26 exp ECONOMICS/ (351955)
- 27 exp ECONOMICS, HOSPITAL/ (13981)
- 28 exp ECONOMICS, PHARMACEUTICAL/ (1636)
- 29 exp ECONOMICS, NURSING/ (3671)
- 30 exp ECONOMICS, DENTAL/ (3308)
- 31 exp ECONOMICS, MEDICAL/ (9953)
- 32 exp "Costs and Cost Analysis"/ (123629)
- 33 VALUE OF LIFE/ (4707)
- 34 exp MODELS, ECONOMIC/ (4746)
- 35 exp FEES/ and CHARGES/ (6868)
- 36 exp BUDGETS/ (9138)

37 (economic\$ or price\$ or pricing or pharmacoeconomic\$ or pharma economic\$).tw. (81071)

- 38 (cost\$ or costly or costing\$ or costed).tw. (177271)
- 39 (cost\$ adj2 (benefit\$ or utilit\$ or minim\$)).tw. (10965)
- 40 (expenditure\$ not energy).tw. (9679)
- 41 (value adj2 (money or monetary)).tw. (536)
- 42 budget\$.tw. (9968)
- 43 (economic adj2 burden).tw. (1214)
- 44 "resource use".ti,ab. (1877)
- 45 or/38-56 (510863)
- 46 letter.pt. (563271)
- 47 editorial.pt. (190799)
- 48 comment.pt. (301718)

- 49 or/46-48 (795148)
- 50 45 not 49 (478420)
- 51 (19 or 24 or 25) and 50 (237)

EMBASE <1980 to 2006 Week 20> Date Searched: 19 May 2006

- 1 exp Retina Macula Degeneration/ (9028)
- 2 Retina Macula Age Related Degeneration/ (3665)
- 3 (age related maculopath\$ or maculopath\$).mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (2431)
- 4 age related macula\$ degeneration.mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (3199) 5 macula\$ degeneration.mp. (5373)
- 6 ((geographic\$ adj5 macular degeneration) or GAMD).mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (54)
- 7 (geographic\$ adj5 atrophy).mp. (230)

8 (AMD or ARMD).mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (2838)

- 9 age related eye disease\$.mp. (124)
- 10 senile macula\$ degenerat\$.mp. (160)
- 11 (neovascular\$ adj5 macula\$ degeneration).mp. (897)
- 12 (disciform adj5 macula\$ degeneration).mp. (102)
- 13 (choroidal neovascularization or CNV).mp. [mp=title, abstract, subject headings,

heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (2503)

- 14 Choroidal Neovascularization/ (2437)
- 15 Subretinal Neovascularization/ (2437)
- 16 (wet adj5 (macula\$ degeneration or AMD or ARMD)).mp. (75)
- 17 (exudative adj5 (macula\$ degeneration or AMD or ARMD)).mp. (425)
- 18 (dry adj5 (macula\$ degeneration or AMD or ARMD)).mp. (74)
- 19 (non-neovascular\$ adj5 macula\$ degen\$).mp. (3)
- 20 or/1-19 (13122)
- 21 Pegaptanib/ (190)
- 22 pegaptanib.mp. (201)
- 23 macugen.mp. (126)
- 24 exp RANIBIZUMAB/ (87)
- 25 ranibizumab.mp. (88)
- 26 lucentis.mp. (55)
- 27 (21 or 22 or 23) and 20 (146)
- 28 (24 or 25 or 26) and 20 (68)
- 29 (cost\$ adj2 effective\$).ti,ab. (34561)
- 30 (cost\$ adj2 benefit\$).ti,ab. (8379)
- 31 cost effectiveness analysis/ (43148)
- 32 cost benefit analysis/ (23324)
- 33 budget\$.ti,ab. (7287)
- 34 cost\$.ti. (32082)
- 35 (cost\$ adj2 (effective\$ or utilit\$ or benefit\$ or minimi\$)).ab. (38646)
- 36 (economic\$ or pharmacoeconomic\$ or pharmaco economic\$).ti. (12515)
- 37 (price\$ or pricing\$).ti,ab. (9253)
- 38 (financial or finance or finances or financed).ti,ab. (19015)
- 39 (fee or fees).ti,ab. (4441)
- 40 cost/ (18278)

- 41 cost minimization analysis/ (962)
- 42 cost of illness/ (3132)
- 43 cost utility analysis/ (1615)
- 44 drug cost/ (26499)
- 45 health care cost/ (46879)
- 46 health economics/ (8411)
- 47 economic evaluation/ (3066)
- 48 economics/ (4890)
- 49 pharmacoeconomics/ (867)
- 50 budget/ (6448)
- 51 economic burden.ti,ab. (1180)
- 52 "resource use".ti,ab. (19011)
- 53 or/29-52 (209548)
- 54 (editorial or letter).pt. (470416)
- 55 53 not 54 (188736)
- 56 20 or 27 or 28 (13122)
- 57 56 and 55 (215)

## **Quality of Life Searches**

The following strategy was used to search MEDLINE (OVID), EMBASE (OVID), MEDLINE In Process and the Cochrane Library Central Register of Controlled Trials.

Ovid MEDLINE(R) <1966 to May Week 3 2006>

Date searched: 25 May 2006

- 1 exp Macular Degeneration/ (7154)
- 2 (age related maculopath\$ or maculopath\$).mp. [mp=title, original title, abstract, name of substance word, subject heading word] (1742)

3 age related macula\$ degeneration.mp. [mp=title, original title, abstract, name of

substance word, subject heading word] (3313)

- 4 macula\$ degeneration.mp. (6994)
- 5 ((geographic\$ adj5 macular degeneration) or GAMD).mp. [mp=title, original title,
- abstract, name of substance word, subject heading word] (30)
- 6 (geographic\$ adj5 atrophy).mp. (228)

7 (AMD or ARMD or CNV).mp. [mp=title, original title, abstract, name of substance word, subject heading word] (3784)

- 8 age related eye disease\$.mp. (125)
- 9 senile macula\$ degenerat\$.mp. (309)
- 10 (neovascular adj5 macular degeneration).mp. (286)
- 11 (disciform adj5 macular degeneration).mp. (84)
- 12 ((choroid\$ or ocular) adj5 neovasc\$).mp. (2779)
- 13 Choroidal Neovascularization/ (1443)
- 14 (wet adj5 (macular degeneration or AMD or ARMD)).mp. (89)
- 15 (exudative adj5 (macular degeneration or AMD or ARMD)).mp. (444)
- 16 (dry adj5 (macular degeneration or AMD or ARMD)).mp. (70)
- 17 (non-neovascular adj5 macula\$ degen\$).mp. (3)
- 18 or/1-17 (12638)
- 19 value of life/ (4710)
- 20 quality adjusted life year/ (2585)
- 21 quality adjusted life.ti,ab. (1831)
- 22 (qaly\$ or qald\$ or qale\$ or qtime\$).ti,ab. (1446)
- 23 disability adjusted life.ti,ab. (317)
- 24 daly\$.ti,ab. (396)
- 25 health status indicators/ (10184)

26 (sf36 or sf 36 or short form 36 or shortform 36 or sf thirtysix or sf thirty six or shortform thirtysix or short form thirty six or short form thirty six or short form thirty six.).ti,ab. (5299)

27 (sf6 or sf 6 or short form 6 or shortform 6 or sf six or sfsix or shortform six or short form six).ti,ab. (644)

28 (sf12 or sf 12 or short form 12 or shortform 12 or sf twelve of sftwelve or shortform twelve).ti,ab. (622)

29 (sf16 or sf 16 or short form 16 or shortform 16 or sf sixteen or sfsixteen or shortform sixteen).ti,ab. (14)

30 (sf20 or sf 20 or short form 20 or shortform 20 or sf twenty or sftwenty or shortform twenty).ti,ab. (259)

- 31 (euroqol or euro qol or eq5d or eq 5d).ti,ab. (794)
- 32 (hql or hqol or h qol or hrqol or hr qol).ti,ab. (1845)
- 33 (hye or hyes).ti,ab. (45)
- 34 health\$ year\$ equivalent\$.ti,ab. (31)
- 35 health utilit\$.ab. (330)
- 36 (hui or hui1 or hui2 or hui3).ti,ab. (366)
- 37 disutil\$.ti,ab. (65)
- 38 rosser.ti,ab. (58)
- 39 quality of well being.ti,ab. (192)
- 40 quality of wellbeing.ti,ab. (1)
- 41 qwb.ti,ab. (105)
- 42 willingness to pay.ti,ab. (692)
- 43 standard gamble\$.ti,ab. (385)
- 44 time trade off.ti,ab. (333)
- 45 time tradeoff.ti,ab. (120)
- 46 tto.ti,ab. (221)
- 47 or/19-46 (26818)
- 48 letter.pt. (563849)
- 49 editorial.pt. (191055)
- 50 comment.pt. (302253)
- 51 or/48-50 (796061)
- 52 47 not 51 (25575)

53 (Visual Function Questionnaire\$ or VFQ35 or VFQ25).mp. [mp=title, original title, abstract, name of substance word, subject heading word] (85)

54 (LVQOL or Low Vision Quality of Life Question\$).mp. [mp=title, original title,

abstract, name of substance word, subject heading word] (4)

55 (IVI or Impact of Vision Impairment).mp. [mp=title, original title, abstract, name of substance word, subject heading word] (118)

56 ((QOLVFQ or Quality of Life) and Vision Function Question\$).mp. [mp=title, original title, abstract, name of substance word, subject heading word] (4)

57 (QOLVFQ or (Quality of Life and Vision Function Question\$)).mp. [mp=title, original title, abstract, name of substance word, subject heading word] (4)

- 58 Visual Function Index.mp. (19)
- 59 NEI-VFQ.mp. (75)
- 60 53 or 54 or 55 or 56 or 57 or 58 or 59 (256)
- 61 47 or 60 (27006)
- 62 61 not 51 (25763)
- 63 (vision or sight).mp. (72650)
- 64 63 or 18 (82861)
- 65 64 and 62 (404)
- 66 limit 65 to (humans and english language) (367)
- 67 62 and 18 (110)

EMBASE <1980 to 2006 Week 20>

Searched 25.05.06

1 (Visual Function Questionnaire\$ or VFQ35 or VFQ25).mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (84)

2 (LVQOL or Low Vision Quality of Life Question\$).mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (5)

3 (IVI or Impact of Vision Impairment).mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (99)

4 ((QOLVFQ or Quality of Life) and Vision Function Question\$).mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (4)

5 (QOLVFQ or (Quality of Life and Vision Function Question\$)).mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (4)

- 6 Visual Function Index.mp. (19)
- 7 NEI-VFQ.mp. (67)
- 8 1 or 2 or 3 or 4 or 5 or 6 or 7 (234)
- 9 exp "quality of life"/ (66274)
- 10 quality adjusted life year/ (2442)
- 11 quality adjusted life.ti,ab. (1732)
- 12 (qaly\$ or qald\$ or qale\$ or qtime\$).ti,ab. (1339)
- 13 disability adjusted life.ti,ab. (293)
- 14 daly\$.ti,ab. (334)

15 (sf36 or sf 36 or short form 36 or shortform 36 or sf thirtysix or sf thirty six or shortform thirtysix or short form thirty six or short form thirty six or short form thirty six.).ti,ab. (5188)

16 (sf6 or sf 6 or short form 6 or shortform 6 or sf six or sfsix or shortform six or short form six).ti,ab. (755)

17 (sf12 or sf 12 or short form 12 or shortform 12 or sf twelve of sftwelve or shortform twelve).ti,ab. (594)

18 (sf16 or sf 16 or short form 16 or shortform 16 or sf sixteen or sfsixteen or shortform sixteen).ti,ab. (22)

19 (sf20 or sf 20 or short form 20 or shortform 20 or sf twenty or sftwenty or shortform twenty).ti,ab. (188)

- 20 (euroqol or euro qol or eq5d or eq 5d).ti,ab. (779)
- 21 (hql or hqol or h qol or hrqol or hr qol).ti,ab. (1775)
- 22 (hye or hyes).ti,ab. (25)
- 23 health\$ year\$ equivalent\$.ti,ab. (23)
- 24 ((health or cost) adj5 utilit\$).ab,ti. (2366)
- 25 (hui or hui1 or hui2 or hui3).ti,ab. (276)
- disutil\$.ti,ab. (68)
- 27 rosser.ti,ab. (48)
- 28 quality of well being.ti,ab. (519)
- 29 quality of wellbeing.ti,ab. (6)
- 30 qwb.ti,ab. (93)
- 31 willingness to pay.ti,ab. (679)
- 32 standard gamble\$.ti,ab. (353)
- 33 time trade off.ti,ab. (322)
- 34 time tradeoff.ti,ab. (113)
- 35 tto.ti,ab. (235)
- 36 (index adj2 well being).mp. (1315)
- 37 (quality adj2 well being).mp. (2708)

38 (health adj3 utilit\$ ind\$).mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (237)

39 ((multiattribute\$ or multi attribute\$) adj3 (health ind\$ or theor\$ or health state\$ or utilit\$ or analys\$)).mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (133)

40 quality adjusted life year\$.mp. (3039)

41 (15D or 15 dimension\$).mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (513)

42 (12D or 12 dimension\$).mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (168)

43 rating scale\$.mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (47441)

44 linear scal\$.mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (242)

45 linear analog\$.mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (628)

46 visual analog\$.mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (14840)

47 (categor\$ adj2 scal\$).mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (755)

- 48 (letter or editorial or comment).pt. (470416)
- 49 or/8-47 (131234)

50 49 not 48 (123710)

51 exp Retina Macula Degeneration/ (9028)

52 Retina Macula Age Related Degeneration/ (3665)

53 (age related maculopath\$ or maculopath\$).mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (2431)

age related macula\$ degeneration.mp. [mp=title, abstract, subject headings, heading
 word, drug trade name, original title, device manufacturer, drug manufacturer name] (3199)
 macula\$ degeneration.mp. (5373)

56 ((geographic\$ adj5 macular degeneration) or GAMD).mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug

manufacturer name] (54)

57 (geographic\$ adj5 atrophy).mp. (230)

58 (AMD or ARMD).mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (2838)

- 59 age related eye disease\$.mp. (124)
- 60 senile macula\$ degenerat\$.mp. (160)
- 61 (neovascular\$ adj5 macula\$ degeneration).mp. (897)
- 62 (disciform adj5 macula\$ degeneration).mp. (102)

63 (choroidal neovascularization or CNV).mp. [mp=title, abstract, subject headings,

heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (2503)

- 64 Choroidal Neovascularization/ (2437)
- 65 Subretinal Neovascularization/ (2437)
- 66 (wet adj5 (macula\$ degeneration or AMD or ARMD)).mp. (75)
- 67 (exudative adj5 (macula\$ degeneration or AMD or ARMD)).mp. (425)
- 68 (dry adj5 (macula\$ degeneration or AMD or ARMD)).mp. (74)
- 69 (non-neovascular\$ adj5 macula\$ degen\$).mp. (3)
- 70 or/51-69 (13122)
- 71 50 and 70 (304)
- 72 limit 71 to (humans and english language) (242)

#### **Epidemiology searches**

The following strategies were used to search MEDLINE (OVID) 1966-2006, EMBASE 1980-2006 and Medline (Ovid), In process.

## Ovid MEDLINE(R) <1966 to May Week 3 2006>

- 1 exp Macular Degeneration/ (7154)
- 2 (age related maculopath\$ or maculopath\$).mp. [mp=title, original title, abstract, name of substance word, subject heading word] (1742)
- 3 age related macula\$ degeneration.mp. [mp=title, original title, abstract, name of
- substance word, subject heading word] (3313)
- 4 macula\$ degeneration.mp. (6994)
- 5 ((geographic\$ adj5 macular degeneration) or GAMD).mp. [mp=title, original title,
- abstract, name of substance word, subject heading word] (30)
- 6 (geographic\$ adj5 atrophy).mp. (228)

7 (AMD or ARMD or CNV).mp. [mp=title, original title, abstract, name of substance word, subject heading word] (3784)

- 8 age related eye disease\$.mp. (125)
- 9 senile macula\$ degenerat\$.mp. (309)
- 10 (neovascular adj5 macular degeneration).mp. (286)
- 11 (disciform adj5 macular degeneration).mp. (84)
- 12 ((choroid\$ or ocular) adj5 neovasc\$).mp. (2779)
- 13 Choroidal Neovascularization/ (1443)
- 14 (wet adj5 (macular degeneration or AMD or ARMD)).mp. (89)
- 15 (exudative adj5 (macular degeneration or AMD or ARMD)).mp. (444)
- 16 (dry adj5 (macular degeneration or AMD or ARMD)).mp. (70)
- 17 (non-neovascular adj5 macula\$ degen\$).mp. (3)
- 18 or/1-17 (12638)
- 19 *Epidemiology/ (3789)
- 20 *Incidence/ (353)
- 21 *Prevalence/ (451)
- 22 incidence.ti. (44140)
- 23 prevalence.ti. (42099)
- 24 epidemiol\$.ti. (61452)
- 25 etiolog\$.ti. (23642)
- 26 aetiolog\$.ti. (4622)
- 27 or/19-26 (172930)
- 28 18 and 27 (308)
- 29 limit 28 to english language (258)

#### EMBASE <1980 to 2006 Week 20>

- 1 incidence.ti. (28090)
- 2 prevalence.ti. (31494)
- 3 epidemiol\$.ti. (37278)
- 4 ((natural\$ or disease\$) adj3 (progress\$ or course\$ or histor\$)).ti. (10815)
- 5 1 or 2 or 3 or 4 (105211)
- 6 exp Retina Macula Degeneration/ep, et [Epidemiology, Etiology] (1648)
- 7 exp Retina Macula Age Related Degeneration/ep, et [Epidemiology, Etiology] (788)
- 8 (age related maculopath\$ or maculopath\$).mp. [mp=title, abstract, subject headings,
- heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (2431)
- 9 age related macula\$ degeneration.mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (3199)
- 10 macula\$ degeneration.mp. (5373)
- 11 (wet adj5 (macula\$ degeneration or AMD or ARMD)).mp. (75)
- 12 (exudative adj5 (macula\$ degeneration or AMD or ARMD)).mp. (425)
- 13 (dry adj5 (macula\$ degeneration or AMD or ARMD)).mp. (74)
- 14 (non-neovascular\$ adj5 macula\$ degen\$).mp. (3)
- 15 Subretinal Neovascularization/et, ep [Etiology, Epidemiology] (303)

- 16 OR/6-15 (7854)
- 17 5 and 16 (600)
- 18 limit 17 to (english language and yr="1996 2006") (187)

## **Additional Searching**

Bibliographies: all references of articles for which full papers were retrieved were checked to ensure that no eligible studies had been missed.

# Appendix 3 Quality assessment

a. Quality criteria for assessment of experimental studies (NHS CRD)⁹⁹

Item	Judgement*
1. Was the assignment to the treatment groups really random?	
2. Was the treatment allocation concealed?	
3. Were the groups similar at baseline in terms of prognostic factors?	
4. Were the eligibility criteria specified?	
5. Were outcome assessors blinded to the treatment allocation?	
6. Was the care provider blinded?	
7. Was the patient blinded?	
8. Were the point estimates and measure of variability presented for the primary outcome	
measure?	
9. Did the analyses include an intention to treat analysis?	
10. Were withdrawals and dropouts completely described?	

* adequate, inadequate, not reported, unclear

Reference and	Intervention	Particinants	Outcome measures
Design			
VISION study	1. intravitreous	Target population Patients with	Primary outcome. Proportion of
v ibioi ( biddy	injection of 0.3mg	all angiographic subtypes of	patients who lost $< 15$ letters of visual
Gragoudas et	pegaptanib into 1 eve	lesions were enrolled	acuity (VA) (3 lines on the study eve
al. 2004 ⁹⁵	every 6 weeks, total of		chart) between baseline and week 54.
D'Amico et al	9 treatments	Number of Participants: 586	,
2006 ¹⁰¹		patients were included in the	Secondary outcomes:
Chakravarthy	2. intravitreous	USA/Canada trial, and 622 were	Maintenance, gain and severe loss of
$2006^{100}$	injection of 1.0mg	included in the worldwide trial.	visual acuity
	pegaptanib into 1 eye	The publication combines both	Adverse events
CIC info from	every 6 weeks, total of	study populations for the	
industry	9 treatments	analysis data extracted here.	Year 2 efficacy outcomes (not all data
submission			extracted): mean change in VA from
results	3. intravitreous	Total randomly assigned	week 54 to week 102; Kaplan-Meier
	injection of 3.0mg	(N=1208):	proportions of the loss of an additional
USA; Canada;	pegaptanib into 1 eye	1. 0.3mg n=297	15 letters from week 54 to week 102;
Europe; Israel;	every 6 weeks, total of	2. 1.0 mg n=305	loss of $< 15$ letters from baseline to
Australia;	9 treatments	3. 3.0 mg n=302	week 102; progression to legal
South America		4. sham injection n=304	blindness in study eye; proportion of
	4. sham injection into		patients gaining $\geq 0, \geq 1, \geq 2, \geq 3$ lines of
Study design:	I eye every 6 weeks,	Total receiving at least one dose	VA; VA changes for patients who
2 concurrent,	total of 9 treatments	of study treatment (N=1190):	resumed therapy after discontinuation;
prospective,	D ( 1)	1. 0.3mg n=295	changes in lesion size, total CNV, leak
double blind	Pegaptanib pts were	2.1.0  mg n=301	area and area of serous sensory retinal
RCIS – final	then re-randomised	3. 3.0 mg n=296	detachment.
analysis	(1:1) to either	4. snam injection n=298	Mathead of annousing and annous
Number of	discontinue or	1 nationts were evaluated from	Meinoa of assessing outcomes:
Number of	discontinue	4 patients were excluded from	A separate, blinded visual-acuity
centres. 117	pegaptanio. Snam pis	sufficiently stendardized	acuity
Setting: not	$(1\cdot1\cdot1\cdot1\cdot1)$ to	assessment of visual acuity was	acuity.
reported	discontinue continue	not completed at baseline	Length of follow-up: 54 weeks
reported	sham or receive 1 of	Total for efficacy analyses	followed by re-randomisation and
Funding	the 3 pegaptanib	(n=1186)	additional 48 weeks treatment
Evetech	doses	1 0 3 mg n = 294	
pharma, and	40505.	2 10  mg n = 300	
Pfizer	Duration of treatment:	3.3.0  mg n=296	
-	48 weeks then	4. sham injection n=296	
	additional 48 weeks	5	
	treatment.		
		88% (1053/1190) were	
	Other interventions	rerandomised at week 54, and	
	used: pts in all groups	89% (941/1053) were assessed	
	underwent an ocular	at week 102.	
	antisepsis procedure	Second year randomisation:	
	and received injected	0.3mg - 0.3mg n=133	
	subconjunctival	0.3mg – discontinue n=132	
	anaesthetic.	1.0mg - 1.0mg n=133	
		1.0mg – discontinue n=131	
	PDT with verteporfin	3.0mg – 3.0mg n=125	
	was permitted in the	3.0mg – discontinue n=127	
	treatment of patients	sham $-0.3$ mg n=53	
	with predominantly	sham – 1.0mg n=55	J

# Appendix 4 Data extraction tables

classic lesio	ns, sham $-3.0$ mg n=	=57	
although 78	% of sham – sham n=	53	
patients did	not sham – discontir	ue n=54	
receive PD1	during	1, 102	
the study.	n assessed at we	-114	
	0.3mg - 0.3mg r		
	0.3  mg - discontrained	-110	
	1.0mg disconti	-119	
	3.0 mg = 3.0 mg  r		
	3 0mg – disconti	$n_{11} = 109$	
	sham - 0 3mg n	=50	
	sham - 1.0mg n	=46	
	sham – 3.0mg n=	=52	
	sham – sham n=	51	
	sham – discontir	ue n=48	
	Sample attrition	dropout:	
	Approximately 9	0% completed	
	the study. In all	groups, an	
	average of 8.5 in	jections was	
	administered per	patient out of a	
	possible total of	9.	
	Inclusion/exclus	ion criteria for	
	study entry: age	> 50 with	
	subfoveal sites o	f choroidal	
	neovascularisatio	on secondary to	
	age-related macu	ılar	
	degeneration and	l a range of best	
	corrected visual	acuity of 20/40	
	to 20/320 in the	study eye and	
	of 20/800 or bett	er in the other	
	eye. Lesions wit	h a total size up	
	to and including	12 optic-disk	
	areas (including	blood, scar or	
	atrophy, and neo	A dditional	
	criteria reported	in	
	supplementary p	aper not	
	extracted		
I	CATTUOTOU.		
Characteristics of participan	<b>ts:</b> $(N/R = not reported)$		
···· · ··· ··· ··· ··· ··· ··· ··· ···	· · · · · · · · · · · · · · · · · · ·		

	0.3mg pegaptanib (n=295)	1.0 mg pegaptanib (n=301)	3.0mg pegaptanib (n=296)	sham injection (n=298)
Sex n (%)	(	(	(	
Male	133 (45)	136 (45)	105 (35)	120 (40)
Female	162 (55)	165 (55)	191 (65)	178 (60)
Race n (%)				
White	283 (96)	291 (97)	286 (97)	284 (95)
Other	12 (4)	10 (3)	10 (3)	14 (5)
Age (yrs) n (%)				
50-64	19 (6)	21 (7)	18 (6)	21 (7)
65-74	86 (29)	105 (35)	90 (30)	94 (32)

75-84	155 (53)	147 (49)	153 (52)	160 (54)	
> 85	35(12)	28(9)	35(12)	23(8)	
Angiographic subtype of lesion n	55 (12)	20())	55 (12)	25 (0)	
Predominantly classic (>	72 (24)	78 (26)	80 (27)	76 (26)	
50% classic CNV)	12 (24)	70 (20)	00(27)	70 (20)	
Minimally classic (<50%	111 (38)	108 (35)	105 (35)	102 (34)	
classic (NV)	111 (30)	100 (55)	105 (55)	102 (34)	
Occult with no classic	112 (38)	115 (38)	111 (38)	120 (40)	
Size of lesion (+SD) no. of	37+24	40+24	37+25	4 2 + 2 8	
optic-disc areas $(=2.54 \text{ mm}^2)$	5.7-2.1	1.0-2.1	5.7 - 2.5	1.2 -2.0	
History of ocular surgery or laser	123 (42)	117 (39)	124 (42)	124 (42)	
treatment n $\binom{0}{2}$	125 (42)	117 (37)	124 (42)	124 (42)	
Visual acuity					
Study eve					
Mean $\pm$ SD	$528 \pm 126$	$50.7 \pm 12.8$	$51.1 \pm 12.9$	$52.7 \pm 13.0$	
Median (range)	$52.0 \pm 12.0$ 55 (11-75)	$50.7 \pm 12.0$ 52 (19-77)	$51.1 \pm 12.9$ 53 (14-76)	$52.7 \pm 13.0$ 53 (11-77)	
Other eve	55 (11-75)	52 (1)-77)	55 (14-70)	55 (11-77)	
Mean $\pm$ SD	56 2+ 27 2	$54.8 \pm 27.6$	56 + 26.4	$55.9 \pm 27.0$	
Median (range)	$50.2\pm 27.2$ 68 (3-85)	$54.0 \pm 27.0$ 67 (3-85)	$50 \pm 20.4$ 65 (4-85)	$53.9 \pm 27.0$ 67 (2-85)	
Health status (%)	00 (5 05)	07 (5 05)	05 (4 05)	07 (2 05)	
Hypertension	55			48	
Hypercholesterolemia	21			18	
diabetes mellitus	10			7	
cardiac disorders	35			34	
cerebrovascular disease	3			1	
nerinheral arterial disease	3			3	
ECG abnormalities	5			18	
	34 (9)	20(10)	27 (0)		
History of PDT n(%)	24 (8) 29 (10) 27 (9) 18 (6)				
History of PDT n(%) P values were not reported for base	24 (8) Jine characteristics h	29(10)	27 (9)	18 (6)	
History of PDT n(%) P values were not reported for base the patients at baseline were simila	24 (8) line characteristics, b	29 (10) out authors state that c	lemographic and ocul	ar characteristics of	
History of PDT n(%) P values were not reported for base the patients at baseline were simila	24 (8) eline characteristics, b r among the treatmen	29 (10) out authors state that c t groups.	lemographic and ocul	ar characteristics of	
History of PDT n(%) P values were not reported for base the patients at baseline were simila <b>Results (year 1)</b> (n/s = not statistic	24 (8) Eline characteristics, b r among the treatmen ally significant)	29 (10) ut authors state that c t groups.	lemographic and ocul	18 (6) ar characteristics of	
History of PDT n(%) P values were not reported for base the patients at baseline were simila <b>Results (year 1)</b> (n/s = not statistic <b>Outcomes</b>	24 (8) Eline characteristics, b r among the treatmen ally significant) 0.3mg	29 (10) tut authors state that of t groups. 1.0 mg percentagib	3.0mg	ar characteristics of sham injection	
History of PDT n(%) P values were not reported for base the patients at baseline were simila <b>Results (year 1)</b> (n/s = not statistic <b>Outcomes</b>	24 (8) Eline characteristics, b r among the treatmen cally significant) 0.3mg pegaptanib (n=294)	1.0 mg pegaptanib (n=300)	3.0mg pegaptanib	ar characteristics of sham injection (n=296)	
History of PDT n(%) P values were not reported for base the patients at baseline were simila <b>Results (year 1)</b> (n/s = not statistic <b>Outcomes</b>	24 (8) Eline characteristics, b r among the treatmen cally significant) 0.3mg pegaptanib (n=294) 206(70)	1.0 mg pegaptanib (n=300)	3.0mg pegaptanib (n=296)	sham injection (n=296)	
History of PDT n(%) P values were not reported for base the patients at baseline were simila <b>Results (year 1)</b> (n/s = not statistic <b>Outcomes</b> Visual acuity: loss of <15 letters at work 54 p(%)	24 (8) Eline characteristics, b r among the treatmen ally significant) 0.3mg pegaptanib (n=294) 206(70)	29 (10)         ut authors state that c         t groups.         1.0 mg         pegaptanib         (n=300)         213(71)	<b>3.0mg</b> pegaptanib (n=296) 193 (65)	sham injection (n=296) 164 (55)	
History of PDT n(%) P values were not reported for base the patients at baseline were simila <b>Results (year 1)</b> (n/s = not statistic <b>Outcomes</b> Visual acuity: loss of <15 letters at week 54 n(%) P value vs. sham	24 (8) Eline characteristics, b r among the treatmen ally significant) 0.3mg pegaptanib (n=294) 206(70) p < 0.001	<b>1.0 mg</b> <b>pegaptanib</b> (n=300) 213(71)	<b>3.0mg</b> pegaptanib (n=296) 193 (65) p=0.03	ar characteristics of sham injection (n=296) 164 (55)	
History of PDT n(%) P values were not reported for base the patients at baseline were simila <b>Results (year 1)</b> (n/s = not statistic <b>Outcomes</b> Visual acuity: loss of <15 letters at week 54 n(%) P value vs. sham The differences between the doses	24 (8) line characteristics, b r among the treatmen ally significant) 0.3mg pegaptanib (n=294) 206(70) p<0.001 of pagaptanib wara p	<b>1.0 mg</b> <b>pegaptanib</b> (n=300) 213(71) p<0.001 ot significant	<b>3.0mg</b> pegaptanib (n=296) 193 (65) p=0.03	sham injection (n=296) 164 (55)	
History of PDT n(%) P values were not reported for base the patients at baseline were simila <b>Results (year 1)</b> (n/s = not statistic <b>Outcomes</b> Visual acuity: loss of <15 letters at week 54 n(%) P value vs. sham The differences between the doses Authors state that 'similar results w	24 (8) line characteristics, b r among the treatmen ally significant) 0.3mg pegaptanib (n=294) 206(70) p<0.001 of pegaptanib were n	29 (10)         ut authors state that of t groups.         1.0 mg         pegaptanib         (n=300)         213(71)         p<0.001	3.0  mg $pegaptanib$ $(n=296)$ $193 (65)$ $p=0.03$	18 (6)         ar characteristics of         sham injection         (n=296)         164 (55)	
History of PDT n(%) P values were not reported for base the patients at baseline were simila <b>Results (year 1)</b> (n/s = not statistic <b>Outcomes</b> Visual acuity: loss of <15 letters at week 54 n(%) P value vs. sham The differences between the doses Authors state that 'similar results w evaluated both at baseline and at w	24 (8) line characteristics, b r among the treatmen ally significant) 0.3mg pegaptanib (n=294) 206(70) p<0.001 of pegaptanib were n were obtained when an arek 54 indicating the	29 (10)         ut authors state that of t groups.         1.0 mg         pegaptanib         (n=300)         213(71)         p<0.001	3.0mg pegaptanib (n=296) 193 (65) p=0.03 d to the subgroup of p	18 (6)         ar characteristics of         sham injection         (n=296)         164 (55)         patients who were         patients who were         patients who were	
History of PDT n(%) P values were not reported for base the patients at baseline were simila <b>Results (year 1)</b> (n/s = not statistic <b>Outcomes</b> Visual acuity: loss of <15 letters at week 54 n(%) P value vs. sham The differences between the doses Authors state that 'similar results w evaluated both at baseline and at w extracted)	24 (8) line characteristics, b r among the treatmen cally significant) 0.3mg pegaptanib (n=294) 206(70) p<0.001 of pegaptanib were n vere obtained when an eek 54, indicating tha	29 (10)         ut authors state that of t groups.         1.0 mg         pegaptanib         (n=300)         213(71)         p<0.001	27 (9)         lemographic and ocul         3.0mg         pegaptanib         (n=296)         193 (65)         p=0.03         d to the subgroup of pobably did not influence	18 (6)         ar characteristics of         sham injection (n=296)         164 (55)         patients who were nee results' (data not	
History of PDT n(%) P values were not reported for base the patients at baseline were simila <b>Results (year 1)</b> (n/s = not statistic <b>Outcomes</b> Visual acuity: loss of <15 letters at week 54 n(%) P value vs. sham The differences between the doses Authors state that 'similar results were similar results of the two trials were similar the trials were similar results of the two trials were similar results of the two trials were similar results were similar results of the two trials were similar results were similar results of the two trials were similar results were similar results of the two trials were similar results were similar results of the two trials were similar results were similar resu	24 (8) line characteristics, b r among the treatmen cally significant) 0.3mg pegaptanib (n=294) 206(70) p<0.001 of pegaptanib were n vere obtained when an eek 54, indicating that imilar, with both reac	29 (10)         ut authors state that of t groups.         1.0 mg         pegaptanib         (n=300)         213(71)         p<0.001	<b>3.0mg</b> pegaptanib (n=296) 193 (65) p=0.03 d to the subgroup of p bably did not influent	18 (6)         ar characteristics of         sham injection         (n=296)         164 (55)         patients who were         nce results' (data not         vefficacy end point	
History of PDT n(%) P values were not reported for base the patients at baseline were simila <b>Results (year 1)</b> (n/s = not statistic <b>Outcomes</b> Visual acuity: loss of <15 letters at week 54 n(%) P value vs. sham The differences between the doses Authors state that 'similar results we evaluated both at baseline and at we extracted). The results of the two trials were similar (0 3 mg of pegantanib, p=0.03 and baseline and at we P value vs. shark the two trials were similar results of the two trials were simi	24 (8) line characteristics, b r among the treatmen ally significant) 0.3mg pegaptanib (n=294) 206(70) p<0.001 of pegaptanib were n vere obtained when an eek 54, indicating that imilar, with both reactor p=0.01	29 (10)         ut authors state that of t groups.         1.0 mg         pegaptanib         (n=300)         213(71)         p<0.001	<b>3.0mg</b> pegaptanib (n=296) 193 (65) p=0.03 d to the subgroup of pobably did not influent icance for the primary	18 (6)         ar characteristics of         sham injection (n=296)         164 (55)         patients who were nee results' (data not v efficacy end point	
History of PDT n(%)         P values were not reported for base the patients at baseline were simila         Results (year 1) (n/s = not statistic         Outcomes         Visual acuity: loss of <15 letters at week 54 n(%)	24 (8) line characteristics, b r among the treatmen ally significant) 0.3mg pegaptanib (n=294) 206(70) p<0.001 of pegaptanib were n vere obtained when ar eek 54, indicating that imilar, with both reac p=0.01). 98 (33)	<b>1.0 mg</b> <b>pegaptanib</b> <b>(n=300)</b> 213(71) p<0.001 ot significant. nalyses were restricted it the missing data pro- hing statistical significant <b>110 (37)</b>	3.0mg pegaptanib (n=296) 193 (65) p=0.03 d to the subgroup of p bably did not influen	18 (6)         ar characteristics of         sham injection (n=296)         164 (55)         patients who were nee results' (data not v efficacy end point         67 (23)	
History of PDT $n(\%)$ P values were not reported for base the patients at baseline were simila <b>Results (year 1)</b> (n/s = not statistic <b>Outcomes</b> Visual acuity: loss of <15 letters at week 54 $n(\%)$ P value vs. sham The differences between the doses Authors state that 'similar results v evaluated both at baseline and at w extracted). The results of the two trials were si (0.3mg of pegaptanib, p=0.03 and p Maintenance or gain ≥ 1 letters n(%)	24 (8) line characteristics, b r among the treatmen ally significant) 0.3mg pegaptanib (n=294) 206(70) p<0.001 of pegaptanib were n were obtained when an eek 54, indicating that imilar, with both reac p=0.01). 98 (33)	29 (10)         ut authors state that of t groups.         1.0 mg         pegaptanib $(n=300)$ 213(71) $p<0.001$ ot significant.         nalyses were restricted the missing data proching statistical significant         110 (37)	3.0mg pegaptanib (n=296) 193 (65) p=0.03 d to the subgroup of p obably did not influen cance for the primary 93 (31)	18 (6)         ar characteristics of         sham injection (n=296)         164 (55)         patients who were nee results' (data not v efficacy end point         67 (23)	
History of PDT $n(\%)$ P values were not reported for base the patients at baseline were simila <b>Results (year 1)</b> (n/s = not statistic <b>Outcomes</b> <b>Visual acuity: loss of &lt;15 letters</b> <b>at week 54 n(%)</b> P value vs. sham The differences between the doses Authors state that 'similar results w evaluated both at baseline and at w extracted). The results of the two trials were si (0.3mg of pegaptanib, p=0.03 and j <b>Maintenance or gain ≥ 1 letters</b> n(%) P value vs. sham	24 (8) line characteristics, b r among the treatmen ally significant) 0.3mg pegaptanib (n=294) 206(70) p<0.001 of pegaptanib were n were obtained when an eek 54, indicating that imilar, with both reac p=0.01). 98 (33) 0.003	29 (10)         ut authors state that of t groups.         1.0 mg         pegaptanib $(n=300)$ 213(71) $p<0.001$ ot significant.         nalyses were restricted         the missing data pro-         hing statistical significant         110 (37)         <0.001	27 (9) lemographic and ocul 3.0mg pegaptanib (n=296) 193 (65) p=0.03 d to the subgroup of p bably did not influent icance for the primary 93 (31) 0.02	18 (6)         ar characteristics of         sham injection (n=296)         164 (55)         batients who were not results' (data not v efficacy end point         67 (23)	
History of PDT $n(\%)$ P values were not reported for base the patients at baseline were simila <b>Results (year 1)</b> (n/s = not statistic <b>Outcomes</b> Visual acuity: loss of <15 letters at week 54 $n(\%)$ P value vs. sham The differences between the doses Authors state that 'similar results we evaluated both at baseline and at we extracted). The results of the two trials were sin (0.3mg of pegaptanib, p=0.03 and points) Maintenance or gain $\ge 1$ letters n(%) P value vs. sham Cain $\ge 5$ letters $n(\%)$	24 (8) line characteristics, b r among the treatmen ally significant) 0.3mg pegaptanib (n=294) 206(70) p<0.001 of pegaptanib were n vere obtained when an eek 54, indicating that imilar, with both reac p=0.01). 98 (33) 0.003 64 (22)	29 (10)         ut authors state that of t groups.         1.0 mg         pegaptanib         (n=300)         213(71) $p < 0.001$ ot significant.         halyses were restricted         the missing data pro-         hing statistical significant.         110 (37)         < 0.001	27 (9) lemographic and ocul 3.0mg pegaptanib (n=296) 193 (65) p=0.03 d to the subgroup of p bably did not influent cance for the primary 93 (31) 0.02 49 (17)	18 (6)         ar characteristics of         ar characteristics of         sham injection         (n=296)         164 (55)         batients who were         ace results' (data not         v efficacy end point         67 (23)         36 (12)	
History of PDT $n(\%)$ P values were not reported for base the patients at baseline were simila <b>Results (year 1)</b> (n/s = not statistic <b>Outcomes</b> <b>Visual acuity: loss of &lt;15 letters</b> <b>at week 54 n(%)</b> P value vs. sham The differences between the doses Authors state that 'similar results we evaluated both at baseline and at we extracted). The results of the two trials were si (0.3mg of pegaptanib, p=0.03 and p <b>Maintenance or gain ≥ 1 letters</b> <b>n(%)</b> P value vs. sham <b>Gain ≥ 5 letters n(%)</b> P value vs. sham	24 (8) line characteristics, b r among the treatmen ally significant) 0.3mg pegaptanib (n=294) 206(70) p<0.001 of pegaptanib were n vere obtained when an eek 54, indicating that imilar, with both reac p=0.01). 98 (33) 0.003 64 (22) 0.004	29 (10)ut authors state that oft groups.1.0 mgpegaptanib(n=300)213(71) $p<0.001$ ot significant.halyses were restrictedthe missing data pro-hing statistical significant110 (37)<0.001	lemographic and ocul <b>3.0mg</b> pegaptanib (n=296) 193 (65) p=0.03 d to the subgroup of p bably did not influent cance for the primary 93 (31) 0.02 49 (17) 0.12	18 (6)         ar characteristics of         ar characteristics of         sham injection (n=296)         164 (55)         batients who were not results' (data not vefficacy end point         67 (23)         36 (12)	
History of PDT $n(\%)$ P values were not reported for base the patients at baseline were simila <b>Results (year 1)</b> (n/s = not statistic <b>Outcomes</b> <b>Visual acuity: loss of &lt;15 letters</b> <b>at week 54 n(%)</b> P value vs. sham The differences between the doses Authors state that 'similar results we evaluated both at baseline and at we extracted). The results of the two trials were sid (0.3mg of pegaptanib, p=0.03 and 1) Maintenance or gain $\ge 1$ letters n(%) P value vs. sham <b>Gain $\ge 5$ letters n(%)</b> P value vs. sham	24 (8) line characteristics, b r among the treatmen cally significant) 0.3mg pegaptanib (n=294) 206(70) p<0.001 of pegaptanib were n vere obtained when ar eek 54, indicating that imilar, with both reac p=0.01). 98 (33) 0.003 64 (22) 0.004 33 (11)	29 (10)ut authors state that oft groups.1.0 mgpegaptanib(n=300)213(71) $p<0.001$ ot significant.nalyses were restrictedt the missing data pro-hing statistical signifi110 (37)<0.001	27 (9) lemographic and ocul 3.0mg pegaptanib (n=296) 193 (65) p=0.03 d to the subgroup of p bably did not influent cance for the primary 93 (31) 0.02 49 (17) 0.12 31 (10)	18 (6)         ar characteristics of         ar characteristics of         sham injection (n=296)         164 (55)         patients who were         acc results' (data not         v efficacy end point         67 (23)         36 (12)         17 (6)	
History of PDT $n(\%)$ P values were not reported for base the patients at baseline were simila <b>Results (year 1)</b> (n/s = not statistic <b>Outcomes</b> <b>Visual acuity: loss of &lt;15 letters</b> <b>at week 54 n(%)</b> P value vs. sham The differences between the doses Authors state that 'similar results we evaluated both at baseline and at we extracted). The results of the two trials were sid (0.3mg of pegaptanib, p=0.03 and point <b>Maintenance or gain ≥ 1 letters</b> n(%) P value vs. sham <b>Gain ≥ 5 letters n(%)</b> P value vs. sham <b>Gain ≥ 10 letters n(%)</b> P value vs. sham	24 (8) line characteristics, b r among the treatmen cally significant) 0.3mg pegaptanib (n=294) 206(70) p<0.001 of pegaptanib were n vere obtained when an eek 54, indicating that imilar, with both reac p=0.01). 98 (33) 0.003 64 (22) 0.004 33 (11) 0 02	29 (10)ut authors state that oft groups.1.0 mgpegaptanib(n=300)213(71) $p<0.001$ ot significant.nalyses were restrictedt the missing data pro-hing statistical signifi110 (37)<0.001	27 (9)lemographic and ocul <b>3.0mg</b> pegaptanib(n=296)193 (65)p=0.03d to the subgroup of pbably did not influencance for the primary93 (31)0.0249 (17)0.1231 (10)0.03	18 (6)         ar characteristics of         sham injection (n=296)         164 (55)         patients who were nee results' (data not vefficacy end point         67 (23)         36 (12)         17 (6)	
History of PDT $n(\%)$ P values were not reported for base the patients at baseline were simila <b>Results (year 1)</b> (n/s = not statistic <b>Outcomes</b> Visual acuity: loss of <15 letters at week 54 $n(\%)$ P value vs. sham The differences between the doses Authors state that 'similar results v evaluated both at baseline and at w extracted). The results of the two trials were si (0.3mg of pegaptanib, p=0.03 and p Maintenance or gain $\ge 1$ letters n(%) P value vs. sham <b>Gain $\ge 5$ letters $n(\%)$</b> P value vs. sham <b>Gain $\ge 10$ letters $n(\%)$</b> P value vs. sham	24 (8) line characteristics, b r among the treatmen ally significant) 0.3mg pegaptanib (n=294) 206(70) p<0.001 of pegaptanib were n vere obtained when an eek 54, indicating that imilar, with both reac p=0.01). 98 (33) 0.003 64 (22) 0.004 33 (11) 0.02 18 (6)	29 (10)ut authors state that oft groups.1.0 mgpegaptanib(n=300)213(71) $p<0.001$ ot significant.nalyses were restrictedt the missing data pro-hing statistical significant.110 (37)<0.001	27 (9)lemographic and ocul <b>3.0mg</b> pegaptanib(n=296)193 (65)p=0.03d to the subgroup of pbably did not influencance for the primary93 (31)0.0249 (17)0.1231 (10)0.0313 (4)	18 (6)         ar characteristics of         sham injection (n=296)         164 (55)         batients who were ace results' (data not vefficacy end point         67 (23)         36 (12)         17 (6)         6 (2)	
History of PDT $n(\%)$ P values were not reported for base the patients at baseline were simila <b>Results (year 1)</b> (n/s = not statistic <b>Outcomes</b> Visual acuity: loss of <15 letters at week 54 $n(\%)$ P value vs. sham The differences between the doses Authors state that 'similar results were evaluated both at baseline and at were extracted). The results of the two trials were sin (0.3mg of pegaptanib, p=0.03 and j Maintenance or gain $\ge 1$ letters n(%) P value vs. sham <b>Gain $\ge 5$ letters $n(\%)$</b> P value vs. sham <b>Gain $\ge 15$ letters $n(\%)$</b> P value vs. sham	24 (8) line characteristics, b r among the treatmen ally significant) 0.3mg pegaptanib (n=294) 206(70) p<0.001 of pegaptanib were n vere obtained when an eek 54, indicating that imilar, with both reac p=0.01). 98 (33) 0.003 64 (22) 0.004 33 (11) 0.02 18 (6) 0.04	29 (10)ut authors state that oft groups.1.0 mgpegaptanib(n=300)213(71) $p<0.001$ ot significant.nalyses were restrictedthe missing data pro-hing statistical significant.110 (37)<0.001	27 (9)lemographic and ocul <b>3.0mg</b> pegaptanib(n=296)193 (65)p=0.03d to the subgroup of pbably did not influentcance for the primary93 (31)0.0249 (17)0.1231 (10)0.0313 (4)0.16	18 (6)         ar characteristics of         sham injection (n=296)         164 (55)         batients who were not results' (data not v efficacy end point         67 (23)         36 (12)         17 (6)         6 (2)	
History of PDT $n(\%)$ P values were not reported for base the patients at baseline were simila <b>Results (year 1)</b> (n/s = not statistic <b>Outcomes</b> <b>Visual acuity: loss of &lt;15 letters</b> <b>at week 54 n(%)</b> P value vs. sham The differences between the doses Authors state that 'similar results w evaluated both at baseline and at w extracted). The results of the two trials were si (0.3mg of pegaptanib, p=0.03 and j <b>Maintenance or gain ≥ 1 letters</b> n(%) P value vs. sham <b>Gain ≥ 5 letters n(%)</b> P value vs. sham <b>Gain ≥ 15 letters n(%)</b> P value vs. sham	24 (8) line characteristics, b r among the treatmen ally significant) 0.3mg pegaptanib (n=294) 206(70) p<0.001 of pegaptanib were n vere obtained when an eek 54, indicating that imilar, with both reac p=0.01). 98 (33) 0.003 64 (22) 0.004 33 (11) 0.02 18 (6) 0.04 28 (10)	29 (10)ut authors state that oft groups.1.0 mgpegaptanib(n=300)213(71) $p<0.001$ ot significant.nalyses were restrictedthe missing data pro-hing statistical significant.110 (37)<0.001	27(9)         lemographic and ocul <b>3.0mg</b> pegaptanib $(n=296)$ 193 (65) $p=0.03$ d to the subgroup of p         bably did not influen         cance for the primary         93 (31)         0.02         49 (17)         0.12         31 (10)         0.03         13 (4)         0.16	18 (6)         ar characteristics of         sham injection (n=296)         164 (55)         batients who were ace results' (data not vefficacy end point)         67 (23)         36 (12)         17 (6)         6 (2)         65 (22)	
History of PDT $n(\%)$ P values were not reported for base the patients at baseline were simila <b>Results (year 1)</b> (n/s = not statistic <b>Outcomes</b> Visual acuity: loss of <15 letters at week 54 $n(\%)$ P value vs. sham The differences between the doses Authors state that 'similar results w evaluated both at baseline and at w extracted). The results of the two trials were si (0.3mg of pegaptanib, p=0.03 and ) Maintenance or gain $\ge 1$ letters n(%) P value vs. sham <b>Gain $\ge 5$ letters $n(\%)$</b> P value vs. sham <b>Gain $\ge 15$ letters $n(\%)$</b> P value vs. sham <b>Gain $\ge 15$ letters $n(\%)$</b> P value vs. sham <b>Gain $\ge 30$ letters $n(\%)$</b> P value vs. sham	24 (8) line characteristics, b r among the treatmen ally significant) 0.3mg pegaptanib (n=294) 206(70) p<0.001 of pegaptanib were n vere obtained when an eek 54, indicating that imilar, with both reac p=0.01). 98 (33) 0.003 64 (22) 0.004 33 (11) 0.02 18 (6) 0.04 28 (10) <0.001	29 (10)ut authors state that oft groups.1.0 mgpegaptanib(n=300)213(71) $p<0.001$ ot significant.halyses were restrictedt the missing data pro-hing statistical significant.110 (37)<0.001	27 (9)         lemographic and ocul <b>3.0mg</b> pegaptanib         (n=296)         193 (65)         p=0.03         d to the subgroup of p         bably did not influent         cance for the primary         93 (31)         0.02         49 (17)         0.12         31 (10)         0.03         13 (4)         0.16         40 (14)         0.01	18 (6)         ar characteristics of         sham injection (n=296)         164 (55)         batients who were not results' (data not vefficacy end point)         67 (23)         36 (12)         17 (6)         6 (2)         65 (22)	

Snellen equivalent visual acuity	111 (38)	128 (43)	129 (44)	165 (56)
in study eye $\leq 20/200$ (legal				
blindness)				
n(%)	< 0.001	< 0.001	0.001	
P value vs. sham				
Mean change in visual acuity	-7.5	-6.5	-10	- 14.5
(no. of letters) at 54 weeks *	< 0.002	< 0.002	0.05	
* Data estimated from figure.				
Mean loss of visual acuity from ba	seline to each study v	visit (every 6 weeks) w	vas significantly lowe	er for pegaptanib
than sham (p<0.002 at each time p	oint for 0.3 mg or 1.0	mg, p< $0.05$ at each t	ime point for 3.0 mg)	
Subgroup analyses (year 1)– mea	in decrease in visual	acuity (no. of letters	s)* (p compared wit	h sham)
Lesion type	7.1	10.2	10.5	14
Predominantly classic	7.1 D <0.05	10.2	10.5	14
Minimalla desia	P<0.05	n/s	n/s	14.0
Minimally classic	/.3 D <0.001	6.5	9.4	14.2
	P<0.001	p<0.001	p<0.05	17
Occult with no classic	9 D (0.01	6	9.5	17
	P<0.01	p<0.001	p<0.05	
Baseline visual acuity	-	1.0	<i>.</i>	10.5
<54 letters	5	4.8 D :0.01	6 D :0.05	10.5
5.541.0	P<0.01	P<0.01	P<0.05	10.5
≥54 letters	10.5 D :0.001	10.5	13.5	19.5
· · · · · ·	P<0.001	P<0.001	P<0.01	
Lesion size at baseline		0	0	165
<4 optic-disk areas	7.5	8	9	16.5
	P<0.001	P<0.001	P<0.001	10.5
≥4 optic-disk areas	8.5 D = 0.05	6 D <0.001	11	13.5
*D / / / / C	P<0.05	P<0.001	n/s	
* Data estimated from figures.	2		11	. 11 1
For those receiving pegaptantb at 0	0.3mg, a treatment be	nefit was observed an	nong all patients with	all angiographic
subtypes of lesions ( $p < 0.3$ for each group).	subtype), baseline le	vels of visual aculty (	p<0.01 for each grou	p) and lesion size at
pagentanih treatment was significa	ntly associated with r	ession analyses leveal	p < 0.001	i than assignment to
begaptand treatment was significated use of <b>DDT</b> at begabing $p(q_1)$		21(10)	p < 0.001).	40 (12)
Use of PDT at baseline, n (%)	30 (12)	51 (10)	38 (13)	40 (15)
Use of PDT after baseling n	49 (17)	55 (18)	57 (10)	62 (21)
(%)	49 (17)	55 (10)	57 (19)	02 (21)
Size of lesion (no. of ontic-disc				
areas)				
Baseline	37	4.0	37	42
Week 54	5.5	5.8	62	67
change from baseline vs	p<0.01	p<0.01	n/s	0.7
change in sham	p 0.01	P 0.01	11.0	
Size of CNV (no. of optic-disc				
areas)				
Baseline	3.1	3.5	3.2	3.7
Week 54	4.7	4.7	5.0	5.8
change from baseline vs.	n/s	p<0.01	n/s	
change in sham		1	-	
Size of leakage (no. of ontic-				
disc areas)				
Baseline	3.3	3.4	3.4	3.6
Week 54	4.3	3.9	4.6	5.2

change from baseline vs	n/s	p<0.01		n/s		
change in sham						
Adverse events (year 1)	Pegaptanib (all dos	es)	Sham injecti	on	P val	ue
Rate of discontinuation due to	1%		1%			
AE						
Death rate	2%		2%		n/s	
Vascular hypertensive	10%		10%		n/s	
disorders						
Hemorrhagic AE	2%		3%		n/s	
Thromboembolic events	6%		6%		n/s	
Gastrointestinal	0%		0%		n/s	
perforations						
Local or systemic	0					
hypersensitivity attributable to						
pegaptanib						
Common ocular adverse events in	study eye:					
Eye pain	34%		28%		n/s	
Vitreous floaters	33%		8%		p<0.0	001
Punctuate keratitis	32%		27%		n/s	
Cataracts	20%		18%		n/s	
Vitreous opacities	18%		10%		P<0.0	001
Anterior-chamber inflammation	14%		6%		P=0.0	001
Visual disturbance	13%		11%		n/s	
Eye discharge	9%		8%		n/s	
Corneal edema	10%		7%		n/s	
Reasons for discontinuation due to	AE were diverse and	l were no	t clustered in	relation to a r	oarticul	ar system or organ.

Reasons for discontinuation due to AE were diverse and were not clustered in relation to a particular system or organ. No further details provided.

No systemic adverse events were definitively attributed by the independent data management and safety monitoring committee to the study drug, nor were any observed for any organ system in all 3 treatment groups.

Most AE reported in the study eyes were transient, with a severity that was mild to moderate, and were attributed by the investigators to the injection procedure rather than to the study drug.

Eye events were more common in the study eyes than in the other eyes among patients in the sham-injection group, suggesting that the preparation procedure was partly the cause, rather than the study drug.

No evidence of sustained elevation in intraocular pressure or of an acceleration of cataract formation in the treatment group compared with sham.

No evidence of adverse effects on retinal or choroidal vascular beds.

In the second year of the study, the incidence of common ocular adverse events was similar to those reported in year 1. Most adverse events reported in the study eyes were transient, mild-to-moderate in severity, and attributed to the injection procedure itself.

Injection-related AE in 890 pts to	reated with pegaptanib in t	he first year of the trial (a	total of 7545 injections)
	No. of pts with event (%)	Events per injection (%)	Severe loss of visual acuity (≥ 30 letters) n (%)
Endophthalmitis	12 (1.3)*	0.16	1 (0.1)
Traumatic injury to lens	5 (0.6)	0.07	1 (0.1)
Retinal detachment	6 (0.7)	0.08	0**

*  $\frac{3}{4}$  of pts with endophthalmitis remained in the trial. The condition was associated with protocol violation in  $\frac{2}{3}$  of the pts with this condition (most common protocol violation was failure to use an eyelid speculum to prevent bacteria from eyelashes contaminating injection site).

** measurements of visual acuity after the event were not available for one pt.

Because multiple injections are required, the risk of endophthalmitis was 1.3% per patient during the first year of the trials.

In the 374 pts who received pegaptanib for >1 year, there were no cases of endophthalmitis or traumatic cataract

reported. The rate of retinal detachment was 4/2663 injections (0.15% per injection). No evidence of cataract progression or persistent intraocular pressure elevation following multiple pegaptanib injections was seen. No serious AE were attributed to the study drug, and the drug was well tolerated systemically.

Year 2 results

Pegaptanib patients were re-randomised 1:1 to continue or discontinue therapy for 48 more weeks (8 injections). Those initially assigned to sham injection were rerandomised 1:1:1:1:1 to continue sham, discontinue sham, or receive 1 of 3 pegaptanib doses. Any patients who were randomised to discontinue but lost  $\geq$  10 letters at one of the assessment points were permitted to have their year one treatment reinstated if they had benefited from it in year one (defined as the loss of  $\leq$  0 letters between baseline and week 54). DATA FOR THE OTHER DOSE GROUPS AND FOR SHAM-ANY P DOSE GROUP ARE SHOWN IN AN APPX TO THE CHAKRAVARTHY PAPER BUT NOT DATA EXTRACTED

USUAL CARE= all patients in sham group in year 1 rerandomised to continue sham or to discontinue. Studies 1003 and 1004 represent the two RCTs

Visual acuity at baseline and re-	0.3mg P –	0.3mg P	0.3mg P –		Usual care	e
randomization (reported separately for			discontinue			
the 2 studies)						
	Study	Study	Study	Study	Study	Study
	1003	1004	1003	1004	1003	1004
	(n=67)	(n=66)	(n=66)	(n=66)	(n=54)	(n=53)
Mean VA (letters)						
Week 0	53.6	52.3	53.8	52.7	49.8	55.7
Week 54	44.0	44.3	49.5	45.1	38.1	40.1
Responder rate (n, %)						
Week 54	46 (69)	42 (64)	53 (80)	47 (71)	35 (65)	28 (53)
Legal blindness (n, %)						
Week 0	7 (10)	15 (23)	7(11)	9 (14)	9 (17)	5 (9)
Week 54	26 (38)	30 (45)	15 (23)	24 (36)	29 (54)	27 (51)
Re-randomization produced VA imbalances b	etween treat	ment groups	, within and	between stu	dies, at both	week 0
and week 54; these imbalances are reported to	have occur	red purely by	chance.			
Discontinued patients who resumed	0.3mg – di	scontinue (1	n=132)	Sham – di	scontinue (r	n=54)
therapy in the re-randomized population	0	,	,		,	,
Resuming therapy, n(%)	28 (21)			8 (15)		
Week at which rescue initiated, mean (SD)	73.7 (12.4)	1		72.8 (10.8)		
VA change from week 54 to rescue, mean						
letters (SD)	-12.6 (10.6	)		-13.4 (5.6)		
VA change from rescue to week 102, mean		·				
letters (SD)	-1.8 (12.5)			-4.8 (15.3)		
Outcomes – year 2	0.3mg P-	- 0.3mg P	0.3mg P –		Usual care	e (n=107)
	(n=133)		discontinue			
			(n=132)			
Change in standardized area under the						
curve of visual acuity in the re-						
randomised population						
Week 0 to week 6						
LS mean (SE)	-0.56 (0.49	·)			-1.45 (0.55	5)
P value compared with usual care	0.1402					
Week 0 to week 54						
LS mean (SE)	-4.54 (1.18	5)			-8.16 (1.32	2)
P value compared with usual care	0.0129					
Week 0 to week 102						
LS mean (SE)	-5.88 (1.33	)			-11.24 (1.4	9)
P value compared with usual care	0.0012					
Week 54 to week 102						
LS mean (SE)	-0.60 (0.61	)	-3.04 (0.60	)		
P value compared with discontinuing	0.0041					

LS = least squares						
Progression to legal blindness						
Baseline VA better than 20/200 (n)	111		116		93	
VA 20/200 or worse						
Week 54 n(%)	38 (34)		28 (24)		44 (4	17)
Week 102 n(%)	39 (35)		44 (38)		51 (5	55)
Mean visual acuity (letters) (estimated					Ì	
from graph)						
Week 54	44		47		39	
Week 78	43.5		43		37	
Week 102	44		42		35	
Lines of vision gained (estimated from						
graph) % of patients						
$\geq 0$ lines	35	27			26	
$\ge$ 1 lines	22		19		14	
$\geq$ 2 lines	15		8		6	
$\ge$ 3 lines	10		8		4	
Responder rates – loss of <15 letters	0.3mg – $0.3$ mg	0.3mg	! -	Sham – an	iv P	Sham – usual
(total n for groups not stated)		discor	, ntinue	dose		care
Week 54	66%	76%		56%		59%
Week 102	59%	62%		48%		45%
Angiographic changes over time are shown for	or the 2 studies indi	ividually	v but not t	he combined	analy	sis of the two
trials Not data extracted at this stage. The on	v statistically sign	ificant d	lifference v	vas the differ	ence i	n lesion size
between the continuing 0 3mg pegaptanib gro	up and the usual c	are grou	n in study	1004 The co	ontinui	ng () 3mg
group's mean total lesion size was 5 4 DA at	week 78 and 5.6 D	A at we	ek 102 cor	mpared with	75D	A and 8.1 DA
respectively ( $p < 0.05$ ) The corresponding patient	ent groups in study	v 1003 d	lid not sho	w a significat	nt diff	erence
Outcomes – year 2. $n(\%)$	0 3mg negantan	ih (n=1	33) U	sual care (n	=107)	
No. of responders at 102 weeks (<15	78 (59%)	10 (li 1	49	$\frac{3441}{8}$ (45%)	107)	
letters lost)	70 (3770)			5 (4570)		
P compared with usual care	P=0.0385					
No with loss > 30 letters (severe vision	17 (13%)		29	8 (26%)		
$100$ , with $1000 \pm 50$ fetters (severe vision loss) at 102 weeks	17 (1570)		20	5 (2070)		
P compared with usual care	P=0.0058					
No of natients completing the trial (week	106 (33%)		94	5 (89%)		
102)	100 (3370)		).	(0)/0)		
Continuation of pegantanih treatment through	out Vear 2 demons	strated h	igher effic	acy and sign	ificant	henefit versus
treatment discontinuation. There was a signifi	$cant (n < 0.05) 67^{\circ}$	% relativ	ve reductio	n in non-rest	nonder	$r_{s}$ (>15 letters
loss) for continued pegantanib 0.3 mg treatme	ent versus usual car	$\sim (16\%)$	versus 270	/ respective	$l_{\rm V}$ M	$\frac{S(-1)}{2}$ in $VA$ in
continued 0.3mg negantanih group remained	stable during the se	e (1070	Par whilst	the loss in V	$\Delta$ resu	med in
individuals re-randomised to discontinue	studie during the st	cond y	cui, wiiiist		111030	inica m
Adverse events $-$ vear 2 n(%)	0 3mg negantan	ih (n=1	28) sha	m (n=51)		
Individuals with AE	122 (05%)	10 (II-1	<u>20)</u> sna <u>16</u>	(1-31)		
Individuals with ocular $\Delta E$ (study eye)	92(72%)		30	(76%)		
Individuals with serious AE	$\frac{92}{170}$		14	(70/0)		
Withdrawals due to AF	5(10)		2(4)	(2770)		
Deaths (any cause)	3(470) 1(1%)			F70) 10/1		
$\frac{100}{100}$	$\frac{1}{1} \left( \frac{1}{0} \right)$	ih (n-1	(0)	$\frac{770}{m(n-51)}$		
Adverse events $m \ge 10\%$ of subjects –	0.5mg pegaptan	10 (n-1	20) Sha	m (n-51)		
year 2	27 (210/)		0.(1	00/)		
Eye pain	27(21%)		9(1	.8%)		
IOP increased	26(20%)		4 (8	() () () ()		
runctate keratitis	31(24%)		14 (	(2/%)		
vitreous noaters	28 (22%)		2 (4	170) 207)		
virreous opacities	13(10%)		6(1	.2%) 20/)		
Corneal oedema	12 (9%)		4 (8	5%0) 20()		
Lacrimation increased	0 (3%)		6(1	2%)		

Eve redness	9(7%)	6 (12%)
Lyc runcss Vision blurred	$\frac{9(7/6)}{4(3\%)}$	5(1270) 5(10%)
vision bluited	(370)	3(10/0) 8(24%)
Insidence of Serious Adverse Event	$\mathbf{D}_{\text{ato}}\left(0/\text{ nor injection}\right)$	8 (2470)
(rate/injection) = 2 year results	(Cohort 1) ¹	Rate $(\%$ per injection) (All cohorts) ²
Endophthalmitis		0 10%
Traumatic cataract (lens injury)	0%	0.02%
Retinal detachment	0.15%	0.0276
1 Cohort 1: All individuals re-randomised to	continue on same treatment in	the second year $n = 374$ : a total of 2.663
injections of pegaptanib were administered 2. $n = 374$ for pegaptanib treated patients re- to pegaptanib; $n = 72$ for patients re-randomi of pegaptanib were administered Over the full 102 weeks of the study, patient administered to patients receiving pegaptanit receiving usual care. Over the 2-year period, both pegaptanib 0.3 mg and usual care	randomised to pegaptanib; $n = 1$ sed to discontinue, retreated with compliance was high. A mean of 0.3 mg, and 16.3 of 17 possibl 92% of injections occurred with	160 for usual care patients re-randomised th pegaptanib. A total of 4,091 injections of 15.6 of 17 possible treatments were e treatments were administered to patients hin one week of the scheduled dose of
Disease modifying effect (risk of non-	Relative risk of non-	n value
response following discontinuation)	response (95% CI)	p value
All doses pooled:	0.70 (0.56, 0.86)	p = 0.001
0 3 mg	0.68 (0.51, 0.90)	p = 0.001 p = 0.008
1 mg	0.62 (0.46, 0.83)	p = 0.001
3 mg.	0.79(0.61, 1.03)	p = 0.09
A year after discontinuation of treatment neg	vantanih still has a highly signif	icant benefit compared to no treatment
pathologic process. This disease modifying e compared with no treatment. Subgroup analysis years 1 and 2 –	<b>0.3mg pegaptanib</b>	% reduction in the non-responder rate Usual care
estimated from graph		
Responders (<15 letters lost)		
Predominantly classic		
Year 1		
rear 2		
Minimally aloggia		
Minimally classic		
Minimally classic Year 1 Year 2		
Minimally classic Year 1 Year 2 Pure occult		
Minimally classic Year 1 Year 2 Pure occult Year 1		
Minimally classic Year 1 Year 2 Pure occult Year 1 Year 2		
Minimally classic Year 1 Year 2 Pure occult Year 1 Year 2 In the VISION study, the development to leg	al blindness was defined as VA	better than 6/60 (20/200) at baseline that
Minimally classic Year 1 Year 2 Pure occult Year 1 Year 2 In the VISION study, the development to leg progressed to 6/60 (20/200) or worse in the s	al blindness was defined as VA	better than 6/60 (20/200) at baseline that pegaptanib 0.3 mg on delaying
Minimally classic Year 1 Year 2 Pure occult Year 1 Year 2 In the VISION study, the development to leg progressed to 6/60 (20/200) or worse in the s progression to legal blindness at Year 1 was	al blindness was defined as VA tudy eye. The positive effect of maintained after Years 1&2 ver	better than 6/60 (20/200) at baseline that pegaptanib 0.3 mg on delaying rsus usual care (pegaptanib 35% [39/111],
Minimally classic Year 1 Year 2 Pure occult Year 1 Year 2 In the VISION study, the development to leg progressed to 6/60 (20/200) or worse in the s progression to legal blindness at Year 1 was usual care 55% [51/93]; relative benefit 36%	al blindness was defined as VA tudy eye. The positive effect of maintained after Years 1&2 ver ; $p < 0.01$ ).	better than 6/60 (20/200) at baseline that pegaptanib 0.3 mg on delaying rsus usual care (pegaptanib 35% [39/111],
Minimally classic Year 1 Year 2 Pure occult Year 1 Year 2 In the VISION study, the development to leg progressed to 6/60 (20/200) or worse in the s progression to legal blindness at Year 1 was usual care 55% [51/93]; relative benefit 36% <b>Methodological comments</b>	al blindness was defined as VA tudy eye. The positive effect of maintained after Years 1&2 ver ; $p < 0.01$ ).	better than 6/60 (20/200) at baseline that pegaptanib 0.3 mg on delaying sus usual care (pegaptanib 35% [39/111],
Minimally classic Year 1 Year 2 Pure occult Year 1 Year 2 In the VISION study, the development to leg progressed to 6/60 (20/200) or worse in the s progression to legal blindness at Year 1 was i usual care 55% [51/93]; relative benefit 36% <b>Methodological comments</b> • Allocation to treatment groups: Patients v	al blindness was defined as VA tudy eye. The positive effect of maintained after Years 1&2 ver ; $p < 0.01$ ). vere allocated in each trial to 1 of	better than 6/60 (20/200) at baseline that pegaptanib 0.3 mg on delaying sus usual care (pegaptanib 35% [39/111], of 4 arms by a dynamic procedure using a
Minimally classic Year 1 Year 2 Pure occult Year 1 Year 2 In the VISION study, the development to leg progressed to 6/60 (20/200) or worse in the s progression to legal blindness at Year 1 was in usual care 55% [51/93]; relative benefit 36% <b>Methodological comments</b> • Allocation to treatment groups: Patients we stochastic treatment allocation algorithm	al blindness was defined as VA tudy eye. The positive effect of maintained after Years 1&2 ver ; $p < 0.01$ ). vere allocated in each trial to 1 of based on the variance method to	better than 6/60 (20/200) at baseline that pegaptanib 0.3 mg on delaying sus usual care (pegaptanib 35% [39/111], of 4 arms by a dynamic procedure using a o minimise imbalances for study centre,
Minimally classic Year 1 Year 2 Pure occult Year 1 Year 2 In the VISION study, the development to leg progressed to 6/60 (20/200) or worse in the s progression to legal blindness at Year 1 was usual care 55% [51/93]; relative benefit 36% <b>Methodological comments</b> • Allocation to treatment groups: Patients v stochastic treatment allocation algorithm angiographic lesion subtype, and previous	al blindness was defined as VA tudy eye. The positive effect of maintained after Years 1&2 ver ; $p < 0.01$ ). vere allocated in each trial to 1 of based on the variance method to s treatment with PDT.	better than 6/60 (20/200) at baseline that pegaptanib 0.3 mg on delaying rsus usual care (pegaptanib 35% [39/111], of 4 arms by a dynamic procedure using a pominimise imbalances for study centre,

• Comparability of treatment groups: no p values were reported for baseline characteristics, but patients appeared to be similar at baseline. Re-randomization produced VA imbalances between treatment groups, within and between studies, at both week 0 and week 54; these imbalances are reported to have occurred purely by chance.
- Method of data analysis: The two studies were identical in design and similar in baseline characteristics. The appendix states that results for the primary endpoint reached significance in both trials, so results were combined as per protocol. A prestratified Cochran-Mantel-Haenszel test using stratification factors (lesion angiographic subtype, prior PDT), baseline visual acuity and baseline lesion size was applied to comparisons of binary endpoints. Mean changes in visual acuity were analyzed using an analysis of covariance model and observed mean changes for each time point; models included main effects for treatment and stratification factors, with baseline visual acuity and baseline lesion size as covariates. All p values reported are 2-sided and unadjusted for multiplicity. Point estimates and confidence intervals are given where appropriate. States that for all efficacy analyses, patients were evaluated in the treatment group to which they were randomly assigned, and that safety analyses included all patients with at least one study treatment regardless of whether a baseline visual acuity was obtained. But, efficacy results are not ITT, as they exclude 4 patients who did not receive a sufficiently standardized assessment of visual acuity at baseline. Individual and combined analyses of studies 1003 and 1004 reported by Chakravarthy et al. are reported to be ITT, including all patients who were re-randomized at week 54. LOCF for any missing efficacy data. Mean change in VA from week 54 was determined for each treatment visit as a summary measure of treatment trends. These results were confirmed further using a standardized area under the curve, using the trapezoidal rule. Kaplan Meier estimates of proportions with loss of  $\geq 15$  letters after week 54 were calculated for patients continuing with pegaptanib therapy vs. those discontinuing at week 54. The 2 year control group (usual care) included all sham patients who were re-randomised either to continue sham or to discontinue at week 54.
- Sample size/power calculation: power calculations were reported, and required 122 patients per individual trial arm to provide an overall power of 95%. States that the two studies were identically designed in order to fulfil the worldwide regulatory requirements of reaching statistically significance in two independent trials.
- Attrition/drop-out: 90% of patients completed the study. 4 patients were excluded from analyses due to inadequate baseline assessments. 1% of both the treatment and sham groups discontinued, but no details are provided, other than the statement that 'reasons for discontinuation were diverse and were not clustered in relation to a particular system or organ' 2% of patients died. Dropouts appear to be balanced between treatment arms and the control group, so attrition bias should not affect outcomes. Discontinuations in the second year were generally due to patient request. Death and adverse events were the second and third most common reasons for dropping out. Mean number of treatments was balanced between all treatment groups.

### **General comments**

- Generalisability: The study included people with different types of lesion, i.e. predominantly classic, minimally classic and occult with no classic.
- Outcome measures: Outcome measures were relevant to the study area and were measured appropriately. Loss of fewer than 15 letters of visual acuity was defined as three lines on the study eye chart, and was measured as loss between baseline and week 54. In relation to the visualization of choroidal new vessels (classic) in the flurorescein angiogram, a predominantly classic lesion includes 50% or more classic choroidal neovascularisation, and an occult lesion includes no classic choroidal neovascularisation. Size of lesion was measured as the number of optic-disk areas (including blood scar or atrophy and neovascularisation), each of which is 2.54mm².
- Inter-centre variability: not reported
- Conflict of interests: Eyetech Pharmaceuticals and Pfizer supported the trials. Gragoudas ⁹⁵ has served as a paid consultant for the sponsor, and other authors are employees and shareholders of the sponsor.

1. Was the assignment to the treatment groups really random?	adequate
2. Was the treatment allocation concealed?	adequate
3. Were the groups similar at baseline in terms of prognostic factors?	reported
4. Were the eligibility criteria specified?	adequate
5. Were outcome assessors blinded to the treatment allocation?	adequate
6. Was the care provider blinded?	adequate
7. Was the patient blinded?	adequate
8. Were the point estimates and measure of variability presented for the primary outcome measure?	adequate
9. Did the analyses include an intention to treat analysis?	inadequate
10. Were withdrawals and dropouts completely described?	partial

Reference and	Intervention	Participants	Outcome measures
Chung et al., 2006 (MARINA, FVF2598g)	<ol> <li>0.3 mg ranibizumab monthly</li> <li>0.5 mg ranibizumab</li> </ol>	<i>Target population:</i> Primary or recurrent minimally classic or occult subfoveal CNV	Note: data are extracted for the study's primary and secondary outcome measures and for the TAR's stated outcome measures only.
Unpublished	monthly	Number of Participants: Total randomised: 716	Exploratory efficacy measures not extracted.
RCT	monthly	2. 0.5 mg ranibizumab: 240 3. Sham injection: 238	Primary outcomes: Proportion losing fewer than 15
06 centres	Duration of treatment:	Sample attrition/dropout	letters (approx 3 lines) in best
Setting	injection monthly, last	2 in the sham group and 1 in the	test distance of 2 meters at 12
Setting:	Approx 2 months	study drug.	Safety and tolerability
<i>Funaing:</i> Genentech, Inc <u>*</u>	Approx 3 months prior to completion, patients in sham group could cross-over to 0.5mg ranibizumab	12 from sham group crossed over to 0.5 mg: 5 received 2 injections and 7 received 1 injection prior to study completion.	Secondary outcomes for first year: Prevention of vision loss: - mean change in visual acuity, - proportion gaining at least 15
	for remaining period.	Main inclusion criteria for study entry: Age $\geq$ 50 years, primary or recurrent subfoyeal CNV occult	etters, - proportion with Snellen equivalent of 20/200 or worse. Vision-related functioning and well- being: National Eye Institute Visual
	Other interventions used: Verteporfin PDT allowed for subjects	CNV or some classic CNV (classic CNV component < 50% of the total lesion size), Total area of CNV encompassed	Function Questionaire-25 (VFQ-25) Size of classic CNV and amount of leakage.
	who met certain criteria.	within the lesion $\geq 50\%$ of total lesion size, total lesion area $\leq 12$ disc areas,	Secondary outcomes for second treatment year, outcomes at 24 months:
		Early Treatment Diabetic Retinopathy Study charts) of	Proportion losing <15 letters at starting test distance of 2 meters. Proportion losing <15 letters at
		20/40 to 20/320 Snellen equivalent. Only one eye was assessed if both eyes were	starting test distance of <u>***</u> meters. Mean change in BCVA. Proportion gaining at least 15 letters
		eligible, the one with the better visual acuity was selected (unless	Proportion with Snellen equivalent of 20/200 or worse.
		medical reason for otherwise).	Change in Visual Function Questionnaire (VFQ)-25 near
		<i>Exclusion criteria:</i> Prior PDT, external-beam	activities, distance activities, and vision-specific dependency subscare.
		readition therapy or transpoupillary thermotherapy in study eye, PDT treatment in	Change in total area of CNV. Change in total area of leakage from CNV.
		fellow eye less than 7 days prior, previous participation in trial of	Additional outcomes required by
		anti-angiogenic drugs, previous intravitreal delivery in study eye,	IAR: Contrast
		previous subroveal focal laser photocoagulation in study	sensitivity



	For second year of treatment:
	Length of follow-up: 24 months

Characteristics of participants:			
	Ranibizumab 0.3mg	Ranibizumab 0.5mg	Sham (n=238)
	(n=238)	(n=240)	
Age yrs, mean (SD), range	77.4 (7.6)	76.8 (7.6)	77.0 (6.6)
	52-95	52-93	56-94
Male	85 (35.7%)	88 (36.7%)	79 (33.2%)
Female	153 (64.3%)	152 (63.3%)	159 (66.8%)
White	229 (96.2%)	232 (96.7%)	231 (97.1%)
Asian or Pacific Islander			
Hispanic			
Other			
Years since first diagnosis of AMD,			
Mean (SD), range			
Visual acuity at starting test distance 2 meters			
No. of letters (0-100), Mean (SD),			
Range			
<i>≤</i> 54			

× 55			
$\leq 33$			
Approximate Snellen equivalent			
Median			
20/200 or worse	35 (14.7%)	31 (12.9%)	32 (13.4%)
Better than 20/200 but worse than 20/40	176 (73.9%)	173 (72.1%)	170 (71.4%)
20/40 or better	27 (11.3%)	36 (15.0%)	36 (15.1%)
Visual acuity scores: study eye vs fellow eye			
Study eye worse than fellow eye			
Predominantly classic	1 (0.4%)	0	0
Minimally classic	86 (36 1%)	91 (37.9%)	87 (36.6%)
Occult without classic	151(63.4%)	149 (62 1%)	150 (63.0%)
Missing	0	(02.170)	1.0(0.070)
Total area of logica (dias areas (DA))	0		1 (0.470)
Marg (CD) remain			
Mean (SD), range)			
$\leq 4 \text{ DA}$			
> 4 DA			
Total area of CNV (DA), Mean (SD), range			
Area of classic CNV (DA), Mean (SD), range			
Total area of leakage from CNV plus intense			
progressive retinal nigment enithelium staining			
(DA) mean $(SD)$ range			
A rea of corous concern rating! detechment or			
Area of scrous sensory retinar detachment of			
subretinal fluid (DA), Mean (SD), range	┼┲╴╴╴╸		
Occult CNV present			
Any prior therapy for AMD in study eye	140 (58.8%)	139 (57.9%)	135 (56.7%)
Laser photocoagulation	13 (5.5%)	14 (5.8%)	22 (9.2%)
Medication	1 (0.4%)	3 (1.3%)	3 (1.3%)
Supplements	134 (56.3%)	127 (52.9%)	121 (50.8%)
Other	3 (1.3%)	3 (1.3%)	8 (3.4%)
Results	• · ·	<u> </u>	
Outcomes	Ranibizumab 0.3mg	Ranibizumab	Sham (n=238)
	(n=238)	0.5 mg (n=240)	
Proportion losing <15 letters compared with			
haseline (starting test distance 2m)			
n $\binom{6}{2}$	225 (94 5%)	227 (94.6%)	148 (62 2%)
Month 12	223 ()4.370)	227 (91:070)	110 (02.270)
95  CL of the %			
Difference in $\frac{9}{4}$ (vs sham)			
Difference III /0 (VS Shalli) 05% CL of the difference	D<0.0001	<b>D</b> <0.0001	
95% CI of the difference	r < 0.0001	r<0.0001	
P value (vs sham)	210(02.00/)	21((00,00/))	126 (52.00/)
Mariah 24	219 (92.0%)	216 (90.0%)	120 (52.9%)
95 Cl of the $\%$			
Difference in % (vs sham)	D 0 0001	D 0 0001	
95% CI of the difference	P<0.0001	P<0.0001	
P value (vs sham)			
Visual acuity at starting test distance of 2 meters,	at 24 months		
No. of letters, mean, SD			
95% CI of mean			
Difference in least squares means (vs sham)			1
-			
95% CI of difference			

No. of letters change from baseline, mean (SD)			
95% CI of mean	5.4	6.6	-14.9
Difference in least squares means (vs sham)	3.5, 7.4	4.5, 8.7	-17.3, -12.5
95% CI of difference			
P value (vs sham)			
	P<0.0001	P<0.0001	
Gain of $\geq$ 15 letters from baseline, response	(0 (0 ( 10 ()		
rate	62 (26.1%)		9 (3.8%)
95% Cl of the %	20.5%, 31.6%		1.4%, 6.2%
Difference in % (vs sham)			
95% CI of the difference	D <0.0001		
P value (vs sham)	P<0.0001		
Snellen equivalent	25(14.70/)	2((15,00/))	
20/200 of worse, response rate	35(14.7%)	36 (15.0%)	41 (0/ 54 20/
95% C1 of the %	10.2%, 19.2%	10.5%, 19.5%	41.0%, 54.2%
Difference in % (vs snam)			
95% C1 01 the difference	D<0.0001	D<0.0001	
P value (vs snam)	P<0.0001	P<0.0001	
20/200 or worse	25(14.70/)	26 (15 00/)	114(47.09/)
20/200 of worse Bottor than $20/200$ but worse than $20/40$	55 (14.776)	30 (13.0%)	114 (47.976)
Detter than $20/200$ but worse than $20/40$			
12 month data reported but not extracted Study st			
12 month data reported but not extracted. Study sta	ites		
liiat			
		(data no	ot extracted)
Subgroup analysis: proportion losing <15 letter	s in visual acuity at 24 n	(data no nonths compared with	ot extracted). <b>baseline</b> (starting
<b>Subgroup analysis: proportion losing &lt;15 letter</b> test distance 2 metres)	s in visual acuity at 24 n	(data no nonths compared with	ot extracted). <b>n baseline</b> (starting
Subgroup analysis: proportion losing <15 letter test distance 2 metres) Minimally classic CNV at baseline	s in visual acuity at 24 n	(data no nonths compared with	ot extracted). <b>1 baseline</b> (starting
Subgroup analysis: proportion losing <15 letter test distance 2 metres) <i>Minimally classic CNV at baseline</i> Response rate	s in visual acuity at 24 n	(data no (da	ot extracted). <b>baseline</b> (starting
Subgroup analysis: proportion losing <15 letter test distance 2 metres) <i>Minimally classic CNV at baseline</i> Response rate 95% CI of the %	s in visual acuity at 24 n	(data no (da	ot extracted). <b>baseline</b> (starting
Subgroup analysis: proportion losing <15 lettertest distance 2 metres)Minimally classic CNV at baselineResponse rate95% CI of the %Difference in % (vs sham)	s in visual acuity at 24 m	(data no nonths compared with	ot extracted). <b>baseline</b> (starting
Subgroup analysis: proportion losing <15 lettertest distance 2 metres)Minimally classic CNV at baselineResponse rate95% CI of the %Difference in % (vs sham)95% CI of the difference	s in visual acuity at 24 m	(data no nonths compared with	ot extracted). <b>baseline</b> (starting
Subgroup analysis: proportion losing <15 lettertest distance 2 metres)Minimally classic CNV at baselineResponse rate95% CI of the %Difference in % (vs sham)95% CI of the differenceP value vs sham	s in visual acuity at 24 m	(data no nonths compared with	ot extracted).
Subgroup analysis: proportion losing <15 letter	s in visual acuity at 24 m	(data no	ot extracted).
Subgroup analysis: proportion losing <15 lettertest distance 2 metres)Minimally classic CNV at baselineResponse rate95% CI of the %Difference in % (vs sham)95% CI of the differenceP value vs shamOccult without classic CNV at baselineResponse rate	s in visual acuity at 24 m	(data no	ot extracted).
Subgroup analysis: proportion losing <15 letter	s in visual acuity at 24 m	(data no nonths compared with	ot extracted).
Subgroup analysis: proportion losing <15 letter	s in visual acuity at 24 m	(data no nonths compared with	bt extracted).
Subgroup analysis: proportion losing <15 letter	s in visual acuity at 24 m	(data no nonths compared with	ot extracted). <b>baseline</b> (starting
Subgroup analysis: proportion losing <15 letter	s in visual acuity at 24 m	(data no nonths compared with	ot extracted).
Subgroup analysis: proportion losing <15 letter	s in visual acuity at 24 m	(data no nonths compared with	ot extracted).
Subgroup analysis: proportion losing <15 letter	s in visual acuity at 24 m	(data no nonths compared with	ot extracted).
Subgroup analysis: proportion losing <15 letter	s in visual acuity at 24 m	(data no nonths compared with	ot extracted).
Subgroup analysis: proportion losing <15 letter	s in visual acuity at 24 m	(data no nonths compared with	ot extracted).
Subgroup analysis: proportion losing <15 letter	s in visual acuity at 24 m	(data no nonths compared with	bt extracted).
Subgroup analysis: proportion losing <15 letter	s in visual acuity at 24 m	(data no nonths compared with	bt extracted).
Subgroup analysis: proportion losing <15 letter	s in visual acuity at 24 m	(data no nonths compared with	bt extracted).
Subgroup analysis: proportion losing <15 letter	s in visual acuity at 24 m	(data no nonths compared with	ot extracted).
Subgroup analysis: proportion losing <15 letter	s in visual acuity at 24 m	(data no nonths compared with	ot extracted).
Subgroup analysis: proportion losing <15 letter	s in visual acuity at 24 m	(data no nonths compared with	bt extracted).

Maan (SD)			
05% CL of moon			
93% CI 01 mean Difference in least sevenes means (as show)			
Difference in least squares means (VS snam)			
95% C1 of difference			
P value (vs sham)			
Vision-specific dependency		I	
Mean (SD)			
95% CI of mean			
Difference in least squares means (vs sham)			
95% CI of difference			
P value (vs sham)			
VFO-25 data at 12 months reported but not			-
extracted.			
Change from baseline in total area of CNV			
(DA) at month $24$ mean (SD)	-0.32	-0.00	2.58
(DA), at month 24, mean $(SD)$	0.62 0.01	0.00	2.30
Difference in least amore means (as show)	-0.03, -0.01	-0.20, 0.20	2.13, 3.02
Difference in least squares means (vs snam)			
95% CI of difference			
P value (vs sham)			
Change in total area of leakage from CNV +			
intense progressive RPE staining (DA), at			
month 24, mean (SD)	-2.18	-2.18	0.76
95% CI of mean	<u>-2.52,</u> -1.85	<u>-2.54,</u> -1.83	0.23, 1.29
Difference in least squares means (vs sham)			
95% CI of difference			
P value (vs sham)	P<0.0001	P<0.0001	
12 month data reported but not extracted. The stud	y states	-	-
that			
Change in contrast considiuity at 24			
Change in contrast sensitivity at 24			
Moon no. of lottors			
Niean no. of letters			
P value (vs sham)			
Note: Table of data for contrast sensitivity (includi	ing standard deviations)		
Study states			
that			
Adherence to treatment (treatment compliance)	)		
Treatment compliance was			

Adverse Effects (safety-evaluable subjects)	Ranibizumab	Ranibizumab	Sham (n=236)
during 2 yr period	0.3 mg (n=238)	0.5mg (n=239)	
Any injection held according to protocol specified			
criteria			
Ocular events: study eye			
All adverse events (a)			
Serious adverse events (b)			
Adverse events led to discontinuation (study or			
Endonhthlomitic			
Introquilar inflormation			
Total			
Serious			
Ocular events: fellow eve			
All adverse events (d)			
Serious adverse events			
Adverse events led to discontinuation (study or			
treatment)	=		
Endophthlamitis			
Intraocular inflammation		-	-
Total			
Serious			
Non-ocular events	_	-	
All adverse events (e)			
Serious adverse events (f)			
Adverse events that led to discontinuation			
		-	
(a) ocular adverse events in study eye			
(occurring in $\ge 15\%$ in any group or $\ge 5\%$ more			
frequent in either ranibizumab group)			
Conjunctival haemorrhage			
Macular degeneration			
Eye pain			
Ketinal naemorrhage			
Vitroous detechment			
Fire irritation			
Intraocular pressure increased			
Foreign body sensation in eves			
Lacrimination increased			
Visual acuity reduced			
Detachment of RPE			
Vision blurred			
Subretinal fibrosis			
Vitritis			
CNV			
(b) Ocular serious adverse events in study eye			

(c) Ocular adverse events in study eve leading			
to discontinuation			
Ocular adverse events classified as severe			
(occurring in $> 2$ subjects overall)			
Study eye			
Total			
Macular degeneration			
Conjunctival haemorrhage			
Retinal haemorrhage			
Visual acuity reduced			
Eye pain			
Endophthalmitis			
Corneal abrasion			
Eye irritation			
Intraocular pressure increased			
Vitreous haemorrhage			
Photophobia			
Posterior capsule opacification			
Retinal detachment			
Fellow eye	-	-	
Total			
Macular degeneration			
Retinal haemorrhage			
Cataract			
Intraocular pressure increased			
Vitreous haemorrhage			
CINV Cataract nuclear			
Visual acuity reduced			
Cataract subcapsular			
Eve pain			
Herpes zoster ophthalmic			
Vitreous detachment			
Ocular events related to study drug in study eye			
(Total)			
Most common:			
Iritis			
Intraocular pressure increased			
Vitritis Vitroug flootors			
vincous noncontrad occurred in $< 2.50$ / in any group			
(Omers reported, occurred in $\geq 2.5\%$ in any group,			
noi chuacteu)			

Ocular events related to stud eye (Total)	y drug in fellow				
Non-ocular events related to subjects with at least on even	study drug, no. of t				
(d) ocular adverse events in f	ellow eye				
(occurring in $\ge 10\%$ in any gro	up)	_			
(e) Non-ocular events		_			
(f) Non-ocular serious advers	e events				
Non-ocular adverse events cla	assified as severe				
(1000)					
Cataract					
Arterial thromboembolic eve	nts, hypertension,				
non ocular haemorrhage, pro	oteinuria				
Haematology, coagulation, cf	iemistry, urinalysis	_			
mmunoreactivity					
	Ranibizumab 0.3m (n=238)	g Ranibizuma (n=239)	b 0.5mg	Sham (n=236)	
<b>Deaths Total</b> Deaths during first year		╸			
Deaths during second year					
Methodological comments					
Allocation to treatment					
groups:					

Blinding:	
Comparability of treatment	
groups.	
Broups.	
Method of data	
analysis:	
anarysis.	
• Sample size/power	
calculation:	
Attrition/drop-	
out:	
General comments	
Generalisability:	
• Outcome measures:	
• Inter-centre variability:	
• Conflict of interests:	
<b>Ouality criteria for assessment of experimental studies</b>	
1 West the estimation of the treatment groups really rendered	Adaguata

1. Was the assignment to the treatment groups really random?	Adequate
2. Was the treatment allocation concealed?	Adequate
3. Were the groups similar at baseline in terms of prognostic factors?	Reported
4. Were the eligibility criteria specified?	Adequate
5. Were outcome assessors blinded to the treatment allocation?	Adequate
6. Was the care provider blinded?	Adequate
7. Was the patient blinded?	Adequate
8. Were the point estimates and measure of variability presented for the primary outcome measure?	Adequate
9. Did the analyses include an intention to treat analysis?	Adequate
10. Were withdrawals and dropouts completely described?	Adequate

Confidential – do not copy or circulate

<b>Reference</b> and	Intervention	Participants	Outcome measures
Design		I	
Sy et al., 2005 (ANCHOR, fvf2587-g) Unpublished, ongoing	1. 0.3 mg ranibizumab monthly + sham PDT with saline infusion every 3 months if needed	<i>Target population:</i> Primary or recurrent predominantly classic subfoveal CNV <i>Number of Participants:</i> Total randomized: 422	Note: data are extracted for the study's primary and secondary outcome measures and for the TAR's stated outcome measures only. Exploratory efficacy measures not extracted.
United States, Europe, Australia RCT 83 centres	<ul> <li>2. 0.5 mg ranibizumab monthly + sham PDT with saline infusion and every 3 months if needed</li> <li>3. sham injection of</li> </ul>	<ol> <li>1. 0.3 mg ranibizumab: 140</li> <li>2. 0.5 mg ranibizumab: 140</li> <li>3. Verterporfin PDT: 143</li> <li>Sample attrition/dropout:</li> <li>3 subjects in the 0.3 mg group did not receive any ranibizumab</li> </ol>	Primary outcomes: Proportion losing fewer than 15 letters (approx 3 lines) in best corrected visual acuity (BVCA) at a test distance of 2 meters.
Setting: Funding:	ranibizumab monthly + active verteporfin PDT every 3 months if needed	during study. Main inclusion criteria for study entry	Safety and tolerability
Funding: Genentech, Inc / Novartis Pharma AG	needed. <i>Duration of treatment:</i> Ranibizumab or sham injection monthly for 23 months (24 injections). Active or sham PDT on Day 0 and every 3 months if needed (determined by fluorescein angiograms) for 21 months. <i>Other interventions</i> <i>used</i> :	<i>entry</i> : Age $\geq$ 50 years, primary or recurrent predominantly classic subfoveal CNV, eligibility for treatment with verteporfin PDT according to Visudyne product labelling, future treatment with verteporfin PDT anticipated or expected in study eye, classic CNV component $\geq$ 50% of the total lesion size, total lesion size $\leq$ 5400 µm in greatest linear dimension, best corrected visual acuity (using Early Treatment Diabetic Retinopathy Study charts) of 20/40 to 20/320 Snellen equivalent. Only one eye was assessed, if both eyes were eligible, the one with the better visual acuity was selected (unless	Secondary outcomes: Prevention of vision loss: - mean change in visual acuity, - proportion gaining at least 15 letters, - proportion with Snellen equivalent of 20/200 or worse. Vision-related functioning and well- being: National Eye Institute Visual Function Questionaire-25 (VFQ-25) Size of classic CNV and amount of leakage. Additional outcomes required by TAR: Method of assessing outcomes:
		medical reason for otherwise). <i>Exclusion criteria:</i> Prior PDT in study eye, prior PDT treatment in fellow eye less than 7 days prior, previous participation in trial of anti-angiogenic drugs, previous intravitreal delivery in study eye, previous subfoveal focal laser photocoagulation in study eye within one month, history of vitrectomy surgery, submacular surgery or other surgical intervention for AMD in study eye, subretinal haemorrhage involving centre of fovea if size is either $\geq$ 50% of total lesion area	Exploratory efficacy outcomes reported but not extracted

		or ≥1 d fibrosis eye due pigmen the mac Other c extracto	isc area in size, subfovea or atrophy, CNV in eithe to other causes, retinal t epithelium tear involvir cular in the study eye. riteria reported but not ed.	l er ng	Length of follow-up ongoing)	: 12 months (study
Characteristics	of participants:		Ranihizumah A 2mg	De	nihizumah 0.5mg	Vortonorfin
			(n=140)	(n=	=140)	PDT (n=143)
Age yrs, mean (S	SD), range					
Male Female						
White						
Black Hispanic						
American Indian	or Alaskan native					
Other Years since first	diagnosis of AMD					
Mean (SD), rang	je					
Visual acuity at a	starting test distance 2 me	tres				

No. of letters (0-100), Mean (SD),						
Range						
$\leq 44$						
$\geq$ 45	( )					
Approximate Snellen equivalent (2 me	etres)					
Median						
20/200 of worse Better then $20/200$ but worse then $20/200$	10					
Better than $20/200$ but worse than $20/2$	+0					
Visual aquity scores: study eve vs fello						
Study eye better than fellow eye	Jw Eye					
Study eye worse than fellow eye						
Study eye worse than fellow eye						
Predominantly classic						
Minimally classic						
Occult without classic						
Total area of lesion (disc areas (DA))						
Mean (SD), range)						
$\leq 2 \text{ DA}$						
>2 to 4 DA						
> 4 DA						
Total area of CNV (DA), Mean (SD),	range					
Area of classic CNV (DA), Mean (SD	), range					
Total area of leakage from CNV plus i	ntense					
progressive retinal pigment epithelium	staining					
(DA), mean (SD), range	U					
Area of subretinal fluid (DA) (aka sere	ous sensory					
retinal detachment), Mean (SD), range	;					
Presence of occult CNV						
Absent						
Questionable						
Present						
Any prior therapy for AMD in study e	ye					
Laser photocoagulation	-					
Medication						
Supplements						
Results					-	
Outcomes (at 12 months)	Ranibizur (n=140)	nab 0.3mg	Ranibi (n=140	zumab 0.5mg )	Verte (n=14	porfin PDT 3)
Proportion losing <15 letters						
compared with baseline (starting						
test 2 metres) n (%)	132 (94.3%	<b>(</b> 0 <b>)</b>	134 (96	6.4%)		
95 CI of the %				,		
Difference in % (vs PDT)						
95% CI of the difference						
Non-inferiority test vs PDT						
Test for treatment difference (vs						
PDT)						
Visual acuity at starting test distance						
of 2 metres, at 12 months						
No. of letters, mean, SD						

95% CI of mean			
Difference in least squares means (vs			
PDT)			
95% CL of difference			
$P_{\rm out}$ DDT)			
r (vsrD1)			
No. of letters change from			
baseline, mean (SD)			
95% CI of mean			
Difference in least squares means (vs			
PDT)			
95% CL of difference			
D volue (va DDT)			
		<b></b>	
Gain of $\geq$ 15 letters from baseline,			
n (%)	50 (35.7%)	56 (40.3%)	8 (5.6%)
95% CO of the %			
Difference in % (vs PDT)			
95% CI of the difference			
P value (vs PDT)			
Snellen equivalent			
20/200  or worse  n (%)	(22, 10)	(16.4%)	(60.1%)
20/200  of worse, if  (70)	(22.170)	(10.478)	(00.178)
95% C1 01 tile $%$			
Difference in % (vs PD1)			
95% CI of the difference			
P value (vs PDT)			
Distribution, n (%)			
20/200 or worse			
Better than $20/200$ but worse than			
20/40			
20/10 or better			
Subgroup analysis: proportion losin	g <15 letters in visual acuit	y at 12 months compared	l with baseline (starting
test distance 2 metres)			
Occult CNV present			
Response rate			
95% CL of the %			
Difference in 9/			
Difference III 70 050/ CL of the difference			
95% CI of the difference			
P value vs sham			
Occult CNV absent			
Response rate			
95% CI of the %			
Difference in %			
95% CL of the difference			
P value vs sham			
Change from begeling in VEO 25			
Change from baseline in VFQ-25			
scores at month***			
Near activities			l
Mean (SD)			
95% CI of mean			
Difference in least squares means (vs			
PDT)			
05% CL of difference			
			1

P value (vs PDT)					
Distance activities					
Mean (SD)					
95% CI of mean					
Differenc e in least squares means					
(vs PDT)					
95% CI of difference					
P value (vs PDT)					
Vision-specific dependency		_			
Mean (SD)					
95% CI of mean					
Difference in least squares means (vs					
PDT)					
95% CI of difference					
P value (vs PDT)					
Change in area of classic CNV					
(DA), mean (SD)					
95% CI of mean					
Difference in least squares means (vs					
PDT)					
95% CI of difference					
P value (vs PDT)					
Change in total area of leakage					
from CNV + intense progressive					
<b>RPE staining (DA)</b> , mean (SD)					
95% CI of mean					
Difference in least squares means (vs					
PDT)					
95% CI of difference					
P value (vs PD1)					
Change in contrast sensitivity, no.					
of letters, mean					
P value vs (PD1)					
Adherence to treatment (treatment of	compliance)				
	1 /				
Adverse Effects (safety-evaluable su	bjects)	Ranibizuma	b	Ranibizumab	Verteporfin PDT
		0.3mg (n=13	57)	0.5mg (n=140)	(n=143)
Any injection (ranibizumab or sham) h	neld				
according to protocol specified criteria	L				
Ocular events: study eye					
All adverse events (a)					
Serious adverse events (b)					
Adverse events led to discontinuation	(study or				
treatment) (c)					
Endophthlamitis					
Intraocular inflammation					
Total					
Serious					
Ocular events: fellow eye					

A 11 1 A			
All adverse events			
Serious adverse events			
Adverse events led to discontinuation (study or			
treatment)			
Endoprintamitis			
Intraocular Inflammation			
l otal			
Serious Non acular events			
All advaraa avanta (d)			
All adverse events (d)			
A duorse events that lad to discontinuation			
Adverse events that led to discontinuation			
(a) ocular adverse events in study eye $(a)$ ocular in $> 100$ (in any group)			
(occurring in $\geq 10\%$ in any group)			
Magular degeneration			
Retirel homowhere			
Euo noin			
Eye pain Vitroous datachment			
vincous detachment			
Subtential Holosis			
Vitroous floaters			
Vitreous moders			
Foreign hady consistion in avec			
Foreign body sensation in eyes			
(b) Coulor serious adverse events in study eve			
(b) Ocular serious adverse events in study eye			
(c) Ocular adverse events in study eye leading			
to discontinuation No. with at least one event.			
Events (all occurred in 1 subject (0.7%))			
Ocular adverse events classified as severe			
(occurring in $\geq 2$ subjects overall)			
Study eye			
Total			
Conjunctival haemorrhage			
Eye pain			
Intraocular pressure increased			
Retinal haemorrhage			
Retinal detachment		■	
Fellow eye			
Total			
CNV			
Macular degeneration			
Ocular events related to study drug in study eye			
(Total)			
Most common:	-		1
Intraocular pressure increased			
Intraocular pressure increased Vitritis			
Intraocular pressure increased Vitritis Iritis			



Comparability of treatment
groups
Method of data
analysis:
• Sample size/power
Attrition (Jacon
Aurition/drop-
General comments
• Generalisability:
• Outcome measures:
• Inter-centre variability
• Conflict of interests:
Conflict of interests:

1. Was the assignment to the treatment groups really random?	Adequate
2. Was the treatment allocation concealed?	Adequate
3. Were the groups similar at baseline in terms of prognostic factors?	Reported
4. Were the eligibility criteria specified?	Adequate
5. Were outcome assessors blinded to the treatment allocation?	Adequate
6. Was the care provider blinded?	Adequate
7. Was the patient blinded?	Adequate
8. Were the point estimates and measure of variability presented for the primary outcome measure?	Adequate
9. Did the analyses include an intention to treat analysis?	Inadequate
10. Were withdrawals and dropouts completely described?	Adequate

Reference and	Intervention	Participants	Outcome measures
PIER Unpublished, ongoing United States	<ol> <li>0.3 mg ranibizumab monthly for 3 doses, then doses every 3 months</li> <li>0.5 mg ranibizumab monthly for 3 doses, then doses every 3 months</li> </ol>	Target population <mark>:</mark> Number of Participants:	Note: data are extracted for the study's primary and secondary outcome measures and for the TAR's stated outcome measures only. Exploratory efficacy measures not extracted. <i>Primary outcomes</i> :
RCT investigators	3. Sham injection monthly for 3 doses, then doses every 3 months	Sample attrition/dropout	Secondary outcomes for year one:
<i>Funding:</i> Genentech, Inc	Duration of treatment	Main inclusion criteria for study entry:	
	Other interventions used:		
			Additional outcomes required by TAR <mark>:</mark>
		Exclusion criteria:	Method of assessing outcomes:
			Exploratory efficacy outcomes reported but not extracted <mark>:</mark>

Characteristics of participants:			Length of for up	llow-
Characteristics of participants:	Danihizumah	Donihizun	nah	Sham
	0.3mg	0.5mg	140	Sham
Age yrs, mean (SD), range				
Male				
Female				
White A sign on Desifie Islandon				
Hispanic				
American Indian or Alaskan native				
Other				
Years since first diagnosis of AMD				
Mean (SD), range				
V ISUAL ACULTY No. of letters $(0-100)$ Mean (SD)				
Range				
$\leq 54$				
<u>≥ 55</u>				
Approximate Snellen equivalent				
Median 20/200 or worse				
Better than 20/200 but worse than				
20/40				
20/40 or better				
Visual acuity: Study eye worse than				
fellow eye				
Predominantly classic				
Occult without classic				
Cannot classify				
Total area of lesion (DA)				

Mean (SD),			
range			
$\leq 4 \text{ DA}$			
> 4 DA Total area of CNW (DA)			
Moon (SD) range			
Mean (SD), Tange			
Area of classic CNV (DA)			
Mean (SD) range			
())), imige			
Total area of leakage from CNV plus			
intense progressive retinal pigment			
epithelium staining (DA), mean			
(SD), range			
Area of serous sensory retinal			
detachment or retinal fluid(DA)			
(aka), Mean (SD), range			
Occult CNV present,			
Any prior therapy for AMD in study			
eye Lasar photocoogulation			
Medication			
Supplements			
Results			
Outcomes	Ranibizumab	Ranibizumab	Sham
	0.3mg	0.5mg	
		8	
Visual acuity at starting test		0	
Visual acuity at starting test distance 4 meters		0	
<b>Visual acuity at starting test</b> <b>distance 4 meters</b> <i>Number of letter change from</i>			
Visual acuity at starting test distance 4 meters Number of letter change from baseline, mean (SD)			
Visual acuity at starting test distance 4 meters Number of letter change from baseline, mean (SD) 95% CI for mean			
Visual acuity at starting test distance 4 meters Number of letter change from baseline, mean (SD) 95% CI for mean Difference in LS means vs sham			
Visual acuity at starting test distance 4 meters Number of letter change from baseline, mean (SD) 95% CI for mean Difference in LS means vs sham 95% CI for difference P value vs sham			
Visual acuity at starting test distance 4 meters Number of letter change from baseline, mean (SD) 95% CI for mean Difference in LS means vs sham 95% CI for difference P value vs sham			
Visual acuity at starting test distance 4 meters Number of letter change from baseline, mean (SD) 95% CI for mean Difference in LS means vs sham 95% CI for difference P value vs sham Number of letters, mean (SD)			
Visual acuity at starting test distance 4 meters Number of letter change from baseline, mean (SD) 95% CI for mean Difference in LS means vs sham 95% CI for difference P value vs sham Number of letters, mean (SD) 95% CI for mean			
Visual acuity at starting test distance 4 meters Number of letter change from baseline, mean (SD) 95% CI for mean Difference in LS means vs sham 95% CI for difference P value vs sham Number of letters, mean (SD) 95% CI for mean Difference in LS means vs sham			
Visual acuity at starting test distance 4 meters Number of letter change from baseline, mean (SD) 95% CI for mean Difference in LS means vs sham 95% CI for difference P value vs sham Number of letters, mean (SD) 95% CI for mean Difference in LS means vs sham 95% CI for difference			
Visual acuity at starting test distance 4 meters Number of letter change from baseline, mean (SD) 95% CI for mean Difference in LS means vs sham 95% CI for difference P value vs sham Number of letters, mean (SD) 95% CI for mean Difference in LS means vs sham 95% CI for difference P value vs sham			
Visual acuity at starting test distance 4 meters Number of letter change from baseline, mean (SD) 95% CI for mean Difference in LS means vs sham 95% CI for difference P value vs sham Number of letters, mean (SD) 95% CI for mean Difference in LS means vs sham 95% CI for difference P value vs sham Loss of <15 letters from baseline, n			
Visual acuity at starting test distance 4 meters Number of letter change from baseline, mean (SD) 95% CI for mean Difference in LS means vs sham 95% CI for difference P value vs sham Number of letters, mean (SD) 95% CI for mean Difference in LS means vs sham 95% CI for difference P value vs sham Loss of <15 letters from baseline, n 95% CI for %			
Visual acuity at starting test distance 4 meters Number of letter change from baseline, mean (SD) 95% CI for mean Difference in LS means vs sham 95% CI for difference P value vs sham Number of letters, mean (SD) 95% CI for mean Difference in LS means vs sham 95% CI for difference P value vs sham Loss of <15 letters from baseline, n 95% CI for % Difference in % vs sham			
Visual acuity at starting test distance 4 meters Number of letter change from baseline, mean (SD) 95% CI for mean Difference in LS means vs sham 95% CI for difference P value vs sham Number of letters, mean (SD) 95% CI for mean Difference in LS means vs sham 95% CI for difference P value vs sham Loss of <15 letters from baseline, n 95% CI for % Difference in % vs sham 95% CI for difference P ushaw a sham			
Visual acuity at starting test distance 4 meters Number of letter change from baseline, mean (SD) 95% CI for mean Difference in LS means vs sham 95% CI for difference P value vs sham Number of letters, mean (SD) 95% CI for mean Difference in LS means vs sham 95% CI for difference P value vs sham Loss of <15 letters from baseline, n 95% CI for % Difference in % vs sham 95% CI for difference P value vs sham			
Visual acuity at starting test distance 4 meters Number of letter change from baseline, mean (SD) 95% CI for mean Difference in LS means vs sham 95% CI for difference P value vs sham Number of letters, mean (SD) 95% CI for mean Difference in LS means vs sham 95% CI for difference P value vs sham Loss of <15 letters from baseline, n 95% CI for % Difference in % vs sham 95% CI for difference P value vs sham			
Visual acuity at starting test distance 4 meters Number of letter change from baseline, mean (SD) 95% CI for mean Difference in LS means vs sham 95% CI for difference P value vs sham Number of letters, mean (SD) 95% CI for mean Difference in LS means vs sham 95% CI for difference P value vs sham Loss of <15 letters from baseline, n 95% CI for $\%$ Difference in % vs sham 95% CI for difference P value vs sham Gain of $\geq$ 15 letters from baseline, n (%)			
Visual acuity at starting test distance 4 meters Number of letter change from baseline, mean (SD) 95% CI for mean Difference in LS means vs sham 95% CI for difference P value vs sham Number of letters, mean (SD) 95% CI for mean Difference in LS means vs sham 95% CI for difference P value vs sham Loss of <15 letters from baseline, n 95% CI for difference P value vs sham S5% CI for difference P value vs sham 95% CI for difference P value vs sham 95% CI for difference P value vs sham			
Visual acuity at starting test distance 4 meters Number of letter change from baseline, mean (SD) 95% CI for mean Difference in LS means vs sham 95% CI for difference P value vs sham Number of letters, mean (SD) 95% CI for mean Difference in LS means vs sham 95% CI for difference P value vs sham Loss of <15 letters from baseline, n 95% CI for % Difference in % vs sham 95% CI for difference P value vs sham Gain of $\geq$ 15 letters from baseline, n (%) 95% CI for % Difference in % vs sham			
Visual acuity at starting test distance 4 meters Number of letter change from baseline, mean (SD) 95% CI for mean Difference in LS means vs sham 95% CI for difference P value vs sham Number of letters, mean (SD) 95% CI for mean Difference in LS means vs sham 95% CI for difference P value vs sham Loss of <15 letters from baseline, n 95% CI for % Difference in % vs sham 95% CI for difference P value vs sham S5% CI for difference P value vs sham 95% CI for % Difference in % vs sham 95% CI for difference P value vs sham			



	-		
Change in total area of CNV (DA),			
mean (SD)			
95% CI of mean			
Difference in LS means vs sham			
95% CI of difference			
P value (vs sham)			
Change in total area of leakage			
from CNV + intense progressive			
RPE staining (DA), mean (SD)			
Difference in LS means vs sham			
95% CL of difference			
P value (vs sham)			
Change in contrast sensitivity.			
change in no. of letters, mean			
P value vs (PDT)			
Adherence to treatment (treatment compliance)			
Advance Effects (sofety evaluable subjects)	Danihizumah	Donihizumah	Sham
Adverse Effects (safety-evaluable subjects)	A 3mg	Ranibizumab 0.5mg	Snam
Any injection (ranihizumah or sham) held	0.5111g	0.5mg	
according to protocol specified criteria			
Ocular events: study eve			
	∎	∎	
Quiler events: follow eve	■		
Ocular events: lenow eye			



(Total)		
(d) Non-ocular events	-	
(e) Non-ocular serious adverse events		
	_	
Cataract		
Hypertension, arterial thromboembolic events,		
non ocular haemorrhage, proteinuria		
Harmatalam, accordation, showiston, win showi		
Immunoroactivity		
mmunoreactivity		
Deaths		
Methodological comments		
Allocation to treatment		
groups <mark>:</mark>		
• Blinding		
Comparability of treatment		
groups <mark>:</mark>		
• Mathad of data		
• Method of data		
anary sis.		
Sample size/power		
Attrition/dron		
• Authon/drop-		

General comments	
• Generalisability:	
• Outcome measures:	
• Inter-centre variability:	
• Conflict of interests:	

1. Was the assignment to the treatment groups really random?	
2. Was the treatment allocation concealed?	
3. Were the groups similar at baseline in terms of prognostic factors?	
4. Were the eligibility criteria specified?	
5. Were outcome assessors blinded to the treatment allocation?	
6. Was the care provider blinded?	
7. Was the patient blinded?	
8. Were the point estimates and measure of variability presented for the primary outcome measure?	
9. Did the analyses include an intention to treat analysis?	
10. Were withdrawals and dropouts completely described?	



Characteristics	of narticinants.			
	or participants.	R+PDT	Sham+PDT	
Age yrs, mean (S	SD), range			
Male				
Female				
Hispanic				
Years since first	diagnosis of AMD,			
Mean (SD), rang	ge			
Visual acuity (2	metres)			
No. of letters (0- Range	100), Mean (SD),			
Approximate Sn	ellen equivalent			
Median	enen equivalent			
20/200 or worse				

Better than $20/200$ but worse than $20/40$		
20/40 or better		
Predominantly classic		
Minimally classic		
Occult without classic		
Cannot classify		
Total area of lesion (DA)		
Mean (SD),		
range		
Mean (SD) range		
Weah (SD), Tange		
Area of classic CNV (DA),		
Mean (SD), range		
Total area of leakage from CNV plus		
intense progressive retinal pigment		
(SD) ronge		
(SD), lange		
detachment/ subretinal fluid(DA).		
Mean (SD), range		
Any prior therapies for AMD		
Laser photocoagulation		
Photodynamic therapy		
Medication		
Supplements		
Besults		
Outcome		
Loss of < 15 Letters from baseline		
n (%)		
95% CI of the %		
Difference in %		
n-value		
r		
Number of letters change from		
baseline		
Mean (SD)		
95% CI of the mean Mean difference		
95% CL of the difference		
p-value		
Cain of > 15 lattage from baseling		
Gain of $\geq 15$ letters from daseline n (%)	l	l
95% CI of the %		
Difference in %		
95% CI of the difference		
p-value		

Snellen equivalent of 20/200 or	
worse	
n (%)	
95% CI of the %	
Difference in %	
95% CI of the difference	
p-value	
Change in the total area of lesion	
(DA)	
Mean (SD)	
95% CI of the mean	
p-value**	
Change in the area of classic CNV	
$(\mathbf{DA})$	
Mean (SD)	
95% CI of the mean	
p-value Change in the total area of lashage	
from CNV + intense progressive	
<b>RDF</b> staining (DA)	
Mean (SD)	
95% CL of the mean	
p-value	
Change in the area of SSR	
detachment/ subretinal fluid	
Mean (SD)	
95% CI of the mean	
p-value	
Change in the area of CNV	
Mean (SD)	
95% CI of the mean	
p-value	
Verteporfin PDT Treatment in the	
Study Eye during the First	
Treatment Year	
Subjects retreated with any	
verteportin PDT	 
n (%)	
p-value	
Number of treatments with	
vertenorfin PDT	
Mean (SD)	
Range	
Notes	
Subgroup analysis	
5 I V "	
Loss of < 15 Letters from Baseline	
at 12 Months	
Ν	
n (%)	
95% CI of the percentage	
Difference in percentages	
95% CI of the difference	

p-value					
Adherence to treatment (treatment compliance)					
Adverse Effects (safety-evaluable	R+PDT	Sham+PDT			
subjects)					
Ocular (study eye)					
		l			
Ocular (fellow eye)-					
Non-ocular					
a) Ocular Adverse Events in the					
Study Lye					



Intraocular Cataracts in the Study	
Eye	
Intraocular Cataracts in the Fellow	
Eve	
Adverse Events Potentially	
Associated with Systemic Anti-	
VEGF Therapy	
Total	
Hypertension	
Arterial thromboembolic events	
Haemorrhagic	
Notes	
Haamatalagu ahamistru urinalusis	
maematology, chemistry, urmanysis	
T	
Destha	
Deaths	
Matha Islanda Islanda	
Wiethodological comments	
• Allocation to treatment groups.	
• Blinding:	
Comparability of treatment	
groups <mark>:</mark>	
• Method of data	
analysis <mark>:</mark>	
Sample size/power	 
calculation:*	

• Attrition/drop-
out <mark>:</mark>
General comments
• Generalisability:
• Outcome measures:
• Inter-centre
variability <mark>:</mark>
• Conflict of interests:

1. Was the assignment to the treatment groups really random?	
2. Was the treatment allocation concealed?	
3. Were the groups similar at baseline in terms of prognostic factors?	
4. Were the eligibility criteria specified?	
5. Were outcome assessors blinded to the treatment allocation?	
6. Was the care provider blinded?	
7. Was the patient blinded?	
8. Were the point estimates and measure of variability presented for the primary outcome measure?	
9. Did the analyses include an intention to treat analysis?	
10. Were withdrawals and dropouts completely described?	
# Appendix 5 List of selected excluded studies

Capone A. Intravitreous pegaptanib sodium (Macugen) in patients with age-related macular degeneration (AMD): Safety and pharmacokinetics. *Investigative Ophthalmology & Visual Science* 2005; 46. Reason: not an RCT

D'Amico DJ, Bird AC. VEGF inhibition study in ocular neovascularization-1 (VISION-1): Safety evaluation from the pivotal Macugen (TM) (Pegaptanib sodium) clinical trials. *Investigative Ophthalmology & Visual Science* 2004; 45:2363. Reason: duplicates data from included study

Heier JS, Antoszyk AN, Pavan PR, Leff SR, Rosenfeld PJ, Ciulla TA *et al.* Ranibizumab for treatment of neovascular age-related macular degeneration: a phase I/II multicenter, controlled, multidose study. *Ophthalmology* 2006;113(4):633-42. Reason: not an RCT

Gonzales CR, VEGF Inhibition Study in Ocular Neovascularization. Enhanced efficacy associated with early treatment of neovascular age-related macular degeneration with pegaptanib sodium: an exploratory analysis. *Retina* 2005; 25(7):815-827. Reason: not an RCT

Gragoudas ES, Adamis AP, Feinsod M. Pegaptanib and age-related macular degeneration -Reply. *New England Journal of Medicine* 2005; 352(16):1721. Reason: not an RCT (correspondence relating to included RCT)

Gragoudas ES. VEGF inhibition study in ocular neovascularization-1 (VISION-1): Efficacy results from phase II/III Macugen (TM) (Pegaptanib sodium) clinical trials. *Investigative Ophthalmology & Visual Science* 2004; 45:2364. Reason: duplicates data from included study

Heier JS, Rosenfeld PJ, Antoszyk AN, Hantsbarger G, Kim R, Shams N. Long-term experience with lucentis (ranibizumab) in patients with neovascular age-related macular degeneration (AMD). *Investigative Ophthalmology & Visual Science* 2005; 46:E-abstract 1393. Reason: Not an RCT

Rakic JM, Blaise P, Foidart JM. Pegaptanib and age-related macular degeneration. *New England Journal of Medicine* 2005; 352(16):1720-1721. Reason: letter to editor

Schuman S, Rogers AH, Duker JS, Reichel E, Baumal CR. Six-week outcomes after pegaptanib. *Ophthalmology* 2006; 113(3):501. Reason: letter to editor

#### Appendix 6 List of eligible abstracts

The following abstracts were eligible for inclusion in the review but did not present sufficient details to allow an appraisal of the methodology and assessment of results.

- Brown DM, Shapiro H, Schneider S, ANCHOR study group. Subgroup analysis of firstyear results of ANCHOR: a phase III, double-masked, randomized comparison of ranibizumab and verteporfin photodynamic therapy for predominantly classic choroidal neovascularization related to age-related macular degeneration. *Invest Ophthalmol Vis Sci* 47. 2006.
- (2) Chang TS, Fine JT, Bressler N. Self-reported vision-specific quality of life at 1 year in patients with neovascular age-related macular degeneration in 2 phase III randomized clinical trials of Ranibizumab (Lucentis). *Invest Ophthalmol Vis Sci* 47. 2006.
- (3) Heier JS, Shapiro H, Singh AA, Sr., MARINA study group. Randomized, controlled phase III study of ranibizumab (Lucentis) for minimally classic or occult neovascular age-related macular degeneration: two-year efficacy results of the MARINA study. *Invest Ophthalmol Vis Sci* 47. 2006.
- (4) Heier JS, Sy JR, McCluskey ER, rhuFab V2 study group. RhuFab V2 in wet AMD 6 month continued improvement following multiple intravitreal injections. *Invest Ophthalmol Vis Sci* 44. 2003.
- (5) Miller JW, Shapiro H, Acharya N, MARINA study group. Randomized, controlled phase III study of ranibizumab (Lucentis) for minimally classic or occult neovascular age-related macular degeneration: two-year safety results of the MARINA study. *Invest Ophthalmol Vis Sci* 47. 2006.

# Appendix 7 List of ongoing studies

# Pegaptanib

- The VISION study is ongoing, with further results due to be reported in 2008.
- Protocol EOP1009 A phase II prospective, randomized, double-masked, sham-controlled, dose-ranging, multi-centre trial to assess the effect of pegaptanib sodium on foveal thickening in patients with exudative subfoveal ARMD. Expected completion June 2006.

The following records on the ClinicalTrials.gov website would not meet our inclusion criteria (due to lack of usual care control arm) but may be of interest:

- "A phase IIIb/IV randomized, double-masked, active controlled, dose-ranging, multi-center comparative trial, in parallel groups, to compare the safety and efficacy of intravitreal injections of pegaptanib sodium (Macugen) given every 6 weeks for 102 weeks, to pegaptanib sodium plus photodynamic therapy (PDT) with Visudyne, in patients with exudative age-related macular degeneration (AMD)." Study start March 2005, expected completion: October 2008. ClinicalTrials.gov identifier: NCT00134667.
- "An exploratory randomized, double-masked, multi-center comparative trial, in parallel groups, to explore the safety and efficacy of three different doses of intravitreous injections of pegaptanib sodium (anti-VEGF pegylated aptamer) given every 6 weeks for 102 weeks, in patients with subfoveal neovascular age-related macular degeneration (AMD)." Study start: April 2006, expected completion: June 2009. ClinicalTrials.gov identifier: NCT00312351.

# Ranibizumab

- Year 2 results for the ANCHOR trial are due in Q3 2006.
- PROTECT: phase II open-label combination treatment trial, in patients with occult or predominantly classic neovascular AMD. No control group. Objectives: to evaluate safety of the same-day administration of PDT with verteporfin and an injection of 0.5 mg ranibizumab. Completion date not given.
- EXCITE: phase IIIb randomized, double masked, active-controlled, multicenter study, in patients with subfoveal CNV secondary to AMD. No control group. Objectives: efficacy and safety of ranibizumab administered as 3 consecutive monthly injections of 0.3 mg or 0.5 mg, followed by quarterly injections (alternative dosing) of the same doses, respectively, versus monthly 0.3 mg injections. Completion date not given.

- HORIZON: phase III open-label, multicentre extension study, in patients with subfoveal CNV secondary to AMD. Sham injection control. Objectives: to investigate long-term safety, tolerability and efficacy of multiple intravitreal ranibizumab. Completion date not given.
- SAILOR: phase IIIb single-masked, 1 year multicentre study (ClinicalTrials.gov identifier: NCT00299078). Ranibizumab in naïve and previously treated subjects with subfoveal CNV secondary to AMD. About 5000 subjects will be enrolled and randomised 1:1 for 0.3mg and 0.5mg ranibizumab (no 'usual care' study arm). The primary outcome is the incidence of serious adverse events. Study start: March 2006. Completion date not given.
- SUSTAIN: phase IIIb open label multicenter study in patients with subfoveal CNV secondary to AMD. No control group. Objectives: efficacy and safety of ranibizumab administered as 3 consecutive monthly injections followed by PRN re-treatment, in subjects treated with 0.3 mg intravitreal ranibizumab. Completion date not given.

# Appendix 8 Critique of industry submissions

# Pfizer - Pegaptanib sodium (Macugen)

Pegaptanib is a selective vascular endothelial growth factor (VEGF) inhibitor that specifically targets VEGF16, to suppress pathological neovascularisation. Pegaptanib is indicated for the treatment of neovascular (wet) age-related macular degeneration (AMD). The licensed dose is 0.3mg administered by intravitreal injection once every 6 weeks.

**Submitted**: 1 report (pp. 80 inc. appendices); 1 spreadsheet containing a cost-effectiveness model; CIC checklist. An unpublished paper by Mills et al. and papers by Chakravarthy et al. and D'Amico et al. were available by request.

# **Clinical-effectiveness**

The manufacturer states that a systematic review was conducted in 2005 which was updated for the submission to NICE in May 2006. The search strategy for MEDLINE and EMBASE is provided in an appendix of the submission, but no further details of the systematic review are given (e.g. inclusion/exclusion criteria or a QUOROM flow chart). Only one trial (the VISION study) was identified, so meta-analysis was not appropriate. The manufacturer assessed the quality of the included study using the JADAD criteria, tabulated data from the study and provided a narrative summary of the evidence. The manufacturer's submission cites a paper by Gonzales (2005) in a list of publications related to the VISION study. However, there is no further reference to this paper, and it is not included in the bibliography. The Gonzales paper was identified in the SHTAC systematic review, but the paper did not meet our inclusion criteria as it only reports exploratory analyses of data from the VISION study.

# **RCTs included in the review**

- The VISION study is the only RCT included in the manufacturer's submission. It consisted of two separate RCTs which were combined for analysis. Publications from VISION are:
  - Year one safety and effectiveness (Gragoudas and colleagues)
  - Year 2 safety (D'Amico and colleagues)
  - Year 2 effectiveness (Chakravarthy and colleagues)
  - Unpublished analysis of disease modifying effect (Mills and colleagues)

### Summary of key outcome measures

The VISION trial's primary efficacy outcome measure was the proportion of responders, defined as patients losing <15 letters of visual acuity (VA). The submission reported year one results for the 0.3mg dose group compared with sham injection, and year two results were reported for those who were re-randomised to continue 0.3mg pegaptanib for two years compared with those who were re-randomised to receive usual care.

### Patients losing <15 letters of VA (responders)

Year one results showed a significantly higher proportion of responders in the 0.3mg pegaptanib group than in the control group. Those who continued to receive 0.3mg pegaptanib in the second year were significantly more likely to be classified as responders than those who discontinued 0.3mg pegaptanib treatment after one year.

#### Maintenance or gain in VA

Significantly more people in the 0.3mg pegaptanib had a maintenance or gain of  $\ge$  0 letters at the end of year one.

#### Mean changes in VA

Mean changes in VA were significantly better for the 0.3mg pegaptanib group than for the control group at year one.

#### Proportion of patients gaining $\geq 5$ , $\geq 10$ or $\geq 15$ letters of VA

Significantly more people in the 0.3mg pegaptanib group than those in the sham injection group gained  $\geq 5, \geq 10$ , or  $\geq 15$  letters of VA.

#### Severe vision loss (loss of $\geq 30$ letters)

Significantly fewer people who received 0.3mg pegaptanib reported severe vision loss at the end of year one than those who received sham injection. Severe vision loss was also significantly less likely to be reported among those who continued 0.3mg pegaptanib for a second year compared with those who received usual care.

#### Adverse events

All adverse events and serious adverse events were recorded as outcome measures. These are all discussed in detail in the TAR. The submission reports that adverse events were transient and of mild to moderate severity.

#### Health related quality of life

Four of the NEI-VFQ 25 subscales were prospectively designated as primary outcomes: Near Vision. Distance Vision, Role Limitation, and Dependency. The Distance Vision and Role Limitations domains were consistently better with pegaptanib treatment across all doses. The least squares mean score difference between 0.3mg and usual care on Distance Vision does not appear to be statistically significant (4.3, p=0.059). Analysis of responders and non-responders was reported to have showed a statistically significant benefit for the responders in the four primary domains, but data are not presented.

# 'Added value' of submission (i.e. data presented that is not currently in public domain)

The manufacturer's submission is primarily based on three published papers. Data from an additional, unpublished paper by Mills and colleagues is included in the manufacturer's submission. The manufacturer supplied the Mills paper at SHTAC's request. It presents academic in confidence analysis of the two year results, which suggest a disease modifying effect of treatment with pegaptanib. This has been considered in the TAR's economic evaluation and highlighted as AIC information. The manufacturer's submission also contains CIC subgroup analyses by lesion type for year 2 data, and these have been added to the TAR report.

The conclusion presented in the submission, i.e. that pegaptanib is significantly more effective than usual care in preserving VA, is supported by the conclusions of SHTAC's systematic review.

#### **Cost-effectiveness**

See Section 4.1.4.1 for discussion of the Pfizer cost effectiveness model.

# 2. Novartis – Ranibizumab (Lucentis)

Ranibizumab is not currently licensed for the treatment of AMD in the UK, although the manufacturer anticipates that it will receive its license during the appraisal process.

# Submitted:

1 report (pp. 50); 12 appendices; 1 spreadsheet containing a Markov cost-effectiveness model; CIC checklist. The 12 appendices included the HE final report (pp. 91) and the following trial reports: MARINA 1 year report (pp. 194); MARINA year 2 report (pp. 177); ANCHOR (pp. 198); PIER (pp. 192); FOCUS (pp. 144). Although the Novartis submission report itself was only 50 pages long, the extensive trial reports included as appendices increased it to an extremely lengthy size.

# **Clinical-effectiveness**

The manufacturer did not conduct a systematic review, and the submission is based on two recently published and one unpublished RCTs of ranibizumab. A fourth phase I/II RCT (FOCUS) was provided by the manufacturer but not discussed in the submission in any detail. As this met the inclusion criteria for SHTAC's systematic review, it was included in the TAR. The manufacturer's submission refers to meta-analysis of the ANCHOR, MARINA and PIER studies. This is a separate drug and disease model (appendix III) and is not a standard meta-analysis of clinical effectiveness.

# **RCTs included in the review**

- ANCHOR
- MARINA
- PIER (unpublished)
- FOCUS (unpublished) was also briefly discussed, but results weren't tabulated

# Summary of key outcome measures

Patients losing <15 letters of VA (responders)

The ANCHOR and MARINA and PIER data are discussed in the submission and the FOCUS study provided by the manufacturer reported the proportion of patients who lost fewer than 15 letters of VA. Results were significantly better for both 0.3mg and 0.5mg doses compared with

sham injection or PDT at one year follow up in the ANCHOR trial, and at both years one and two in the MARINA trial.

#### Mean changes in VA

Results were significantly better for both 0.3mg and 0.5mg doses compared with sham injection or PDT at one year follow up in the ANCHOR ANCHOR trial, and at both years one and two in the MARINA trial.

#### Proportion of patients gaining $\geq 15$ letters of VA

The PIER trial (which had a reduced frequency of injections) reported between the ranibizumab groups and the sham injection group. Results were significantly better for both 0.3mg and 0.5mg doses compared with sham injection or PDT at one year follow up in the ANCHOR **constant** trial, and at both years one and two in the MARINA trial.

# Proportion losing > 30 letters (severe vision loss)

The submission reports that for predominantly classic lesions (ANCHOR) there was no severe vision loss in ranibizumab-treated patients and for minimally classic and occult lesions (MARINA) the incidence was approximately 1%. In the comparator groups, the second of shaminjection patients and the of PDT- patients the second patients from baseline at the months. This outcome was defined as the second patient of the SHTAC report. The SHTAC team made an *a priori* decision to extract only primary and secondary outcomes (plus outcomes listed in the SHTAC protocol) from the extensive CIC study reports.

#### Proportion of patients deteriorating to legal blindness

Patients treated with either 0.3mg or 0.5mg were significantly less likely to deteriorate to legal blindness compared with those in the sham injection or PDT groups at one year follow up in the ANCHOR **ANCHOR** trial, and at both years one and two in the MARINA trial.

#### Angiographic changes

Significantly better angiographic changes were reported for both 0.3mg and 0.5mg doses compared with sham injection or PDT at one year follow up in the ANCHOR trial and at both years one and two in the MARINA trial.

# Health related quality of life

The PIER trial found in health related quality of life measured on the scale between people receiving ranibizumab and those receiving sham injections. MARINA and ANCHOR reported significant differences between both the 0.3mg and 0.5mg dose groups and sham/PDT control groups for distant activities, near activities and vision specific dependency subscales. FOCUS

#### Adverse events

Adverse events were reported by the trials, and these are discussed in the TAR.

### 'Added value' of submission

The two published and two unpublished RCTs provided by the manufacturer form the evidence base for ranibizumab AMD treatment. The manufacturer provided a Drug and Disease Model which pooled the placebo groups of the MARINA and PIER trials in order to identify the optimum dosing regimen.

The manufacturer's conclusion that ranibizumab improves visual acuity is supported by the conclusions from SHTAC's systematic review. The manufacturer states that the licensed dose of 0.5mg results in a clinically meaningful improvement of 15 or more letters in over a third of patients. The patients in the two pivotal trials (MARINA and ANCHOR), results for the patient of the patient of the FOCUS trial, which combined ranibizumab with PDT, the PIER trial for the patient of the patients in the PIER trial had the

frequency of dosing reduced from one injection per month to one injection every three months.

# **1.2 Cost-effectiveness**

See Section 4.1.4.2 for discussion of the Novartis cost effectiveness model.

Number of patients (%)											
Adverse event (AE)	MARINA (24 month data)		ANCHOR			PIER			FOCUS		
	Lesio	on type: occu	lt/MC	L	esion type: P	PC		Lesion type: a		Lesion typ	pe <mark>:</mark>
	0.3 mg	0.5 mg	Sham	0.3 mg +	0.5 mg +	Sham +	0.3mg	0.5mg	Sham	0.5mg	Sham
	(n-238)	(n=240)	(n=238)	(n=140)	(n=140)	PD1 (n=143)				+PD1	+PD1
All AE (a) Serious AE (b) AE led to discontinuation of study or treatment (c) Endophthlamitis Intraocular inflammation Total Serious											
Cataract											
(a) Ocular AE ^a											
Conjunctival											
haemorrhage											
Macular degeneration											
Retinal haemorrhage											
Visual acuity reduced											
Eye pain											

Appendix 9 Ocular adverse events in study eye: CIC information from ranibizumab studies

				Num	nber of patien	ıts (%)					
Adverse event (AE)	MARI	INA (24 mon	th data)		ANCHOR		PIER			FO	CUS
	Lesion type: occult/MC		Lesion type: PC			Lesion type: all			Lesion ty	pe <mark>:</mark>	
	0.3mg	0.5mg	Sham	0.3mg +	0.5mg +	Sham +	0.3mg	0.5mg	Sham	0.5mg	Sham
	(n=238)	(n=240)	(n=238)	sham PDT	sham PDT	PDT				+PDT	+PDT
				(n=140)	(n=140)	(n=143)					
Intraocular pressure											
increased											
Vitreous floaters											
<b>V</b> ² 1 1 1											
vitreous detachment											
Subratinal fibrasis											
Subletillar Horosis											
Vitritis				=							
111110											
CNV										—	
								-			
Eye irritation											
-											
Foreign body											
sensation in eyes											
(b) Most common ocula	ar serious A	E									
Reduced visual acuity				Rate	(	in each					
Retinal haemorrhage				treatment g	roup) for all o	cular					
				serious adv	erse events.	lens					
				damage or i	retinal tears.						
(c) Ocular AE in study	eye leading	to discontinu	lation	1						1	
Macular degeneration											
Keunal naemorrnage											
visual aculty reduced											
Fixe pain							∣■				
Lyc pain Uveitis											
Ocular AE classified as	s severe (stur	lv eve) ^b		I			I				

				Num	ber of patien	nts (%)					
Adverse event (AE)	MAR	INA (24 mon	th data)		ANCHOR			PIER			CUS
	Lesion type: occult/MC		Lesion type: PC			Lesion type: all			Lesion type <mark>:</mark>		
	0.3mg (n=238)	0.5mg (n=240)	Sham (n=238)	0.3mg + sham PDT (n=140)	0.5mg + sham PDT (n=140)	Sham + PDT (n=143)	0.3mg	0.5mg	Sham	0.5mg +PDT	Sham +PDT
Total											
Conjunctival											
haemorrhage											
Retinal haemorrhage											
Eve pain											
Visual acuity reduced											
Macular degeneration											
Endophthalmitis											
Corneal abrasion						-					
increased											
Iridocyclitis											
Retinal detachment											
Total											
Intraocular pressure increased											
Iritis											
Vitritis											
Vitreous floaters											
Iridocyclitis											
	1		DIED ( 1	1		1	C	1.4 .4.1	1	DDIA 1	

^a ocular AE occurring in at least  $\frac{1}{2}$  in any group in the PIER study, at least  $\frac{1}{2}$  % in any group or at least  $\frac{1}{2}$  more frequent in either ranibizumab group in MARINA study,  $\frac{1}{2}$  occurring in at least 2 subjects overall in Marina and ANCHOR trial

Number of patients (%)											
Adverse event (AE)	MARINA (24 month data)				ANCHOR			PIER			CUS
	Lesio	on type: ocut	ılt/MC	L	esion type: P	C	Lesion type: all			Lesion type <mark>:</mark>	
	0.3mg	0.5mg	Sham	0.3 mg +	0.5mg +	Sham +	0.3mg	0.5mg	Sham	0.5mg +	Sham +
	(n=238)	(n=240)	(n=238)	sham PDT	sham PDT	PDT				PDT	PDT
				(n=140)	(n=140)	(n=143)					
Any injection held											
according to protocol											
specified criteria											
Non-ocular events											
All AE											
Serious AE											
AE that led to											
discontinuation											
Non-ocular events											
related to study drug											
Non-ocular AE											
classified as severe											
Deaths											

# Appendix 10 Non ocular adverse events: CIC information from ranibizumab studies

Measure of QoL	Description
General	
<ul> <li>Instrumental Activities of Daily Living Index</li> </ul>	Assesses functional independence, examines competence in managing one's own affairs and independent living. Participants' ability to carry out daily activities is assessed with the domains of managing medications, shopping for necessities, managing finances, using the telephone, maintaining a household and preparing meals. Possible responses to each item are yes, yes with difficulty and no. A composite Instrumental Activities of Daily Living index score is created by averaging the responses to 12 items. Possible scores range from 1 to 3, with 1 representing complete independence in these activities and 3 indicating inability to carry out any of the tasks. ⁵⁶
<ul> <li>Self-Rated General Health Status</li> </ul>	This self-evaluation of overall health status has been widely used because it provides a succinct way of summarizing diverse aspects of health status from the individual's perspective. Participants were asked to rate their overall health as excellent, very good, good fair or poor. ⁵⁶
<ul> <li>Profile of Mood States (POMS)</li> </ul>	65-item, self-report symptom inventory designed to assess mood state in the past week, which has been validated in elderly people. Participants respond to each item on a five-point scale, ranging from "not at all" to "extremely". There are 6 subscales (tension/ anxiety, depression/ dejection, vigor/ activity, confusion/ bewilderment, fatigues/ inertia and anger/ hostility) and a total score that ranges from 0-232. ^{56,148,149}
<ul> <li>Hospital Anxiety and Depression Scale (HADS)</li> </ul>	Identifies symptoms of anxiety and depression among outpatients. It consists of 14 items to form two summary scales, the anxiety scale (7items) and the depression scale (7 items). The anxiety scale consists of items on tension, fear of the future, worries, inability to relax, restlessness and panic. The depression scale consists of items on decreased enjoyment, sense of humor, cheerfulness and optimism. Each item is scored 0 to 3; the scores from all 7 items of such scale are summed to calculate a scale score. Hospital Anxiety and Depression Scale scores range from 0 to 21 with a higher score representing more symptoms of anxiety ore depression. It is also recommended using categories of 0 to 7, 8 to 10, and 11 or higher to define "noncases", "doubtful cases", and "definite cases" of anxiety or depression. ⁶¹
Structured Clinical	A semi-structured, clinician administered interview for making major
Interview for the	Diagnostic and Statistical Manual (4 th edition) Axis I diagnoses, it
Diagnostic and Statistical Manual A th	Includes an introductory overview followed by 9 modules, 7 of which represent the major Axis I diagnostic classes. It can be adapted for use
Edition	in studies in which particular diagnoses are of interest. Output is recorded as presence or absence of each disorder being considered, for current episode (past month) and lifetime occurrence ⁵⁵
<ul> <li>Short From-36 Health</li> </ul>	A 36-item generic measure of health related OoL designed for
Survey	chronically ill patients, which addresses 8 general health subscales: physical functioning, role limitations due to physical problems, bodily pain, general health, energy/ vitality, social functioning, role limitations due to emotional problems and mental health. The answers to the questions are then summarised into the physical composite score

# Appendix 11 Summary of measures reported in studies included in the review of quality of life in AMD

	(PCS) and mental composite score (MCS). The scores are then transformed to a norm-based scoring system by the addition of a population-based constant, resulting in a 100-point scale in which 100 represents the best possible score and 0, the worst. ^{61,64,120,126,150}
<ul> <li>Short From-12 Health Survey</li> </ul>	A short validated version of the SF-36 to evaluate the participants' physical and mental health. It is composed of 12 questions that address the same 8 general health subscales as in SF-36. ^{63,65}
Quality of Well-Being     (QWB)	A comprehensible measure of health related quality of life that includes functional scales for mobility, physical activity and social activity. In addition, the QWB Scale includes a section on symptoms and problems. The scoring system for the QWB Scale applies estimates of quality of life to combinations of functioning and symptoms. The quality estimates were obtained from an independent panel of judges. The scoring system places each case on a continuum ranging from 0.0 for dead to 1.0 for optimum function with no symptoms. ⁵⁶
Visual-related	
Activities of Daily Vision Scale	It consists of 21 multiple-response items representing common visual activities categorised into five subscales: night driving, daytime driving, distance vision activities that do not require driving, near vision activities and activities subject to glare. Additionally the subscales can be combined into an overall visual function score. All scale scores range from 0 to 100 where 100 represents no difficulty and 0 means the activities are no longer performed because of visual impairment. Items are structured such that if the subject indicates that an activity is difficult because of limitations not caused by vision, the item does not contribute to the scale score. Similarly, if a subject does not perform an activity, that item would not be rated for degree of difficulty. ¹²⁶
• MacDQoL	An individualised meadure of the impact of MD on QoL, based on the design of the Audit of Diabetes Dependent Quality of Life (ADDQoL). It begins with two overview items, measuring: a) present QoL (In general, my present quality of life is:), scored from +3 (excellent), through 0 (neither good nor bad) to -3 (extremely bad), b) MD-specific QoL (If I did not have MD, my quality of life would be:), scored from -3 (very much better) through 0 (the same) to +1 (worse). There are 26 domain specific items and each has questions asking about both the impact of MD on that aspect of life and the importance of the aspect of life to QoL. For the domain specific items, impact scores (from -3 to +1) are multiplied by importance scores (from 0 to £) to give a weighted impact score for each domain of between -9 and +3. The use of impact and importance scores enables an estimation of the impact of MD on an individual's QoL, not merely on function. A final item asks the respondents whether MD affects his/her life in any ways not already covered, with a space to write a response for people who reply 'yes'. ¹²⁵
<ul> <li>National Eye Institute Visual Function Questionnaire (NEI- VFQ)</li> </ul>	Three versions of the NEI-VFQ have been published, containing 25 items, 39 items and 51 items. A 51-item questionnaire was originally devised in the US from focus groups of people with major causes of eye disease. The questionnaire was later shortened to 25 items, based predominantly on the responses from those with eye disease and visual impairment, and also from a minority group without eye disease. The 25-item version and the appendix of additional questions have been published (http://rand.org/health/survey/vfq25). The 25-item NEI-VFQ and the appendix could be combined to create a 29-item NEI-VFQ. These items could be divided to create 12 subscale scores and

	an overall score. They are general health, general vision, ocular pain, near vision activities, distance vision activities, vision-specific social functioning, vision-specific mental health, vision-specific role difficulties, dependency due to vision, driving, peripheral vision and colour vision. The overall score and each subscale score range from 0 to 100, with a higher score representing better visual function. ^{61,63,120-124,148,151,152}
<ul> <li>AMD Self Efficacy Questionnaire</li> </ul>	As conceptualized in Bandura's social cognitive model, self-efficacy is a person's assessment of his or her abilities and encompasses the degree of certainty and underlying expectations about his or her ability to succeed in a given circumstance. Based on this theory, a self- efficacy questionnaire had been developed to address issues salient to AMD and shown to be reliable. The scale ranges from 1 to 100, with high scores indicating that participants feel very confident they can accomplish the task related to AMD vision loss described in the question. Higher scores indicate greater self-efficacy. ¹⁴⁸
<ul> <li>Visual Function Questionnaire 14-item scale (VF-14)</li> </ul>	Measures difficulty in performing 14 vision-dependent everyday activities: reading small print; reading a newspaper or book; reading a large-print book or numbers on a phone; recognising people nearby; seeing steps, stairs or curbs; reading traffic, store or street signs; doing fine handiwork; writing checks or filling out forms; playing games; playing sports; cooking; watching televisions; driving during the day; and driving at night. Each item is assigned a score: 4 for 'no difficulty', 3 for 'a little difficulty', 2 for 'a moderate amount of difficulty', and 1 for 'a great deal of difficulty'. ¹²⁷
<ul> <li>Daily Living Tasks Dependent on Vision (DLTV)</li> </ul>	A 33 item divided into 4 dimensions questionnaire covering tasks relating to visual function, with and without the use of magnification aids, and general aspects of visual health. In majority of the instances, each item is scored on a 4 point ordered categorical scale where the minimum possible score is 1 (inability to do the task) and the maximum is 4 (no difficulty with the task). The scores from each item within a dimension are averaged and converted into a scale between 0 and 100. Where a task is not applicable, this item is not scored and the percentage DLTV score is adjusted for the number of items answered.
Impact of Vision Impairment (IVI) Questionnaire	A validated 32 item questionnaire aims to describe vision specific restriction to participation (handicap) that is not captured in clinical measures (impairment) or self reported or assessed performance (disability). It has 5 domains namely leisure and work, consumer and social interaction, household and personal care, mobility and emotional reaction to vision loss. Responses to the IVI items are rated as 'not at all' (0), 'rarely' (1), 'a little' (2), 'a fair amount' (3), 'a lot' (4), and 'can't do because of eyesight' (5).

Measure of QoL	Description
<ul> <li>Time Trade-off</li> </ul>	Respondents were asked how many additional years they had expected to live and how many of those years (if any) they would trade in return for perfect vision in each or both eyes. The utility value was then calculated by subtracting from 1.0 the number of years given up divided by the number of additional years they had expected to live. ^{62,112,128,142}
<ul> <li>Standard Gamble</li> </ul>	Respondents were presented with the scenario of a treatment that when it worked, always worked perfectly and restored permanent perfect vision in each or both eyes. However when it did not work the

alternative would be immediate death. They were asked the highest
risk of dying (in percentage) they would be willing to take (if any)
before refusing the treatment. The utility value was calculated by
subtracting from 1.0 the percentage risk the respondent was willing to
assume before refusing treatment. ^{112,128}

	Critical	
Item	Apprais	<b>Reviewer Comment</b>
	al	
Is there a well defined question?	$\checkmark$	cost-effectiveness of 0.3mg pegaptinib versus usual care for
		treatment of patients with subfoveal neovascularisation in better-
Is there a clear description of	~	Pegaptinib at licensed dosage, with "minimal" PD1 (18.11% with
alternatives?		treatments of 1.00 in Vear 2) versus usual care consisting of
		supportive care (visual rehabilitation and provision of low vision
		aids) with PDT (20.59% with mean treatments of 2.051 in Year 1
		and 8.82% with mean treatments of 1.54 in Year 2) for patients
		with predominantly classic lesions
Has the correct patient group /	✓	Trial population had best-corrected visual acuity between 6/12 and
population of interest been clearly		6/96 in treated eye and 6/240 or better in fellow eye and sub-retinal
stated?		haemorrhage comprising $\leq 50\%$ total lesion size and total lesion
		size up to 12 disc areas.
		20% predominantly classic resions
		39% occult lesions with no classic component
		Patients could have had prior PDT
		and a state of the former state of the state
		These are patients covered by the indication SPC for pegaptinib,
		but how does this compare to presenting cases in England and
	-	Wales?
Is the correct comparator used?	?	Appropriate it analysing presenting cohort of ARMD patients and
		APMD2 Separate analysis of pegaptinib vs supportive care where
		PDT not appropriate then supportive care plus PDT vs negaptinib
		where PDT appropriate
Is the study type reasonable?	✓	Cost-utility study appropriate – required for NICE reference case,
		but also principal impact of disease progression is loss of vision
		(measured by VA) and valued by utilities for respective health
		states. Some impact of disease progression on mortality once
		progression to blindness (VA 6/60).
		Two base case scenarios presented base on maximum two years of treatment and alternative stopping rules:
		Scenario A: discontinue when VA falls below 6/96 or for those
		with severe loss (greater than 6 Snellen lines) at end of Year 1:
		Scenario B: discontinue when VA falls below 6/60 or for those
		with severe loss (greater than 6 Snellen lines) at end of Year 1.
Is the perspective of the analysis	$\checkmark$	NHS and personal social services – required for NICE reference
clearly stated?		case.
Is the perspective employed	~	Y es. Incorporates direct costs of treatment/ monitoring, managing
appropriate?		sector costs of disease progression (fractures and depression) costs
		of vision aids and rehabilitation. costs of residential and nursing
		care and also blind registration.
Is effectiveness of the intervention	✓	Direct clinical trial evidence – bespoke patient-level data analysis
established?		eliciting survival functions for gain and loss of visual acuity.
Has a lifetime horizon been used for	✓	Ten years – approximate lifetime for patient age 75 years. Median
analysis (has a shorter horizon been		age in EOP1003; EOP1004 trials reported in SPC was 77 years.
justified)?		Variable time horizons considered in sensitivity analysis.
Are the costs and consequences	v	Costs consistent with NHS and PSS perspective. Principally valued

# Appendix 12 Critical appraisal checklist of economic evaluation in Pfizer submission

consistent with the perspective		through NHS reference costs or PSSRU Unit Costs
employed? Covered in detail in		Consequences presented as vision years (out off at 6/60) and
augitions below		quality adjusted life expectency using utility weights from a
questions below		quality aujusted the expectancy using utility weights from a
		published source
Is differential timing considered?	<b>√</b>	Costs and outcomes discounted at 3.5%
Is incremental analysis performed?	$\checkmark$	Average costs and consequences for usual care and pegaptinib
		reported and incremental cost-effectiveness for pegaptinib vs usual
		care.
Is sensitivity analysis undertaken and	$\checkmark$	One-way SA
presented clearly?		Reduce time horizon from 10 to 3 years
		Discount rates (0% and 6%)
		Alternative extrapolation models (Weibull or exponential, versus
		log-logistic)
		Use utilities elicited using standard gamble rather than TTO
		All patients not explicitly discontinuing treatment have drug in
		each cycle (rather than use mean observed treatments)
		Increase number of FAs (from one on initiation of treatment) for
		necesse number of 1745 (nom one on minution of treatment) for pegaptinih only
		Use upper and lower limits for NHS and DSS services to visually
		impaired reported by Moods and colleagues
		Talanhana consultation for monitoring advance events
		relephone consultation for monitoring adverse events
		"accounting for prior PD1"
		PSA parameters
		Mean number of administrations of pegaptinib (mean and standard
		deviation using normal dist ⁿ )
		Transition probabilities (mean, standard error and covariance of
		VISION survival model parameter estimates – use Cholesky
		decomposition)
		Utility weights (beta using mean and standard deviation from
		nublished study)
		puonisitu study)
		Limited SA on costs
		Maybe do analysis for costs and uptake of NHS and PSS services
		to visually impaired for each item separately as well as all together
		Possible SA tests on model structure?

Item	Critical Appraisal	Reviewer Comment
Is there a well defined question?	Yes	
Is there a clear description of alternatives?	Yes	<ul> <li>Bevacizumab (Avastin) has been used as off-label medication in clinical practice. It has not been included in the evaluation as it is not licensed for the indication under this assessment.</li> <li>The manufacturer of anecortave acetate (Retaane) had withdrawn from its regulatory application so it was removed from the alternatives list.</li> </ul>
Has the correct patient group / population of interest been clearly stated?	Yes	
Is the correct comparator used?	Yes	<ul> <li>Photodynamic therapy (PDT) with verteporfin (visudyne) and best supportive care were used as a comparator separately for patients with predominantly classic wet AMD in the evaluation. However NICE recommended PDT only for patients with 'classic with no occult', not predominantly classic wet AMD in clinical practice (TA068). So the comparator of interest for patients with predominantly classic wet AMD is best supportive care (BSC) in this evaluation.</li> <li>The efficacy data inputs for all the treatment arms were derived from the patient level data reported in the clinical studies. However no descriptions of the derivation were included in the report.</li> <li>The efficacy inputs for comparison against BSC were derived using an indirect comparison method.</li> <li>Best supportive care was used as the comparator for patients with either minimally classic or occult no classic wet AMD</li> </ul>
Is the study type reasonable?	Yes	Both cost-effectiveness studies in incremental cost per vision year gained and cost-utility studies in incremental cost per quality-adjusted life year (QALY) gained.
Is the perspective of the analysis clearly stated?	Yes	Both the perspectives of NHS and personal social services in England and Wales.
Is the perspective employed appropriate?	Yes	
Is effectiveness of the intervention established?	Yes	As reported in clinical studies such as ANCHOR, MARINA and PIER, sponsored by manufacturer, in terms of improvements or delay in deteriorations of visual acuity over the period when studies were conducted.
Has a lifetime horizon been used for analysis (has a shorter horizon been justified)?	No	A time horizon of 10 years with the model entry age at 77 years old was used and it was justified as the intervention being assessed is indicated for only the first two years and thus the horizon used in the model is sufficient to reflect its treatment benefits against the comparator.
Are the costs and consequences consistent with the perspective employed?	Yes	
Is differential timing considered?	Yes	Both costs and benefits were discounted annually at 3.5%.
Is incremental analysis performed?	Yes	Incremental cost and benefits as well as incremental cost effectiveness ratio for cost per vision year gained and cost per QALY gained.
Is sensitivity analysis undertaken and	Yes	<ul> <li>The number of injections per year in the base case scenario</li> </ul>

# Appendix 13 Critical appraisal checklist of economic evaluation in Novartis submission

presented clearly?	<ul> <li>was derived from a dosage regimen model. Sensitivity analyses on number of injections per year, which included the actual number of injections used in the clinical studies, were presented.</li> <li>Post treatment efficacy was considered in the base case scenario so sensitivity analyses for different post treatment efficacy rates were presented.</li> <li>No sensitivity analysis was conducted on the impact of</li> </ul>
	removing costs and adverse events associated with sham injection in the comparator arms as sham injection would not be given in clinical practice.

Health state utilities	Distribution	Alpha	Beta	Mean
> 6/12	Beta	68.30819	8.44259	0.89
$\leq 6/12$ to $>6/24$	Beta	74.82381	17.55127	0.81
$\leq 6/24$ to $>6/60$	Beta	53.66787	40.48629	0.57
$\leq 6/60$ to $>3/60$	Beta	25.43830	23.48151	0.52
$\leq 3/60$	Beta	33.44944	50.17416	0.40

# Appendix 14 Variables included in probabilistic sensitivity analysis

Proportion uptake of services				
for visual impairment	Distribution	Alpha	Beta	Mean
Blind registration	Beta	3.0189	0.1757	0.945
Low vision aids	Beta	6.6695	13.5410	0.330
Community care	Beta	0.4498	7.0470	0.060
Residential care	Beta	5.2355	12.2162	0.300
Depression	Beta	7.3639	11.5179	0.390
Fracture	Beta	0.6231	11.8398	0.050

Costs	Distribution	Alpha	Beta	Mean
First OP attendance	Gamma	92.6854	1.0297	95.44
OP follow up	Gamma	114.9876	0.5110	58.76
Fluoroscein angiography	Gamma	96.0365	0.7706	74.01
Ooptical coherence tomography	Gamma	96.0365	0.5296	50.86
Blind registration	Gamma	12.1775	9.4765	115.40
Low vision aids	Gamma	39.4712	3.8002	150.00
Low vision rehabilitation	Gamma	30.4453	8.5071	259.00
Community care	Gamma	26.4701	247.5250	6552.00
Residential care	Gamma	9.2622	1465.8652	13577.20
Fracture treatment	Gamma	38.3543	140.2449	5379.00

Transition probabilities: Pegaptanib and usual						
care		Distribution	Parameter		Mean	
	Voor	Gain at least 3 lines	Beta	n = 294	r = 18	0.0612
	1 Cal	$Lose \ge 3 \& <6 lines$	Beta	n = 294	r = 60	0.2041
Decentonih	1	$Lose \ge 6$ lines	Beta	n = 294	r = 28	0.0952
Yegaptamo	Voor	Gain at least 3 lines	Beta			
	2	Lose $\geq$ 3 & <6 lines	Beta			
		$Lose \ge 6$ lines	Beta			
Va		Gain at least 3 lines	Beta	n = 296	r = 6	0.0203
	r ear	Lose $\geq$ 3 & <6 lines	Beta	n = 296	r = 67	0.2264
Usual care Year	1	$Lose \ge 6$ lines	Beta	n = 296	r = 65	0.2196
	Voor	Gain at least 3 lines	Beta			
	rear	Lose $\geq$ 3 & <6 lines	Beta			
	2	$Lose \ge 6$ lines	Beta			

Transition probabilities: PC BSC		Distribution	Parameter	Mean	
	Voor	Gain at least 3 lines	Beta		
	i ear	Lose $\geq$ 3 & <6 lines	Beta		
Donihizumoh	1	$Lose \ge 6$ lines	Beta		
Kamoizumao	Voor	Gain at least 3 lines	Beta		
	$\frac{1}{2}$	$Lose \ge 3 \& <6 lines$	Beta		
	2	$Lose \ge 6$ lines	Beta		
	Year 1	Gain at least 3 lines	Beta		
		$Lose \ge 3 \& <6 lines$	Beta		
		$Lose \ge 6$ lines	Beta		
Best supportive care	Year	Gain at least 3 lines			
			Beta		
		$Lose \ge 3 \& <6 lines$			
	2		Beta		
		$Lose \ge 6$ lines			
			Beta		

Transition probabilities: PC PDT		Distribution	Parameter Mean		
	Voor	Gain at least 3 lines	Beta		
	1	Lose $\geq$ 3 & <6 lines	Beta		
Danihizumah	1	$Lose \ge 6$ lines	Beta		
Kaiii0izuilla0	Voor	Gain at least 3 lines	Beta		
	$\frac{1}{2}$	Lose $\geq$ 3 & <6 lines	Beta		
	2	$Lose \ge 6$ lines	Beta		
	Voor	Gain at least 3 lines	Beta		
	1 Cal	Lose $\geq$ 3 & <6 lines	Beta		
	1	$Lose \ge 6$ lines	Beta		
PDT		Gain at least 3 lines			
			Beta		
	Year	Lose $\geq$ 3 & <6 lines			
	2		Beta		
		$Lose \ge 6$ lines			
			Beta		

Transition probabilities: MC OC		Distribution	Parameter	Mean	
		Gain at least 3 lines			
			Beta		
	Year	Lose $\geq$ 3 & <6 lines			
	1		Beta		
		$Lose \ge 6$ lines			
Ranihizumah			Beta		
Kamoizumao		Gain at least 3 lines			
			Beta		
	Year	Lose $\geq$ 3 & <6 lines			
	2		Beta		
		$Lose \ge 6$ lines			
			Beta		
Best	Year	Gain at least 3 lines			
Supportive	1		Beta		

Care		Lose $\geq$ 3 & <6 lines			
			Beta		
		$Lose \ge 6$ lines			
			Beta		
		Gain at least 3 lines			
			Beta		
	Year	Lose $\geq$ 3 & <6 lines			
	2		Beta		
		$Lose \ge 6$ lines			
			Beta		