Section A: Clarification on effectiveness data

Licensed population

A1: priority question

Please provide the information depicted in the following table for each of the subgroups listed below (i.e., 7 tables of information):

- subgroup of baseline resting heart rate ≥75 bpm (licensed population) achieving *target* β-blocker dose at baseline (n = 938; 22.6%);
- subgroup of baseline resting heart rate ≥75 bpm receiving β-blocker therapy at sub-target dose (i.e., optimal therapy) at baseline;
- subgroup of baseline resting heart rate ≥75 bpm *not* receiving a β-blocker at baseline;
- subgroup of baseline resting heart rate ≥75 bpm and aged ≥70 years;
- subgroup of baseline resting heart rate ≥75 bpm by subgroup of NYHA class, that is, separate tables for classes II, III, and IV.

Consistent with the approach taken in the published analysis of SHIfT, the following tables provide data on patients who are taking ESC recommended beta-blockers.

Outcome	Ivabra	adine	Placebo	
	n	Ν	n	N
Primary outcome				
(composite):				
Cardiovascular death or				
hospitalisation for				
worsening heart failure				
Secondary outcomes				
Cardiovascular death				
Hospitalisation for				
worsening heart failure				
Death from any cause				
Death from heart failure				
Hospitalisation for any				
cause				
Hospitalisation for				
cardiovascular reason				
Change in heart rate at				
last visit (change from				
baseline), bpm (SD)				
Additional outcome				
Cardiovascular death				
excluding death from				
heart failure				

Licensed population – target dose beta-blocker N=938

n: number of people with the event N: total number in the group

Licensed population – <100% target dose beta-blocker N=2647

Outcome	Ivabr	adine	Placebo	
	n	N	n	N
Primary outcome (composite): Cardiovascular death or hospitalisation for worsening heart failure				
Secondary outcomes				
Cardiovascular death				
Hospitalisation for				
worsening heart failure				
Death from any cause				
Death from heart failure				
Hospitalisation for any cause				
Hospitalisation for cardiovascular reason				
Change in heart rate at last visit (change from baseline), bpm (SD)				
Additional outcome				
Cardiovascular death excluding death from heart failure				

n: number of people with the event N: total number in the group

Licensed population – not receiving a beta-blocker at baseline N=511

Outcome	Ivabr	adine	Placebo	
	n	N	n	N
Primary outcome (composite): Cardiovascular death or hospitalisation for worsening heart failure				
Secondary outcomes				
Cardiovascular death				
Hospitalisation for worsening heart failure				
Death from any cause				
Death from heart failure				
Hospitalisation for any cause				
Hospitalisation for cardiovascular reason				
Change in heart rate at last visit (change from				

baseline), bpm (SD)		
Additional outcome		
Cardiovascular death excluding death from heart failure		

n: number of people with the event N: total number in the group

Licensed population – aged ≥ 70 years N=856

Outcome	Ivabr	adine	Placebo	
	n	N	n	N
Primary outcome (composite): Cardiovascular death or hospitalisation for worsening heart failure				
Secondary outcomes				
Cardiovascular death				
Hospitalisation for				
worsening heart failure				
Death from any cause				
Death from heart failure				
Hospitalisation for any cause				
Hospitalisation for				
cardiovascular reason				
Change in heart rate at				
last visit (change from				
baseline), bpm (SD)				
Additional outcome				
Cardiovascular death				
excluding death from				
heart failure				

n: number of people with the event N: total number in the group

Licensed population – NYHA Class II N=1952

Outcome	Ivabradine		Ivabradine Placebo	
	n	Ν	n	N
Primary outcome (composite): Cardiovascular death or hospitalisation for worsening heart failure				
Secondary outcomes				
Cardiovascular death				

Hospitalisation for worsening heart failure		
Death from any cause		
Death from heart failure		
Hospitalisation for any		
cause		
Hospitalisation for		
cardiovascular reason		
Change in heart rate at		
last visit (change from		
baseline), bpm (SD)		
Additional outcome		
Cardiovascular death		
excluding death from		
heart failure		

n: number of people with the event N: total number in the group

Licensed population – NHYA Class III N=2111

Outcome	Ivabra	adine	Placebo	
	n	N	n	N
Primary outcome				
(composite):				
Cardiovascular death or				
hospitalisation for				
worsening heart failure				
Secondary outcomes				
Cardiovascular death				
Hospitalisation for				
worsening heart failure				
Death from any cause				
Death from heart failure				
Hospitalisation for any				
cause				
Hospitalisation for				
cardiovascular reason				
Change in heart rate at				
last visit (change from				
baseline), bpm (SD)				
Additional outcome				
Cardiovascular death				
excluding death from				
heart failure				

n: number of people with the event N: total number in the group

Licensed population – NYHA Class IV N=87

Outcome	Ivabra	adine	Placebo	
	n	Ν	n	N
Primary outcome (composite): Cardiovascular death or hospitalisation for worsening heart failure				
Secondary outcomes				
Cardiovascular death				
Hospitalisation for				
worsening heart failure				
Death from any cause				
Death from heart failure				
Hospitalisation for any cause				
Hospitalisation for cardiovascular reason				
Change in heart rate at last visit (change from baseline), bpm (SD)				
Additional outcome				
Cardiovascular death excluding death from heart failure				

n: number of people with the event N: total number in the group

A2: priority question

For the licensed population, please complete the table below to provide absolute numbers for the outcomes listed in the subgroup of patients on \geq 50% target dose β -blockade.

Outcome	Ivabr	adine	Placebo	
	n	N	n	N
Primary outcome				
(composite):				
Cardiovascular death or				
hospitalisation for				
worsening heart failure				
Secondary outcomes				
Cardiovascular death				
Hospitalisation for				
worsening heart failure				
Death from any cause				
Death from heart failure				
Additional outcome				
Cardiovascular death				
excluding death from				
heart failure				

n: number of people with the event N: total number in the group

A3: priority question

For the licensed population, please complete the table below to provide data for the outcomes listed based on maximally tolerated β -blocker dose; a similar analysis based on β -blocker category and in the full population of SHIfT is presented in Table 19 (pg 78) of the submission.

Outcome	Ivabra	adine	Placebo	
	n	N	n	N
No β-blocker				
Mean resting heart rate				
(SD) at baseline				
Primary outcome				
(composite):				
CV death or				
hospitalisation for				
worsening heart failure				
Secondary outcomes				
Cardiovascular death				
Hospitalisation for				
worsening heart failure				
Death from any cause				
Death from heart failure				

Additional outcome					
Cardiovascular death					
excluding death from					
heart failure					
<25%					
Mean resting heart rate					
(SD) at baseline					
Primary outcome					
(composite):					
Cardiovascular death or					
hospitalisation for					
worsening heart failure					
Casandamy autoama-					
Secondary outcomes					
Hospitalisation for					
Dooth from only only on					
Death from boart failure					
Death from fleart failure					
Additional outcome					
Cardiovascular death					
excluding death from					
heart failure					
				1	
25-<50%					
Mean resting heart rate					
(SD) at baseline					
Primary outcome					
(composite):					
Cardiovascular death or					
nospitalisation for					
Secondary outcomes					
Cardiovascular death					
Hospitalisation for					
worsening heart failure					
Death from any cause					
Death from heart failure					
Additional outcome					
Cardiovascular death	_				
excluding death from					
heart failure					

50-<100%			
Mean resting heart rate (SD) at baseline			
Primary outcome			
(composite):			
Cardiovascular death or			
hospitalisation for			
worsening heart failure			
Secondary outcomes			
Cardiovascular death			
Hospitalisation for			
worsening heart failure			
Death from any cause			
Death from heart failure			
Additional outcome			
Cardiovascular death			
excluding death from			
neart failure			
>100%			
Mean resting heart rate			
(SD) at baseline			
Primary outcome			
(composite):			
Cardiovascular death or			
hospitalisation for			
worsening heart failure			
Secondary outcomes			
Cardiovascular death			
Hospitalisation for			
worsening heart failure			
Death from any cause			
Death from heart failure			
Additional outcome			
Cardiovascular death	_		
excluding death from			
heart failure			

n: number of people with the event N: total number in the group

A4

Please provide the median baseline heart rate (and range) for the licensed population in the ivabradine and placebo groups; data on the full population of SHIfT are presented in Table 6 (pg 48) of the submission.

Ivabradine median (Q1;Q3) (min;max) = Placebo median (Q1;Q3) (min;max) =

A5

Please provide the standard deviation for the baseline sitting SBP and DBP, as well as the median (and range) baseline values for the licensed population in the ivabradine and placebo groups; data on the full population of SHIfT are presented in Table 6 (pg 48) of the submission.

	Heart rate ≥ 75bpm at baseline					
	Ivabradine	Placebo				
SBP (mmHg)						
Mean (SD)	121.6	121.2				
Median (Q1;Q3) (range)						
DBP (mmHg)						
Mean (SD)	75.8	75.7				
Median (Q1;Q3) (range)						

A6

For the licensed population, please complete the table below to provide details for the patients who experienced symptomatic bradycardia as an adverse event.

Please note, in the UK ICU implies that patients are ventilated. In the SHIfT study ICU definitions varied across countries according to local definitions. In general in non-UK sites this covers all non-general ward settings. Therefore it is important to note that <u>none</u> of the below patients in an 'ICU setting' were in fact ventilated, and the ICU definition correlates more closely with admission to Coronary Care Units (CCU) or High Dependency Units (HDU) in the UK. Nonetheless our subsequent economic modelling (question B5) takes the conservative approach of applying the ICU costs from the UK.

Safety Set, N = 4141 (ivabradine 2046; placebo 2095)

Outcome		Ivabradine		Placebo
	N		N	
Symptomatic bradycard	ia			
Mean heart rate (SD) of		bpm		bpm
patients recorded at the				
visit immediately prior to				
bradycardia				
Number of patients		n		N
experiencing		_		_
symptomatic	81		14	
bradycardia who	04		14	
required treatment in an				
intensive care unit (ICU)				
For patients requiring		days		days
ICU care, mean duration		(N/A)		(N/A)
of stay (SD) in ICU				

n: number of people with the event N: total number in the group bpm: mean heart rate in beats per minute days: mean duration of stay in days N/A: not applicable

A7

For the licensed population, please complete the table below to provide details for the patients who experienced atrial fibrillation as an adverse event.

Safety Set, N = 4141 (ivabradine 2046; placebo 2095)

Outcome	Ivabradine		Placebo				
	Ν		N				
Atrial fibrillation							
Number of patients		Ν		n			
experiencing atrial							
fibrillation who required	161		143				
treatment in an ICU							
For patients requiring		Days		days			
ICU care, mean duration							
of stay (SD) in ICU							

n: number of people with the event N: total number in the group Days: mean duration of stay in days

A8

For the subgroup of patients aged \geq 70 years in the licensed population (resting heart rate \geq 75 bpm), please complete the table below to provide details for and the number of patients experiencing atrial fibrillation as an adverse event.

Safet	y Set	aged	≥70	<u>years,</u>	<u>N = 854</u>
				-	

Outcome	Ivabradine			Placebo
	Ν		Ν	
Atrial fibrillation				
Number of patients		n		n
experiencing atrial	422	45	432	46
fibrillation				
Number of patients		n		n
experiencing atrial	45	_	46	_
fibrillation who required	40		40	
treatment in an ICU				
For patients requiring		days		days
ICU care, mean duration				
of stay (SD) in ICU				

n: number of people with the event

N: total number in the group

A9

Please provide follow-up data on the reduction in heart rate at various time points for the ivabradine and placebo on-treatment groups for the licensed population; follow-up data on the reduction in heart rate at various time points in the full SHIfT population are presented in the submission (Table 27, pg 99).

		lvabradine	Placebo		
	Ν	HR lowering <i>vs</i> baseline (mean +/- SD) bpm	N	HR lowering <i>vs</i> baseline (mean +/- SD) bpm	
Baseline	2052	84.3±9.1	2098	84.6±9.4	
D28					
M12					
M24					
M36					

A10

Please complete the table below to provide data on the number of patients in the ivabradine and placebo groups for the full and licensed population of SHIfT who were available for follow-up at the various time points indicated.

	Heart rate ≥70 bp (N = 6,5	om at baseline 505)	Heart rate ≥75 bpm at baseline (N = 4,150)			
	Ivabradine N = 3,241	Placebo N = 3,264	Ivabradine N = 2,052	Placebo N = 2,098		
Follow-up	n	n	n	n		
After 6 months						
After 12 months						
After 18 months						
After 24 months						
After 36 months						

Section B: Clarification on cost-effectiveness data

B1: priority question

Please clarify which data from SHIfT (all patients or patients with baseline heart rate ≥75 bpm) were used to inform the regression model predicting NYHA progression within the model.

The cost-effectiveness model is informed by risk equations for all endpoints (including NYHA progression) which have been developed using data from the entire SHIfT cohort (patients with a baseline heart rate \geq 70 bpm).

B2: priority question

Please provide the regression model for NYHA progression adjusted for patient baseline characteristics, in particular baseline heart rate.

The regression equation has been revised to predict NYHA distribution adjusting for treatment, time covariates and patient baseline characteristics. The covariates considered for the analysis were identical to those considered for mortality and hospitalisation risk equations (derived from the SHIfT clinical study protocol, a previous HF risk equation published by Levy et al. 2006 (1) and clinical advice). The risk equation developed for the base case analysis has been based using data from the entire SHIfT population (patients with a baseline heart rate \geq 70bpm) and used to predict outcomes specific to the sub-population of interest (patients with a baseline heart rate \geq 75bpm).

An initial set of covariates were identified using backwards stepwise elimination and cross validated using forwards stepwise selection (using a p-value of <0.1). The variables reviewed for treatment effect modification (treatment interaction terms) reflected those covariates with prior clinical evidence of potential modification of the treatment effect (age, heart rate (2)). The potential interaction of treatment with other baseline covariates and between baseline covariates was not considered to prevent the risk of spurious results. It is noted that covariates for ischaemia and beta-blocker use were not found to have a significant association with NYHA distribution and were not included as predictors in the final regression equation (and consequently interaction terms were also not considered). The regression model indicated that, unlike other clinical risk equations, there was no evidence that baseline heart rate (or age) modified the treatment effect of ivabradine. Whilst hospitalisation and mortality risk equations showed evidence of such an interaction (p=0.01, p=0.07 respectively) and the QoL risk equation indicated a possible trend (p=0.13), the generalised ordered logistic regression demonstrated no such effect (p>0.50 across all NYHA categories). In the QoL risk equation, in light of prior clinical evidence of potential interaction between baseline heart rate and ivabradine and given evidence of a possible trend, the interaction term was retained in this model. However, in the NYHA risk equation, in the absence of any evidence of interaction the term was excluded from the final NYHA regression model. The final revised NYHA regression model without interaction terms is documented in Table 1. The NYHA regression model with interaction terms has also been reported for reference purposes, see Table 2.

Description	Coef.	Std. Err.	P>z	95% LCI	95% UCI
Months NYHA II	-0.054	0.003	0.000	-0.060	-0.047
Treatment NYHA II	-0.191	0.100	0.057	-0.387	0.006
HF duration ≥0.6<2 yrs	0.364	0.126	0.004	0.117	0.612
HF duration ≥2<4.8 yrs	0.718	0.149	0.000	0.426	1.010
HF duration ≥4.8 yrs	0.540	0.142	0.000	0.262	0.818
Atrial Fibrillation	0.526	0.246	0.033	0.043	1.008
LVEF ≥26%<30%	0.452	0.164	0.006	0.131	0.774
LVEF ≥30%<33%	0.303	0.134	0.024	0.039	0.566
LVEF ≥33%	0.422	0.135	0.002	0.157	0.687
NYHA III	1.990	0.141	0.000	1.713	2.267
NYHA IV	1.604	0.490	0.001	0.644	2.563
Aldosterone	-0.266	0.110	0.015	-0.481	-0.051
Age (years)*	0.017	0.004	0.000	0.008	0.025
Sodium mmol/L*	0.063	0.015	0.000	0.034	0.092
Heart rate bpm*	-0.001	0.006	0.861	-0.012	0.010
Constant NYHA II	2.783	0.152	0.000	2.485	3.082
Months NYHA III	-0.041	0.002	0.000	-0.046	-0.036
Treatment NYHA III	-0.153	0.058	0.009	-0.267	-0.038
HF duration ≥0.6<2 yrs	0.257	0.085	0.003	0.089	0.424
HF duration ≥2<4.8 yrs	0.374	0.084	0.000	0.210	0.539
HF duration ≥4.8 yrs	0.511	0.083	0.000	0.348	0.675
Atrial Fibrillation	0.269	0.107	0.012	0.060	0.478
LVEF ≥26%<30%	-0.005	0.096	0.962	-0.193	0.184
LVEF ≥30%<33%	-0.024	0.082	0.767	-0.185	0.136
LVEF ≥33%	-0.003	0.081	0.968	-0.162	0.155
NYHA III	3.936	0.075	0.000	3.789	4.083
NYHA IV	5.120	0.305	0.000	4.522	5.718
Aldosterone	0.011	0.061	0.851	-0.108	0.131
Age (years)*	0.016	0.003	0.000	0.011	0.021
Sodium mmol/L*	0.043	0.008	0.000	0.027	0.058
Heart rate bpm*	0.013	0.003	0.000	0.006	0.019
Constant NYHA III	-2.784	0.107	0.000	-2.993	-2.575
Months NYHA IV	0.011	0.009	0.245	-0.007	0.028
Treatment NYHA IV	-0.365	0.167	0.029	-0.692	-0.038
HF duration ≥0.6<2 yrs	1.012	0.312	0.001	0.400	1.624
HF duration ≥2<4.8 yrs	0.580	0.307	0.059	-0.023	1.182
HF duration ≥4.8 yrs	0.938	0.297	0.002	0.355	1.520
Atrial Fibrillation	-0.267	0.326	0.413	-0.906	0.372
LVEF ≥26%<30%	-0.475	0.237	0.045	-0.941	-0.010
LVEF ≥30%<33%	-0.349	0.243	0.151	-0.826	0.127
LVEF ≥33%	-0.444	0.220	0.044	-0.875	-0.013
NYHA III	1.693	0.250	0.000	1.203	2.183
NYHA IV	6.601	0.294	0.000	6.025	7.176
Aldosterone	0.688	0.191	0.000	0.314	1.063
Age (years)*	0.016	0.007	0.021	0.002	0.030
Sodium mmol/L*	0.031	0.023	0.176	-0.014	0.075
Heart rate bpm*	0.031	0.008	0.000	0.014	0.047
Constant NYHA IV	-7.234	0.427	0.000	-8.071	-6.397

 Table 1: NYHA generalised ordered logistic regression model adjusting for treatment,

 time and patient characteristics: final model (no interaction terms)

Footnotes:

bpm – beats per minute, LVEF – Left Ventricular Ejection Fraction, NYHA – New York Heart Association *Variable centred on mean

**The NYHA regression equation includes a time covariate. In the original equation (which adjusted for treatment and time), the time variable was transformed into log months since this transformation was found to generate the best model fit. In the revised risk equation log months did not offer the best fit of the data and time has not been transformed in this risk equation.

Description	Coefficient	Standard. Err.	P>z	95% LCI	95% UCI
Months NYHA II	-0.054	0.003	0.000	-0.060	-0.047
Treatment NYHA II	-0.191	0.100	0.057	-0.388	0.006
HF duration ≥0.6<2 years	0.365	0.126	0.004	0.117	0.612
HF duration ≥2<4.8 years	0.719	0.149	0.000	0.427	1.011
HF duration ≥4.8 years	0.540	0.142	0.000	0.262	0.818
Atrial Fibrillation	0.525	0.246	0.033	0.043	1.008
LVEF ≥26%<30%	0.453	0.164	0.006	0.132	0.774
LVEF ≥30%<33%	0.303	0.134	0.024	0.040	0.567
LVEF ≥33%	0.423	0.135	0.002	0.158	0.687
NYHA III	1.990	0.141	0.000	1.713	2.267
NYHA IV	1.613	0.493	0.001	0.646	2.579
Aldosterone	-0.266	0.110	0.015	-0.482	-0.051
Age (years)*	0.017	0.004	0.000	0.008	0.025
Sodium mmol/L*	0.063	0.015	0.000	0.034	0.092
Heart rate bpm*	-0.002	0.008	0.817	-0.017	0.013
Treatment*heart rate	0.002	0.011	0.889	-0.020	0.023
Constant NYHA II	2.783	0.152	0.000	2.485	3.081
Months NYHA III	-0.041	0.002	0.000	-0.046	-0.036
Treatment NYHA III	-0.152	0.058	0.010	-0.266	-0.037
HF duration ≥0.6<2 years	0.256	0.086	0.003	0.089	0.423
HF duration ≥2<4.8 years	0.373	0.084	0.000	0.209	0.538
HF duration ≥4.8 years	0.511	0.083	0.000	0.348	0.674
Atrial Fibrillation	0.269	0.107	0.012	0.059	0.478
LVEF ≥26%<30%	-0.005	0.096	0.960	-0.193	0.184
LVEF ≥30%<33%	-0.025	0.082	0.765	-0.185	0.136
LVEF ≥33%	-0.004	0.081	0.962	-0.162	0.155
NYHA III	3.936	0.075	0.000	3.789	4.083
NYHA IV	5.121	0.306	0.000	4.521	5.722
Aldosterone	0.011	0.061	0.857	-0.109	0.131
Age (years)*	0.016	0.003	0.000	0.011	0.021
Sodium mmol/L*	0.043	0.008	0.000	0.027	0.058
Heart rate bpm*	0.015	0.005	0.001	0.006	0.023
Treatment*heart rate	-0.004	0.006	0.531	-0.016	0.008
Constant NYHA III	-2.783	0.107	0.000	-2.993	-2.574
Months NYHA IV	0.011	0.009	0.242	-0.007	0.028

Table 2 NYHA generalised ordered logistic regression model adjusting for treatment, time and patient characteristics: (with interaction terms – not used in model)

Description	Coefficient	Standard. Err.	P>z	95% LCI	95% UCI
Treatment NYHA IV	-0.353	0.167	0.035	-0.681	-0.025
HF duration ≥0.6<2 years	1.008	0.311	0.001	0.398	1.617
HF duration ≥2<4.8 years	0.577	0.306	0.059	-0.022	1.176
HF duration ≥4.8 years	0.934	0.297	0.002	0.353	1.515
Atrial Fibrillation	-0.269	0.325	0.408	-0.906	0.368
LVEF ≥26%<30%	-0.475	0.237	0.045	-0.939	-0.011
LVEF ≥30%<33%	-0.350	0.243	0.151	-0.827	0.127
LVEF ≥33%	-0.445	0.220	0.043	-0.877	-0.013
NYHA III	1.692	0.250	0.000	1.202	2.182
NYHA IV	6.602	0.295	0.000	6.025	7.180
Aldosterone	0.687	0.189	0.000	0.317	1.057
Age (years)*	0.016	0.007	0.022	0.002	0.030
Sodium mmol/L*	0.030	0.022	0.177	-0.014	0.074
Heart rate bpm*	0.033	0.011	0.004	0.010	0.055
Treatment*heart rate	-0.004	0.016	0.786	-0.035	0.027
Constant NYHA IV	-7.235	0.429	0.000	-8.076	-6.394

Footnotes:

bpm – beats per minute, LVEF – Left Ventricular Ejection Fraction, NYHA – New York Heart Association *Variable centred on mean

Table 3 Predicted percentage of patients distributed in each NYHA class: Standard care

Year	Month	ΝΥΗΑΙ	NYHA II	NYHA III	ΝΥΗΑΙν
0	0	1.1%	54.9%	43.4%	0.6%
1	12	1.3%	57.3%	40.9%	0.6%
2	24	1.3%	57.9%	40.2%	0.6%
3	36	1.3%	58.1%	40.0%	0.6%
4	48	1.3%	58.1%	40.0%	0.6%
5	60	1.3%	58.1%	40.0%	0.6%

Footnotes:

NYHA - New York Heart Association

Table 4 Predicted percentage of patients distributed in each NYHA class: lvabradine plus standard care

Year	Month	ΝΥΗΑΙ	NYHA II	NYHA III	NYHA IV
0	0	1.3%	58.4%	39.8%	0.4%
1	12	1.5%	60.6%	37.4%	0.4%
2	24	1.6%	61.3%	36.7%	0.4%
3	36	1.6%	61.4%	36.5%	0.4%
4	48	1.6%	61.4%	36.5%	0.4%
5	60	1.6%	61.4%	36.5%	0.4%

Footnotes:

NYHA - New York Heart Association

B3: priority question

For consistency across all outcomes, please provide analyses using the heart rate covariate in the regression equation for NYHA distribution, as has been done for mortality, hospitalisation and quality of life.

See previous response (B2).

B4: priority question

During extrapolation of NYHA classes, it has been assumed that 5% of patients will move from NYHA I to NYHA II and from NYHA II to NYHA III, and that there will be no change in the proportion of patients categorised as NYHA IV. Please describe the basis of this assumption.

The manufacturer wishes to clarify that in the base case model the extrapolation does not assume that 5% of patients will move from NYHA I to II and from NYHA II to III; the assumption has only been used as a sensitivity analysis.

The cost-effectiveness model assumes that the distribution of patients by NYHA class is equivalent to the last observation carried forward (LOCF) at 29 months. In the modelled NYHA extrapolation the proportion of patients in each NYHA class remains fixed post trial (although in absolute terms numbers in each category vary according to the number of patients alive) (See Figure 1 and Figure 2). It is noted that the NYHA risk equation, which includes a time covariate, predicted a (small) increase in the absolute number of patients in NYHA I and II over time, a pattern observed during SHIfT. Whilst it is likely that many of the observed deaths would be in the higher NYHA classes (III, IV), hence increasing the relative proportion of the cohort alive in NYHA I and II, and some improvement in symptoms could be anticipated by optimal heart failure management, it would be clinically unexpected to find an overall increase in the absolute numbers of patients in NYHA I and II in the long term given the progressive nature of the disease. The assumption applied in the base case (LOCF) was recommended by an expert panel convened to review the ivabradine cost-effectiveness model and was suggested in light of evidence from SHIfT and a lack of published external data on the distribution of patients by NYHA class over time.

In a sensitivity analysis it was assumed a greater proportion of patients were distributed into NYHA class II and III each year. This was a simple scenario analysis that used an arbitrary 5% change in distribution between NYHA classes and was undertaken to explore alternative assumptions on NYHA distribution in the post-trial period (i.e. a modelled scenario in which a greater proportion of patients were distributed into higher NYHA classes). This scenario analysis has been revised to accommodate an additional change whereby 5% of patients distributed into NYHA move to NYHA IV each year. The distribution of patients in each NYHA class in the revised analysis is detailed in

Table 5.

Figure 1 Standard care: predicted distribution of patients by NYHA class over time (using revised generalised ordered logistic regression model adjusting for treatment, time and patient baseline characteristics)

Figure 2 lvabradine plus standard care: predicted distribution of patients by NYHA class over time (using revised generalised ordered logistic regression model adjusting for treatment, time and patient baseline characteristics)

Table 5 Proportion of patients distributed in each NYHA class over time: revised
sensitivity analysis (greater percentage of distributed in higher NYHA classes over
time in post-trial period)

Months	ΝΥΗΑΙ	NYHA II	NYHA III	NYHA IV
24	7.3%	55.6%	36.3%	0.8%
36	6.9%	53.2%	37.3%	2.6%
48	6.6%	50.9%	38.1%	4.5%
60	6.3%	48.6%	38.7%	6.4%
72	6.0%	46.5%	39.2%	8.3%
84	5.7%	44.5%	39.6%	10.3%
96	5.4%	42.6%	39.8%	12.2%
108	5.1%	40.7%	40.0%	14.2%
120	4.8%	38.9%	40.0%	16.2%
132	4.6%	37.2%	40.0%	18.2%
144	4.4%	35.6%	39.8%	20.2%
156	4.2%	34.0%	39.6%	22.2%
168	3.9%	32.5%	39.3%	24.2%
180	3.8%	31.1%	39.0%	26.2%

Footnotes:

NYHA - New York Heart Association

B5

The Evidence Review Group's clinical advisor has emphasised that patients experiencing symptomatic bradycardia or atrial fibrillation may require treatment in an ICU. Please provide a scenario analysis in which additional costs for adverse events associated with bradycardia and atrial fibrillation are incorporated in the base case analysis.

An additional sensitivity analysis has been considered in the model in which a proportion of patients experiencing symptomatic bradycardia and atrial fibrillation are treated in an ICU. The proportion of patients experiencing bradycardia or atrial fibrillation has been modelled according to SHIfT data using estimates from patients with a baseline heart rate \geq 75bpm (by treatment arm), consistent with the population considered in the base case model. The proportion of the 402 patients with bradycardia or atrial fibrillation subsequently admitted to ICU has also been modelled according to SHIfT (both arms combined, \blacksquare), consistent with the data provided in response to questions A7 and A7. The cost per day for ICU treatment has been based on a weighted estimate of ICU admissions reported in 2010-2011 NHS reference cost data (£1213 per day), multiplied by the reported length of stay for patients admitted to ICU following bradycardia or atrial fibrillation in SHIfT (ivabradine plus standard care 10.53 days, standard care alone 7.47 days). The total cost per admission was estimated to be £9,063 and £12,775 for ivabradine plus standard care alone, respectively.

The effect of this analysis on the cost-effectiveness estimate is to increase the ICER from a base case \pounds 7,553 per QALY to \pounds 8,036 per QALY (see Table 25).

Description	Ivabradine plus Standard care	Standard care	Total
Symptomatic bradycardia or AF	245	157	402
No bradycardia or AF	1801	1938	3739
Total*	2046	2095	4141

Table 6 Proportion of patients experiencing symptomatic bradycardia or atrial fibrillation (heart rate ≥ 75bpm)

Footnotes:

AF: atrial fibrillation

*Total number of patients excludes patients that did not take study medication (patients with a baseline heart rate ≥75bpm)

Table 7 Patients admitted to ICU for bradycardia or atrial fibrillation (heart rate ≥75bpm)

Description	Ivabradine* n=161	Placebo* n=143	Total
Hospitalisation in an ICU following AF			
Hospitalisation in an ICU following bradycardia			
Total			

*AF: atrial fibrillation

Table 8 Duration (in days) in ICU following atrial fibrillation admission (patients with heart rate ≥75bpm)

Intervention	Mean	Standard Deviation
Standard care (n=15)*		
Ivabradine (n=19)		

*1 patient with missing data

Please note, as specified in question A6, in the UK ICU implies that patients are ventilated. In the SHIfT study ICU definitions varied across countries according to local definitions. In general in non-UK sites this covers all non-general ward settings. Therefore it is important to note that <u>none</u> of the below patients in an 'ICU setting' were in fact ventilated, and the ICU definition correlates more closely with admission to Coronary Care Units (CCU) or High Dependency Units (HDU) in the UK. Nonetheless our subsequent economic modelling (Question B5) takes the conservative approach of applying the ICU costs from the UK.

It is also worth noting that there is a possibility of double counting here. The resource use and quality of life effects of ivabradine relating to adverse events is already captured by the treatment covariates in the hospitalisation and quality of life regression models. Please provide separate sensitivity analyses that use:

- i. Overall mortality data (i.e., non-CV overall mortality) from SHIfT rather than UK population mortality data;
- ii. Non-HF CV death calculated from a regression model (adjusted for patient baseline characteristics) based on non-HF CV mortality data from SHIfT.

Question B6 (i) and (ii) reflect substantial reanalysis of the dataset and substantial remodelling that we have been unable to perform in the time available to us. This is partly a function of Servier being a small company with limited internal resource and therefore reliant on external providers for modelling assignments such as this. We have nevertheless identified the concerns that may be underpinning question B6 and sought to address these as fully as possible within the existing model framework.

<u>B6 (i)</u> UK interim life-table data were used to estimate the underlying risk of non-CV death since this was believed to provide the most reliable estimate for non-CV death for a UK population. This approach is considered to be standard practice and has been used in a number of other cost-effectiveness models in CHF (3; 4). Furthermore it is noted that no treatment benefit is modelled on this endpoint. Consequently the risk of non-CV death is modelled to be the same across treatment groups.

Nonetheless, a regression model which considers a non-CV mortality endpoint adjusted for patient baseline characteristics has been used in a sensitivity analysis to predict non-CV mortality. The results of this sensitivity analysis demonstrate that a change in the modelling of the underlying risk of non-CV death to reflect SHIfT data does not have a substantial impact on the ICER estimate (ICER with SHIfT predicted non-CV death: £9142), see Figure 4.¹

<u>B6 (ii)</u> Non-HF CV death has been captured in the model using two regression models. We have used regression models for CV death and HF death, with non-HF CV death effectively back-calculated as the difference between these endpoints. The rationale for taking this approach was to provide the most reliable estimate of the underlying risk of HF and CV death, to maintain statistical power in the regression models used to estimate the underlying risk of a clinical event (and consequently generate the best predictions across patients subgroups) and to keep the regression models consistent with trial clinical endpoints.

It should be noted that the model already addresses a scenario in which ivabradine is modelled to have an effect purely on HF death and HF hospitalisation, with no treatment effect modelled on other non-HF endpoints. This analysis was undertaken as a structural sensitivity analysis in the original model and was reported in the cost-

B6

¹ It is noted that in addition to including a sensitivity analysis which predicts non-CV mortality from SHIfT, UK non-CV mortality rates have been updated to the most recently published UK mortality data for the base case model.

effectiveness section of the ivabradine submission (see submission p.129, Section 6.3.1; and Figure 19, Section 6.7.9).

Therefore the model has been fully re-analysed to provide a comprehensive set of results with the treatment effect of ivabradine modelled only on HF mortality and HF hospitalisation. The full results, including one way sensitivity analyses, probabilistic sensitivity analyses and subgroup results have been reported below. Please note that these results are based on the revised model, which includes the revised NYHA regression equation and updated BNF cost data. The results of this scenario analysis indicate the ICER remains increases slightly from our current base case and remains well below the £20,000 threshold (ICER: £8,991 per QALY), see Table 9, Table 10 and Figure 3 to Figure 6.

Table 9 Heart failure endpoint: base case results

Technologies	Total costs (£)	Total LYG	Total QALYs	Baseline	Incremental costs (£)	Incremental LYG	Incremental QALYs	ICER (£) versus baseline (LYs)	ICER (£) incremental (QALYs)
Std Care	9749.31	5.82	4.08		-	-	-	-	-
Ivabradine plus Std Care	12865.30	6.19	4.42	Std Care	3116	0.36	0.35	8616	8991

Footnotes:

QALY – Quality Adjusted Life Year

ICER calculated by applying individual patient profiles from SHIfT patients (with a heart rate ≥ 75bpm) into the risk equations sequentially one at time and averaging costs and effects over all patient profiles with subgroup characteristic of interest see full report for details

Table 10 Heart failure endpoint: subgroup results

	Standard Care		Ivabradine								
Subgroup	Total Costs (£)	Total LYs	Total QALYs	Total Costs (£)	Total LYs	Total QALYs	Incremental Costs (£)	Incremental LYs	Incremental QALYs	Incremental Cost/LY (£)	Incremental Cost/QALY (£)
All patients (HR>=75 b.p.m.)	9749	5.82	4.08	12865	6.19	4.42	3116	0.36	0.35	8616	8991
Age<75 years	9830	5.99	4.21	13045	6.37	4.57	3215	0.38	0.36	8556	8918
Age>=75 years	8979	4.22	2.78	11154	4.45	2.99	2176	0.23	0.21	9559	10169
NYHA II	10035	6.56	4.89	13618	6.93	5.26	3584	0.37	0.37	9674	9621
NYHA III	9608	5.28	3.44	12369	5.64	3.77	2760	0.36	0.33	7686	8409
NYHA IV	6775	2.68	1.36	8041	2.91	1.57	1267	0.23	0.21	5603	6027
HF duration <0.6 years	10375	7.01	5.16	14258	7.42	5.58	3883	0.41	0.42	9401	9315
HF duration >=0.6<2 years	9686	5.94	4.22	12875	6.28	4.55	3189	0.34	0.33	9490	9547
HF duration >=2<4.8 years	8773	5.48	3.70	11711	5.85	4.04	2937	0.37	0.34	7960	8698
HF duration >=4.8 years	10174	4.91	3.26	12656	5.24	3.56	2482	0.33	0.30	7477	8245
No beta blocker	9942	4.56	3.11	12707	5.03	3.52	2765	0.47	0.41	5890	6792
Beta blocker < half target dose	9500	5.23	3.69	12232	5.57	4.02	2732	0.34	0.33	7932	8307
Beta blocker =>half target dose < target dose	10036	6.49	4.54	13525	6.86	4.90	3489	0.37	0.36	9386	9685
Beta blocker =>target dose	9762	6.83	4.77	13329	7.15	5.10	3566	0.32	0.33	11072	10824
LVEF < 26%	10046	4.69	3.31	12674	5.11	3.69	2628	0.43	0.38	6144	6830
LVEF >=26%<30%	9175	5.33	3.72	11939	5.67	4.05	2764	0.35	0.33	7929	8362
LVEF >=30<33%	9488	6.18	4.31	12689	6.50	4.63	3200	0.32	0.32	9986	9975
LVEF >= 33%	10056	6.88	4.80	13772	7.23	5.15	3716	0.34	0.34	10784	10814
Non-diabetic	9048	5.84	4.13	12221	6.21	4.48	3173	0.36	0.35	8702	9056
Diabetic	11280	5.79	3.96	14271	6.14	4.30	2992	0.36	0.34	8421	8843
No prior CAD	9221	5.78	4.26	12371	6.21	4.66	3150	0.42	0.40	7468	7785
Prior CAD	9966	5.84	4.00	13068	6.18	4.32	3102	0.34	0.32	9205	9612

Footnotes:

QALY - Quality Adjusted Life Year

ICER calculated by applying individual patient profiles from SHIfT patients (with a heart rate ≥ 75bpm) into the risk equations sequentially one at time and averaging costs and effects over all patient profiles with subgroup characteristic of interest see full report for details

Figure 3 Heart failure endpoint: One way sensitivity analyses: parameter values

Figure 4 Heart failure endpoint: One way sensitivity analyses: structural sensitivity analyses

Footnotes:

The one way sensitivity analyses have been estimated by employing average values in the risk equations (e.g. 0.24 for gender). The ICER for the base case analysis is £8063 using this method (lower than the ICER reported using the full heterogeneity analysis which calculates the ICER by individual patient profiles from SHIfT patients (with a heart rate ≥ 75bpm) into the risk equations sequentially one at time – see full report for details).

Figure 5 Heart failure endpoint: Probabilistic sensitivity analysis: scatter plot

Footnotes:

The one way sensitivity analyses have been estimated by employing average values in the risk equations (e.g. 0.24 for gender). The ICER for the base case analysis is £8063 using this method (lower than the ICER reported using the full heterogeneity analysis which calculates the ICER by individual patient profiles from SHIFT patients (with a heart rate ≥ 75bpm) into the risk equations sequentially one at time – see full report for details).

Figure 6 Heart failure endpoint: Probabilistic sensitivity analysis: cost-effectiveness acceptability curve (CEAC)

Footnotes:

The one way sensitivity analyses have been estimated by employing average values in the risk equations (e.g. 0.24 for gender). The ICER for the base case analysis is £8063 using this method (lower than the ICER reported using the full heterogeneity analysis which calculates the ICER by individual patient profiles from SHIfT patients (with a heart rate ≥ 75bpm) into the risk equations sequentially one at time – see full report for details).

B7

In the submission (pg 152), the manufacturer states that "...due to the inclusion of a weakly significant interaction term, the treatment covariate appears non-significant in the final regression equation". However, the treatment covariate in the full risk equation presented in Table 53 (pg 157) is associated with a p-value of 0.0270. Please clarify this potential discrepancy.

The sentence should be revised to,

"...due to a weaker interaction between ivabradine and heart rate for patient quality of life, <u>the treatment interaction term</u> appears non-significant in the final regression equation."

Ivabradine demonstrated greater efficacy with increasing baseline heart rate for mortality and hospitalisation endpoints. It was consequently considered clinically plausible that there would also be an interaction effect of ivabradine and baseline heart rate for patient quality of life (i.e. that patients experiencing the greatest clinical benefits would also experience the greatest improvement in quality of life). However, in the quality of life regression model the interaction term was non-significant (p=0.13) although there appeared to be possible evidence of a trend towards this effect and, given strong prior clinical rationale for an interaction between treatment and heart rate, the interaction term was retained.

B8

The trial analysis is limited to 29 months, at which point 20% of the cohort is **at risk**. Please clarify what is meant by "at risk".

In SHIfT 20% of the cohort had survival data reported until 29 months and were consequently still at risk of death (i.e. they had at least 29 months follow up data post-randomisation and had neither died nor been censored by the analysis cut-off date - 31st March 2010).

B9

Please provide an updated base case analysis using the latest drug acquisition costs as reported in BNF 63 for all drugs used in the standard care arm.

British National Formulary (BNF) drug prices have been revised to reflect 2012 estimates, see

Table 11. The Tables which reported therapy costs in the STA submission document have also been revised accordingly, see Table 12 to Table 14.

The results and clinical outcomes have also been re-reported for the revised costeffectiveness model, which includes the new NYHA risk equation, updated BNF prices and new sensitivity analyses.

Table 11 Standard care therapy costs

Drug class	Most common drug	SHIfT % of cohort	UK dose (mg)	Price per pack	Tablets per pack	mg per tablet	Price per tablet (£)	Price per mg (£)	Total cost per month (£)
Ace inhibitors	Ramipril 1	78.9%	5.00	1.24	28.00	5.00	0.04	0.0089	1.0634
ARBs	Candesartan 1	14.3%	16.00	12.72	28.00	16.00	0.45	0.0284	1.9790
Aldosterone	Sprionolactone	62.4%	34.79	2.15	28.00	50.00	0.08	0.0015	1.0143
Digitalis	Digoxin ł	21.9%	0.13	1.00	28.00	0.06	0.04	0.5714	0.4753
Loop diuretics	Furosemide	74.2%	59.36	0.73	28.00	40.00	0.03	0.0007	0.8735
Beta blockers	Bisoprolol 1	89.7%	5.00	1.00	28.00	5.00	0.04	0.0071	0.9751
Statins	Simvastatin	60.8%	23.39	0.81	28.00	10.00	0.03	0.0029	1.2525
Antiarrhythmics	Bendroflumethiazide 1	14.1%	5.00	0.80	28.00	5.00	0.03	0.0057	0.1227
Anticoagulants	Clopidogrel	12.2%	74.71	2.33	28.00	75.00	0.08	0.0011	0.3076
Anticoagulants	Warfarinł	16.3%	3.00	0.86	28.00	3.00	0.03	0.0102	0.1523
Nitrates	Isosorbide mononitrate	35.4%	53.24	1.48	56.00	40.00	0.03	0.0007	0.3795
Total									8.60

Footnotes:

Cost used reflects most commonly prescribed therapy in drug class. Unit prices based on British National Formulary list prices 2012

H UK standard doses used to estimate treatment dose (dose based on expert clinical advise)

Table 12 Unit costs associated with the technology in the economic model

Items	Ivabradine plus Standard Care (£)	Ref. in submission	Standard care alone (£)	Ref. in submission
Technology cost per pack	40.17	Section 6.5.5	-	Section 6.5.5
Mean cost of technology treatment (per month)	42.10	Section 6.5.5	8.60	Section 6.5.5
Mean cost Standard Care treatment	8.60	Section 6.5.5	-	Section 6.5.5
Administration cost	-	Section 6.5.5	-	Section 6.5.5
Specialist visit (one off)	118.81	Section 6.5.5	-	Section 6.5.5
ECG (one off)	31.28	Section 6.5.5	-	Section 6.5.5
Total cost per month i (month 1)	200.78		8.60	
Total cost per month subsequent months	50.69		8.60	

Table 13 List of health states and associated costs in the economic model

Health states	Items	Value (£)	Reference in submission
Alive	Therapy costs lvabradine plus standard care per month	42.10	Section 6.5.5
	Therapy costs standard care per month	8.60	Section 6.5.5
	Hospitalisation HF diagnosis	2801.55	Section 6.5.7
	Hospitalisation CV diagnosis	1836.02	Section 6.5.7
	Hospitalisation All cause diagnosis	2643.56	Section 6.5.7
	Heart failure management per month	26.77	Section 6.5.8

Table 14 Summary of variables applied in the economic model

Parameter description	Base case value	95% I CI	95% LICI	PSA Distribution	Reference for section in
	Two State Markov cohort	3370 LOI	3370001	Distribution	
Model structure	model	-	-	-	Section 2.3.1-2.3.3
					Section 6.2.6; Error!
Modelled cycle length	1 month	-	-	-	Reference source not found.
					Section 6.2.6; Error!
Time horizon	Lifetime	-	-	-	Reference source not found.
Population	SHIFT population HR >75b.p.m.	-	-	-	Section 2.3.1
					Section 6.2.6; Error!
Costs discount rate	3.50%	-	-	-	Reference source not found.
					Section 6.2.6; Error!
Effects discount rate	3.50%	-	-	-	Reference source not found.
Treatment duration months ivabradine	360.00	-	-	Section 6.3.1	Section 6.3.1
Parametric survival model CV mortality	Gompertz	See Fo	otnotes	Lognormal	Section 6.3.1
Extrapolation CV mortality post trial	Gompertz	See Fo	otnotes	Lognormal	Section 6.3.1
Hazard ratio CV mortality ivabradine vs Standard care	0.90	0.80	1.03	Section 6.3.1	Section 6.3.1
Regression model hospitalisation	Poisson	See Fo	otnotes	Lognormal	Section 6.3.1
Rate ratio hospitalisation ivabradine vs Standard care	0.83	0.78	0.93	Section 6.3.1	Section 6.3.1
Regression model NYHA class	Generalised ordered logistic regression	See Fo	otnotes	Lognormal	Section 6.3.1
					Section 6.4.9; Error!
Regression model QoL	Mixed model	See Fo	otnotes	Lognormal	Reference source not found.
					Section 6.4.9; Error!
NYHA I	0.82	See Fo	otnotes	Normal	Reference source not found.
					Section 6.4.9; Error!
NYHA II	0.74	See Fo	otnotes	Normal	Reference source not found.
					Section 6.4.9; Error!
NYHA III	0.64	See Fo	otnotes	Normal	Reference source not found.
					Section 6.4.9; Error!
NYHA IV	0.46	See Fo	otnotes	Normal	Reference source not found.

Parameter description	Base case value	95% LCI	95% UCI	PSA Distribution	Reference for section in NICE submission
Utility decrement hospitalisation	-0.21	See Fo	otnotes	Normal	Section 6.4.9; Table B15
Utility increment ivabradine	0.01	See Fo	otnotes	Normal	Section 6.4.9; Table B15
Drug costs per month					
Standard care	8.60	-	-	Deterministic	Section 6.4.9; Error! Reference source not found.
Ivabradine	42.10	-	-	Deterministic	Reference source not found.
Other therapy related costs		Lower quartile	Upper quartile		
					Section 6.2.8; 6.5.5; Error!
ECG ivabradine	31.28	12.01	44.30	Lognormal	Reference source not found.
					Section 6.2.8; 6.5.5; Error!
Cardiovascular specialist visit	118.81	89.48	138.97	Lognormal	Reference source not found.
Hospitalisations cost per event					
					Section 6.5.7 Error!
HF diagnosis (general ward)	2307.98	-	-	Lognormal	Reference source not found.
					Section 6.5.7 Error!
HF diagnosis (cardiac ward)	3295.12	-	-	Lognormal	Reference source not found.
, , , , , , , , , , , , , , , , , , ,				Ŭ.	Section 6.5.7 Error!
Other CV diagnosis (general ward)	1942.44	-	-	Lognormal	Reference source not found.
				-	Section 6.5.7 Error!
Other CV diagnosis (cardiac ward)	1729.60	_	-	Lognormal	Reference source not found.
				Ŭ	Section 6.5.7 Error!
Non-CV diagnosis (general ward)	2643.56	_	-	Lognormal	Reference source not found.
					Section 6.5.7 Error!
Probability of general ward admission HF or CV diagnosis	0.50	0.40	0.60	Lognormal	Reference source not found.
				Č .	Section 6.5.7 Error!
Probability of cardiac ward admission HF or CV diagnosis	0.50	-	-		Reference source not found.
Other resource use					
HF management costs	26.77	20.08	33.47	Lognormal	Section 6.5.8 Error!

Parameter description	Base case value	95% LCI	95% UCI	PSA Distribution	Reference for section in NICE submission
					Reference source not found.

Footnotes:

LCI – lower confidence interval, UCI upper confidence interval, PSA – probabilistic sensitivity analysis, NYHA New York Heart Association SHIFT population - only patients with a heart rate (HR) >= 75 beats per minute (b.p.m.) were considered in the current model Confidence intervals for regression model estimates not reported (see full regression equations on "BL", "Hosp", "NYHA" and "QoL" worksheets for full reporting of equations (including 95% confidence intervals).

Confidence intervals for cardiovascular general ward admission not reported (see full calculation on "Resource" worksheet (including 95% confidence intervals).

Revised results

Table 15 Standard care: proportion of cohort in each health state over time

Time (years)	Time (months)	Proportion of patients Alive Standard Care	Proportion of patients Alive Ivabradine plus Standard Care
0	0	100%	100%
1	12	92%	93%
2	24	85%	86%
3	36	77%	78%
4	48	68%	71%
5	60	60%	63%
6	72	52%	56%
7	84	45%	48%
8	96	37%	41%
9	108	30%	34%
10	120	24%	28%
11	132	19%	22%
12	144	14%	17%
13	156	10%	12%
14	168	7%	9%
15	180	5%	6%

Time (years)	QALMs NYHA I	QALMS NYHA II	QALMs NYHA III	QALMs NYHA IV	Decrement (total QALMs) hospitalisation within 30 days end of cycle	Total QALMs
1	20.06	820.22	509.95	5.66	-4.54	1351.35
2	19.03	758.60	458.52	5.21	-4.12	1237.24
3	17.40	688.63	413.03	4.73	-3.73	1120.07
4	15.56	615.88	369.40	4.23	-3.33	1001.73
5	13.73	543.46	325.96	3.73	-2.94	883.94
6	11.91	471.23	282.64	3.24	-2.55	766.46
7	10.14	401.18	240.62	2.76	-2.17	652.53
8	8.46	335.00	200.93	2.30	-1.81	544.88
9	6.91	273.69	164.16	1.88	-1.48	445.16
10	5.51	218.15	130.84	1.50	-1.18	354.82
11	4.24	168.01	100.77	1.15	-0.91	273.26
12	3.16	124.97	74.95	0.86	-0.68	203.26
13	2.27	89.71	53.80	0.62	-0.49	145.91
14	1.56	61.86	37.10	0.42	-0.33	100.61
15	1.03	40.76	24.45	0.28	-0.22	66.30

Table 16: Standard care: QALYs accrued in each health state over time

Time (years)	QALMs NYHA I	QALMs NYHA II	QALMs NYHA III	QALMs NYHA IV	Decrement (total QALMs) hospitalisation within 30 days end of cycle	Total QALMs
1	24.80	891.67	480.33	4.09	-3.66	1397.22
2	23.73	830.67	435.10	3.80	-3.36	1289.94
3	21.90	761.00	395.56	3.48	-3.06	1178.87
4	19.79	687.91	357.57	3.14	-2.77	1065.64
5	17.68	614.39	319.36	2.81	-2.47	951.75
6	15.54	540.04	280.71	2.47	-2.17	836.58
7	13.43	466.90	242.69	2.13	-1.88	723.27
8	11.41	396.71	206.21	1.81	-1.60	614.55
9	9.51	330.53	171.81	1.51	-1.33	512.03
10	7.75	269.36	140.01	1.23	-1.08	417.27
11	6.12	212.71	110.57	0.97	-0.86	329.51
12	4.68	162.76	84.60	0.74	-0.65	252.13
13	3.47	120.63	62.70	0.55	-0.49	186.87
14	2.48	86.24	44.83	0.39	-0.35	133.59
15	1.70	59.19	30.77	0.27	-0.24	91.70

Table 17: Ivabradine plus standard care: QALYs accrued in each health state over time

Outcome	Clinical trial result Standard Care	Model result Standard Care	% error in predictions	Clinical trial result Ivabradine	Model result Ivabradine	% error prediction
HF mortality	126.00	108.98	-15.62%	78.00	75.51	-3.30%
Cardiovascular mortality	364.00	329.21	-10.57%	304.00	294.36	-3.28%
All-cause mortality	407.00	366.59	-11.02%	340.00	332.12	-2.37%
All Cause hospitalisations	2213.00	1821.75	-21.48%	1754.00	1649.13	-6.36%

Table 18: Summary of model results compared with clinical data

Table 19: Model outputs by clinical outcomes

	Outcome	LY	QALY	Cost (£)
	NYHA I	0.14	0.12	58.64
	NYHA II	3.29	2.47	1398.41
Standard care	NYHA III	2.41	1.54	1024.68
	NYHA IV	0.08	0.04	34.60
	Hospitalisation	-	-0.01	7398.48
	Total	5.93	4.15	9914.81
	Outcome	LY	QALY	Cost (£)
	ΝΥΗΑΙ	0.17	0.15	167.07
high realize shue stendard	NYHA II	3.53	2.69	3420.29
ivabradine plus standard	NYHA III	2.43	1.58	2374.34
Care	NYHA IV	0.08	0.04	76.94
	Hospitalisation	-	-0.01	6397.44
	Total	6.21	4.44	12436.09

Table 20: Summary of QALY gain by health state

Health state	QALY Standard Care	QALY Ivabradine plus Standard Care	Absolute increment	% Absolute increment
NYHA I	0.12	0.15	0.03	11%
NYHA II	2.47	2.69	0.22	75%
NYHA III*	1.54	1.58	0.04	13%
NYHA IV*	0.04	0.04	0.00	0%
Hospitalisation	-0.01	-0.01	0.00	1%
Total	4.15	4.44	0.29	100%

Footnotes

*Fewer patients in NYHA III and IV in Ivabradine plus Standard care QALY, quality-adjusted life year

Table 21: Summary of costs by health state

Health state	Costs Standard Care	Costs Ivabradine plus Standard Care	Absolute increment	% Absolute increment
ΝΥΗΑΙ	58.64	167.07	108.43	4%
NYHA II	1398.41	3420.29	2021.88	80%
NYHA III*	1024.68	2374.34	1349.66	54%
NYHA IV*	34.60	76.94	42.34	2%
Hospitalisation	7398.48	6397.44	-1001.04	-40%
Total	9914.81	12436.09	2521.28	100%

Table 22: Summary of predicted resource use by category of cost

Item	Cost Standard Care	Cost Ivabradine plus Standard Care	Absolute increment	% absolute increment
Technology cost (therapy initiation and drug costs)	611.50	4044.12	3432.62	136%
Follow up costs	1904.82	1994.53	89.71	4%
Hospitalisations	7398.48	6397.44	-1001.04	-40%
Total costs	9914.81	12436.09	2521.28	100%

Table 23: Base-case results

Technologies	Total costs (£)	Total LYG	Total QALYs	Baseline	Incremental costs (£)	Incremental LYG	Incremental QALYs	ICER (£) versus baseline (LYs)	ICER (£) incremental (QALYs)
Standard Care	9914.81	5.93	4.15		-	-	-	-	-
Ivabradine plus									
Standard Care	12436.09	6.21	4.44	Standard Care	2521	0.28	0.29	9030	8698

Footnotes:

ICER calculated by applying individual patient profiles from SHIfT patients (with a heart rate ≥ 75bpm) into the risk equations sequentially one at time and averaging costs and effects over all patient profiles see full report for details

Figure 7: One way sensitivity analyses: parameter values

Footnotes:

The one way sensitivity analyses have been estimated by employing average values in the risk equations (e.g. 0.24 for gender). The ICER for the base case analysis is £7553 using this method (lower than the ICER reported using the full heterogeneity analysis which calculates the ICER by individual patient profiles from SHIfT patients (with a heart rate \geq 75bpm) into the risk equations sequentially one at time – see full report for details).

Figure 8: One way sensitivity analyses: structural sensitivity analyses

Footnotes:

The one way sensitivity analyses have been estimated by employing average values in the risk equations (e.g. 0.24 for gender). The ICER for the base case analysis is £7553 using this method (lower than the ICER reported using the full heterogeneity analysis which calculates the ICER by individual patient profiles from SHIfT patients (with a heart rate \geq 75bpm) into the risk equations sequentially one at time – see full report for details).

Table 24: Results of one way sensitivity analyses: parameter values

Description	Base case	Sensitivity value 1	Sensitivity value 2	Sensitivity value 1 (£)	Sensitivity value 2 (£)
Ivabradine rate ratio hospitalisation: 95% CI	SHIFT predicted	95% LCI	95% UCI	6235	10150
Ivabradine hazard ratio CV mortality: 95% CI	SHIFT predicted	95% LCI	95% UCI	5531	41464
Ivabradine treatment effect NYHA: 95% CI	SHIFT predicted	95% LCI	95% UCI	7389	8168
Ivabradine treatment effect QoL: 95% CI	SHIFT predicted	95% LCI	95% UCI	8972	6164
Length of stay: 95% Cl	SHIFT predicted	95% LCI	95% UCI	8318	6788
Ivabradine hazard ratio: tailing off over 5 years vs lifelong	Lifelong	5 years post trial	Lifelong	10929	7553
Ivabradine hazard ratio: tailing off over 10 years vs lifelong	Lifelong	10 years post trial	Lifelong	9554	7553

Footnotes:

LCI – lower confidence interval, UCI upper confidence interval, NYHA New York Heart Association, QoL – Quality of Life The one way sensitivity analyses have been estimated by employing average values in the risk equations (e.g. 0.24 for gender). The ICER for the base case analysis is £7553 using this method (lower than the ICER reported using the full heterogeneity analysis which calculates the ICER by individual patient profiles from SHIfT patients (with a heart rate \geq 75bpm) into the risk equations sequentially one at time – see full report for details).

Description	Base case	Sensitivity value 1	Sensitivity value 2	Sensitivity value 1 (£)	Sensitivity value 2 (£)
CV: mortality Kaplan Meier vs Gompertz	Gompertz	Kaplan Meier	Gompertz	8318	7553
CV mortality: Weibull vs Gompertz	Gompertz	Weibull	Gompertz	7059	7553
CV mortality: exponential vs Gompertz	Gompertz	Exponential	Gompertz	7122	7553
CV mortality extrapolation: CARE-HF vs SHIfT predicted	Gompertz	CARE-HF Gompertz		7311	7553
CV mortality extrapolation: Western Australian data vs SHIfT predicted	Gompertz	Australian data	Gompertz	7562	7553
Treatment effect: HF only endpoints	CV endpoint	HF endpoint	CV endpoint	7482	7553
Ivabradine treatment duration: 5 years vs lifelong	Lifelong	5 years	Lifelong	7023	7553
LoS hospitalisation: NHS reference cost data vs HES	NHS reference cost	HES data	NHS reference cost	6364	7553
LoS hospitalisation: NHS reference cost data vs HF audit data	NHS reference cost	NHF audit	NHF audit NHS reference cost		7553
NYHA extrapolation: LoCF vs SHIfT predicted	LoCF	SHIFT predicted	SHIFT predicted LoCF		7553
NYHA extrapolation: LoCF vs Assumption based	LoCF	Assumption based	LoCF	8043	7553
QoL weights: SHIfT predicted vs external literature	SHIfT predicted	External Lit	SHIFT predicted	7326	7553
QoL weights: Exclude age adjustment vs include age adjustment	Included	Excluded	Included	7778	7553
Titration visit and ECG costs excluded vs included	Included	Excluded	Included	6749	7553
12% of patients with bradycardia or atrial fibrillation treated in ICU	ICU costs excluded	ICU costs included	ICU excluded	8036	7553
Non-CV death estimated from SHIfT data	UK mortality rates	SHIfT predicted	UK mortality rates	9143	7553
Hospitalisation rate 50% lower/higher than reported in SHIfT	SHIfT predicted	50% reduction	50% increase	9112	6004
Treatment effect on mortality removed (hazard ratio = 1)	SHIfT predicted	Hazard ratio = 1	SHIFT predicted	17625	7553

Table 25: Results of one way sensitivity analyses: structural sensitivity analyses

Footnotes

NYHA - New York Heart Association, HES – Hospital Episode Statistics, LoCF – Last observation Carried Forward,

Figure 9: Probabilistic sensitivity analysis: scatter plot

Footnotes:

The one way sensitivity analyses have been estimated by employing average values in the risk equations (e.g. 0.24 for gender). The ICER for the base case analysis is £7553 using this method (lower than the ICER reported using the full heterogeneity analysis which calculates the ICER by individual patient profiles from SHIfT patients (with a heart rate > 75bpm) into the risk equations sequentially one at time – see full report for details).

Figure 10: Probabilistic sensitivity analysis: cost-effectiveness acceptability curve (CEAC)

Footnotes:

The one way sensitivity analyses have been estimated by employing average values in the risk equations (e.g. 0.24 for gender). The ICER for the base case analysis is £7553 using this method (lower than the ICER reported using the full heterogeneity analysis which calculates the ICER by individual patient profiles from SHIfT patients (with a heart rate ≥ 75bpm) into the risk equations sequentially one at time – see full report for details).

Subgroup	Total Costs	Total LYs	Total QALYs	Total Costs	Total LYs	Total QALYs	Incremental Costs	Incremental LYs	Incremental QALYs	Incremental Cost/LY	Incremental Cost/QALY
All patients (HR>=75 b.p.m.)	9915	5.93	4.15	12436	6.21	4.44	2521	0.28	0.29	9030	8698
Age<75 years	10003	6.10	4.29	12619	6.39	4.59	2616	0.29	0.30	8991	8666
Age>=75 years	9072	4.26	2.80	10693	4.43	2.98	1622	0.17	0.18	9671	9221
NYHA II	10241	6.69	4.99	13151	6.96	5.29	2909	0.27	0.30	10844	9751
NYHA III	9742	5.35	3.49	11962	5.65	3.78	2220	0.29	0.29	7629	7765
NYHA IV	6790	2.69	1.36	7918	2.92	1.56	1127	0.24	0.19	4774	5817
HF duration <0.6 years	10634	7.18	5.29	13747	7.49	5.64	3113	0.31	0.34	9997	9055
HF duration >=0.6<2 years	9801	6.02	4.27	12403	6.31	4.57	2601	0.29	0.30	9073	8689
HF duration >=2<4.8 years	8939	5.58	3.77	11390	5.85	4.04	2451	0.27	0.27	9246	9129
HF duration >=4.8 years	10302	4.97	3.30	12242	5.23	3.55	1941	0.25	0.25	7626	7785
No beta blocker	10223	4.69	3.20	12006	5.03	3.52	1782	0.34	0.32	5227	5560
Beta blocker < half target dose	9626	5.31	3.74	11843	5.58	4.02	2217	0.27	0.28	8067	7919
Beta blocker =>half target dose < target dose	10242	6.63	4.64	13110	6.89	4.93	2868	0.27	0.29	10684	9903
Beta blocker =>target dose	9888	6.92	4.84	12960	7.19	5.13	3072	0.27	0.29	11576	10561
LVEF < 26%	10289	4.80	3.39	12155	5.10	3.68	1866	0.29	0.29	6338	6398
LVEF >=26%<30%	9285	5.40	3.77	11589	5.68	4.05	2304	0.28	0.28	8339	8227
LVEF >=30<33%	9597	6.26	4.37	12338	6.54	4.66	2741	0.28	0.30	9679	9281
LVEF >= 33%	10234	7.02	4.90	13309	7.28	5.19	3074	0.26	0.29	11690	10633
Non-diabetic	9212	5.95	4.21	11842	6.23	4.50	2629	0.28	0.29	9511	9094
Diabetic	11448	5.88	4.02	13734	6.16	4.32	2285	0.29	0.29	8012	7842
No prior CAD	9433	5.92	4.36	12019	6.23	4.68	2586	0.31	0.33	8298	7937
Prior CAD	10113	5.93	4.06	12607	6.20	4.34	2495	0.27	0.28	9382	9069

Table 26: Results: subgroup analyses

Footnotes:

QALY – Quality Adjusted Life Year

ICER calculated by applying individual patient profiles from SHIfT patients (with a heart rate > 75bpm) into the risk equations sequentially one at time and averaging costs and effects over all patient profiles with subgroup characteristic of interest see full report for details

Section C: Textual clarifications and additional points

C1

The manufacturer indicates that they "anticipate that ivabradine would be initiated by either a consultant cardiologist, a primary care GPwSI (GP with special interest) or other suitably qualified member of a multidisciplinary heart failure team" (pg 29), and goes on to highlight that an additional consultation may be needed to titrate the ivabradine dose. Please clarify whether post-titration of ivabradine dose patients can be safely discharged to continuous maintenance treatment by a non-specialist GP. Please provide an indication of how long after titration of ivabradine dose it will no longer be necessary for monitoring to be carried out by a specialist in the management of chronic heart failure.

We wish to clarify that after titration of the ivabradine dose, these patients can be safely discharged to continuous maintenance treatment by a non-specialist GP. This is for two main reasons:

- GPs in the UK are accustomed to the continuous maintenance of ivabradine for its indication in angina for which it has been available in the UK over the last six years. The maintenance approach in heart failure is similar.
- GPs routinely manage the continuous maintenance of other treatments in heart failure, including beta-blockers which have similar clinical considerations.

Regarding the question as to how long after titration of ivabradine dose it will no longer be necessary for monitoring to be carried out by a specialist, we would like to clarify the following;

It is only if the patients' heart failure worsens that we would expect that a patient is referred back to the specialist team. This is the case for the majority of heart failure treatments.

In fact we would suggest that our assumptions are very conservative in terms of the need for specialist involvement, especially regarding the up-titration of ivabradine. This is because titrating ivabradine to maximum dose or reducing to the minimum dose can be achieved in one titration step and is based on the resting heart rate as measured by the treating clinician. As stated above, GPs already have this clinical knowledge from use of ivabradine in angina. The base case model is therefore likely to under-estimate the true cost effectiveness of ivabradine in the 'real world' scenario.

C2

The number of patients in the full population of SHIfT who achieved target dose of β blocker is reported to be 23% in Table 30 (pg 104), but 26.0% in Table 94 (pg 304). Please confirm the percentage of patients achieving target dose of β -blocker.

The manufacturer wishes to apologise for the confusion regarding the quoted usage of optimal beta-blocker dose. In the right context both figures are actually correct. For clarification please note the following:

1) 23% of all patients included in SHIfT (main trial population) received target dose beta-blockade.

2) 26% of all patients receiving a beta-blocker in SHIfT (main trial population) received target dose beta-blockade.

The difference may be explained by the observation that 11% of patients in SHIfT were not taking a beta-blocker (owing to contra-indication or intolerance).

C3

In Table 6 (pg 48) in the submission, the lower value for the range of resting heart rates (presented with median resting heart) in both the ivabradine and placebo groups indicates that patients with resting heart rate <70 bpm were included in the trial. Please state how many patients in each group with a heart rate <70 bpm were enrolled in the trial and included in any analysis.

8 patients with baseline heart rate <70 bpm were enrolled in the trial and included in all analyses, 5 in the ivabradine group and 3 in the placebo group.

These patients were included in the ITT analysis (as opposed to per-protocol, in which patients who violated the clinical trial protocol are excluded) in order to avoid an imbalance between the randomised groups and a potential source of selection bias.

C4

Please confirm that the baseline characteristics presented below for smoking habits are correct (reproduced from Table 6, pg 48). In the ivabradine arm for the licensed population, the number of patients assessed represents 89.1% of the population.

	Heart rate ≥70 k (N = 6	opm at baseline 6,505)	Heart rate ≥75 bpm at baseline (N = 4,150)		
	Ivabradine N = 3,241	Placebo N = 3,264	Ivabradine $N = 2,052$	Placebo N = 2,098	
Smoking habits, n (%)					
Yes	541 (16.7)	577 (17.7)	381 (18.6)	402 (19.2)	
Previous	1355 (41.8)	1364 (41.8)	847 (40.9)	857 (40.9)	
Never	1345 (41.5)	1323 (40.5)	824 (40.2)	839 (40.0)	

We wish to acknowledge a typographical error in the construction of this table, which has now been corrected below.

C5

Throughout the clinical effectiveness section, analyses for the licensed population are based on 4,150 patients. However, in the cost effectiveness section, the text indicates that the licensed population includes 4,154 patients (e.g., section 6.2.1; pg 116 of the MS). Please clarify this potential discrepancy.

4154 patients had heart rate ≥75 bpm at baseline, however 4 of these patients were not in sinus rhythm (had atrial fibrillation) and have therefore been excluded from clinical analyses based on heart rate subgroups.

Measuring heart rate in patients with atrial fibrillation can provide inflated and/or variable estimates of resting heart rate. The statistical analysis plan for the SHIFT trial therefore pre-defined any subgroups based on heart rate to exclude such

patients. However our economic agency were not made aware of this definition and therefore the four patients in atrial fibrillation remained in the economic analyses pertaining to the licensed subgroup.

Importantly, including these patients makes no material difference to the clinical results observed for the licensed population.

C6

Please provide the definitions for the terms "low dose", "moderate dose" and "target dose" used in Table 30 of the submission (pg 104).

Definition of beta-blocker dose (expressed as % of target dose):

SHIfT; National HF Audit: Low dose <50%, Moderate dose ≥50%, Target 100% Hull Audit - for bisoprolol, carvedilol, nebivolol, atenolol and timolol: Low <50%, moderate 50-99%, target 100%

Hull Audit - for metoprolol, propranolol, sotolol: Low <25%, moderate 25%-99%, target 100%

Hull Audit - for celiprolol: Low 25%, moderate 50%, target 100%

C7

In section 5.3.4 (pg 50 of the MS), there seems to be an incomplete sentence "Further details on therapy post-randomisation are provided in." Please indicate where the additional details on post-randomisation therapy are provided.

... are provided in Table 95, Appendix 15.

C8

The tables presenting data for the regression models (Tables 37 [pg 131], 38 [pg 133], and 42 [pg 137]) contain duplicate descriptions for evaluated LVEF parameters (example provided below). Please clarify which, if any, of the descriptions is incorrect and provide corrected description(s).

We wish to acknowledge a typographical error in the labelling of this table, which has now been corrected below.

Description	HR	Coefficient	SE	p-value	95% LCI	95% UCI
LVEF ≥26% <30% <i>v</i> s <26%	0.8625	-0.1479	0.0929	0.111	-0.33	0.0342
LVEF ≥30% <33% vs <26%	0.7122	-0.3394	0.0893	0	-0.5145	-0.1644
LVEF ≥33% <i>vs</i> <26%	0.5905	-0.5268	0.0921	0	-0.7073	-0.3462

Reference List

- (1) Levy W, Mozaffarian D, Linker D, et al. The Seattle Heart Failure Model: Prediction of Survival in Heart Failure. Circulation 2006;113:1424-33.
- (2) Swedberg K, Komadja M, Bohm M, et al. Ivrabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. The Lancet 2010;376(9744):875-85.

- (3) McKenna C, Burch J, Suekarran S, Walker S, Bakhai A, Witte K, et al. A systematic review and economic evaluation of the clinical effectiveness and cost-effectiveness of aldosterone antagonists for postmyocardial infarction heart failure. Health Technology Assessment 2010;14(24):1-162.
- (4) McMurray JJ, Andersson FL, Stewart S, Svensson K, Cohen SA, Dietz R, et al. Resource utilization and costs in the Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity (CHARM) programme. European Heart Journal 2006;27(12):1447-58.