

Technology Assessment Report commissioned by the NIHR HTA Programme on behalf of the National Institute for Health and Care Excellence

Adalimumab, etanercept, infliximab, certolizumab pegol, golimumab, tocilizumab and abatacept for the treatment of rheumatoid arthritis not previously treated with disease-modifying anti-rheumatic drugs and after the failure of conventional diseasemodifying anti-rheumatic drugs only: systematic review and economic evaluation

Produced by	ScHARR, University of Sheffield		
Authors	Matt Stevenson, Professor of Health Technology Assessment, ScHARR		
	Rachel Archer, Research Fellow, ScHARR		
	Jon Tosh, Research Fellow, ScHARR		
	Emma Simpson, Research Fellow, ScHARR		
	Emma Everson-Hock, Research Fellow, ScHARR		
	John Stevens, Reader in Decision Science, ScHARR		
	Monica Hernandez, Senior Research Fellow in Econometrics, ScHARR		
	Suzy Paisley, Senior Research Fellow/Senior Information Specialist, ScHARR		
	Kath Dickinson, Information Specialist, ScHARR		
	David Scott, Consultant Rheumatologist, King's College Hospital NHS Foundation Trust.		
	Adam Young, Consultant Rheumatologist, West Hertfordshire Hospitals NHS Trust.		
	Allan Wailoo, Professor of Health Economics, ScHARR		

Source of funding: This report was commissioned by the NIHR HTA Programme as project number 11/74.

Keywords: Rheumatoid arthritis; cost-effectiveness; economic evaluation.

Declared competing interests of the authors

David Scott has received honoraria within the last 3 years for providing advice to Merck Sharp & Dohme, UCB Pharma, and Bristol Myers Squibb: these values were less than £1000. Additionally David Scott has received grants from Arthritis Research UK and the NIHR in connection with RA.

No other author has a conflict.

Acknowledgements

The authors wish to thank: The BSRBR for providing access to their data and expert advice on how to use it, in particular Rebecca Davies, Xuejuan Fan, Kath Watson and Kimme Hyrich; Sam Norton for providing data and expert analyses from the ERAS dataset; the Veterans Affairs Rheumatoid Arthritis database for providing access to their data, and Kaleb Michaid for performing analyses on that data. The authors wish to thank Alan Brennan, Louise Preston and Colin Angus for advice and help throughout the project.

The authors would also like to thank Gill Rooney and Andrea Shippam for providing administrative support, help in preparing and formatting the report. Gill Rooney also assisted with digitising curves from published papers.

Rider on responsibility for report

The views expressed in this report are those of the authors and not necessarily those of the NIHR HTA Programme. Any errors are the responsibility of the authors.

This report should be referenced as follows:

Stevenson MD, Archer R, Tosh J, Simpson EL, Everson-Hock E, Stevens JW, Hernandez M, Paisley S, Williams K, Scott D, Young A, Wailoo A. Adalimumab, etanercept, infliximab, certolizumab pegol, golimumab, tocilizumab and abatacept for the treatment of rheumatoid arthritis not previously treated with disease-modifying anti-rheumatic drugs and after the failure of conventional disease-modifying anti-rheumatic drugs only: systematic review and economic evaluation. *Health Technol Assess*

Contributions of authors

Matt Stevenson led the project and was involved in all aspects of the project. Rachel Archer led the systematic review along with Emma Simpson and Emma Everson-Hock. Jon Tosh constructed the mathematical model and undertook the review of economic evaluations. John Stevens undertook the network meta-analysis; Allan Wailoo provided advice throughout the project, liaised with registry holders, commented on elements of the manufacturer submissions and provided a detailed account of the utility mapping models. Monica Hernandez, along with Allan Wailoo formulated statistical models based on these data. Suzy Paisley and Kath Williams formulated and ran the search strategies. David Scott and Adam Young provided clinical advice.

About ScHARR

The School of Health and Related Research (ScHARR) is one of the nine departments that comprise the Faculty of Medicine, Dentistry and Health at the University of Sheffield. ScHARR specialises in health services and public health research, and the application of health economics and decision science to the development of health services and the improvement of public health.

The ScHARR Technology Assessment Group (ScHARR-TAG) synthesises research on the clinical effectiveness and cost-effectiveness of healthcare interventions for the NIHR Health Technology Assessment Programme on behalf of a range of policy makers, including the National Institute for Health and Care Excellence (NICE). ScHARR-TAG is part of a wider collaboration of a number of units from other regions including Health Economics Research Unit and Health Services Research Unit, University of Aberdeen; Southampton Health Technology Assessment Centre (SHTAC), University of Southampton; Liverpool Reviews & Implementation Group (LRiG), University of Liverpool; Peninsular Technology Assessment Group (PenTAG), University of Exeter; the NHS Centre for Reviews and Dissemination, University of York; Warwick Evidence, University of Warwick; the BMJ Technology Assessment Group (BMJ-TAG), BMJ Evidence Centre and Kleijnen Systematic Reviews Ltd.

Word count: ≈175,000

TABLE OF CONTENTS

1.	DEFINITION OF TERMS AND LIST OF ABBREVIATIONS	1
2.	EXECUTIVE SUMMARY	3
2.1	Abstract	3
2.2	Plain English Summary	4
2.3	Scientific Summary	5
2.4	Conclusions	9
3.	BACKGROUND	10
3.1	Description of health problem	10
3.2	Current service provision	13
3.3	Description of the technologies under assessment	15
4.	DEFINITION OF THE DECISION PROBLEM	21
4.1	Decision problem	21
4.2	Overall aims and objectives of assessment	24
5.	ASSESSMENT OF CLINICAL EFFECTIVENESS	25
5.1	Methods for reviewing effectiveness	25
5.2	Results	36
5.3	NMA Results	84
5.4	Discussion of systematic reviewing results	178
6	ASSESSMENT OF COST-EFFECTIVENESS	182
6.1	Systematic review of existing cost-effectiveness evidence	182
6.2	Critique of the manufacturers' submissions	197
6.3	Independent economic assessment	352
6.4	Interpretation of the results	472
7.	ASSESSMENT OF FACTORS RELEVANT TO THE NHS	476
	AND OTHER PARTIES	
8.	DISCUSSION	477
8.1	Statement of principle findings	477
8.2	Strengths and limitations of the assessment	478
8.3	Uncertainties	479
9.	CONCLUSIONS	480
9.1	Implications for service provision	480
9.2	Suggested research priorities	480

REFERENCES	481
APPENDICES	509
Appendix 1: Excluded studies	509
Appendix 2: Quality Assessment Summary of Findings	516
Appendix 3: Additional data relating to the included RCTs	520
	REFERENCES APPENDICES Appendix 1: Excluded studies Appendix 2: Quality Assessment Summary of Findings Appendix 3: Additional data relating to the included RCTs

LIST OF TABLES

Table 1	Determining EULAR response based on DAS28	12
Table 2	The weight distribution of patients with RA using BSRBR data	18
Table 3	Simplified mean acquisition and administration costs for each	20
	intervention	
Table 4	The relationship between the licence of the intervention and the	21
	decision problem	
Table 5	Trials included in the systematic review and network meta-	39
	analyses	
Table 6	Trials not eligible for the systematic review but providing	44
	additional evidence for NMA sensitivity analyses	
Table 7	Population characteristics: Population 1 biologic head to head	47
	RCTs	
Table 8	Population characteristics: Population 1 RCTs of biologic vs.	47
	DMARD(s) or PBO	
Table 9	Population characteristics: Population 2/3 biologic head to head	50
	RCTs	
Table 10	Population characteristics: Population 2/3 (cDMARD	51
	experienced) vs. cDMARD(s) or PBO	
Table 11	ACR response data: Population 1 RCTs of biologic vs.	57
	DMARD(s) or PBO	
Table 12	ACR response data: Population 2/3 biologic head to head RCTs	60
Table 13	ACR response data: Population 2/3 RCTs of biologic vs.	61
	DMARD(s) or PBO	
Table 14	EULAR response: Population 1 RCTs of biologic vs.	66
	DMARD(s) or PBO	
Table 15	EULAR: Population 2/3 biologic head to head RCTs	68

Table 16	EULAR: Population 2/3 RCTs of biologic vs. DMARD(s) or	69
	PBO	
Table 17	ACR response: population 2/3 RCTs used in the sensitivity	81
	analyses of the NMA	
Table 18	EULAR response: population 2/3 RCTs used in the sensitivity	83
	analyses of the NMA	
Table 19	The EULAR data used in the NMA for populations 2 and 3	85
Table 20	The ACR data used in the NMA for populations 2 and 3	87
Table 21	The EULAR data for population 1	91
Table 22	The ACR data used in the NMA for population 1	92
Table 23	ACR (Population1: Main Trials) – The numbers of RCTs with	95
	which each pair of interventions were compared	
Table 24	ACR (Population 1: Main Trials) – Probability of treatment	98
	rankings in terms of efficacy (most efficacious = 1)	
Table 25	ACR (Population 1: Main Trials) – Probabilities of achieving	100
	ACR responses	
Table 26	ACR (Population 1: Main Trials plus MTX Experienced) – The	102
	numbers of RCTs with which each pair of interventions were	
	compared	
Table 27	ACR (Population 1: Main Trials plus MTX Experienced) -	104
	Probability of treatment rankings in terms of efficacy (most	
	efficacious = 1)	
Table 28	ACR (Population 1: Main Trials plus MTX Experinced) -	106
	Probabilities of achieving ACR responses	
Table 29	EULAR (Population 2/3: Main Trials) – The numbers of RCTs	108
	with which each pair of interventions were compared	
Table 30	EULAR (Population 2/3: Main Trials) – Probability of treatment	114
	rankings in terms of efficacy (most efficacious = 1)	
Table 31	EULAR (Population 2/3: Main Trials) – Probability of achieving	118
	EULAR responses	
Table 32	EULAR (Population 2/3: Main Trials plus Prior Biologics) – The	120
	numbers of RCTs with which each pair of interventions were	
	compared	

- Table 33EULAR (Population 2/3: Main Trials plus Prior Biologics) –126Probability of treatment rankings in terms of efficacy (most
efficacious = 1)
- Table 34EULAR (Population 2/3: Main Trials) Probability of achieving130EULAR responses
- Table 35ACR (Population 2/3: Main Trials) Frequency with which each132pair of interventions were compared
- Table 36ACR (Population 2/3: Main Trials) Probability of treatment138rankings in terms of efficacy (most efficacious = 1)
- Table 37ACR (Population 2/3: Main Trials) Probability of achieving142ACR responses
- Table 38ACR (Population 2/3: Main Trials plus Prior Biologics with 144AMBITION) Frequency with which each pair of interventionswere compared
- Table 39 ACR (Population 2/3: Main Trials plus Prior Biologics with 150 AMBITION) Probability of treatment rankings in terms of efficacy (most efficacious = 1)
- Table40ACR (Population 2/3: Main Trials plus Prior Biologics with154AMBITION) Probability of achieving ACR responses
- Table 41ACR (Population 2/3: Main Trials plus Prior Biologics without156AMBITION) Frequency with which each pair of interventions
were compared
- Table 42 ACR (Population 2/3: Main Trials plus Prior Biologics without 162 AMBITION) Probability of treatment rankings in terms of efficacy (most efficacious = 1)
- Table 43ACR (Population 2/3: Main Trials plus Prior Biologics without167AMBITION) Probability of achieving ACR responses
- Table 44ACR (Population 2/3: Main Trials plus RCTs that have 169potentially low prior MTX exposure) Frequency with whicheach pair of interventions were compared
- Table 45ACR (Population 2/3: Main Trials plus RCTs that have 175potentially low prior MTX exposure) Probability of treatmentrankings in terms of efficacy (most efficacious = 1)

Table 46	ACR (Population 2/3: Main Trials plus RCTs that have	178
	potentially low prior MTX exposure) - Probability of achieving	
	ACR responses	
Table 47	Keywords for systematic review	182
Table 48	Systematic review databases	183
Table 49	Eligibility Criteria	184
Table 50	Health economic studies assessing bDMARDs in bDMARD	186
	naïve patients with RA	
Table 51	Cost-effectiveness results for studies in DMARD naïve patients	191
	with RA	
Table 52	Cost-effectiveness results for studies in bDMARD naïve patients	193
	with RA	
Table 53	The decision problem addressed within the manufacturers'	199
	submission	
Table 54	Strategies modelled by AbbVie for Analyses 1 and 2	201
Table 55	Strategies modelled by AbbVie for Analysis 3	201
Table 56	Strategies modelled by AbbVie for Analyses 4 and 5	201
Table 57	Strategies modelled by AbbVie for Analysis 6	202
Table 58	Strategies modelled by BMS for Analyses 1 and 7	203
Table 59	Strategies modelled by MSD for Analyses 1 and 7	205
Table 60	Strategies modelled by Pfizer for Analyses 1, 2 and 3	206
Table 61	Strategies modelled by Pfizer for Analysis 4	206
Table 62	Strategies modelled by UCB for Analyses 1 and 4	208
Table 63	Strategies modelled by UCB for Analyses 2 and 5	208
Table 64	The discount rates used per annum within the submissions	220
Table 65	The baseline Patient Characteristics for MTX-experienced	221
	patients with moderate disease activity assumed by AbbVie	
Table 66	The baseline patient characteristics for MTX-experienced	221
	patients with severe disease activity assumed by AbbVie	
Table 67	The baseline patient characteristics for MTX-naive patients with	221
	severe disease activity assumed by AbbVie	
Table 68	Age and Gender distributions of patients in the BMS model	221
Table 69	HAQ score distribution of patients in the BMS model	222

Table 70	The baseline characteristics of patients sampled in the Pfizer	223
	models	
Table 71	The patient characteristic data assumed by Roche	224
Table 72	The baseline characteristics of the modelled population assumed	225
	by UCB	
Table 73	The costs of bDMARDs assumed by AbbVie	226
Table 74	The calculation undertaken by AbbVie to establish the average	227
	expected cost per tocilizumab treatment	
Table 75	The calculation undertaken by AbbVie to establish the average	228
	expected cost per abatacept treatment	
Table 76	The calculation undertaken by AbbVie to establish the average	228
	expected cost per infliximab treatment	
Table 77	The calculation undertaken by AbbVie to establish the average	229
	expected cost per golimumab treatment	
Table 78	The intervention costs assumed by BMS	229
Table 79	The intervention costs assumed by MSD	230
Table 80	The number of vials assumed by MSD for weight based	231
	interventions	
Table 81	The intervention costs assumed by Pfizer	233
Table 82	The intervention costs assumed by Roche	234
Table 83	The intervention costs assumed by UCB	235
Table 84	Monitoring costs assumed by AbbVie in the first six months	238
Table 85	Annual monitoring costs assumed by AbbVie after the first six	239
	months	
Table 86	The administration costs and monitoring costs assumed by BMS	240
Table 87	Summarised total and annual costs assumed by BMS	241
Table 88	The unit costs of monitoring assumed by MSD	242
Table 89	The assumed administration, monitoring and drug acquisition	243
	costs assumed by MSD	
Table 90	Unit costs of pre-treatment tests assumed by Pfizer	244
Table 91	Pre-treatment costs per intervention assumed by Pfizer	245
Table 92	The assumed acquisition and administration costs assumed by	246
	Pfizer	

Table 93	The administration costs assumed by Roche	248
Table 94	The monitoring costs assumed by Roche for adalimumab,	249
Table 95	The total costs of treatment assumed by Roche	249
Table 96	Drug monitoring schedule: visits during first 6 months and every	250
	6 months thereafter assumed by UCB	
Table 97	Summary of drug acquisition, administration and monitoring	251
	costs for each treatment comparator in the UCB model	
Table 98	The NMA base case results for combination therapy, ACR	269
	responses in severe DMARD experienced patients as produced	
	by Pfizer	
Table 99	The base case NMA results for combination therapy, HAQ	270
	changes in severe DMARD experienced patients, etanercept vs	
	other bDMARDs as produced by Pfizer	
Table 100	The NMA base case results for monotherapy, ACR responses in	270
	severe DMARD experienced patients as produced by Pfizer	
Table 101	The relative change reported by AbbVie in HAQ score by ACR	278
	response by treatment - moderate and severe RA, MTX-	
	experienced for bDMARD plus MTX	
Table 102	The relative change reported by AbbVie in HAQ score by ACR	278
	response by treatment - severe RA, MTX-naive for bDMARD	
	plus MTX	
Table 103	The relative change reported by AbbVie in HAQ score by ACR	279
	response by treatment - moderate and severe RA, MTX-	
	experienced or naïve for bDMARD monotherapy	
Table 104	The assumed reduction in HAQ detailed by BMS	280
Table 105	Utility assumed by health state by MSD in the golimumab submission	281
Table 106	Utility assumed by health state by MSD in the infliximab	281
	submission	
Table 107	The HAQ improvement by ACR response category reported by Pfizer	282
Table 108	Improvement in HAQ score associated with ACR response	282

assumed by Roche

Table 109	The EQ-5D data reported by UCB associated with response level	283
Table 110	Absolute annual HAQ-DI progression assumed by Abbvie	283
Table 111	HAQ progression while on treatment after the initial 24 week	285
	period assumed by Roche	
Table 112	The estimated lognormal curve for cDMARD withdrawal rate	286
	calculated by AbbVie	
Table 113	Parameter estimates for biologic treatment withdrawal due to	288
	AEs (Gompertz Function) calculated by AbbVie	
Table 114	Parameter estimates for biologics treatment withdrawal due to	289
	loss of efficacy (Lognormal Function) provided by AbbVie	
Table 115	The probability of adverse event for first-line biologics assumed	290
	by BMS	
Table 116	The probability of early discontinuation on second-line biologics	291
	as estimated by BMS	
Table 117	The long-term time on second-line biologics as estimated by	291
	BMS	
Table 118	The probability of early discontinuation cDMARDs as assumed	292
	by BMS	
Table 119	Long-term time on cDMARDs as assumed by BMS	292
Table 120	Time to treatment withdrawal assumed by MSD	293
Table 121	Log-logistic survival models for all-cause treatment cessation as	299
	estimated by Pfizer	
Table 122	The hospital costs by HAQ band assumed by AbbVie	302
Table 123	Multivariate regression used by MSD to estimate the number of	303
	days of hospital stay	
Table 124	The assumed annual costs of RA associated with HAQ score	304
	assumed by Pfizer	
Table 125	The inpatients visit by HAQ score assumed by Roche	304
Table 126	The inpatient costs assumed by HAQ score by Roche	305
Table 127	Costs by HAQ-DI category	305
Table 128	The quality of life equations used in the MSD submission	308
Table 129	The risk of serious infections assumed in the AbbVie model	313

Table 130	The assumed probability of adverse events used in the BMS models	314
Table 131	Hazard Ratio of serious infection vs cDMARDs presented by Pfizer	316
Table 132	Costs of serious infection (using in scenario analysis only)	317
Table 133	The assumed Gompertz fit to standard mortality data within the AbbVie model	319
Table 134	The assumed standardised mortality ratios assumed by Pfizer	322
Table 135	A summary of each manufacturer's interpretation of the cost-	326
	effectiveness analyses for their product assuming a cost per QALY threshold of £30,000	
Table 136	Incremental cost-effectiveness ratios for Analysis 1 as reported by AbbVie	327
Table 137	Incremental cost-effectiveness ratios for Analysis 2 as reported by AbbVie	328
Table 138	Incremental cost-effectiveness ratios for Analysis 3 as reported by AbbVie	329
Table 139	Incremental cost-effectiveness ratios for Analysis 4 as reported by AbbVie	330
Table 140	Incremental cost-effectiveness ratios for Analysis 5 as reported by AbbVie	331
Table 141	The probabilistic ICERs for Analysis 7 provided by BMS	334
Table 142	Incremental Cost-Effectiveness Results (DMARD Experienced	337
	Severe RA Patient Population Subgroup) provided by MSD in the golimumab submission	
Table 143	Incremental Cost-Effectiveness Results (DMARD Experienced RA Patient Population) provided by MSD in the golimumab	337
	submission	
Table 144	Incremental Cost-Effectiveness Results (DMARD Experienced	338
	Severe RA Patient Population Subgroup) provided by MSD in the infliximab submission	
Table 145	Incremental Cost-Effectiveness Results (DMARD Experienced RA Patient Population) provided by MSD in the infliximab	338

submission

Table 146	Severe DMARD-IR	combination	therapy	incremental	analysis	341
	presented by Pfizer					

- Table 147Moderate to Severe population combination therapy incremental342analysis presented by Pfizer
- Table 148SevereNaïvepopulationcombinationtherapyincremental343analysis presented by Pfizer
- Table 149Severe DMARD-IR monotherapy incremental analysis presented344by Pfizer
- Table 150The probabilistic sensitivity results supplied by Roche for346Analysis 8
- Table 151Base case results for combination treatments (severe disease347activity population) provided by UCB
- Table 152Base case results for combination treatments (moderate disease348activity population) provided by UCB
- Table 153Base case results for monotherapy treatments (severe disease349activity population) provided by UCB
- Table 154The incremental budget impact for adalimumab when used for
eligible RA patients with moderate and severe disease activity
over the next 5 years in England and Wales as estimated by
AbbVie
- Table 155The Number of patients requiring treatment each year as351estimated by Pfizer
- Table 156Broad strategies considered possible for patients who could355receive MTX
- Table 157Broad strategies considered possible for patients who could not356receive MTX
- Table 158The strategies evaluated for Populations 2 and 3 for those who357can receive MTX
- Table 159The strategies evaluated for Populations 2 and 3 for those who357cannot receive MTX
- Table 160The strategies evaluated for Population 1 for those who can358receive MTX

Table 161	The strategies evaluated for Population 1 for those who cannot	358
	receive MTX	
Table 162	The costs of cDMARDs and rituximab	362
Table 163	The monitoring costs assumed	364
Table 164	The relationship between EULAR responses and ACR responses	366
	in the VARA database	
Table 165	Mean HAQ improvement by EULAR response category for	371
	those on cDMARDs	
Table 166	Sample means of baseline covariates	375
Table 167	Estimated parameters and standard errors in brackets	376
Table 168	Identified evidence on HAQ progressions whilst on cDMARDs	382
Table 169	Hazard ratio for mortality associated with HAQ category	392
Table 170	Combinations of factors analysed in the cost-effectiveness	396
	analyses	
Table 171	Summarised results: Median ICERs for all bDMARD strategies	397
	compared with the MTX alone strategy. Populations 2 and 3 who	
	can receive MTX	
Table 172	Summary of median ICERs for all bDMARDs compared with an	398
	SSZ alone strategy. Populations 2 and 3 who are treated with	
	monotherapy	
Table 173	Summarised results: Median ICERs for all bDMARD strategies	399
	compared with the MTX alone strategy. Population 1 who can	
	receive MTX	
Table 174	Summary of median ICERs for all bDMARDs compared with a	400
	SSZ alone strategy. Population 1 who are treated with	
	monotherapy	
Table 175	Deterministic base case results using EULAR data directly -	401
	ERAS cDMARD HAQ progression and a severe, MTX-	
	experienced, RA population	
Table 176	Deterministic results having included RCTs with a small	401
	proportion of previous bDMARD use (with adequate prior MTX	
	exposure) using EULAR data directly - ERAS cDMARD HAQ	
	progression and a severe, MTX-experienced, RA population.	

- Table 177 Deterministic results having used the mapping of HAQ to utility 402
 from Malottki et al rather than Hernandez et al using EULAR
 data directly ERAS cDMARD HAQ progression and a severe,
 MTX-experienced, RA population
- Table 178Deterministic results having used discount rates of 6% per402annum for costs and 1.5% per annum for QALYs and usingEULAR data directly ERAS cDMARD HAQ progression and asevere, MTX-experienced, RA population
- Table 179 Deterministic results assuming 100-fold increased impact of 403 adverse events and using EULAR data directly ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population
- Table 180Deterministic results having used the relationship between HAQ403and pain derived from ERAS ERAS cDMARD HAQprogression and a severe, MTX-experienced, RA population
- Table 181Probabilistic base case results using EULAR data directly –403ERAS cDMARD HAQ progression and a severe, MTX-
experienced, RA population
- Table 182Deterministic base case results using EULAR data directly –404Linear cDMARD HAQ progression and a severe, MTX-
experienced, RA population
- Table 183Deterministic results having included RCTs with a small405proportion of previous bDMARD use (with adequate prior MTXexposure) using EULAR data directly Linear cDMARD HAQprogression and a severe, MTX-experienced, RA population
- Table 184Deterministic results having used the mapping of HAQ to utility405from Malottki et al rather than Hernandez et al using EULARdata directly Linear cDMARD HAQ progression and a severe,MTX-experienced, RA population
- Table 185Deterministic results having used discount rates of 6% per406annum for costs and 1.5% per annum for QALYs and usingEULAR data directly Linear cDMARD HAQ progression anda severe, MTX-experienced, RA population

Table 186	Deterministic results assuming 100-fold increased impact of	406
	adverse events and using EULAR data directly – Linear	
	cDMARD HAQ progression and a severe, MTX-experienced,	
	RA population	
Table 187	Deterministic results having used the relationship between HAQ	407
	and pain derived from ERAS – Linear cDMARD HAQ	
	progression and a severe, MTX-experienced, RA population	
Table 188	Probabilistic base case results using EULAR data directly –	407
	Linear cDMARD HAQ progression and a severe, MTX-	
	experienced, RA population	
Table 189	Deterministic base case results using ACR data mapped to	408
	EULAR data – ERAS cDMARD HAQ progression and a severe,	
	MTX-experienced, RA population	
Table 190	Deterministic results having included RCTs with a small	408
	proportion of previous bDMARD use (with adequate prior MTX	
	exposure) using ACR data mapped to EULAR data – ERAS	
	cDMARD HAQ progression and a severe, MTX-experienced,	
	RA population`	
Table 191	Deterministic results having included RCTs with a small	409
	proportion of previous bDMARD use (irrespective of prior MTX	
	exposure) using ACR data mapped to EULAR data – ERAS	
	cDMARD HAQ progression and a severe, MTX-experienced,	
	RA population	
Table 192	Deterministic results having included RCTs with potentially low	409
	prior MTX exposure using ACR data mapped to EULAR data –	
	ERAS cDMARD HAQ progression and a severe, MTX-	
	experienced, RA population	
Table 193	Deterministic results having used the mapping of HAQ to utility	410
	from Malottki et al rather than Hernandez et al using ACR data	
	mapped to EULAR data – ERAS cDMARD HAQ progression	
	and a severe, MTX-experienced, RA population	
Table 194	Deterministic results having used discount rates of 6% per	410
	annum for costs and 1.5% per annum for QALYs and using	

	ACR data mapped to EULAR data – ERAS cDMARD HAQ	
	progression and a severe, MTX-experienced, RA population	
Table 195	Deterministic results assuming 100-fold increased impact of	411
	adverse events and using ACR data mapped to EULAR data –	
	ERAS cDMARD HAQ progression and a severe, MTX-	
	experienced, RA population	
Table 196	Deterministic results having used the relationship between HAQ	411
	and pain derived from ERAS – ERAS cDMARD HAQ	
	progression and a severe, MTX-experienced, RA population	
Table 197	Probabilistic base case results using ACR data mapped to	412
	EULAR data – ERAS cDMARD HAQ progression and a severe,	
	MTX-experienced, RA population	
Table 198	Deterministic base case results using ACR data mapped to	413
	EULAR data – Linear cDMARD HAQ progression and a severe,	
	MTX-experienced, RA population	
Table 199	Deterministic results having included RCTs with a small	413
	proportion of previous bDMARD use (with adequate prior MTX	
	exposure) using ACR data mapped to EULAR data – Linear	
	cDMARD HAQ progression and a severe, MTX-experienced,	
	RA population	
Table 200	Deterministic results having included RCTs with a small	414
	proportion of previous bDMARD use (irrespective of prior MTX	
	exposure) using ACR data mapped to EULAR data – Linear	
	cDMARD HAQ progression and a severe, MTX-experienced,	
	RA population	
Table 201	Deterministic results having included RCTs with potentially low	414
	prior MTX exposure using ACR data mapped to EULAR data –	
	Linear cDMARD HAQ progression and a severe, MTX-	
	experienced, RA population	
Table 202	Deterministic results having used the mapping of HAQ to utility	415
	from Malottki et al rather than Hernandez et al using ACR data	
	mapped to EULAR data – Linear cDMARD HAQ progression	
	and a severe, MTX-experienced, RA population	

Table 203	Deterministic results having used discount rates of 6% per	415
	annum for costs and 1.5% per annum for QALYs and using	
	ACR data mapped to EULAR data – Linear cDMARD HAQ	
	progression and a severe, MTX-experienced, RA population	
Table 204	Deterministic results assuming 100-fold increased impact of	416
	adverse events and using ACR data mapped to EULAR data –	
	Linear cDMARD HAQ progression and a severe, MTX-	
	experienced, RA population	
Table 205	Deterministic results having used the relationship between HAQ	416
	and pain derived from ERAS – Linear cDMARD HAQ	
	progression and a severe, MTX-experienced, RA population	
Table 206	Probabilistic base case results using ACR data mapped to	417
	EULAR data – Linear cDMARD HAQ progression and a severe,	
	MTX-experienced, RA population	
Table 207	Deterministic base case results using EULAR data directly –	418
	ERAS cDMARD HAQ progression and a moderate, MTX-	
	experienced, RA population	
Table 208	Deterministic results having included RCTs with a small	418
	proportion of previous bDMARD use (with adequate prior MTX	
	exposure) using EULAR data directly – ERAS cDMARD HAQ	
	progression and a moderate, MTX-experienced, RA population	
Table 209	Deterministic results having used the mapping of HAQ to utility	419
	from Malottki et al rather than Hernandez et al using EULAR	
	data directly – ERAS cDMARD HAQ progression and a	
	moderate, MTX-experienced, RA population	
Table 210	Deterministic results having used discount rates of 6% per	419
	annum for costs and 1.5% per annum for QALYs and using	
	EULAR data directly – ERAS cDMARD HAQ progression and	
	a moderate, MTX-experienced, RA population	
Table 211	Deterministic results assuming 100-fold increased impact of	420
	adverse events and using EULAR data directly – ERAS	
	cDMARD HAQ progression and a moderate, MTX-experienced,	
	RA population	

Table 212	Deterministic results having used the relationship between HAQ	420
	and pain derived from ERAS – ERAS cDMARD HAQ	
	progression and a moderate, MTX-experienced, RA population	
Table 213	Probabilistic base case results using EULAR data directly –	421
	ERAS cDMARD HAQ progression and a moderate, MTX-	
	experienced, RA population	
Table 214	Deterministic base case results using EULAR data directly –	422
	Linear cDMARD HAQ progression and a moderate, MTX-	
	experienced, RA population	
Table 215	Deterministic results having included RCTs with a small	422
	proportion of previous bDMARD use (with adequate prior MTX	
	exposure) using EULAR data directly – Linear cDMARD HAQ	
	progression and a moderate, MTX-experienced, RA population	
Table 216	Deterministic results having used the mapping of HAQ to utility	423
	from Malottki et al rather than Hernandez et al using EULAR	
	data directly – Linear cDMARD HAQ progression and a	
	moderate, MTX-experienced, RA population	
Table 217	Deterministic results having used discount rates of 6% per	423
	annum for costs and 1.5% per annum for QALYs and using	
	EULAR data directly – Linear cDMARD HAQ progression and	
	a moderate, MTX-experienced, RA population	
Table 218	Deterministic results assuming 100-fold increased impact of	424
	adverse events and using EULAR data directly – Linear	
	cDMARD HAQ progression and a moderate, MTX-experienced,	
	RA population	
Table 219	Deterministic results having used the relationship between HAQ	424
	and pain derived from ERAS – Linear cDMARD HAQ	
	progression and a moderate, MTX-experienced, RA population	
Table 220	Probabilistic base case results using EULAR data directly –	425
	Linear cDMARD HAQ progression and a moderate, MTX-	
	experienced, RA population	
Table 221	Deterministic base case results using EULAR data directly –	426
	ERAS cDMARD HAQ progression and a moderate, MTX-	

experienced, RA population

Table 222	Deterministic results having included RCTs with a small	426
	proportion of previous bDMARD use (with adequate prior MTX	
	exposure) using ACR data mapped to EULAR data – ERAS	
	cDMARD HAQ progression and a moderate, MTX-experienced,	
	RA population	
Table 223	Deterministic results having included RCTs with a small	427
	proportion of previous bDMARD use (irrespective of prior MTX	
	exposure) using ACR data mapped to EULAR data – ERAS	
	cDMARD HAQ progression and a moderate, MTX-experienced,	
	RA population	
Table 224	Deterministic results having included RCTs with potentially low	427
	prior MTX exposure using ACR data mapped to EULAR data –	
	ERAS cDMARD HAQ progression and a moderate, MTX-	
	experienced, RA population	
Table 225	Deterministic results having used the mapping of HAQ to utility	428
	from Malottki et al rather than Hernandez et al using ACR data	
	mapped to EULAR data – ERAS cDMARD HAQ progression	
	and a moderate, MTX-experienced, RA population	
Table 226	Deterministic results having used discount rates of 6% per	428
	annum for costs and 1.5% per annum for QALYs and using	
	ACR data mapped to EULAR data – ERAS cDMARD HAQ	
	progression and a moderate, MTX-experienced, RA population	
Table 227	Deterministic results assuming 100-fold increased impact of	429
	adverse events and using ACR data mapped to EULAR data –	
	ERAS cDMARD HAQ progression and a moderate, MTX-	
	experienced, RA population	
Table 228	Deterministic results having used the relationship between HAQ	429
	and pain derived from ERAS – ERAS cDMARD HAQ	
	progression and a moderate, MTX-experienced, RA population	
Table 229	Probabilistic base case results using ACR data mapped to	430
	EULAR data – ERAS cDMARD HAQ progression and a	
	moderate, MTX-experienced, RA population	

Table 230	Deterministic base case results using ACR data mapped to	431
	EULAR data – Linear cDMARD HAQ progression and a	
	moderate, MTX-experienced, RA population	
Table 231	Deterministic results having included RCTs with a small	431
	proportion of previous bDMARD use (with adequate prior MTX	
	exposure) using ACR data mapped to EULAR data – Linear	
	cDMARD HAQ progression and a moderate, MTX-experienced,	
	RA population	
Table 232	Deterministic results having included RCTs with a small	432
	proportion of previous bDMARD use (irrespective of prior MTX	
	exposure) using ACR data mapped to EULAR data – Linear	
	cDMARD HAQ progression and a moderate, MTX-experienced,	
	RA population	
Table 233	Deterministic results having included RCTs with potentially low	432
	prior MTX exposure using ACR data mapped to EULAR data –	
	Linear cDMARD HAQ progression and a moderate, MTX-	
	experienced, RA population	
Table 234	Deterministic results having used the mapping of HAQ to utility	433
	from Malottki et al rather than Hernandez et al using ACR data	
	mapped to EULAR data – Linear cDMARD HAQ progression	
	and a moderate, MTX-experienced, RA population	
Table 235	Deterministic results having used discount rates of 6% per	433
	annum for costs and 1.5% per annum for QALYs and using	
	ACR data mapped to EULAR data – Linear cDMARD HAQ	
	progression and a moderate, MTX-experienced, RA population	
Table 236	Deterministic results assuming 100-fold increased impact of	434
	adverse events and using ACR data mapped to EULAR data –	
	Linear cDMARD HAQ progression and a moderate, MTX-	
	experienced, RA population	
Table 237	Deterministic results having used the relationship between HAQ	434
	and pain derived from ERAS – Linear cDMARD HAQ	
	progression and a moderate, MTX-experienced, RA population	
Table 238	Probabilistic base case results using ACR data mapped to	435

	EULAR data – Linear cDMARD HAQ progression and a	
	moderate, MTX-experienced, RA population	
Table 239	Deterministic base case results using EULAR data directly –	436
	ERAS cDMARD HAQ progression and a severe, MTX-	
	experienced, RA population treated with monotherapy	
Table 240	Deterministic results having included RCTs with a small	436
	proportion of previous bDMARD use (with adequate prior MTX	
	exposure) using EULAR data directly – ERAS cDMARD HAQ	
	progression and a severe, MTX-experienced, RA population	
	treated with monotherapy	
Table 241	Deterministic results having included RCTs with a small	436
	proportion of previous bDMARD use (irrespective of prior MTX	
	exposure) using EULAR data directly – ERAS cDMARD HAQ	
	progression and a severe, MTX-experienced, RA population	
	treated with monotherapy	
Table 242	Deterministic results having used the mapping of HAQ to utility	437
	from Malottki et al rather than Hernandez et al using EULAR	
	data directly – ERAS cDMARD HAQ progression and a severe,	
	MTX-experienced, RA population treated with monotherapy	
Table 243	Deterministic results having used discount rates of 6% per	437
	annum for costs and 1.5% per annum for QALYs and using	
	EULAR data directly – ERAS cDMARD HAQ progression and	
	a severe, MTX-experienced, RA population treated with	
	monotherapy	
Table 244	Deterministic results assuming 100-fold increased impact of	437
	adverse events and using EULAR data directly – ERAS	
	cDMARD HAQ progression and a severe, MTX-experienced,	
	RA population treated with monotherapy	
Table 245	Deterministic results having used the relationship between HAQ	438
	and pain derived from ERAS – ERAS cDMARD HAQ	
	progression and a severe, MTX-experienced, RA population	
	treated with monotherapy	
Table 246	Probabilistic base case results using EULAR data directly –	438

	ERAS cDMARD HAQ progression and a severe, MTX-	
	experienced, RA population treated with monotherapy	
Table 247	Deterministic base case results using EULAR data directly –	439
	LINEAR cDMARD HAQ progression and a severe, MTX-	
	experienced, RA population treated with monotherapy	
Table 248	Deterministic results having included RCTs with a small	439
	proportion of previous bDMARD use (with adequate prior MTX	
	exposure) using EULAR data directly – LINEAR cDMARD	
	HAQ progression and a severe, MTX-experienced, RA	
	population treated with monotherapy	
Table 249	Deterministic results having used the mapping of HAQ to utility	439
	from Malottki et al rather than Hernandez et al using EULAR	
	data directly – LINEAR cDMARD HAQ progression and a	
	severe, MTX-experienced, RA population treated with	
	monotherapy	
Table 250	Deterministic results having used discount rates of 6% per	440
	annum for costs and 1.5% per annum for QALYs and using	
	EULAR data directly – LINEAR cDMARD HAQ progression	
	and a severe, MTX-experienced, RA population treated with	
	monotherapy	
Table 251	Deterministic results assuming 100-fold increased impact of	440
	adverse events and using EULAR data directly – LINEAR	
	cDMARD HAQ progression and a severe, MTX-experienced,	
	RA population treated with monotherapy	
Table 252	Deterministic results having used the relationship between HAQ	440
	and pain derived from LINEAR – LINEAR cDMARD HAQ	
	progression and a severe, MTX-experienced, RA population	
	treated with monotherapy	
Table 253	Probabilistic base case results using EULAR data directly –	441
	LINEAR cDMARD HAQ progression and a severe, MTX-	
	experienced, RA population treated with monotherapy	
Table 254	Deterministic base case results mapping EULAR data from ACR	441
	data – ERAS cDMARD HAQ progression and a severe, MTX-	

	experienced, RA population treated with monotherapy	
Table 255	Deterministic results having included RCTs with a small	442
	proportion of previous bDMARD use (with adequate prior MTX	
	exposure) mapping EULAR data from ACR data – ERAS	
	cDMARD HAQ progression and a severe, MTX-experienced,	
	RA population treated with monotherapy	
Table 256	Deterministic results having included RCTs with a small	442
	proportion of previous bDMARD use (irrespective of prior MTX	
	exposure) mapping EULAR data from ACR data – ERAS	
	cDMARD HAQ progression and a severe, MTX-experienced,	
	RA population treated with monotherapy	
Table 257	Deterministic results having included RCTs with potentially low	442
	prior MTX exposure using ACR data mapped to EULAR data –	
	ERAS cDMARD HAQ progression and a severe, MTX-	
	experienced, RA population treated with monotherapy	
Table 258	Deterministic results having used the mapping of HAQ to utility	443
	from Malottki et al rather than Hernandez et al mapping EULAR	
	data from ACR data – ERAS cDMARD HAQ progression and a	
	severe, MTX-experienced, RA population treated with	
	monotherapy	
Table 259	Deterministic results having used discount rates of 6% per	443
	annum for costs and 1.5% per annum for QALYs and mapping	
	EULAR data from ACR data – ERAS cDMARD HAQ	
	progression and a severe, MTX-experienced, RA population	
	treated with monotherapy	
Table 260	Deterministic results assuming 100-fold increased impact of	443
	adverse events and mapping EULAR data from ACR data –	
	ERAS cDMARD HAQ progression and a severe, MTX-	
	experienced, RA population treated with monotherapy	
Table 261	Deterministic results having used the relationship between HAQ	444
	and pain derived from ERAS – ERAS cDMARD HAQ	
	progression and a severe, MTX-experienced, RA population	

treated with monotherapy

Table 262	Probabilistic base case results mapping EULAR data from ACR	444
	data – ERAS cDMARD HAQ progression and a severe, MTX-	
	experienced, RA population treated with monotherapy	
Table 263	Deterministic base case results mapping EULAR data from ACR	445
	data – Linear cDMARD HAQ progression and a severe, MTX-	
	experienced, RA population treated with monotherapy	
Table 264	Deterministic results having included RCTs with a small	445
	proportion of previous bDMARD use (with adequate prior MTX	
	exposure) mapping EULAR data from ACR data – Linear	
	cDMARD HAQ progression and a severe, MTX-experienced,	
	RA population treated with monotherapy	
Table 265	Deterministic results having included RCTs with a small	445
	proportion of previous bDMARD use (irrespective of prior MTX	
	exposure) mapping EULAR data from ACR data – Linear	
	cDMARD HAQ progression and a severe, MTX-experienced,	
	RA population treated with monotherapy	
Table 266	Deterministic results having included RCTs with potentially low	446
	prior MTX exposure using ACR data mapped to EULAR data –	
	Linear cDMARD HAQ progression and a severe, MTX-	
	experienced, RA population treated with monotherapy	
Table 267	Deterministic results having used the mapping of HAQ to utility	446
	from Malottki et al rather than Hernandez et al mapping EULAR	
	data from ACR data – Linear cDMARD HAQ progression and a	
	severe, MTX-experienced, RA population treated with	
	monotherapy	
Table 268	Deterministic results having used discount rates of 6% per	446
	annum for costs and 1.5% per annum for QALYs and mapping	
	EULAR data from ACR data – Linear cDMARD HAQ	
	progression and a severe, MTX-experienced, RA population	
	treated with monotherapy	
Table 269	Deterministic results assuming 100-fold increased impact of	447
	adverse events and mapping EULAR data from ACR data –	

	Linear cDMARD HAQ progression and a severe, MTX-	
	experienced, RA population treated with monotherapy	
Table 270	Deterministic results having used the relationship between HAQ	447
	and pain derived from ERAS – Linear cDMARD HAQ	
	progression and a severe, MTX-experienced, RA population	
	treated with monotherapy	
Table 271	Probabilistic base case results mapping EULAR data from ACR	447
	data – Linear cDMARD HAQ progression and a severe, MTX-	
	experienced, RA population treated with monotherapy	
Table 272	Deterministic base case results using EULAR data directly –	448
	ERAS cDMARD HAQ progression and a moderate, MTX-	
	experienced, RA population treated with monotherapy	
Table 273	Deterministic results having included RCTs with a small	449
	proportion of previous bDMARD use (with adequate prior MTX	
	exposure) using EULAR data directly – ERAS cDMARD HAQ	
	progression and a moderate, MTX-experienced, RA population	
	treated with monotherapy	
Table 274	Deterministic results having used the mapping of HAQ to utility	449
	from Malottki et al rather than Hernandez et al using EULAR	
	data directly – ERAS cDMARD HAQ progression and a	
	moderate, MTX-experienced, RA population treated with	
	monotherapy	
Table 275	Deterministic results having used discount rates of 6% per	449
	annum for costs and 1.5% per annum for QALYs and using	
	EULAR data directly – ERAS cDMARD HAQ progression and a	
	moderate, MTX-experienced, RA population treated with	
	monotherapy	
Table 276	Deterministic results assuming 100-fold increased impact of	450
	adverse events and using EULAR data directly – ERAS	
	cDMARD HAQ progression and a moderate, MTX-experienced,	
	RA population treated with monotherapy	
Table 277	Deterministic results having used the relationship between HAQ	450
	and pain derived from ERAS – ERAS cDMARD HAQ	

progression and a moderate, MTX-experienced, RA population treated with monotherapy

- Table 278Probabilistic base case results using EULAR data directly –450ERAS cDMARD HAQ progression and a moderate, MTX-
experienced, RA population treated with monotherapy
- Table 279Deterministic base case results using EULAR data directly –451LINEAR cDMARD HAQ progression and a severe, MTX-
experienced, RA population treated with monotherapy
- Table 280Deterministic results having included RCTs with a small451proportion of previous bDMARD use (with adequate prior MTXexposure) using EULAR data directly LINEAR cDMARDHAQ progression and a severe, MTX-experienced, RApopulation treated with monotherapy
- Table 281Deterministic results having used the mapping of HAQ to utility452from Malottki et al rather than Hernandez et al using EULARdata directly LINEAR cDMARD HAQ progression and asevere, MTX-experienced, RA population treated withmonotherapy
- Table 282Deterministic results having used discount rates of 6% per452annum for costs and 1.5% per annum for QALYs and usingEULAR data directly LINEAR cDMARD HAQ progressionand a severe, MTX-experienced, RA population treated withmonotherapy
- Table 283Deterministic results assuming 100-fold increased impact of
adverse events and using EULAR data directly LINEAR
cDMARD HAQ progression and a severe, MTX-experienced,
RA population treated with monotherapy452
- Table 284Deterministic results having used the relationship between HAQ453and pain derived from LINEAR LINEAR cDMARD HAQprogression and a severe, MTX-experienced, RA populationtreated with monotherapy
- Table 285Probabilistic base case results using EULAR data directly –483LINEAR cDMARD HAQ progression and a severe, MTX-

experienced, RA population treated with monotherapy

- Table 286Deterministic base case results mapping EULAR data from ACR454data ERAS cDMARD HAQ progression and a moderate,MTX-experienced, RA population treated with monotherapy

- Table 289Deterministic results having included RCTs with potentially low455prior MTX exposure using ACR data mapped to EULAR data –ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy
- Table 290Deterministic results having used the mapping of HAQ to utility455from Malottki et al rather than Hernandez et al mapping EULARdata from ACR data ERAS cDMARD HAQ progression and amoderate, MTX-experienced, RA population treated withmonotherapy
- Table 291 Deterministic results having used discount rates of 6% per 455 annum for costs and 1.5% per annum for QALYs and mapping EULAR data from ACR data – ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy
- Table 292Deterministic results assuming 100-fold increased impact of
adverse events and mapping EULAR data from ACR data –
ERAS cDMARD HAQ progression and a moderate, MTX-
experienced, RA population treated with monotherapy456

Table 293	Deterministic results having used the relationship between HAQ	456
	and pain derived from ERAS – ERAS cDMARD HAQ	
	progression and a moderate, MTX-experienced, RA population	
	treated with monotherapy	
Table 294	Probabilistic base case results mapping EULAR data from ACR	456
	data – ERAS cDMARD HAQ progression and a moderate,	
	MTX-experienced, RA population treated with monotherapy	
Table 295	Deterministic base case results mapping EULAR data from ACR	457
	data – Linear cDMARD HAQ progression and a moderate,	
	MTX-experienced, RA population treated with monotherapy	
Table 296	Deterministic results having included RCTs with a small	458
	proportion of previous bDMARD use (with adequate prior MTX	
	exposure) mapping EULAR data from ACR data – Linear	
	cDMARD HAQ progression and a moderate, MTX-experienced,	
	RA population treated with monotherapy	
Table 297	Deterministic results having included RCTs with a small	458
	proportion of previous bDMARD use (irrespective of prior MTX	
	exposure) mapping EULAR data from ACR data – Linear	
	cDMARD HAQ progression and a moderate, MTX-experienced,	
	RA population treated with monotherapy	
Table 298	Deterministic results having included RCTs with potentially low	458
	prior MTX exposure using ACR data mapped to EULAR data –	
	ERAS cDMARD HAQ progression and a moderate, MTX-	
	experienced, RA population treated with monotherapy	
Table 299	Deterministic results having used the mapping of HAQ to utility	459
	from Malottki et al rather than Hernandez et al mapping EULAR	
	data from ACR data – Linear cDMARD HAQ progression and a	
	moderate, MTX-experienced, RA population treated with	
	monotherapy	
Table 300	Deterministic results having used discount rates of 6% per	459
	annum for costs and 1.5% per annum for QALYs and mapping	
	EULAR data from ACR data – Linear cDMARD HAQ	
	progression and a moderate, MTX-experienced, RA population	

treated with monotherapy

Table 301	Deterministic results assuming 100-fold increased impact of	459
	adverse events and mapping EULAR data from ACR data –	
	Linear cDMARD HAQ progression and a moderate, MTX-	
	experienced, RA population treated with monotherapy	
Table 302	Deterministic results having used the relationship between HAQ	460
	and pain derived from ERAS – Linear cDMARD HAQ	
	progression and a moderate, MTX-experienced, RA population	
	treated with monotherapy	
Table 303	Probabilistic base case results mapping EULAR data from ACR	460
	data – Linear cDMARD HAQ progression and a moderate,	
	MTX-experienced, RA population treated with monotherapy	
Table 304	Deterministic base case results mapping EULAR data from ACR	461
	data – ERAS cDMARD HAQ progression and a severe, MTX-	
	naive, RA population	
Table 305	Deterministic base case results mapping EULAR data from ACR	461
	data – ERAS cDMARD HAQ progression including RCTs with	
	some patients with prior cDMARD experience and a severe,	
	MTX-naive, RA population	
Table 306	Deterministic results having used the mapping of HAQ to utility	462
	from Malottki et al rather than Hernandez et al mapping EULAR	
	data from ACR data – ERAS cDMARD HAQ progression and a	
	severe, MTX-naive, RA population treated	
Table 307	Deterministic results having used discount rates of 6% per	462
	annum for costs and 1.5% per annum for QALYs and mapping	
	EULAR data from ACR data – ERAS cDMARD HAQ	
	progression and a severe, MTX-naive, RA population treated	
Table 308	Deterministic results assuming 100-fold increased impact of	462
	adverse events and mapping EULAR data from ACR data –	
	ERAS cDMARD HAQ progression and a severe, MTX-naive,	
	RA	
Table 309	Deterministic results having used the relationship between HAQ	463
	and pain derived from ERAS – ERAS cDMARD HAQ	

	progression and a severe, MTX-naive, RA population	
Table 310	Probabilistic base case results mapping EULAR data from ACR	463
	data – ERAS cDMARD HAQ progression and a severe, MTX-	
	naive, RA population	
Table 311	Deterministic base case results mapping EULAR data from ACR	464
	data – Linear cDMARD HAQ progression and a severe, MTX-	
	naive, RA population	
Table 312	Deterministic base case results mapping EULAR data from ACR	464
	data – ERAS cDMARD HAQ progression including RCTs with	
	some patients with prior cDMARD experience and a severe,	
	MTX-naive, RA population treated with monotherapy	
Table 313	Deterministic results having used the mapping of HAQ to utility	465
	from Malottki et al rather than Hernandez et al mapping EULAR	
	data from ACR data – Linear cDMARD HAQ progression and a	
	severe, MTX-naive, RA population	
Table 314	Deterministic results having used discount rates of 6% per	465
	annum for costs and 1.5% per annum for QALYs and mapping	
	EULAR data from ACR data – Linear cDMARD HAQ	
	progression and a severe, MTX-naive, RA population	
Table 315	Deterministic results assuming 100-fold increased impact of	465
	adverse events and mapping EULAR data from ACR data –	
	Linear cDMARD HAQ progression and a severe, MTX-naive,	
	RA population	
Table 316	Deterministic results having used the relationship between HAQ	466
	and pain derived from ERAS – Linear cDMARD HAQ	
	progression and a severe, MTX-naive, RA population	
Table 317	Probabilistic base case results mapping EULAR data from ACR	466
	data – Linear cDMARD HAQ progression and a severe, MTX-	
	naive, RA population	
Table 318	Deterministic base case results mapping EULAR data from ACR	467
	data – ERAS cDMARD HAQ progression and a severe, MTX-	
	naive, RA population treated with monotherapy	
Table 319	Deterministic base case results mapping EULAR data from ACR	467

	data – ERAS cDMARD HAQ progression and a severe, MTX-	
	naive, RA population treated with monotherapy including RCTs	
	with a small percentage of prior cDMARD experience	
Table 320	Deterministic results having used the mapping of HAQ to utility	467
	from Malottki et al rather than Hernandez et al mapping EULAR	
	data from ACR data – ERAS cDMARD HAQ progression and a	
	severe, MTX-naive, RA population treated with monotherapy	
Table 321	Deterministic results having used discount rates of 6% per	468
	annum for costs and 1.5% per annum for QALYs and mapping	
	EULAR data from ACR data – ERAS cDMARD HAQ	
	progression and a severe, MTX-naive, RA population treated	
	with monotherapy	
Table 322	Deterministic results assuming 100-fold increased impact of	468
	adverse events and mapping EULAR data from ACR data –	
	Linear cDMARD HAQ progression and a severe, MTX-naive,	
	RA population treated with monotherapy	
Table 323	Deterministic results having used the relationship between HAQ	468
	and pain derived from ERAS – ERAS cDMARD HAQ	
	progression and a severe, MTX-naive, RA population treated	
	with monotherapy	
Table 324	Probabilistic base case results mapping EULAR data from ACR	469
	data – ERAS cDMARD HAQ progression and a severe, MTX-	
	naive, RA population treated with monotherapy	
Table 325	Deterministic base case results mapping EULAR data from ACR	469
	data – Linear cDMARD HAQ progression and a severe, MTX-	
	naive, RA population treated with monotherapy	
Table 326	Deterministic base case results mapping EULAR data from ACR	470
	data – Linear cDMARD HAQ progression and a severe, MTX-	
	naive, RA population treated with monotherapy including RCTs	
	with a small percentage of prior cDMARD experience	
Table 327	Deterministic results having used the mapping of HAQ to utility	470
	from Malottki et al rather than Hernandez et al mapping EULAR	
	data from ACR data – Linear cDMARD HAQ progression and a	

	severe, MTX-naive, RA population treated with monotherapy	
Table 328	Deterministic results having used discount rates of 6% per	470
	annum for costs and 1.5% per annum for QALYs and mapping	
	EULAR data from ACR data – Linear cDMARD HAQ	
	progression and a severe, MTX-naive, RA population treated	
	with monotherapy	
Table 329	Deterministic results assuming 100-fold increased impact of	471
	adverse events and mapping EULAR data from ACR data –	
	Linear cDMARD HAQ progression and a severe, MTX-naive,	
	RA population treated with monotherapy	
Table 330	Deterministic results having used the relationship between HAQ	471
	and pain derived from ERAS – Linear cDMARD HAQ	
	progression and a severe, MTX-naive, RA population treated	
	with monotherapy	
Table 331	Probabilistic base case results mapping EULAR data from ACR	471
	data – Linear cDMARD HAQ progression and a severe, MTX-	
	naive, RA population treated with monotherapy	
Table 332	Table of excluded studies with rationale for exclusion	510
Table 333	Quality assessment: summary of findings	519
Table 334	Trial characteristics: Population 1 head to head RCT	523
Table 335	Trial characteristics: Populations 2/3 head to head RCTs	545
Table 336	Trial characteristics: Population 2/3 biologics vs. DMARD(s) or	550
	PBO	
Table 337	Trial characteristics: RCTs (ineligible for systematic review)	590
	used as additional evidence in NMA Sensitivity analyses	
Table 338	Population characteristics additional information Population 1	599
	Head to head trial	
Table 339	Population characteristics additional information Population 1	600
	biologic vs DMARD(s) or PBO	
Table 340	Population characteristics additional information Population 2	604
	Head to head trials	
Table 341	Population characteristics: additional information Population 2	607
	biologic vs. DMARD(s) or PBO	

Table 342	Population characteristics: Trials providing additional evidence	621
	for the NMA	
Table 343	Population characteristics additional information NMA	624
	sensitivity analyses trials	
Table 344	DAS Population 1 Head to head trial	630
Table 345	DAS Population 1 biologics vs. DMARD(s) or PBO	631
Table 346	DAS Population 2/3 Head to head	636
Table 347	DAS Population 2/3 biologic vs. DMARD(s) or PBO	637
Table 348	HAQ-DI Population 1 trials	645
Table 349	HAQ-DI Population 2/3 Head-to-head trials	649
Table 350	HAQ-DI Population 2/3 vs. DMARD(s) or PBO	650
Table 351	Joint counts and assessment of inflammation markers: Population	656
	1 RCTs of biologic vs. DMARD(s) or PBO	
Table 352	Joint counts and assessment of inflammation markers: Population	661
	2/3 biologic head-to-head RCTs	
Table 353	Joint counts and assessment of inflammation markers: Population	663
	2/3 RCTs of biologic vs. DMARD(s) or PBO	
Table 354	Global assessments of disease activity: Population 1 RCTs of	673
	biologic vs. DMARD(s) or PBO	
Table 355	Global assessments of disease activity: Population 2/3 biologic	675
	head-to-head RCTs	
Table 356	Global assessments of disease activity: Population 2/3 RCTs of	676
	biologic vs. DMARD(s) or PBO	
Table 357	Radiographic score data: Population 1 RCTs of biologic	681
	interventions vs. DMARD(s) or PBO	
Table 358	Assessments of synovitis, erosion and osteitis: Population 1	684
	RCTs of biologic interventions vs. DMARD(s) or PBO	
Table 359	Radiographic score data: Population 2/3 head to head biologic	686
	RCTs	
Table 360	Radiographic score data: Population 2/3 RCTs of biologic	687
	interventions vs. DMARD(s) or PBO	
Table 361	Assessments of synovitis, erosion and osteitis: Population 2/3	691
	RCTs of biologic interventions vs. DMARD(s) or PBO	

Table 362	Pain VAS Population 1 biologic vs. DMARD(s) or PBO	693
Table 363	Pain VAS Population 2/3 biologic Head to head	695
Table 364	Pain VAS Population 2/3 biologic vs. DMARD(s) or PBO	696
Table 365	0-100 VAS of fatigue: Population 1 RCTs of biologic vs.	700
	DMARD(s) or PBO	
Table 366	FACIT-F score (0-52, greater scores indicate less fatigue):	700
	Population 1 RCTs of biologic vs. DMARD(s) or PBO	
Table 367	0-100 VAS of fatigue: Population 2/3 biologic head-to-head	701
	RCTs	
Table 368	FACIT-F score (0-52, greater scores indicate less fatigue):	701
	Population 2/3 biologic head-to-head RCTs	
Table 369	0-100 VAS of fatigue: Population 2/3 RCTs of biologic vs.	702
	DMARD(s) or PBO	
Table 370	FACIT-F score (0-52, greater scores indicate less fatigue):	702
	Population 2/3 RCTs of biologic vs. DMARD(s) or PBO	
Table 371	0-100 SF-36 components scores: Population 1 RCTs of biologic	703
	vs. DMARD(s) or PBO	
Table 372	0-100 SF-36 domains scores – baseline and follow-up:	706
	Population 1 RCTs of biologic vs. DMARD(s) or PBO	
Table 373	0-100 SF-36 domains scores – mean change from baseline:	707
	Population 1 RCTs of biologic vs. DMARD(s) or PBO	
Table 374	0-100 SF-12 components scores: Population 1 RCTs of biologic	708
	vs. DMARD(s) or PBO	
Table 375	0-100 SF6D & RAQoL: Population 1 RCTs of biologic vs.	709
	DMARD(s) or PBO	
Table 376	0-100 EQ5D & EQ5D-5L: Population 1 RCTs of biologic vs.	710
	DMARD(s) or PBO	
Table 377	0-100 SF-36 components scores: Population 2/3 biologic head-	711
	to-head RCTs	
Table 378	0-100 SF-36 domains scores – mean change from baseline:	712
	Population 2/3 biologic head-to-head RCTs	
Table 379	0-100 EQ-5D utility score: Population 2/3 biologic head-to-head	712
	RCTs	

Table 380	0-100 SF-36 components scores: Population 2/3 RCTs of	713
	biologic vs. DMARD(s) or PBO	
Table 381	0-100 SF-36 domains scores – baseline and follow-up:	715
	Population 2/3 RCTs of biologic vs. DMARD(s) or PBO	
Table 382	: 0-100 SF-36 domains scores – mean change from baseline:	716
	Population 2/3 RCTs of biologic vs. DMARD(s) or PBO	
Table 383	0-100 EQ5D: Population 2/3 RCTs of biologic vs. DMARD(s) or	717
	PBO	
Table 384	0-100 EQ5D domains scores – mean change form baseline:	718
	Population 2/3 RCTs of biologic vs. DMARD(s) or PBO	
Table 385	0-100 EuroQol VAS scores: Population 2/3 RCTs of biologic vs.	718
	DMARD(s) or PBO	
Table 386	Adverse events and discontinuations due to adverse events:	719
	Population 1 RCTs of biologic interventions vs. DMARD(s) or	
	PBO	
Table 387	Adverse events and discontinuations due to adverse events:	725
	Population 2/3 head to head biologic RCTs	
Table 388	Adverse events and discontinuations due to adverse events:	728
	Population 2/3 RCTs of biologic interventions vs. DMARD(s)	
	or PBO	
Table 389	Specific categories of adverse events: Population 1 RCTs of	741
	biologic interventions vs. DMARD(s) or PBO``	
Table 390	Specific categories of adverse events: Population 2/3 head to	745
	head biologic RCTs	
Table 391	Specific categories of adverse events: Population 2/3 RCTs of	746
	biologic interventions vs. DMARD(s) or PBO	
Table 392	Number of deaths: Population 1 RCTs biologic vs. cDMARD(s)	760
	or PBO	
Table 393	Number of deaths: Population 2/3 head to head biologic RCTs	763
Table 394	Number of deaths: Population 2/3 RCTs biologic vs.	764
	cDMARD(s) or PBO	
LIST OF FIGURES

Figure 1	Summary of the position of bDMARDs within NICE TA	14
	recommendations for sequence of treatments for patients with	
	RA and a DAS28 score > 5.1	
Figure 2	Flow diagram of study inclusion (adapted from PRISMA)	37
Figure 3	Risk of bias graph	45
Figure 4	ACR (Population 1: Main Trials) – Network of evidence	94
Figure 5 ACR (Population 1: Main trials) – Effects of interventions		97
	relative to cDMARDs on the probit scale	
Figure 6	ACR (Population 1: Main Trials) – Probability of treatment	98
	rankings in terms of efficacy (most efficacious = 1)	
Figure 7	ACR (Population 1: Main Trials plus MTX Experienced) –	101
	Network of evidence	
Figure 8	ACR (Population 1: Main trials plus MTX Experienced) -	103
	Effects of interventions relative to cDMARDs on the probit	
	scale	
Figure 9	ACR (Population1: Main Trials plus MTX Experienced) -	104
	Probability of treatment rankings in terms of efficacy (most	
	efficacious = 1)	
Figure 10	EULAR (Population 2/3: Main Trials) – Network of evidence	107
Figure 11	EULAR (Population 2/3: Main Trials) – Effects of interventions	110
	relative to cDMARDs on the probit scale	
Figure 12	EULAR (Population 2/3: Main Trials) – Probability of treatment	115
	rankings in terms of efficacy (most efficacious = 1)	
Figure 13	EULAR (Population 2/3: Main Trials plus Prior Biologics) -	119
	Network of evidence	
Figure 14	EULAR (Population 2/3: Main Trials plus Prior Biologics) -	122
	Effects of interventions relative to cDMARDs on the probit	
	scale	
Figure 15	EULAR (Population 2/3: Main Trials plus Prior Biologics) -	127
	Probability of treatment rankings in terms of efficacy (most	
	efficacious = 1)	
Figure 16	ACR (Population 2/3: Main Trials) – Network of evidence	131

Figure 17	ACR (Population 2/3: Main Trials) – Effects of interventions	134
	relative to cDMARDs on the probit scale	
Figure 18	ACR (Population 2/3: Main Trials) – Probability of treatment	139
	rankings in terms of efficacy (most efficacious = 1)	
Figure 19	ACR (Population 2/3: Main Trials plus Prior Biologics with	143
	AMBITION) – Network of evidence	
Figure 20	ACR (Population 2/3: Main Trials plus Prior Biologics with	146
	AMBITION) – Effects of interventions relative to cDMARDs	
	on the probit scale	
Figure 21	ACR (Population 2/3: Main Trials plus Prior Biologics with	151
	AMBITION) – Probability of treatment rankings in terms of	
	efficacy (most efficacious = 1)	
Figure 22	ACR (Population 2/3: Main Trials plus Prior Biologics without	155
	AMBITION) – Network of evidence	
Figure 23	ACR (Population 2/3: Main Trials plus Prior Biologics without	158
	AMBITION) – Effects of interventions relative to cDMARDs	
	on the probit scale	
Figure 24	ACR (Population 2/3: Main Trials plus Prior Biologics without	163
	AMBITION) – Probability of treatment rankings in terms of	
	efficacy (most efficacious = 1)	
Figure 25	ACR (Population 2/3: Main Trials plus RCTs that have	168
	potentially low prior MTX exposure) – Network of evidence	
Figure 26	ACR (Population 2/3: Main Trials plus RCTs that have	171
	potentially low prior MTX exposure) – Effects of interventions	
	relative to cDMARDs on the probit scale	
Figure 27	ACR (Population 2/3: Main Trials plus RCTs that have	176
	potentially low prior MTX exposure) - Probability of treatment	
	rankings in terms of efficacy (most efficacious = 1)	
Figure 28	QUOROM flow diagram	185
Figure 29	The number of pages in each submission (including appendices)	197
Figure 30	Strategies modelled by Roche for analysis 8	207
Figure 31	The AbbVie Model Structure	210
Figure 32	The BMS Model Structure	211

Figure 33	The MSD Model Structure	212
Figure 34	The Pfizer Model Structure	213
Figure 35	The individual simulation process reported by Roche	214
Figure 36	Markov structure – severe disease activity population; model	216
	structure based on ACR response presented by UCB	
Figure 37	Markov structure – moderate disease activity population; model	217
	structure based on EULAR response presented by UCB	
Figure 38	The evidence network in AbbVie's base case	253
Figure 39	Posterior simulated ACR response for combination therapy in a	254
	MTX-experienced population presented by AbbVie	
Figure 40	Posterior simulated ACR response for monotherapy in a MTX-	254
	experienced population presented by AbbVie	
Figure 41	Posterior simulated ACR response for combination therapy in a	255
	MTX-naive population presented by AbbVie	
Figure 42	Posterior simulated ACR response for monotherapy in a MTX-	255
	naive population presented by AbbVie	
Figure 43	The network of evidence for HAQ scores as supplied by BMS	256
Figure 44	The mean change in HAQ scores relative to placebo as	257
	estimated by BMS	
Figure 45	The mean absolute change in HAQ scores as estimated by BMS	257
Figure 46	The probability of being the most efficacious treatment (on	258
	HAQ score) as estimated by BMS	
Figure 47	The relationship assumed by BMS between HAQ and DAS	258
	scores	
Figure 48	The mean change in DAS scores relative to placebo as estimated	259
	by BMS	
Figure 49	The mean absolute change in DAS scores as estimated by BMS	259
Figure 50	The probability of being the most efficacious treatment (on DAS	260
	score) as estimated by BMS	
Figure 51	The network for DMARD-experienced patients as supplied by	261
	MSD	
Figure 52	ACR20 - DMARD Experienced Patients at 24 Weeks estimated	261
	by MSD in the golimumab submission	

Figure 53	ACR50 - DMARD Experienced Patients at 24 Weeks estimated	262
	by MSD in the golimumab submission	
Figure 54	ACR70 - DMARD Experienced Patients at 24 Weeks estimated	262
	by MSD in the golimumab submission	
Figure 55	ACR20 - DMARD Experienced Patients at 24 Weeks estimated	262
	by MSD in the infliximab submission	
Figure 56	ACR50 - DMARD Experienced Patients at 24 Weeks estimated	263
	by MSD in the infliximab submission	
Figure 57	ACR70 - DMARD Experienced Patients at 24 Weeks estimated	263
	by MSD in the infliximab submission	
Figure 58	Comparison of MTX Usage (average mg/week) in East Asian	264
	versus Non-East Asian Studies supplied by MSD	
Figure 59	The network diagram for combination therapy, ACR responses	266
	in severe DMARD experienced patients as produced by Pfizer	
Figure 60	The network diagram for combination therapy, HAQ changes in	267
	severe DMARD experienced patients as produced by Pfizer	
Figure 61	The network diagram for monotherapy, ACR responses in	268
	severe DMARD experienced patients as produced by Pfizer	
Figure 62	The network of studies included in the meta-analysis undertaken	271
	by Roche	
Figure 63	Results from the meta-analysis conducted by Roche	272
Figure 64	UCB's NMA results: severe disease activity population,	273
	bDMARDs in combination with MTX: ACR 20 responses at 12	
	and 24 weeks	
Figure 65	UCB's NMA results: severe disease activity population,	273
	bDMARDs in combination with MTX: ACR 50 responses at 12	
	and 24 weeks	
Figure 66	UCB's NMA results: severe disease activity population,	273
	bDMARDs in combination with MTX: ACR 70 responses at 12	
	and 24 weeks	
Figure 67	UCB's NMA results: severe disease activity population,	274
	bDMARDs in combination with MTX: DAS28 (ESR) remission	
	at 12 and 24 weeks	

Figure 68	UCB's NMA results: severe disease activity population,	274
	bDMARD monotherapy: ACR 20 responses at 12 and 24 weeks	
Figure 69	UCB's NMA results: severe disease activity population,	274
	bDMARD monotherapy: ACR 50 responses at 12 and 24 weeks	
Figure 70	UCB's NMA results: severe disease activity population,	275
	bDMARD monotherapy: ACR 70 responses at 12 and 24 weeks	
Figure 71	UCB's NMA results: severe disease activity population,	275
	bDMARD monotherapy: DAS28 (ESR) remission at 12 and 24	
	weeks	
Figure 72	Kaplan–Meier estimates of the observed persistence with all	288
	anti-TNFs and with the combination therapy of anti-TNFs and	
	MTX in BSRBR	
Figure 73	The estimated cumulative hazard of discontinuation modelled	294
	from the Etanercept BSRBR cohort	
Figure 74	Cost Effectiveness Acceptability Curves for Analysis 5 provided	332
	by AbbVie	
Figure 75	Treatment cessation assumptions provided by Pfizer (based on	296
	50,000 simulations)	
Figure 76	Conditional inference tree of 1 st line treatment cessation,	297
	showing patterns of treatment cessation within the economic	
	model, (left to right) shortest to longest times presented by	
	Pfizer	
Figure 77	Treatment cessation in second and subsequent lines estimated by	298
	Pfizer	
Figure 78	The Weibull and exponential model fitted by Roche to data from	300
	Soliman et al. 2011	
Figure 79	A summation of the hospital costs assumed associated with each	302
	HAQ band	
Figure 80	The relationship between HAQ and utility assumed in the	306
	manufacturers' models	
Figure 81	Odds Ratio of discontinuations due to adverse events in	314
	cDMARD experienced patients assumed by MSD	
Figure 82	An illustrative mortality survival curve presented by AbbVie for	320

males

Figure 83	An illustrative mortality survival curve presented by AbbVie for	320
	females	
Figure 84	The general mortality rate for females assumed by UCB, with an	323
	exponential fit to these data points	
Figure 85	The general mortality rate for males assumed by UCB, with an	323
	exponential fit to these data points	
Figure 86	Cost Effectiveness Acceptability Curves for Analysis 1 provided	328
	by AbbVie	
Figure 87	Cost Effectiveness Acceptability Curves for Analysis 2 provided	329
	by AbbVie	
Figure 88	Cost Effectiveness Acceptability Curves for Analysis 3 provided	330
	by AbbVie	
Figure 89	Cost Effectiveness Acceptability Curves for Analysis 4 provided	330
	by AbbVie	
Figure 90	Cost Effectiveness Acceptability Curves for Analysis 6 provided	333
	by AbbVie	
Figure 91	Cost Effectiveness Acceptability Curves for Analysis 7 provided	335
	by BMS	
Figure 92	Cost-Effectiveness Acceptability Curve for Analysis 1 within	339
	the MSD golimumab submission	
Figure 93	Cost-Effectiveness Acceptability Curve for Analysis 1 within	339
	the MSD infliximab submission	
Figure 94	Cost-Effectiveness Acceptability Curve for Analysis 1 within	341
	the Pfizer submission	
Figure 95	Cost-Effectiveness Acceptability Curve for Analysis 2 within	342
	the Pfizer submission	
Figure 96	Cost-Effectiveness Acceptability Curve for Analysis 3 within	343
	the Pfizer submission	
Figure 97	Cost-Effectiveness Acceptability Curve for Analysis 4 within	344
	the Pfizer submission	
Figure 98	The Cost-Effectiveness Acceptability Curve produced by Roche	346
	for Analysis 8	

Figure 99	Base case cost-effectiveness acceptability curve for Analysis 1	348
	produced by UCB	
Figure 100	Base case cost-effectiveness acceptability curve for Analysis 4	350
	produced by UCB	
Figure 101	Conceptual simplified schematic of the modelling process	359
Figure 102	Estimated mean EULAR responses (main analyses)	365
Figure 103	EULAR mean EULAR responses (main analyses plus RCTs	365
	with a small level of bDMARD use)	
Figure 104	Estimated mean EULAR response mapped from ACR trials	367
	(main analyses)	
Figure 105	Estimated mean EULAR response mapped from ACR trials	367
	(main analyses plus RCTs with a small level of bDMARD use)	
Figure 106	Estimated mean EULAR response mapped from ACR trials	368
	(main analyses plus RCTs with a small level of bDMARD use	
	and also allowing a trial with low MTX-background use)	
Figure 107	Estimated mean EULAR response mapped from ACR trials	368
	(main analyses plus RCTs with low MTX-background use)	
Figure 108	Estimated mean EULAR response mapped from ACR trials in	369
	cDMARD-naïve patients	
Figure 109	Estimated mean EULAR response mapped from ACR trials in	369
	cDMARD-naïve patients including RCTs with a proportion of	
	cDMARD experienced patients	
Figure 110	Mean HAQ by EULAR response category for those receiving	373
	bDMARDs	
Figure 111	The classes of patients on cDMARDs used in the Assessment	379
	Group model	
Figure 112	Plots of the estimated data from the statistical models compared	384
	with the observed data	
Figure 113	The assumed relationship between annual hospitalisation costs	386
	and HAQ score in the AG model	
Figure 114	The relationship between HAQ score and pain value	387
Figure 115	A comparison of published relationships between utility and	390

	HAQ	
Figure 116	Evaluating the number of patients required in analyses involving	393
	patients with severe RA who could receive MTX	
Figure 117	Evaluating the number of patients required in analyses involving	394
	patients with moderate RA who could receive MTX	
Figure 118	Discounted cost per QALY of a bDMARD strategy compared	395
	with a non-bDMARD strategy in a cDMARD naïve population.	
Figure 119	The CEAC when using EULAR data directly – ERAS	404
	cDMARD HAQ progression and a severe, MTX-experienced,	
	RA population	
Figure 120	The CEAC using EULAR data directly and assuming linear	407
	CDMARD HAQ progression	
Figure 121	The CEAC when using ACR data mapped to EULAR data –	412
	ERAS cDMARD HAQ progression and a severe, MTX-	
	experienced, RA population	
Figure 122	The CEAC using ACR data mapped to EULAR data and	417
	assuming linear CDMARD HAQ progression	
Figure 123	The CEAC when using EULAR data directly – ERAS	421
	cDMARD HAQ progression and a moderate, MTX-experienced,	
	RA population	
Figure 124	The CEAC using EULAR data directly and assuming linear	425
	CDMARD HAQ progression and a moderate, MTX-	
	experienced, RA population	
Figure 125	The CEAC when using ACR data mapped to EULAR data –	430
	ERAS cDMARD HAQ progression and a moderate, MTX-	
	experienced, RA population	
Figure 126	The CEAC using ACR data mapped to EULAR data and	435
	assuming linear CDMARD HAQ progression and a moderate,	
	MTX-experienced, RA population	
Figure 127	The CEAC when using EULAR data directly – ERAS	438
	cDMARD HAQ progression and a severe, MTX-experienced,	
	RA population treated with monotherapy	
Figure 128	The CEAC when using EULAR data directly – LINEAR	441

	cDMARD HAQ progression and a severe, MTX-experienced,	
	RA population treated with monotherapy	
Figure 129	The CEAC when mapping EULAR data from ACR data –	444
	ERAS cDMARD HAQ progression and a severe, MTX-	
	experienced, RA population treated with monotherapy	
Figure 130	The CEAC when mapping EULAR data from ACR data –	448
	Linear cDMARD HAQ progression and a severe, MTX-	
	experienced, RA population treated with monotherapy	
Figure 131	The CEAC when using EULAR data directly – ERAS	451
	cDMARD HAQ progression and a moderate, MTX-experienced,	
	RA population treated with monotherapy	
Figure 132	The CEAC when using EULAR data directly – LINEAR	453
	cDMARD HAQ progression and a severe, MTX-experienced,	
	RA population treated with monotherapy	
Figure 133	The CEAC when mapping EULAR data from ACR data –	457
	ERAS cDMARD HAQ progression and a moderate, MTX-	
	experienced, RA population treated with monotherapy	
Figure 134	The CEAC when mapping EULAR data from ACR data –	460
	Linear cDMARD HAQ progression and a moderate, MTX-	
	experienced, RA population treated with monotherapy	
Figure 135	The CEAC when mapping EULAR data from ACR data –	463
	ERAS cDMARD HAQ progression and a severe, MTX-naive,	
	RA population treated	
Figure 136	The CEAC when mapping EULAR data from ACR data –	466
	LINEAR cDMARD HAQ progression and a severe, MTX-	
	naive, RA population	
Figure 137	The CEAC when mapping EULAR data from ACR data –	469
	ERAS cDMARD HAQ progression and a severe, MTX-naive,	
	RA population treated with monotherapy	
Figure 138	The CEAC when mapping EULAR data from ACR data –	472
	Linear cDMARD HAQ progression and a severe, MTX-naive,	
	RA population	

1. DEFINITION OF TERMS AND LIST OF ABBREVIATIONS

Technical terms and abbreviations are used throughout this report. The meaning is usually clear from the context, but a glossary is provided for the non-specialist reader.

ABT	Abatacept
ACR	American College of Rheumatology
ADA	Adalimumab
AKR	Anakinra
ALT	Autoregressive latent trajectory
AZA	Azathioprine
bDMARD	Biologic DMARD
BL	Baseline
BSRBR	British Society for Rheumatology Biologics Register
cDMARD	Conventional DMARD
CEAC	Cost-effectiveness acceptability curve
CI	Confidence interval
CPQ	Cost per QALY gained
CRP	c-reactive protein
CrI	Credible interval
CTZ	Certolizumab pegol
CYC	Cyclosporine
DAS	Disease Activity Score
DAS28	Disease Activity Score 28 joints
DMARD	Disease-modifying anti-rheumatic drugs
ETN	Etanercept
ERAS	Early Rheumatoid Arthritis Study
ESR	Erythrocyte sedimentation rate
EULAR	European League Against Rheumatism
FAD	Final appraisal determination
GLD	Gold Injections
GOL	Golimumab
HAQ	Health Assessment Questionnaire
HAQ-DI	Health assessment questionnaire disability index
HCQ	Hydroxychloroquine
HR	Hazard ratio
i.a.	Intra-articular
i.m.	Intramuscular
i.v.	Intravenous
ICER	Incremental cost effectiveness ratio
IFX	Infliximab
Int cDMARDs	Intensive cDMARDs
JSN	Joint space narrowing
LEF	Leflunomide

Mon	monotherapy
MP	Methylprednisolone
MTX	Methotrexate
NBT	Non-biologic therapy
NDB	National Data Bank for Rheumatic Diseases
NMA	Network meta-analysis
NOAR	Norfolk Arthritis Register
NA	Not applicable
NR	Not Reported
PBO	Placebo
QALY	Quality adjusted life years
RA	Rheumatoid Arthritis
RTX	Rituximab
s.c.	Subcutaneous
SSZ	Sulfasalazine
TCZ	Tocilizumab
TNF	Tumour necrosis factor
TOF	Tofacitinib
VARA	Veterans Affairs Rheumatoid Arthritis
VAS	Visual analogue scale

2. EXECUTIVE SUMMARY

2.1. Abstract

Objectives

Rheumatoid arthritis (RA) is a chronic inflammatory disease associated with increasing disability, reduced quality of life and substantial costs (both through intervention acquisition and hospitalisation). The objective was to assess the clinical and cost-effectiveness of seven biologic disease modifying anti-rheumatic drugs (DMARDs) compared with each other and conventional DMARDs (cDMARDs).

The decision problem was divided into: those patients who were cDMARD naïve and those who were cDMARD experienced; whether a patient had severe, or moderate to severe disease; and whether an individual could tolerate methotrexate (MTX).

Data Sources

Eight databases were searched from inception to 2013. Studies were eligible for inclusion if they evaluated the impact of a biologic DMARD (bDMARD) used within licensed indications on an outcome of interest compared against an appropriate comparator in one of the stated population subgroups within a randomised controlled trial (RCT). Outcomes of interest included American College of Rheumatology (ACR) scores and European League Against Rheumatism (EULAR) response. Interrogation of Early Rheumatoid Arthritis Study (ERAS) data was undertaken to assess the Health Assessment Questionnaire (HAQ) progression whilst on cDMARDs.

Methods

Network meta-analyses (NMA) were undertaken for patients who were cDMARD naïve and for those who were cDMARD experienced. These were undertaken separately for EULAR and ACR data. Sensitivity analyses were undertaken to explore the impact of including RCTs with a small proportion of bDMARD experienced patients and where MTX exposure was deemed insufficient.

A mathematical model was constructed to simulate the experiences of hypothetical patients. The model was based on EULAR response as this is commonly used in clinical practice in England. Observational databases, published literature and NMA results were used to populate the model. The outcome measure was cost per quality adjusted life year (QALY) gained.

Results

Sixty randomised controlled trials RCTs met the review inclusion criteria for clinical effectiveness. 38 of these trials provided ACR and/or EULAR response data for the NMA. Fourteen additional trials contributed data to sensitivity analyses.

There was uncertainty in the relative effectiveness of the interventions. It was not clear whether formal ranking of interventions would result in clinically meaningful differences.

Results from analysis of ERAS data indicated that historical assumptions regarding HAQ progression had been pessimistic.

The typical incremental cost per QALY of bDMARDs compared with cDMARDs alone for those with severe RA is approximately £60,000. This increases for those who cannot tolerate MTX (£90,000) and is greater than £300,000 per QALY when bDMARDs were used prior to cDMARDs. Values for individuals with moderate to severe RA were higher than those with severe RA. Results produced using EULAR and ACR data were similar.

The key parameter which affected the results is the assumed HAQ progression whilst on cDMARDs. When historic assumptions were used typical incremental cost per QALY values fell to £37,000 for those with severe disease who could tolerate MTX.

Conclusions

bDMARDs appear to have cost per QALY values greater than the thresholds stated by NICE for interventions to be cost-effective.

2.2 Plain English Summary

Review question

The clinical and cost effectiveness of biologic disease modifying anti-rheumatic drugs (bDMARDs) compared with conventional disease modifying anti-rheumatic drugs (cDMARDs) in individuals with rheumatoid arthritis (RA) was assessed.

Background

RA is associated with significant morbidity. bDMARDs are more efficacious than cDMARDs but are considerably more expensive.

Work Undertaken

A systematic review of randomised controlled trials (RCTs) of efficacy was undertaken. Network meta-analyses were undertaken to ensure coherent results regarding efficacy. Interrogation of an observational database was performed to provide data on disease progression when treated with cDMARDs. A mathematical model was constructed to estimate the incremental cost per quality adjusted life year (QALY)

Key results

Fifty-two clinical trials provided data on ACR and /or EULAR responses for bDMARDs (38 in the main analyses and 14 for sensitivity analyses). These data were synthesised to produce coherent results. bDMARDs were shown to be more effective than cDMARDs. The interrogation of the database indicated that historical assumptions regarding disease progression whilst on cDMARDs was far too pessimistic. Results from the cost-effectiveness analyses indicated typical cost per QALY of £60,000 or greater. These are higher than values reported by the National Institute of Health and Care Excellence as thresholds for an intervention to be considered cost-effective.

2.3 Scientific Summary

Background

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterised by progressive, irreversible, joint damage, impaired joint function, pain and tenderness caused by swelling of the synovial lining of joints and is manifested with increasing disability and reduced quality of life. The primary symptoms are pain, morning stiffness, swelling, tenderness, loss of movement, fatigue and redness of the peripheral joints. RA is associated with substantial costs both directly (associated with drug acquisition and hospitalisation) and indirectly due to reduced productivity.

In 2010 the American College of Rheumatology (ACR) and the European League Against Rheumatism (EULAR) jointly published a Rheumatoid Arthritis Classification Criteria, which focussed on features at earlier stages of disease that are associated with persistent and/or erosive disease rather than defining the disease by its late stage features. The classification criteria allocates scores to characteristics of: joint involvement; serology; acute-phase reactants; and duration of symptoms to produce a score between 0 and 10 inclusive, with those scoring 6 or greater and with obvious clinical synovitis being defined as having "definite RA" in the absence of an alternative diagnosis that better explains the synovitis.

There are an estimated 400,000 people in England and Wales with RA with approximately 10,000 incident cases per year. The disease is more prevalent in females (1.16%) than in males (0.44%) with the majority of cases being diagnosed when patients are between 40 and 80 years of age and with peak incidence in the 70s.

Objectives

The key objectives of this report are two-fold. These include estimating the clinical effectiveness of seven biologic disease modifying anti-rheumatic drugs (bDMARDs): adalimumab; etanercept; infliximab; certolizumab pegol; golimumab; tocilizumab; and abatacept in defined populations, and estimating the cost-effectiveness of these interventions compared with conventional disease modifying anti-rheumatic drugs (cDMARDs). These analyses incorporated the use of bDMARDs with and without methotrexate where this was within license.

Three populations were defined: Population 1, adults with severe active RA not previously treated with cDMARDs; Population 2, adults with severe active RA that have been previously treated with cDMARDs but not bDMARDs; and Population 3 adults with moderate to severe active RA that have been previously treated with cDMARDs only, including methotrexate (unless contraindicated or inappropriate).

Methods

A systematic review of clinical effectiveness and safety evidence for interventions of interest was conducted. Where trials narrowly missed criteria (because of a small proportion of patients with prior bDMARD exposure or low prior MTX exposure), they were considered to inform sensitivity analyses. Separate network meta analyses (NMA) were undertaken for randomised controlled trials (RCTs) reporting EULAR and ACR data.

A mathematical model was constructed to simulate the experiences of hypothetical patients. The model was based on EULAR response as this is most commonly used in clinical practice in England and Wales. Large observational databases, published literature and the results of the NMA were used to provide data for the model. The primary outcome measure was incremental cost per QALY gained.

Results

Sixty randomised controlled trials met the inclusion criteria for the systematic review of clinical effectiveness and safety evidence. Of these, 38 trials provided relevant ACR and EULAR response data for the NMA. In addition, 14 additional trials not meeting review criteria contributed data to NMA sensitivity analyses. Other relevant efficacy and safety outcomes were tabulated and discussed in a narrative synthesis. Generally risk of bias was low overall, and low for baseline comparability, blinding, analysis by allocated treatment group and inclusion of \geq 80% of participants randomised in the final analysis. There was greater risk of bias and a lack of clarity in many included trials for allocation sequence generation and concealment and selective reporting of outcomes.

Whilst there was uncertainty in, and overlap between, the effects of treatment on ACR for interventions for patients in Population 1, infliximab + MTX was associated with the biggest increase in response rate and this was likely to be the most effective intervention. Other interventions were less effective and appeared to fall into three groups; Intensive cDMARDs and adalimumab + MTX; etanercept, golimumab + MTX and step-up combination cDMARDs; adalimumab and cDMARDs.

Whilst there was uncertainty in, and overlap between the effects of treatment on EULAR for interventions in Population 2 and 3 in the main trials, etanercept + MTX and tocilizumab + MTX were associated with the biggest increase in response rate. Other interventions were less effective and appeared to fall into two groups: tocilizumab, golimumab + MTX, adalimumab + MTX, abatacept i.v. + MTX and grouped biologics; etanercept, infliximab + MTX, adalimumab and intensive cDMARDs. The inclusion of the additional studies in which patients received prior biologics resulted in broadly the same groupings, although certolizumab pegol + MTX was associated with an even bigger response than etanercept + MTX and tocilizumab + MTX.

Whilst there was uncertainty in, and overlap between the effects of treatment on ACR for interventions in Population 2 and 3 in the main trials, etanercept + MTX, tocilizumab and tocilizumab + MTX were associated with the biggest increase in response rate. Other interventions were less effective and appeared to fall into two groups: etanercept, golimumab + MTX, abatacept s.c. + MTX, adalimumab + MTX, infliximab + MTX and abatacept i.v. + MTX; certolizumab pegol + MTX, intensive cDMARDs and adalimumab. The inclusion of the additional studies in which patients received prior biologics suggested that certolizumab pegol + MTX and etanercept + MTX resulted in the highest response rates. Other interventions appeared to give rise to broadly similar and slightly smaller response rates

except for intensive cDMARDs and adalimumab which are associated with even smaller response rates.

The incremental cost per QALY of bDMARDs compared with a cDMARD alone strategy is typically £60,000 when used in Populations 2 and 3 and is greater in individuals with moderate to severe disease. The incremental cost per QALY increases (£90,000) for those who receive a bDMARD without MTX and is approximately £300,000 in Population 1. The key parameter which affected the results is the assumed Health Assessment Questionnaire (HAQ) whilst on cDMARDs; if the values used in previous National Institute for Health and Care Excellence (NICE) appraisals were instead used the incremental cost per QALY fell to approximately £37,000 for bDMARDs compared with cDMARDs alone. Fully incremental analyses were undertaken, but these could be misleading due to the similarity in incremental costs per QALY for each bDMARD compared with cDMARDs alone, and the uncertainty in efficacy parameters. The data source used for establishing the relationship between HAQ and pain was also seen to influence the results markedly; the Assessment Group base case uses the estimate most favourable to the bDMARDs.

Discussion

There is no reason to believe that the results detailed in this report are not generalisable to the English and Welsh populations.

A strength of this report is that a systematic review of RCTs for bDMARDs in bDMARDnaïve patients has been conducted. The primary outcome measures are EULAR or ACR response at six-months and a formal NMA has been conducted to assess relative efficacy. Different analyses have been undertaken to assess the impact of including RCTs with a small proportion on patients with prior bDMARD use, and/or including RCTs when patients may have not had adequate prior MTX treatment.

A major strength of the cost-effectiveness analyses presented is that the Assessment Group has constructed a EULAR-based model that is much more appropriate to practice in England and Wales than previous ACR-based models. Estimates of ICERs for both EULAR data only, and when mapping ACR data to EULAR data indicate that the conclusions were not altered by restricting the selection of RCTs to only those that reported EULAR data.

An additional strength is that large observational databases were used to generate data on parameters such as HAQ change conditional on EULAR response and HAQ progression whilst on cDMARDs. This is preferable to data taken from relatively small RCTs of limited follow-up.

The model has known limitations. The plausible reduced efficacy of treatments when used subsequent to other treatments has not been formally incorporated. It is expected that this omission will favour bDMARDs. Lost productivity has not been included in the model, which may favour bDMARDs if it were included.

The analyses have assumed that the discontinuation rule specified by NICE has been strictly adhered to; data from the BSRBR shows that this is not the case. If such non-adherence continues the ICERs will be considerably higher than those presented. Analysis of the impact has not been undertaken due to the possibility of back-calculation of commercial-inconfidence discounts offered through patient access schemes.

2.4 Conclusions

The implications for the National Health Service are not known and it will be heavily dependent on the guidance produced by NICE. This could include reducing the expenditure on RA interventions, maintaining current levels or increasing the expenditure.

Key research priorities include establishing more precisely: HAQ progression whilst on cDMARDs; the relationship between HAQ score and utility; the relationship between HAQ score and pain. Better evidence on the relative efficacies of bDMARDs and the reduction in efficacy when used after a different bDMARD would be beneficial, but it is acknowledged that large RCTs that would be required to provide definitive answers.

3. BACKGROUND

3.1 Description of health problem

Aetiology

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterised by progressive, irreversible, joint damage, impaired joint function, pain and tenderness caused by swelling of the synovial lining of joints and is manifested with increasing disability and reduced quality of life.¹ The primary symptoms are pain, morning stiffness, swelling, tenderness, loss of movement, fatigue and redness of the peripheral joints.^{2,3} RA is associated with substantial costs both directly (associated with drug acquisition and hospitalisation) and indirectly due to reduced productivity.⁴ RA has long been reported as being associated with increased mortality,^{5,6} particularly due to cardiovascular events.⁷

Epidemiology

The initial classification criteria for RA were produced in 1987 by the American College of Rheumatology⁸ (ACR). NICE Clinical Guideline 79 provides a summary of the ACR criteria namely that patients must have at least four of the seven criteria: morning stiffness lasting at least 1 hour; swelling in three or more joints; swelling in hand joints; symmetric joint swelling; erosions or decalcification on x-ray of hand; rheumatoid nodules; and abnormal serum rheumatoid factor. For the first four criteria these must have been present for at least a period of six weeks. However, in the clinical guideline the guideline development group preferred a clinical diagnosis of RA rather than the ACR criteria because 'an early persistent synovitis where other pathologies have been ruled out needs to treated as if it is RA to try to prevent damage to joints. Identification of persistent synovitis and appropriate early management is more important than whether the disease satisfies classification criteria' referencing the European League Against Rheumatism (EULAR) recommendations.⁹

In 2010 the ACR and EULAR jointly published a Rheumatoid Arthritis Classification Criteria, which focussed on features at earlier stages of disease that are associated with persistent and/or erosive disease rather than defining the disease by its late stage features.¹⁰ The classification criteria allocates scores to characteristics of: joint involvement; serology; acute-phase reactants; and duration of symptoms to produce a score between 0 and 10 inclusive, with those scoring 6 or greater and with obvious clinical synovitis being defined as having "definite RA" in the absence of an alternative diagnosis that better explains the synovitis.

Two classifications have dominated the measurement of improvement in RA symptoms: ACR responses¹¹ and EULAR responses.¹²

The initial ACR response was denoted as an ACR20 which required: a 20% improvement in tender joint counts; a 20% improvement in swollen joint counts; and a 20% improvement in at least three of the following five 'core set items': Physician global assessment; Patient global assessment; patient pain; self-reported disability (using a validated instrument); and Erythrocyte sedimentation rate / C-reactive protein.

ACR response has been widely adopted in randomised controlled trials (RCTs) although studies have shown that the value can vary between trials due to the timing of the response.¹³ Since the inception of the ACR20 two other response criteria (ACR50 and ACR 70) have become more widely used, which are similar to ACR20 and differing only in the level of improvements required to be denoted a responder.

In the UK, monitoring the progression of RA is often undertaken using the disease activity score of 28 joints (DAS28). This assesses 28 joints in terms of swelling (SW28) and of tenderness to the touch (TEN28) and also incorporates measures of the erythrocyte sedimentation rate (ESR) and a subjective assessment (SA) on a scale of 0-100 made by the patient regarding disease activity in the previous week.

The equation for calculating DAS28 is as follows¹⁴

 $DAS28 = 0.56* TEN28^{0.5} + 28* SW28^{0.5} + 0.70* ln (ESR) + 0.014* SA$

The DAS28 can be used to classify both the disease activity of the patient and the level of improvement estimated within the patient.

The EULAR response criteria use the individual change in DAS28 and the level of DAS28 reached to classify trial participants as good, moderate or non-responders.¹² The EULAR response criteria and the ACR20 improvement criteria were found to have reasonable agreement in the same set of clinical trials¹⁵, although Van Gestel et al state that the EULAR response criteria showed better construct and discriminant validity than did ACR20. EULAR response has been reported less frequently in RCTs than ACR responses, although EULAR is much more closely aligned to the treatment continuation rules stipulated by NICE that require a DAS28 improvement of more than 1.2 to continue treatment. The relationship between change in DAS28 and the level of DAS28 reached with EULAR response is shown in Table

1. Dependent on the initial DAS score of the patient, this would equate to either a good or moderate EULAR response as shown in the second column of Table 1.

	Improvement in DAS 28		
DAS28 at endpoint	>1.2	>0.6 and ≤1.2	≤0.6
≤ 3.2	Good	moderate	non
>3.2 and ≤ 5.1	Moderate	moderate	non
>5.1	Moderate	non	non

 Table 1:
 Determining EULAR response based on DAS28¹⁵

The shaded cells indicate where patients continue treatment based on current NICE Technology Appraisals guidance

Patients with a DAS28 \leq 3 .2 are stated as having inactive disease, those with a DAS28 > 3.2 and \leq 5.1 are stated as having moderate disease and >5.1 as having very active disease.¹⁴

A widely used measure of patient disability is the health assessment questionnaire (HAQ). The HAQ is a patient completed disability assessment¹⁶ which has established reliability and validity and has been used in many published randomised controlled trials in RA. HAQ Scores range from 0 to 3, with higher scores indicating greater disability and is a discrete scale with step values of 0.125, resulting in 25 points on the HAQ scale.

Incidence and prevalence

There are an estimated 400,000 people in England and Wales with RA,¹⁷ with approximately 10,000 incident cases per year.¹⁸ The disease is more prevalent in females (1.16%) than in males (0.44%)¹⁸ with the majority of cases being diagnosed when patients are between 40 and 80 years of age¹⁹ and with peak incidence in the 70s¹⁸. Traditionally, patients have been treated with conventional disease-modifying anti-rheumatic drugs (cDMARDs) which include methotrexate (MTX), sulfasalazine (SSZ), hydroxychloroquine (HCQ), leflunomide (LEF), and gold injections (GLD) as well as corticosteroids, analgesics and non-steroidal anti-inflammatory drugs (NSAIDs). However, more recently, a group of drugs have been developed consisting of monoclonal antibodies and soluble receptors that specifically modify the disease process by blocking key protein messenger molecules (such as cytokines) or cells (such as B-lymphocytes).²⁰ Such drugs have been labelled as biologic disease-modifying anti-rheumatic drugs (bDMARDs) and form the focus of this report.

Significance for the NHS

Due to previous NICE Technology Appraisals recommending a number of bDMARDs (see Section 3.2) with a potential sequence of three bDMARDs there has been a considerable increase in expenditure on RA interventions. Given the remit of this research to establish the clinical and cost-effectiveness of bDMARDs in advance of cDMARDs for patients with less severe disease (assumed to be those with a DAS28 score of between >3.2 and \leq 5.1) there is potential for the expenditure to increase further should NICE guidance on these populations be positive. The majority of interventions are provided subcutaneously and would therefore require little additional staff time should there be positive guidance, although this would increase for those drugs which are given intravenously.

Further detailed information on the background of RA can be found within the relatively recent publication of the National Institute for Health and Care Excellence (NICE)'s Clinical Guidelines²⁰. Additional information can also be located in the British Society for Rheumatology guidelines.²¹

3.2 Current service provision

Clinical Guidelines

For people with newly diagnosed RA, NICE Clinical Guideline 79²⁰ recommends a combination of cDMARDs (including MTX and at least one other DMARD plus short term glucocorticoids) as first-line treatment, ideally beginning within 3 months of the onset of persistent symptoms. Where combination therapies are not appropriate (for example where there are comorbidities or pregnancy) DMARD monotherapy is recommended. Where DMARD monotherapy is used emphasis should be on increasing the dose quickly to obtain best disease control. For the purposes of this assessment the term intensive DMARDs has been used to denote that this is treatment with multiple cDMARDs simultaneously.

Current NICE Technology Appraisal Guidance

NICE guidance (Technology Appraisal (TA) 130, TA186 and TA225)²²⁻²⁴ recommends the use of the tumour necrosis factor (TNF) inhibitors etanercept, infliximab, adalimumab, certolizumab pegol and golimumab in people with RA after the failure of two cDMARDs, including MTX, and who have a disease activity severity (DAS28) score greater than 5.1. Terminated NICE guidance (TA224) was unable to issue recommendations for the use of golimumab in people with rheumatoid arthritis that have not been treated with MTX.²⁵

TA247²⁶ recommends tocilizumab as an alternative to TNF-inhibitors in the same circumstances as in TA130²⁷, that is in patients with a DAS28 score greater than 5.1 after trying two cDMARDs. NICE guidance TA280²⁸ recommends the use of intravenous abatacept in people with rheumatoid arthritis after the failure of cDMARDs in the same circumstances as TA130; the subcutaneous formulation has not been appraised.

A simplified summary of NICE recommend bDMARDs is shown in Figure 1. This defines the sequence of treatments that have received positive guidance for patients with a DAS28 score of >5.1. In summary, the typical route would be intensive cDMARDs followed by a bDMARD, followed by RTX plus MTX, then tocilizumab before returning to cDMARDs.

It is noted that NICE Clinical Guideline 79 recommends the use of intensive cDMARDs which have been assumed to be used rather than two cDMARDs used in monotherapy, although this latter option is acceptable.

Figure 1: Summary of the position of bDMARDs within NICE TA recommendations for sequence of treatments for patients with RA and a DAS28 score > 5.1

*If rituximab and MTX is contraindicated or withdrawn due to adverse events then the following can be used: adalimumab **or** etanercept **or** infliximab **or** abatacept in combination with MTX; adalimumab **or** etanercept monotherapy TA195 : tocilizumab in combination with MTX TA 247, assuming these have not been used previously in the sequence.

[†]Would not be used if tocilizumab has been used previously in the sequence

NICE has also issued guidance (TA195, TA225 and TA247^{22,24,26}) on the treatment of rheumatoid arthritis after the failure of a TNF inhibitor but such guidance falls outside of the scope of thisappraisal.

NICE criteria for continuing treatment.

Each of the NICE technology appraisals states that for patients to continue treatment with a bDMARD that there must have been an improvement in DAS28 of at least 1.2 points at 6 months. If this criterion has not been met then treatment should be stopped and the next intervention in the sequence initiated.

Data were provided by the British Society for Rheumatology Biologics Register (BSRBR) to the Assessment Group (personal communication) and were used to assess the time on first biologic conditional on EULAR response. These indicate that over 25% of patients who had no EULAR response at six months were still on treatment at 4.5 years, with the median treatment time being 319 days. This shows that there is not strict adherence to the NICE criteria for continuation of treatment. The majority of patients (94%) had a DAS28 score of >5.1 indicating that the severity criteria stated by NICE was reasonably well adhered to.

3.3 Description of the technologies under assessment

Interventions considered in the scope of this report.

The scope of the work is to ascertain the clinical and cost-effectiveness of seven interventions within three populations that will be detailed subsequently. These interventions are: abatacept; adalimumab; certolizumab pegol; etanercept; golimumab; infliximab; and tocilizumab. It is noted that abatacept can be delivered in two formulations: intravenously and subcutaneously and that both have been modelled separately. Due to the large number of interventions these have been initially summarised by mode of action. There then follows a summary of the UK marketing authorisation for each intervention along with a description of administration method. This text is similar to that within the protocol.²⁹ Whilst abbreviations have been defined for interventions and comparators, these have been reserved for use in tables to preserve readability of the report.

Mode of action

Adalimumab, etanercept, infliximab, certolizumab pegol and golimumab all inhibit the activity of TNF- α , a pro-inflammatory mediator that is partly responsible for damage to the joints in RA.

Abatacept is a selective modulator of the T lymphocyte activation pathway. It binds to molecules on the surface of antigen presenting cells preventing full activation of the T lymphocytes and interrupting the inflammatory process.

Tocilizumab inhibits the activity of the cytokine interleukin-6 (IL 6), a pro-inflammatory that is also partly responsible for damage to the joints in RA.

Marketing licence and administration method.

Abatacept (Orencia, Bristol-Myers Squibb) in combination with MTX has a UK marketing authorisation for the treatment of moderate to severe active rheumatoid arthritis in adult patients who responded inadequately to previous therapy with one or more cDMARDs including MTX or a TNF-alpha inhibitor. It can be administered by intravenous infusion or by subcutaneous injection.

Adalimumab (Humira, Abbott Laboratories), in combination with MTX, has a UK marketing authorisation for the treatment of moderate to severe, active RA in adults when the response to cDMARDs, including MTX, has been inadequate and for the treatment of severe, active and progressive rheumatoid arthritis in adults not previously treated with MTX. Adalimumab can be given as monotherapy in case of intolerance to MTX or when continued treatment with MTX is inappropriate. It is administered subcutaneously.

Certolizumab pegol (Cimzia, UCB Pharma), in combination with MTX, has a UK marketing authorisation for the treatment of moderate to severe, active RA in adult patients when the response to cDMARDs, including MTX, has been inadequate. Certolizumab pegol can be given as monotherapy in case of intolerance to MTX or when continued treatment with MTX is inappropriate. It is administered subcutaneously.

Etanercept (Enbrel, Pfizer), in combination with MTX, has a UK marketing authorisation for the treatment of moderate to severe, active RA in adults when the response to cDMARDs, including MTX (unless contraindicated), has been inadequate, and for the treatment of severe, active and progressive rheumatoid arthritis in adults not previously treated with MTX. Etanercept can be given as monotherapy in case of intolerance to MTX or when continued treatment with MTX is inappropriate. It is administered subcutaneously.

Golimumab (Simponi, Merck Sharp & Dohme), in combination with MTX, has a UK marketing authorisation for the treatment of moderate to severe, active RA in adult patients when the response to cDMARD therapy including MTX has been inadequate, and for the

treatment of severe, active and progressive rheumatoid arthritis in adults not previously treated with MTX. It is administered subcutaneously.

Infliximab (Remicade, Merck Sharp & Dohme), in combination with MTX, has a UK marketing authorisation for the reduction of signs and symptoms as well as the improvement in physical function in adults with active disease when the response to DMARDs, including MTX, has been inadequate. It is also licensed for the treatment of severe, active and progressive RA in adults not previously treated with MTX or other cDMARDs. It is administered by intravenous infusion.

Tocilizumab (RoActemra, Roche), in combination with MTX, has a UK marketing authorisation for the treatment of moderate to severe active RA in adult patients who have either responded inadequately, or who were intolerant, to previous therapy with one or more DMARDs or tumour necrosis factor antagonists. In these patients, tocilizumab can be given as monotherapy in case of intolerance to MTX or where continued treatment with MTX is inappropriate. Tocilizumab is administered by intravenous infusion.

Current Usage in the NHS

There is widespread use of the interventions within the NHS. Robust values of the exact breakdown by intervention are not known.

Identification of important subgroups.

The current NICE guidance has already identified a subgroup by stating that to receive a bDMARD the patient must have received two cDMARDs and have active RA with a DAS28 score in excess of 5.1. The research questions within this report include: estimating the cost-effectiveness if the severity criteria were lessened to include patients with a DAS28 score greater than 3.2; and estimating the cost-effectiveness of using bDMARDs in advance of cDMARDs.

An important clinical subgroup encompasses those patients in whom bDMARDs cannot be given in combination with MTX. The clinical and cost-effectiveness of licenced bDMARDs in this population will be estimated in this assessment.

The anticipated costs associated with the interventions

The costs associated with each intervention needs to take into account factors including:: the acquisition cost of the drug (incorporating any patient access scheme (PAS)); the average

weight of patients with RA for those interventions that are weight based; the administration costs associated with infusions and of district nurses performing subcutaneous injections; and any loading doses required in the first year.

The acquisition costs and dosing regimens were taken from the British National Formulary (www.bnf.org – accessed June 2013³⁰) with details of PASs taken from the manufacturers' submissions.

The average weights of patients with RA were estimated using data (n = 12,176) from the BSRBR [Personal Communication]. To be able to be used with all of the weight-based dosing regimens a large number of categories were required as detailed in Table 2. From these categories the average cost per dose for those with a weight-based dose can be calculated.

Weight category (kg)	Number of Patients	Proportion of total patients
0-30	3	0.0%
31-33	7	0.1%
34-35	9	0.1%
36-45	240	2.0%
46-50	484	4.0%
51-60	2333	19.2%
61-67	2115	17.4%
68-70	949	7.8%
71-75	1310	10.8%
76-85	2148	17.6%
86-95	1351	11.1%
96-100	412	3.4%
101-133	734	6.0%
134-167	67	0.6%
168-200	14	0.1%
	12,176	100%

 Table 2:
 The weight distribution of patients with RA using BSRBR data

Additional loading doses in the first year were calculated based on the relevant regimen and the administration cost. Table 3 provides a simplified summary of the assumed mean

acquisition costs per intervention and can be used to provide indicative rather than exact values. Within the mathematical model described later, timings of costs are explicitly incorporated and also that in some subgroups the distribution of weights may differ from that of the full BSRBR database, a factor also considered within the Assessment Group model.

Additional treatments in a sequenced strategy.

The nature of RA treatment being sequenced meant that it was necessary for the Assessment Group and the manufacturers to incorporate the costs and effectiveness of rituximab into the model as this has positive NICE guidance following the withdrawal of a bDMARD. These will be discussed as applicable.

Treatment	Dose regimen	Details of PAS if applicable	Cost per cheapest available dose (dose)	Cost per weight- adjusted dose ¹ / standard regimen	Administration costs per treatment	Cost per Year (excluding admin costs) ²	Additional Costs in Year 1
ABT	500 mg below 60 kg, 750 mg				£154		
(intravenous)	between 60-100 kg, 1000 mg above 100 kg; 0, 2 and 4 weeks then every 4 weeks thereafter		(250mg)				
ABT (subcutaneous)	125mg weekly following loading dose 500 mg below 60 kg, 750 mg between 60-100 kg, 1000 mg above 100 kg.		<u>(125mg)</u>		£3.05		
ADA	40 mg; every other week	N/A	£352.14 (40mg)	£352.14	£3.05	£9234.94	£-
CTZ	400 mg per week initially, repeated at weeks 2and 4 weeks followed by a maintenance dose of 200 mg every 2 weeks	Initial 10 doses free	£357.50 (200 mg)	£357.50	£3.05	£9374.30	-£2523.85 ³
ETN	50 mg; every week	N/A	£178.75 (50mg)	£178.75	£3.05	£9453.60	£-
GOL	50 mg below 100 kg, 100 mg above 100 kg, per month	100mg dose provided at the same price as the 50mg dose	£762.97 (50mg)	£762.97 ⁴	£3.05	£9192.24	£-
IFX ⁵	3 mg/kg: 0, 2, 6 then every 8 weeks	N/A	£419.62 (100mg)	£1110.98	£154	£8222.37 ⁶	£1820.47
TCZ	8 mg/kg every four weeks		(80mg)		£154		£-

Table 3: Simplified mean acquisition and administration costs for each intervention

¹Assuming the weight distribution of patients from the BSRBR and choosing the least expensive method of meeting the requirement. The correct dose for a specific patient is calculated within the model. ²Assuming no vial sharing ³This value has been simplified for clarity and is negative due to assuming 10 free doses in year 1 as detailed in the patient access scheme. The model calculates the timing and number of doses correctly. ⁴Assuming that the cost of 100mg syringes are set to the price of 50mg syringes as per the previously agreed patient access scheme. ⁵These values have been simplified for clarity, assuming 8 doses in year 1 and 6.5 in each subsequent year. The model calculates the timing and number of doses correctly. ⁶Assuming no increase in dose requiring additional vials, - if the response is inadequate after 12 weeks, the dose may be increased in steps of 1.5 mg/kg every 8 weeks, up to max. 7.5 mg/kg every 8 weeks; alternatively, 3 mg/kg may be given every 4 weeks. N/A – not applicable

4. DEFINITION OF THE DECISION PROBLEM

4.1 Decision problem

The aim of this assessment was to investigate the clinical and cost-effectiveness of adalimumab, etanercept, infliximab, certolizumab pegol, golimumab, tocilizumab and abatacept for the treatment of RA not previously treated with bDMARDs compared with each other and compared with cDMARDs.

Interventions

A detailed description of each of the interventions is provided in Section 3.3. Table 4 summarises the relationship between the market authorisation and the decision problem detailed in Section 4.2 i.e. whether the intervention is licensed to be used: prior to the initiation of methotrexate intervention; as a monotherapy (i.e. without needing to be given in combination with MTX); for patients with severe RA; and for patients with moderate to severe RA.

	Is the intervention licensed						
Intervention	prior to the use of	as a monotherapy?	for patients with	for patients with			
	MTX?		severe RA?	moderate to severe			
				RA?			
ABT ^a			 ✓ 	 ✓ 			
ADA	 ✓ 	V	~	~			
CTZ			~	 ✓ 			
ETN	 ✓ 	 ✓ 	 ✓ 	~			
GOL	 ✓ 		~	 ✓ 			
IFX	v			V			
TCZ			~	\checkmark			

Table 4:The relationship between the licence of the intervention and the decision
problem

^a Intravenous and subcutaneous formulations of abatacept have been combined as the market authorisations are identical.

Populations (including subgroups).

The scope issued by NICE defines three distinct populations with RA and includes (1) adults with severe active RA not previously treated with cDMARDs, (2) adults with severe active RA that have been previously treated with cDMARDs but not bDMARDs and (3) adults with moderate to severe active RA that have been previously treated with cDMARDs only, including methotrexate (unless

contraindicated or inappropriate). Henceforth, these will be referred to as Population 1, Population 2 and Population 3.

Although the NICE scope did not specify the definition of severe active RA and moderate to severe active RA, the following definition (based on expert clinical advice to the Assessment Group) has been adopted: severe active RA will be defined by a DAS28 score of \geq 5.1, and moderate to severe active RA will be defined as a DAS28 score between 3.2 and 5.1.

As the scope issued by NICE explicitly defined subgroups, no further subgroups will be assessed, with the exception of those patients in whom bDMARD treatment needs to be given as monotherapy. Separate analyses will be conducted for those in whom MTX can be tolerated and in those who can only receive bDMARD monotherapy.

The Assessment Group has chosen to deviate from the scope for Population 1 as the definition in the scope stated that MTX needed to have been used previously. Given this definition the populations were mutually exclusive but not exhaustive, as patients without prior bDMARD treatment who had not received MTX but had instead received an alternative cDMARD would not be allocated to any of the populations. In consultation with NICE and our clinical experts the Assessment Group broadened their interpretation of Population 1 to allow previous treatment with any cDMARD.

It is noted that the number of interventions considered in Population 1 is fewer than for Population 2 or 3, since only four interventions (adalimumab; etanercept; golimumab; and infliximab) are licensed in this population

Populations outside of the scope of the research

The following groups were explicitly excluded from the research by the scope issued by NICE.

- The initiation of treatment in patients without active RA
- Patients with a DAS score below 3.2 where they have received previous treatment with cDMARDs
- Patients with a DAS score below 5.1 if they have not been previously treated with cDMARDs
- Patients who have been previously treated with one or more bDMARDs.

Relevant comparators

The relevant comparators within the final scope differ according to the population considered. The scope stated that tofacitinib would be included if NICE had issued positive guidance prior to the report's completion, but this did not occur and therefore tofacitinib was not evaluated.

i) For severe active rheumatoid arthritis not previously treated with MTX or other DMARDs:

- Combination therapy with cDMARDs (including MTX and at least one other DMARD, such as sulfasalazine and leflunomide as recommended in NICE CG79)
- The interventions will be compared with each other

ii) For severe active rheumatoid arthritis that has been previously treated with cDMARDs only:

- Management strategies involving further cDMARDs (for example sulfasalazine, leflunomide), NSAIDS and corticosteroids
- The interventions will be compared with each other

iii) For moderate to severe active arthritis that has been previously treated with cDMARDs only:

- Management strategies involving further cDMARDs (for example sulfasalazine, leflunomide), NSAIDS and corticosteroids
- The interventions will be compared with each other

Outcomes

The outcome measures to be considered include:

- Disease activity
- Physical function
- Joint damage
- Pain
- Mortality
- Fatigue
- Radiological progression
- Extra-articular manifestations of disease
- Adverse effects of treatment
- Health-related quality of life

Data were also collected on other outcome measures, including disease duration, number of previous cDMARDs, and percentage of patients who had received bDMARDs in case there was sufficient

variation in baseline measurements that these could be investigated as treatment effect modifiers within data synthesis.

4.2 Overall aims and objectives of assessment

The review aims to:

- evaluate the clinical effectiveness of each intervention in affecting key outcomes in patients within each of the defined subgroups
- evaluate the adverse effect profile of each intervention (and comparator)
- estimate the incremental cost effectiveness within each of the defined subgroups of each intervention compared with all comparators
- estimate the overall cost of amending the current provision of interventions in the light of the cost-effectiveness results
- identify key areas for primary research

5. ASSESSMENT OF CLINICAL EFFECTIVENESS

A systematic review of the literature and network meta-analyses (NMA) were conducted in order to evaluate the clinical effectiveness of abatacept, adalimumab, certolizumab pegol, etanercept, golimumab, infliximab and tocilizumab in the first line bDMARD treatment of adults with RA.

The systematic review of the evidence was undertaken in accordance with the general principles recommended in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement (<u>http://www.prisma-statement.org/</u>).

5.1 Methods for reviewing effectiveness

5.1.1 Identification of studies

The aims of the search were to provide as comprehensive retrieval as possible of clinical effectiveness evidence relating to abatacept, adalimumab, certolizumab pegol, etanercept, golimumab, infliximab, and tocilizumab and to identify additional relevant treatments for potential inclusion in the NMA.

a) Electronic databases

Studies were identified by searching the following electronic databases and research registers:

- MEDLINE(R) In-Process & Other Non-Indexed Citations and MEDLINE(R) (Ovid) 1948 to July 2013
- EMBASE (Ovid) 1980 to July 2013
- Cochrane Database of Systematic Reviews (Wiley Interscience) 1996 to May 2013
- Cochrane Central Register of Controlled Trials (Wiley Interscience) 1898 to May 2013
- Health Technology Assessment Database (Wiley Interscience) 1995 to May 2013
- Database of Abstracts of Review of Effects (Wiley Interscience) 1995 to May 2013
- Cumulative Index to Nursing and Allied Health Literature (EBSCO) 1982 to April 2013
- Toxline to July 2013

Given the broad scope of interventions to be included in the review and the high volume of potentially relevant studies to be sifted, the keyword searches of electronic resources were undertaken in three stages. No language or date restrictions were applied to any database. Details of keywords strategies are reported in Appendix 2.

Stage 1 was undertaken using keywords relating to the population only (i.e. RA) and did not include keywords relating to the interventions specified in the decision problem. The purpose was to keep the scope of the search broad in order to identify potentially relevant evidence for inclusion in the NMA,

in addition to identifying RCTs and systematic reviews of the interventions of interest. For the searches of Medline, EMBASE, and CINAHL, methodological filters were added to restrict search results to RCTs and systematic reviews. To maximise the efficiency of the search process at this stage, filters aimed at maximising the precision of search results were applied.³¹⁻³⁵

Stage 2 was undertaken using keywords relating to the population (RA) combined with keywords relating to the interventions of interest (abatacept, adalimumab, certolizumab pegol, etanercept, golimumab, infliximab, tocilizumab) and any interventions identified as potentially allowing indirect comparisons to be made within the NMA. Keyword synonyms relating to the interventions included generic drug names, product names and drug registry numbers. The purpose of Stage 2 was to identify RCTs that might not have been retrieved by the 'high precision' Stage 1 searches. Therefore, RCT search filters aimed at maximising the sensitivity of search results were applied.^{33,36} In the first instance, Medline and EMBASE were searched. Given the high volume of references retrieved, and the low yield in terms of relevant references identified it was decided that searches would not be extended to other databases or to other treatments to be potentially included in the NMA.

Stage 3 involved the undertaking of searches for potential supplementary adverse events evidence through the combination of keywords relating to the population (RA) with keywords relating to the interventions of interest (abatacept, adalimumab, atacicept, certolizumab pegol, etanercept, golimumab, infliximab, rituximab, tocilizumab, tofacitinib). For the searches of Medline and EMBASE, adverse events filters were applied,³⁷ whereas no filter was required for the Toxline database.

Where possible, and to minimise duplication between search results, the results retrieved by earlier search strategies were excluded from the results retrieved by later search strategies using the 'not' Boolean operator. The results retrieved by the Medline and EMBASE high precision searches (Stage 1) were excluded from Medline and EMBASE high sensitivity searches (Stage 2). The results retrieved by the Medline and high sensitivity searches (Stage 1 and 2) were excluded from the adverse events searches (Stage 3).

b) Other resources

To identify additional studies, the reference lists of relevant studies (including existing systematic reviews) were checked and a citation search of relevant articles (using the Web of Science Citation Index Expanded and Conference Proceedings Citation Index - Science) was undertaken to identify articles that cite the relevant articles. It was originally intended in the protocol²⁹ that searches be performed to identify ongoing research and unpublished studies using the Current Controlled Trials *meta*Register of Controlled Trials (mRCT), the World Health Organisation International Clinical
Trials Registry Platform (WHO ICTRP), the European Union Clinical Trials Register (EU-CTR), the Food and Drug Administration (FDA) and European Medicines Agency (EMA) websites and the WOS Conference Proceedings Citation Index – Science (CPCI-S). However, this was not possible within the timescales dictated by the NICE appraisal process. Hand searching of relevant documents included sponsor submissions to the NICE technology appraisal update process, recent systematic reviews, and documentation associated with previous relevant NICE technology appraisal guidance (TAs 130, 186, 224, 234, 225, 247). Grey literature was also sought using the sources listed in the international grey literature search toolkit produced by the Canadian Agency for Drugs and Technologies in Health (CADTH).³⁸

All identified citations from the electronic searches and other resources were imported into and managed using the Reference Manager bibliographic software, (version 12.0; Thomson Reuters, Philadelphia, PA).

5.1.2 Inclusion and exclusion criteria

Inclusion and exclusion criteria for the selection of clinical effectiveness and safety evidence were defined according to the decision problem outlined in the NICE scope.³⁹

The inclusion of potentially relevant articles was undertaken using a two-step process. Firstly, all titles and abstracts were examined for inclusion by one reviewer. Any citations that clearly did not meet the inclusion criteria (e.g. animal studies, studies unrelated to RA) were excluded. Secondly, full text articles were initially examined by one reviewer. It was intended in the original protocol that a second reviewer would check approximately 10% of citations. However, because of the very large number of citations identified in the clinical effectiveness searches, this was not possible in the timescales available for this appraisal process. Any uncertainty in the inclusion and exclusion of potential full text articles was resolved through discussion with the review team. Where agreement could not be reached, expert clinical advice was sought for a final decision.

The relevance of each article for the systematic review was assessed according to the following criteria:

a) Population

As detailed in Section 4, the three populations under consideration in this assessment were:

i) Adults with severe active RA not previously treated with methotrexate (defined by a DAS score of ≥ 5.1). In the original protocol²⁹ this population was defined as "adults with severe active RA not previously treated with methotrexate or other DMARDs (defined by a DAS score of ≥ 5.1)."

However, this definition was subsequently modified and broadened by the Assessment Group (in consultation with clinical experts) to include "adults with severe active RA not previously treated with methotrexate" to permit the inclusion of trial populations relevant to the decision problem which were methotrexate-naïve but may have had some prior experience of other cDMARDs.

ii) Adults with severe active RA that have been previously treated with conventional DMARDs only, including methotrexate (unless contraindicated or inappropriate) (defined by a DAS score of \geq 5.1).

iii) Adults with moderate to severe active RA that have been previously treated with conventional DMARDs only, including methotrexate (unless contraindicated or inappropriate) (defined as a DAS score between 3.2 and 5.1).

The following populations were considered outside the appraisal scope and were therefore excluded:

- Patients with a DAS score below 3.2
- Patients with a DAS score below 5.2 if they have not been previously treated with methotrexate
- Patients who have been previously treated with one or more biologic DMARDs

b) Interventions

The following interventions were included:

i) For RA not previously treated with methotrexate:

- Adalimumab
- Etanercept
- Infliximab
- Golimumab

ii) For RA that has been previously treated with conventional DMARDs only:

- Adalimumab
- Etanercept
- Infliximab
- Certolizumab pegol
- Golimumab
- Abatacept (intravenous and subcutaneous preparations)
- Tocilizumab

The above interventions were assessed in accordance with licensed indications and could be delivered in conjunction with cDMARDs or as monotherapy (as defined in licensed indications).

c) Comparators

The relevant comparators differed according to the population considered and included the following: i) For severe active RA not previously treated with methotrexate:

- Combination therapy with conventional DMARDs (including methotrexate and at least one other DMARD, such as sulfasalazine and leflunomide) or DMARD monotherapy with dose escalation
- Biologic interventions vs. each other

ii) For severe active RA that has been previously treated with conventional DMARDs only:

- Management strategies involving further conventional DMARDs (for example sulfasalazine, leflunomide), NSAIDS and corticosteroids
- Biologic interventions vs. each other

iii) For moderate to severe active RA that has been previously treated with conventional DMARDs only:

- Management strategies involving further conventional DMARDs (for example sulfasalazine, leflunomide), NSAIDS and corticosteroids
- Biologic interventions vs. each other

d) Outcomes

The outcome measures under consideration included:

- Disease activity (DAS28, ACR and EULAR responses, swollen and tender joint counts and patient and physician global assessments of disease activity)
- Physical function (HAQ-DI, but not modified versions of HAQ)
- Joint damage / radiological progression
- Pain
- Mortality
- Fatigue
- Extra-articular manifestations of disease
- Health-related quality of life
- Adverse effects of treatment

e) Study design

The systematic review of clinical effectiveness was based on RCT evidence. It was stated in the protocol²⁹ that, if insufficient data were available from RCTs, observational studies or non-randomised trials may be considered, for example for safety evidence. The Assessment Group supplemented the adverse events data identified in the included RCTs with safety data from long-term extension studies reporting on individual included RCTs. Studies published as abstracts or conference presentations were only included if sufficient details were presented to allow both an appraisal of the methodology and an assessment of the results to be undertaken. Systematic reviews could be used as potential sources of additional references of efficacy evidence.

The following study types were also excluded:

- Animal models
- Preclinical and biological studies
- Narrative reviews, editorials, opinions
- Studies presenting secondary analyses of RCT data or pooled RCT data
- Non-English language papers

5.1.3 Data abstraction and critical appraisal strategy

Data relevant to the decision problem were extracted by one reviewer. Data were extracted without blinding to authors or journal. Study arms where intervention treatments were administered in line with licensed indications were extracted; where there was a slight divergence between the regimen used in the RCT and the licensed regimen this was explicitly highlighted. It was proposed in the original protocol²⁹ that at least 10% of data extraction forms be checked by a reviewer. However, the Assessment Group ensured that all data included in the NMA were double checked by a second reviewer. For data not contributing to the NMA, data were extracted for the following time points: primary endpoint (for selected efficacy data), latest available controlled RCT endpoint (for efficacy and safety data) and latest available long-term extension study endpoint (for safety data only). The safety data extracted were informed by the Summary of Product Characteristics (available at http://www.medicines.org.uk/emc/) and FDA prescribing information for each intervention 40-46 Graphical data contributing to the NMA were estimated using Engauge software (version 4.1) (2011)⁴⁷ and graphical data not contributing to the NMA were estimated manually by a reviewer. Where multiple publications of the same study were identified, data extraction was undertaken on all relevant associated publications, and findings were presented as a single study. Discrepancies were resolved by discussion, with involvement of a third reviewer when necessary.

The methodological quality of each included study was assessed by one reviewer. It was originally intended in the protocol²⁹ that quality assessment would be checked by a second reviewer, but this

was not feasible within the timescales available for the appraisal process. The quality assessment of included studies was informed by selected items listed in the NHS CRD report⁴⁸ and Cochrane Risk of Bias tool.⁴⁹ Additional quality issues specific to the assessment of rheumatoid arthritis RCTs (as described by Karsh *et al.*, 2011) were also considered during the evaluation of studies.⁵⁰

5.1.4 Methods of data synthesis

The extracted data and quality assessment variables were presented for each study, both in structured tables and as a narrative description.

As the identified evidence base permitted the undertaking of network meta-analyses for the estimation of treatment effects, supplementary meta-analyses were not undertaken. Network meta-analyses were conducted to determine efficacy using two different disease activity measures (ACR and EULAR responses).

5.1.5 Methods for the estimation of efficacy using network meta-analysis

5.1.5.1 Selection of evidence contributing to the network meta-analysis

Evidence considered relevant to the decision problem was selected according to the additional inclusion criteria detailed below.

- RCTs presenting ACR response or EULAR response data at any assessment time point between 22 and 30 weeks. The selection of this time frame and assumption that treatment effects would be broadly comparable across these assessment points was made in conjunction with the clinical advisors to the assessment. This criterion is broadly in line with previous data syntheses summarised by Thorlund *et al.* (2013)⁵¹; nine of the 13 RCTs in the NMA of biologic interventions for rheumatoid arthritis also employed an assessment time point in the region of 24 weeks / 6 months, of the remaining four RCTs, three used 12 week data whilst one used between 50 and 55 weeks.⁵¹
- Trials with early escape were included only if an appropriate imputation of data as determined by the Assessment Group was employed for dealing with censorship
- RCTs were not excluded from the base case on the basis of geographical location (a decision made in consultation with clinical advisors)
- RCTs were permitted in the base case where it was not indicated whether bDMARDs had been given (and no proportion of bDMARD use was provided), even if trial eligibility did not exclude prior bDMARDs
- Trials reporting a small proportion of patients with prior bDMARD experience (≤ 20%) were not included in the base case analyses but were explored via sensitivity analyses

Sensitivity analyses were also undertaken to include trials relevant to populations 2 and 3 where the population may not have adequately failed cDMARDs (either there was a sufficient response, MTX treatment duration was too short or a proportion of the population were MTX-naive).

Evidence was sought in which bDMARDs not considered as interventions or comparators within the NICE scope were evaluated in head to head trials with an included intervention in the first line treatment of RA. To establish whether any such identified data could be used to inform indirect comparisons within the NMA, a review of these interventions against cDMARDs was undertaken. If such trials were found and met the inclusion criteria for the review, then the bDMARD was considered part of the evidence base for the NMA.

A number of assumptions relating to the evidence base were made in conjunction with clinical advisors: i) It was assumed that all cDMARDs had the same efficacy; ii) It was also assumed that having failed a cDMARD was equivalent to having failed MTX; iii) Trials that included the use of immunosuppressants or single intra-articular glucocorticoid were also permitted, assuming that this would not change the efficacy of cDMARDs; iv) It was assumed that DAS28-CRP and DAS28-ESR are interchangeable where only one is reported. If both were reported, DAS28-ESR was used as this was reported most regularly (a decision made in consultation with clinical advisors). A systematic review to support assumptions i) to iii) could not be undertaken within the timescales of the project. This may represent a limitation within the analyses although these assumptions were deemed reasonable by the clinical experts and there was no reason to believe these could cause a systematic bias.

5.1.5.2 Statistical model for the network meta-analysis

EULAR and ACR outcomes are ordered categorical data. EULAR has three categories (No response, Moderate response and Good response) and ACR has four categories (No response, ACR20, ACR50 and ACR70). ACRXX represents an improvement of at least XX%; in the analysis, the categories are treated as mutually exclusive so that patients cannot be in more than one category.

The model for the data assumes that the treatment effect is the same irrespective of the category. The likelihood function for the data is described as follows:

Let r_{ikj} represent the number of patients in arm k of trial i in the mutually exclusive category
 j = 1,2, ... J

The responses r_{ikj} will follow a multinomial distribution such that

$$r_{ikj=1,\dots,J} \sim \text{Multinomial}(p_{ikj=1,\dots,J}, n_{ik}), \sum_{j=1}^{J} p_{ikj=1,\dots,J} = 1$$

The parameters in the model are the probabilities, p_{ikj} , that a patient in arm k of trial i has a response equivalent to category j.

We use a probit link function to map the probabilities, p_{ikj} , onto the real line such that:

$$\theta_{ikj} = \Phi^{-1}(p_{ikj}) = \mu_{ij} + \delta_{i,bk} I_{k\neq 1}$$

so that

$$p_{ikj} = \Phi(\mu_{ij} + \delta_{i,bk} I_{k\neq 1}).$$

In this model, the effect of treatment is to change the probit score of the control arm by $\delta_{i,bk}$ standard deviations.

The study-specific treatment effects, $\delta_{i,bk}I_{k\neq 1}$, are assume to arise from a common population distribution with mean treatment effect relative to the reference treatment, which in this analysis is cDMARDs, such that:

$$\delta_{i,1k} \sim N(d_{t_{i1},t_{ik}},\tau^2)$$

We further assume that there is an underlying continuous latent variable which has been categorised by specifying cut-offs, z_{ij} , which correspond to the point at which an individual moves from one category to the next in trial *i*. The model is re-written as:

$$p_{ikj} = \Phi(\mu_i + z_{ij} + \delta_{i,bk} I_{k\neq 1})$$

The z_{ij} can be treated as fixed, which would assume that these points are the same in each trial and each treatment. Alternatively, they can be treated as random in which they are assumed to vary according to the trial but that within a trial they are the same such that:

$$z_{ic} \sim N(v_c, \sigma_z^2).$$

We used a model in which the z_{ij} were treated as being random because this resulted in a much better fit of the model to the data.

In some trials, the reported categories are a subset of the full set of categories so that there is overlap between categories. The multinomial likelihood is re-written as a series of conditional Binomial distributions such that for trial *i* reporting the number of patients, r_{ikj} , in category j = 1, ..., J - 1, we write:

$$r_{ikj} \sim \text{Binomial}(q_{ikj}, N_{ikj}), j = 1, \dots, J - 1$$

where

 $q_{ik1} = \text{Prob}(\text{Outcome in category 1 of trial } i)$ $q_{ik2} = \text{Prob}(\text{Outcome in category 2 of trial } i \mid \text{not in category 1})$... $q_{ikj} = \text{Prob}(\text{Outcome in category } j \text{ of trial } i \mid \text{not in categories 1}, 2, ..., j - 1)$ and

$$N_{ikj} = n_{ik} - \sum_{u=1}^{j-1} r_{iku}.$$

Further details of the model are presented in Dias et al.⁵²

All analyses were conducted in the freely available software package WinBUGS.⁵³

The model is completed by giving the parameters prior distributions.

When there is sufficient sample data, we can use conventional reference prior distributions and these will have little influence on the posterior results. The reference prior distributions used in the analyses were:

• Trial-specific baselines, $\mu_i \sim N(0, 1000)$

- Treatment effects relative to reference treatment, $d_{1t} \sim N(0, 1000)$
- Between study standard deviation of treatment effects, $\tau \sim U(0,2)$
- Population cut-offs, $v_{c_j=}v_{c_{j-1}} + v_{c'}$, $v_{c'} \sim U(0,5)$
- Between study standard deviation of cut-offs, $\sigma_z^2 \sim U(0,2)$

In the case of the analysis of the EULAR data there were relatively few studies and too few to update the between study standard deviation. Without Bayesian updating, a reference prior distribution that does not represent genuine prior belief will have a significant impact on the results and give posterior distributions that are unlikely to represent genuine posterior beliefs. To allow for this, we used a weakly informative prior distribution for the between study standard deviation such that $\tau \sim HN(0, 0.32^2)$.

To estimate the absolute probabilities of being in each category for each treatment, we used a Binomial likelihood function for the numbers of patients, r_{ik1} in each study that were classified as "No response" when treated with cDMARDs such that:

$$r_{ik1}$$
~Binomial (n_{ik}, p_{ik1}) .

We used a probit link function such that:

$$\Phi^{-1}(p_{ik1}) = \mu'_i.$$

We assume that the study-specific baselines arise from population of effects such that:

$$\mu_i^{\prime} \sim N(\mu_b, \tau_b^2)$$

The model was completed by giving the parameters prior distributions such that:

- $\mu_b \sim N(0, 1000)$
- $\tau_b \sim U(0,2)$

Again, there were relatively few studies providing data on the EULAR outcome so a weakly informative prior distribution was used for the between study standard deviation such that: $\tau \sim HN(0, 0.32^2)$.

For the baseline and network meta-analyses, we used a standard burn-in of 100,000 iterations of the Markov chain and retained 25,000 iterations to estimate parameters. In addition, the network meta-analyses exhibited moderately high correlation between successive iterations of the Markov chains so the chains were thinned by retaining every 10th sample.

For EULAR and ACR, analyses were performed according to whether the patient was MTX--naïve (Population 1) or whether patients were MTX-experienced (Population 2/3). Patients who were MTX-naïve were also analysed including the TEAR⁵⁴ and TEMPO⁵⁵ studies that included a small proportion of patients who were MTX-experienced. In addition, for patients who were MTX-experienced, EULAR was analysed according to the main trials and trials that included patients who received prior biologics (with and without the AMBITION study) and ACR was analysed according to the main trials, trials that included patients who received prior biologics (with and without AMBITION) and trials that included patients who were MTX naive.

We also explored the possibility that duration of disease was a treatment effect modifier. This was done for the main studies that provided ACR data. We did not attempt to adjust EULAR data for duration of disease because of the limited number of studies available. Duration of disease was centred in the model by subtracting the mean duration of disease across studies. Various models could be explored including having an identical treatment effect modifier for each treatment, a separate treatment effect modifier for each treatment or allowing the treatment effect modifiers to be exchangeable across treatments. Again, because of the limited number of studies available we restricted attention to an exchangeable treatment effect modifier model. The model was completed by giving the common regression parameter a N(0, 1000) prior distribution and the between treatment standard deviation a U(0, 10) prior distribution. Results are not presented adjusted for duration of disease because the evidence suggested that it was not a treatment effect modifier (DIC Adjusted=1027.94, DIC Unadjusted 1026.74).

5.2 Results

5.2.1 Quantity and quality of research available

5.2.1.1 Quantity of research available

As a result of the searches described in Section 5.1, a total of 43,764 citations were identified for the review of clinical effectiveness and safety. This was reduced to 27,464 following deletion of duplicate citations. The study selection process is represented as a PRISMA diagram (Figure 2). A total of 27,334 citations were excluded at title and abstract levels (1606 being non-English language records). Of the remaining records, a total of 60 studies were included in the review. Studies excluded at full text are presented (with rationale for exclusion) in Appendix 1.

Figure 2: Flow diagram of study inclusion (adapted from PRISMA)

RCTs included in the systematic review of clinical effectiveness and network meta-analyses of ACR and EULAR responses are presented below (Table 5) (with MTX-naïve and cDMARD-experienced labels denoting trials included in populations 1 and 2/3 respectively).

Trial (with primary publication	Intervention	Population	Included in NMA?
details)			
Abe 2006 ⁵⁶	IFX	cDMARD	Not in NMA (14 week RCT)
		experienced	
ACT-RAY ⁵⁷	TCZ	cDMARD	Yes
		experienced	
ADACTA ⁵⁸	ADA, TCZ	cDMARD	Yes
		experienced	
ADORE ^{59,60}	ETN	cDMARD	Not in NMA (16 week study)
		experienced	
AIM ^{61,62} 63 64 65	ABT	cDMARD	Yes
		experienced	
AMPLE ⁶⁶	ADA. ABT	cDMARD	Yes
	,	experienced	
APPEAL 67,68	ETN	cDMARD	Not in NMA (16 week study)
		experienced	
$ARMADA^{69}$	ADA	cDMARD	Yes
		experienced	
ASPIRE ⁷¹	IFX	MTX-naive	Not in NMA (no ACR/EULAR data at 22-30 weeks)
ASSET ⁷²	ABT	cDMARD	Not in NMA (4 month RCT)
		experienced	
ASSURE ⁷³	ABT	cDMARD	Not in NMA (no ACR/EULAR data at 22-30 weeks)
		experienced	
ATTEST ⁷⁴	IFX, ABT	cDMARD	Yes
		experienced	
ATTRACT ⁷⁵	IFX	cDMARD	Yes
		experienced	
AUGUST II ⁷⁶	ADA	cDMARD	Yes
		experienced	
Bejarano 2008 ^{77,77}	ADA	MTX-naive	Not in NMA (no ACR/EULAR data at 22-30 weeks)
BeST ⁷⁸	IFX	MTX-naive	Yes
CERTAIN ⁷⁹	CTZ	cDMARD	Yes
		experienced	
CHANGE ⁸⁰	ADA	cDMARD	Yes
		experienced	
COMET ⁸¹ 82 83	ETN	MTX-naive	Yes

 Table 5: Trials included in the systematic review and network meta-analyses

Trial (with primary publication	Intervention	Population	Included in NMA?
details)			
DE019 ⁸⁴	ADA	cDMARD	Yes
		experienced	
DeFilippis 2006 ⁸⁵	ETN, IFX	cDMARD	Yes
		experienced	
Durez 2004 ⁸⁶	IFX	cDMARD	Not in NMA (14 week study, no valid comparator arm)
		experienced	
Durez 2007 ⁸⁶	IFX	MTX-naive	Yes
ERA ⁸⁷	ETN	MTX-naive	Yes
ETN Study 309 88,89	ETN	cDMARD	Yes
		experienced	
GO-BEFORE ⁹⁰	GOL	MTX-naive	Yes
GO-FORTH ⁹¹	GOL	cDMARD	Yes
		experienced	
GO-FORWARD ⁹²	GOL	cDMARD	Yes
		experienced	
GUEPARD ⁹³	ADA	MTX-naive	Not in NMA (no ACR/EULAR data at 22-30 weeks)
HIT HARD ⁹⁴	ADA	MTX-naive	Yes
IDEA ⁹⁵	IFX	MTX-naive	Not in NMA (no ACR/EULAR data at 22-30 weeks)
IIBCREATE ⁹⁶	ETN	cDMARD	Yes
		experienced	
JESMR ⁹⁷	ETN	cDMARD	Yes
		experienced	
Kay2008 ⁹⁸	GOL	cDMARD	Not in NMA (no eligible ACR/EULAR data at 22-30 weeks (due to PBO group
		experienced	crossover))
Kim 2007 ⁹⁹	ADA	cDMARD	Yes
		experienced	
Kume 2011 ¹⁰⁰	ADA, ETN	MTX-naive	Not in NMA (early escape at 12 weeks with no imputation for missing data)
Lan 2004 ¹⁰¹	ETN	cDMARD	Not in NMA (12 week study)
		experienced	
LARA ¹⁰²	ETN	cDMARD	Yes
		experienced	
MEASURE ¹⁰³	TCZ	cDMARD	Not in NMA (no ACR/EULAR data at 22-30 weeks)
		experienced	
Moreland 1999 ^{104 105} / Mathias	ETN	cDMARD	Yes
		experienced	

Trial (with primary publication	Intervention	Population	Included in NMA?
details)			
Nishimoto 2004 ¹⁰⁶	TCZ	cDMARD	Not in NMA (no ACR/EULAR data at 22-30 weeks)
		experienced	
OPERA ¹⁰⁷	ADA	MTX-naive	Not in NMA (no ACR/EULAR data at 22-30 weeks)
OPTIMA ¹⁰⁸	ADA	MTX-naive	Yes
PREMIER ¹⁰⁹	ADA	MTX-naive	Yes
Quinn 2005 ¹¹⁰	IFX	MTX-naive	Not in NMA (no ACR/EULAR data at 22-30 weeks)
RACAT ¹¹¹ / O'Dell ¹¹²	ETN	cDMARD	Yes
		experienced	
REALISTIC ¹¹³		cDMARD-	Not in NMA (no biologic-naïve ACR/EULAR data at 22-30 weeks)
	CTZ	experienced	
RED-SEA ¹¹⁴		cDMARD	Not in NMA (no ACR/EULAR data at 22-30 weeks)
	ADA, ETN	experienced	
SAMURAI ¹¹⁵	TCZ	cDMARD	Yes
		experienced	
SATORI ¹¹⁶	TCZ	cDMARD	Yes
		experienced	
STAR ¹¹⁷	ADA	cDMARD	Yes
		experienced	
START ¹¹⁸	IFX	cDMARD	Yes
		experienced	
Swefot ¹¹⁹	IFX	cDMARD	Yes
		experienced	
TACIT [unpublished AIC data] ¹²⁰	ADA / ETN /	cDMARD	Yes
	IFX	experienced	
TOWARD ¹²¹	TCZ	cDMARD	Yes
		experienced	
van de Putte 2004 ¹²²	ADA	cDMARD	Yes
		experienced	
Wajdula 2000 ¹²³	ETN	cDMARD	Not in NMA (12 week study)
		experienced	
Weinblatt 1999 ^{124,125}	ETN	cDMARD	Yes
		experienced	
Wong 2009 ¹²⁶	IFX	cDMARD	Not in NMA (no ACR/EULAR data at 22-30 weeks)
		experienced	

Trial (with primary publication	Intervention	Population	Included in NMA?
details)			
Zhang 2006 ¹²⁷	IFX	cDMARD	Not in NMA (18 week study)
		experienced	

Sixty RCTs were included in the systematic review of clinical effectiveness. These comprised six trials with head-to-head comparisons of included biologic interventions, one unpublished trial evaluating anti-TNF agents vs. cDMARDs, and 53 trials of biologic interventions compared with placebo (PBO) or cDMARDs.

MTX-naïve trial populations are considered separately in the following results section as population 1. For population 1 there were a total of 15 RCTs included in the systematic review (abatacept N=0, adalimumab N=6, certolizumab pegol N=0, etanercept N=2, golimumab N=1, infliximab N=5, tocilizumab N=0, and head to head biologics N=1). Eight of the MTX-naïve trials had data available for the NMA. All these seven provided ACR data and one of these trials also contributed EULAR data for analysis. A head-to-head trial of adalimumab vs. etanercept was identified but this trial was not eligible for the NMA (due to early escape at 12 weeks with no imputation for missing data).¹⁰⁰

There were 45 trials with cDMARD-experienced populations (considered as populations 2/3) (abatacept N=3, adalimumab N=7, certolizumab pegol N=2, etanercept N=11, golimumab N=3, infliximab N=7, tocilizumab N=6, head to head biologics N=5, and grouped anti-TNFs N=1). Of these, 30 trials had data available for the NMA.

Twelve trials which did not satisfy the inclusion criteria for the systematic review (as outlined in Section 5.1) were excluded from the systematic review but were used as additional evidence and explored in sensitivity analyses in the NMA. These trials contributed ACR and/or EULAR data to sensitivity analyses only. Of these, ten trials had populations with a small proportion that had received prior biologics ($\leq 20\%$). The other remaining trials were not in the base case because they had populations in which some patients were MTX-naive or cDMARD and others were not, or patients were responding to MTX.

In addition, two trials providing supplementary network linkages were included in the NMA. These RCTs did not include any of the included interventions as specified in the decision problem, but evaluated tofacitinib vs. PBO (Kremer 2012,¹²⁸ van der Heijde¹²⁹). Both of these trial populations had some prior biologic use (and therefore these trials were considered within the NMA sensitivity analyses).

Trial (with primary	Intervention	Allocated	Rationale for ineligibility in systematic
publication details)		population	review
ACQUIRE ¹³⁰	ABT	cDMARD	3.4-6% prior biologics
		experienced	
AMBITION ^{131,131,132}	TCZ	cDMARD	5-9% prior biologics, mix of MTX naïve
		experienced	and prior MTX
Yamamoto/JRAPID ¹³³	CTZ	cDMARD	16% prior biologics
		experienced	
LITHE ¹³⁴	TCZ	cDMARD	11% prior biologics
		experienced	
NCT00254293 ¹³⁵	ABT	cDMARD	2.6% prior biologics
		experienced	
OPTION ¹³⁶	TCZ	cDMARD	5-9% prior biologics
		experienced	
ORAL Standard ¹³⁷	ADA	cDMARD	10% prior biologics
	TOF	experienced	
RA0025 ¹³⁸	CTZ	cDMARD	15% prior biologics
		experienced	
RAPID1 ¹³⁹	CTZ	cDMARD	4% prior biologics
		experienced	
RAPID2 ¹⁴⁰	CTZ	cDMARD	1.6% prior biologics
		experienced	
TEAR ⁵⁴	ETN	cDMARD	Mix of MTX-naive and prior MTX, some
		experienced	patients (fewer than 30%) had any prior
		and MTX-naïve	cDMARD use
TEMPO ⁵⁵	ETN	cDMARD	Mix of MTX-naive, and prior MTX but not
		experienced	inadequate response
		and MTX-naïve	
Kremer 2012, ¹²⁸	TOF	cDMARD	Did not include any bDMARD within the
		experienced	NICE scope
van der Heijde ¹²⁹	TOF	cDMARD	Did not include any bDMARD within the
-		experienced	NICE scope

Table 6:Trials not eligible for the systematic review but providing additional
evidence for NMA sensitivity analyses

5.2.1.2 Quality of research available

The quality of the included RCTs is presented in Table 343 (Appendix 3) and summarised in Figure 3. There is a reasonably low risk of bias overall among studies included in this review. Items where risk of bias was greatest were those that assessed comparability of groups, blinding and selective reporting. Items generating a large proportion of 'unclear' responses (indicating a lack of clarity in reporting) were those relating to generation of allocation sequence, allocation concealment and selective reporting of outcomes. Items with a low risk of bias in a large proportion of trials were comparability at baseline, blinding, analysis by allocated treatment group and most (\geq 80%) participants randomised included in the final analysis. A modified intention to treat (mITT) population was used in around half of trials for efficacy and safety analyses (which was typically based on all randomised patients who received at least 1 dose of study drug being included in analyses).

Figure 3: Risk of bias graph

5.2.2 Summary of trials and population characteristics

There were some differences between trials in population characteristics, treatment and trial duration. For some trials, intervention and control arms differed in terms of numbers /combinations of concomitant cDMARDs. Some trials allowed physician discretion in other therapies. There was some variation between trials in prior treatment history and disease duration. There was some variation in how early withdrawals were decided, with variation in length of time on allocated treatment.

5.2.2.1 Trial characteristics

Adults with severe active RA not previously treated with MTX (population 1)

As discussed in Section 5.1, trials in which populations were MTX-naïve but had received some prior treatment with other cDMARDs were considered appropriate for inclusion in population 1. Study characteristics for trials included in population 1 are presented in Tables 344 to 345 (Appendix 3).

Adults with moderate to severe and severe active RA that have been previously treated with cDMARDs (but not bDMARDs) (cDMARD-experienced) (populations 2 and 3)

Study characteristics for trials included in populations 2 and 3 are presented in Tables 346 to 348 (Appendix 3)

5.2.2.2 Population characteristics

Adults with severe active RA not previously treated with MTX (population 1)

Population characteristics for population 1 are presented below (Tables 7 to 8).

Adults with moderate to severe and severe active RA that have been previously treated with cDMARDs (but not bDMARDs) (cDMARD-experienced) (populations 2 and 3)

Population characteristics for populations 2 and 3 are presented below (Tables 9 to 10).

Table 7:Population characteristics: Population 1 biologic head to head RCTs

Trial name / Author, year	Treatment arms	Mean Age (years, SD)	Gender (% female)	Early withdrawal plan reported?	Disease duration (years, SD)	Mean DAS28 score at baseline (SD) (ESR or CRP where stated)
Kume 2011 ¹⁰⁰	ADA mon n=22	63 (17)	85.7%	Yes	0.75 (0.42)	5.34 (1.4) ESR
	ETN mon n=21	51 (15)	85.7%		0.92 (0.42)	5.17 (1.5) ESR

Table 8: Population characteristics: Population 1 RCTs of biologic vs. DMARD(s) or PBO

Trial name / Author, year	Treatment arms	Mean Age (years, SD)	Gender (% female)	Early withdrawal plan reported?	Disease duration (years, SD)	Mean DAS28 score at baseline (SD) ESR (or CRP where stated)
Bejarano 2008 ⁷⁷	PBO+MTX n=73	47(9)	53.4	Yes	6.6	6.0(1.5)
	ADA+MTX n=75	47(9)	58.4		7.9	5.9 (1.4)
GUEPARD ⁹³	Initial MTX 12 weeks, then step-up therapy ^d based on DAS28 n=32	49.3 (15.2)	81.25%	Yes	4.4 (3.3–5.1) ^a months	ESR 6.15 (0.88) CRP 5.85 (0.91)
	Initial ADA+MTX 12 weeks, then step-up ^d therapy based on DAS28 n=33	46.3 (16.3)	78.79%		4.4 (3.3–5.1) ^a months	ESR 6.31 (0.78) CRP 5.80 (0.83)
HIT HARD ⁹⁴	MTX + PBO n=85	52.5 (14.3)	67.1	NR	0.13 (NR)	6.3 (0.9)
	ADA + PBO n=87	47.2 (12.1)	70.1		0.15 (NR)	6.2 (0.8)
OPERA ¹⁰⁷	MTX + PBO + steroid n=91	5.42 (28.3- 76.7) ^b	69	Yes	0.22 (0.12-0.41) ^b	5.6 (3.8-7.3) CRP ^b
	ADA + MTX + steroid n=89	56.2 (25.8- 77.6) ^b	63		0.24 (0.12-0.44) ^b	5.5 (3.8-7.8) CRP ^b
OPTIMA ¹⁰⁸	MTX + PBO n=517	50.7 (NR)	74	NR	0.38 (NR)	6
	ADA + MTX n=515	50.4 (NR)	74		0.30 (NR)	6
PREMIER ¹⁰⁹	MTX + PBO n=257	52.0 (13.1)	73.9	Yes	0.8 (0.9)	6.3 (0.9)
	ADA mon + PBO step up week 16	52.1 (13.5)	77.4]	0.7 (0.8)	6.4 (0.9)

Trial name / Author, year	Treatment arms	Mean Age (years, SD)	Gender (% female)	Early withdrawal plan reported?	Disease duration (years, SD)	Mean DAS28 score at baseline (SD) ESR (or CRP where stated)
	n=274					
	ADA + MTX step up week 16 n=268	51.9 (14.0)	72.0		0.7 (0.8)	6.3 (0.9)
COMET ^{81 82}	MTX +PBO n=268	52.3 (0.8)	73%	NR	months 9.3 (0.4)	6.5 (1.0)
	ETN+MTX	50.5 (0.9)	74%	-	months 8.8 (0.4)	6.5 (1.0)
	n=274					
ERA, Bathon 2000 Multicentre ¹⁴¹	MTX + PBO n=217	49 (13)	75	NR	1 (0.92)	NR
Walloonie	ETN + PBO n=207	50 (13)	74	-	1 (0.92)	NR
GO-BEFORE ⁹⁰	PBO+MTX n=160	48.6 (12.91)	(83.8	NR	$\leq 3 \text{ years} = 72.5\%$ $\leq 2 \text{ years} = 61.9\%$ $\leq 1 \text{ years} = 45.6\%$	ESR 6.2 (1.17)
	GOL + MTX n=159	50.9 (11.32)	84.9		$\frac{1}{2} = 1 \text{ years} = 43.0\%$ $\frac{1}{2} = 3 \text{ years} = 73.0\%$ $\frac{1}{2} = 2 \text{ years} = 64.2\%$ $\frac{1}{2} = 1 \text{ years} = 50.9\%$	ESR 6.3 (1.10) CRP 5.7 (1.05)
ASPIRE ⁷¹	PBO i.v. + MTX n=298	50 (13)	75	NR	0.9 (0.7)	NR
	IFX + MTX n=373	51 (12)	71		0.8 (0.7)	NR
BeST ⁷⁸	Sequential monotherapy (DAS-steered) n=126	54 (13)	68	Yes	23 weeks ^c	DAS44 4.5 (0.9)
	Step-up combination therapy (DAS-steered) n=121	54 (13)	71	•	26 weeks ^c	DAS44 4.5 (0.8)
	Initial combination therapy with prednisone (DAS- steered) n=133	55 (14)	65		23 weeks ^c	DAS44 4.4 (0.9)
	Initial combination therapy with IFX (DAS- steered) n=128	54 (14)	66		23 weeks ^c	DAS44 4.3 (0.9)
Durez 2007 ¹⁴²	MTX n=14	53.8 (15.2)	71%	NR	0.45 (0.29)	CRP
						5.2 (0.8)
	MTX +MP n=15	50.3 (14.2)	60%		0.25 (0.33)	5.3 (1.3)
	IFX +MTX n=15	50.0 (9.9)	67%	1	0.36 (0.31)	5.3 (1.1)

Trial name /	Treatment arms	Mean Age	Gender (%	Early withdrawal	Disease duration (years,	Mean DAS28 score at
Author, year		(years, SD)	female)	plan reported?	SD)	baseline (SD) ESR (or CRP
						where stated)
IDEA ⁹⁵	MP + MTX	NR	NR	Yes	NR (described as early RA,	NR
	n=112 across both groups				3-12 months symptom	
	IFX 3 mg/kg i.v. at weeks 0, 2, 6, 14, 22 + MTX	NR	NR		duration)	NR
	(IFX dose modifications permitted according to					
	DAS44 from week 26)					
Quinn 2005 ¹¹⁰	MTX + PBO	53.1 (13.7)	70%	NR	0.5 (0.31)	7.0 (0.9)
	n=10					
	IFX + MTX	51.3 (9.5)	60%		0.62 (0.38)	6.2 (0.8)
	n=10					

 ${}^{a} = Median (IQR)$ ${}^{b} = Median (5^{th}, 95^{th} centile range)$ ${}^{c} = Median$ ${}^{d} = more details in trial characteristics table in appendix$

Trial name / Author,	Treatment arms	Mean Age (years,	Gender (%	Early withdrawal plan	Disease duration (years,	Mean DAS28 score at baseline (SD)
year		SD)	female)	reported?	SD)	(ESR or CRP where stated)
ATTEST ⁷⁴	PBO+MTX	49.4 (11.5)	87.3	NR	8.4 (8.6)	ESR
	n=110					6.8 (1.0)
	IFX + MTX	49.1 (12.0)	82.4		7.3 (6.2)	6.8 (0.9)
	n=165 ^a					
	ABT + MTX	49.0 (12.5)	83.3		7.9 (8.5)	6.9 (1.0)
	n=156 ^b					
AMPLE ⁶⁶	ABT s.c.	51.4	81.4	NR	1.9	5.5
	n=318					(CRP)
	ADA	51.0	82.3		1.7	5.5
	n=328					(CRP)
RED-SEA ¹¹⁴	ADA + cDMARDs	55.0	75	NR	7.0 (range3.3–13.0)	5.6
	n=60					
	ETN50 +	53.2	70		5.5 (range2.0–14.5)	5.8
	cDMARDs					
	n=60					
ADACTA ⁵⁸	TCZ + PBO	54.4 (13.0)	79	Yes	7.3 (8.1)	6.7 (0.9)
	n=163					
	ADA + PBO	53.3 (12.4)	82		6.3 (6.9)	6.8 (0.9)
	n=163					
DeFilippis 2006 ¹⁴³	ETN + MTX	44.7 (14.17)	NR	NR	NR	NR
	n=16					
	IFX + MTX	46.79 (10.9)	NR		NR	NR
	n=16					

Table 9: Population characteristics: Population 2/3 biologic head to head RCTs

a^a IFX 3 mg/kg i.v. administered on days 1 (i.e. week 0), 15 (i.e. week 2), 43 (i.e. week 6) and 85 (i.e. week 12) and every 56 days (i.e. 8 weeks) thereafter (NB: licensed dose 3 mg/kg i.v. at weeks 0, 2, 6 and every weeks thereafter, adjustments in dosage and frequency of administration permitted after week 12 in license) + MTX

 b^{b} ABT dosed according to weight: patients weighing less than 60 kg, 60-100kg, or more than 100kg received 500 mg, 750 mg or 1000 mg of ABT respectively. ABT administered i.v. on days 1, 15 and 29 and every 28 days thereafter, up to and including day 337+ MTX

Trial name / Author, year	Treatment arms	Mean Age (years, SD)	Gender (% female)	Early withdrawal plan reported?	Disease duration (years, SD)	Mean DAS28 score at baseline (SD) ESR (or CRP where stated)
AIM ^{61,62}	MTX+PBO n=219	50.4	81.7	NR	8.9 (7.1)	6.4 (0.1)CRP
	ABT i.v.+ MTX n=433	51.5	77.8		8.5 (7.3)	6.4 (0.08) CRP
ASSET ⁷²	PBO + MTX n=23	52.5 (11.5)	69.6	NR	2.4 (1.4)	5.3 (0.9) CRP
	ABT i.v. (~10mg/kg) + MTX n=27	51.7 (11.2)	59.3		2.1 (1.5)	5.3 (1.1) CRP
ASSURE ⁷³	PBO + cDMARDs n=482	52.0 (12.1)	83.7	NR	9.5 (9.1)	NR
	ABT + cDMARDs n=959	52.2 (11.8)	83.1		9.5 (8.7)	NR
AUGUST II ⁷⁶	MTX+PBO n=76	54	84	NR	8.4	5.8
	ADA+MTX n=79	53	81		8.8	5.8
CHANGE ⁸⁰	PBO n=87	53.4	77	Yes	8.4	NR
	ADA n=91	56.9	79.1		9.9	NR
DE019 ⁸⁴	MTX+PBO n=200	56.1	73	Yes	10.9	NR
	ADA+MTX n=207	56.1	76.3		11	NR
STAR ¹¹⁷	PBO + cDMARDs n=318	55.8	79.2	NR	11.5	NR
	ADA + cDMARDs n=318	55	79.6		9.3	NR
van de Putte 2004 ¹²²	PBO s.c. n=110	53.5 (13.2)	77.3	Yes	11.6 (9.3)	7.09 (0.87)
	ADA mon n=113	52.7 (13.3)	79.6		10.6 (6.9)	7.07 (0.86)
ARMADA ⁶⁹	MTX+PBO n=62	56	82.3	Yes	11.1	NR

Table 10: Population characteristics: Population 2/3 (cDMARD experienced) vs. cDMARD(s) or PBO

Trial name / Author, year	Treatment arms	Mean Age (years, SD)	Gender (% female)	Early withdrawal plan reported?	Disease duration (years, SD)	Mean DAS28 score at baseline (SD) ESR (or CRP where stated)
	ADA+MTX	57.2	74.6		12.2	NR
12: 200799		40.0	057	37	6.0	ND
Kim 2007**	n=65	49.8	85.7	Yes	6.9	NK
	ADA+MTX n=63	48.5	95.4		6.8	NR
CERTAIN ⁷⁹	PBO + cDMARDs n=98	54.0 (12.4)	76.5	Yes	4.7 (3.3)	4.47 (0.34) ESR
	CTZ + DMARDs n=96	53.6 (11.9)	84.4		4.5 (3.5)	4.53 (0.43) ESR
REALISTIC ¹¹³	PBO + existing cDMARDs (biologic	NR (overall trial	79.7 (overall trial	NR	8.9 (9.1) (overall	DAS28-ESR 6.4 (0.9)
	naive subgroup) n=29	pop 53.9 (12.7) (overall trial pop, n=212)	pop, n=212)	No (NA as trial only 12 weeks)	trial pop, n=212)	DAS28-CRP 5.7 (0.9) (overall trial pop, n=212)
	CTZ existing cDMARDs (biologic naive subgroup) n=134	55.4 (12.4) (overall trial pop, n=851)	77.6 (overall trial pop, n=851)		8.6 (8.8) (overall trial pop, n=851)	DAS28-ESR 6.4 (0.9) DAS28-CRP 5.7 (0.9) (overall trial pop, n=851)
ADORE ^{59,60}	ETN n=159	53	79.2	NR	10.0	6.2
	ETN + MTX n=155	54	76.8	-	9.8	6.3
CREATEIIb ⁹⁶	DMARD + PBO n=65	51.5	83.1	NR	8.2(7.59)	6.3 (0.76)
	ETN50 + DMARD n=64	51.2	85.9		7.9(7.15)	6.4 (0.85)
ETN Study 309 ^{88,89} (Combe 2006)	SSZ + PBO n=50	53.3	82	NR	5.6	DAS44-ESR 5.0
(2000)	ETN + PBO n=103	51.3	78.6		7.1	DAS44-ESR 5.1
	ETN + SSZ n=101	50.6	80.2		6.5	DAS44-ESR 5.2
JESMR ¹⁴⁴	ETN n=74	58.1 (12.6)	87.3	NR	10.6 (10.5)	6.1
	ETN + MTX 6-8mg/week n=77	56.5 (11.1)	80.0	1	8.1 (7.7)	6.0
Lan 2004 ¹⁰¹	PBO + MTX n=29	50.79	90	NR	NR (eligibility more than one year)	NR

Trial name / Author,	Treatment arms	Mean Age (years,	Gender (%	Early withdrawal	Disease duration	Mean DAS28 score at
year		SD)	female)	plan reported?	(years, SD)	baseline (SD) ESR (or CRP
						where stated)
	ETN + MTX	47.55	83			NR
100	n=29					
LARA ¹⁰²	MTX + DMARD	48.6	90.1	NR	9.0 (7.5)	5.9
	n=142					
	ETN50 + MTX	48.4	88.3		7.9 (7.0)	5.9
104	n=281					
Moreland 1999 ¹⁰⁴	РВО	51	76	NR	12	NR
	n=80					
	ETN + PBO	53	74		11	NR
	n=78					
RACAT (O'Dell	MTX + SSZ + HCQ	57.8 (13)	43.4	Yes	5.5(9.3)	5.8
2013)	n=178					
	ETN50 + MTX	56 (13.2)	48.9		4.9(8.0)	5.9
102	n=175					
Wajdula 2000 ¹²⁵	РВО	53	NR	NA (12 week	7.2	NR
	n=111			study)		
	ETN	53	NR		7.5	NR
105	n=105					
Weinblatt 1999 ¹²⁵	MTX + PBO, n=30	53	73	Yes	13	NR
	ETN + MTX, n=59	48	90		13	NR
APPEAL 67	MTX plus DMARD (SSZ, HCQ or LEF),	48.5 (11.3)	88.4	NR	6.9 (8.5)	ESR 6.1 (1.1)
	n=103					CRP 5.34(1.1)
	ETN + MTX, n=197	48.4(12.0)	91.4		6.5 (7.3)	ESR 6.1 (1.1)
01						CRP 5.23 (1.1)
GO-FORTH ⁹¹	PBO + MTX 6-8mg/week	51.1 (11.6)	83.0	Yes	8.7 (8.2)	5.6 (0.99) ESR
	n=90					
	GOL + MTX 6-8mg/week	50.4 (9.9)	84.9		8.8 (8.8)	5.5 (1.18) ESR
02	n=89					
GO-FORWARD ⁹²	PBO + MTX	Mean (SD) =	82.0	Yes	Mean (SD)=	CRP
	n=133	51.2 (11.96)	(109/133)		8.62 (7.86)	5.458 (4.672 to 6.093) ^a
		52.0 (42.0) 50.0 1			65 (0.1 - 11.0)	ESR
		52.0 (42.0 to 58.0) "			$6.5 (3.1 \text{ to } 11.9)^{\circ}$	6.111 (5.260 to 6.574)"
		M (CD) 50.2	80.0	_	M (0D) 7.22	
	GOL + MIX	Mean $(SD)=50.3$	80.9		Mean $(SD) = 7.33$	CKP
	n=89	(10.98)	(72/89)		(7.85)	5.700 (4.028 to 6.322)
		$520(420 \text{ to } 570)^{a}$			$4.5(2.1 \pm 0.7)^{a}$	
		JZ.0 (43.0 10 J7.0)	1		4.3 (2.1 10 9.7)	

Trial name / Author, year	Treatment arms	Mean Age (years, SD)	Gender (% female)	Early withdrawal plan reported?	Disease duration (years, SD)	Mean DAS28 score at baseline (SD) ESR (or CRP where stated)
Kay 2008 ⁹⁸	PBO s.c. + MTX n=35	(46.0, 66.0) ^a	74.3%	Yes	5.6 (1.4, 10.9) ^a	CRP 5.8 (5.2, 6.4) ^a ESR 6 3 (5 7, 7 0) ^a
	GOL + MTX n=35	57.0 (50.0, 64.0) ^a	85.7%		8.2 (4.1, 14.3) ^a	$\begin{array}{c} \text{CRP} \\ \text{5.9} (5.5, 6.9)^{\text{a}} \\ \text{ESR} \\ 6.4 (5.6, 7.3)^{\text{a}} \end{array}$
Abe 2006 ⁵⁶	PBO + MTX r = 47	55.1 (7.6)	35/47 (74.5)	NR	7.5 (5.0)	NR
	$\frac{11=47}{1FX + MTX}$ n=49	55.2 (10.9)	40/49 (81.6)		9.1 (7.4)	NR
ATTRACT ⁷⁵	PBO + MTX n=88	51 (19.0, 75.0) ^a	70/88 (80)	NR	8.9 (0.8, 35.0) ^b	NR
	IFX + MTX n=86	56 (25.0, 74.0) ^a	70/86 (81)		8.4 (0.7, 45.0) ^b	NR
Durez 2004 ⁸⁶	Single i.v. infusion of MP (sodium hemisuccinate) at week 0 + MTX n=15	56 (35-79) ^b	73%	NR	12 (1-24) ^b	NR
	IFX + MTX n=12	48 (34-60) ^b	100%		10 (2-20) ^b	NR
START ¹¹⁸	PBO + MTX n=363	52.0 (44-61) ^a	83.2	Yes	8.4 (4-15) ^a	NR
	IFX + MTX n=360	53.0 (45-61) ^a	80.0		7.8 (3-15) ^a	NR
Swefot ¹¹⁹	SSZ + HCQ + MTX n=130	52.9 (13.9)	101/130 (78)	Yes	0.525	4.79 (1.05)
	IFX + MTX n=128	51.1 (13.3)	97/128 (76)		0.517	4.91 (0.98)
Wong 2009 ¹²⁶	PBO + MTX (with crossover to open- label IFX at week 24). n=9	50 (16)	8/9	Yes	NR	6.4 (0.8)
	IFX + MTX n=17	48 (12)	14/17		NR	6.2 (0.9)
Zhang 2006 ¹²⁷	PBO. + MTX n=86	48.9 (8.0)	84.9	NR	8 (6.22)	NR
	IFX + MTX n=87	47.9 (10.1)	85.1		7.13 (6.17)	NR

Trial name / Author, year	Treatment arms	Mean Age (years, SD)	Gender (% female)	Early withdrawal plan reported?	Disease duration (years, SD)	Mean DAS28 score at baseline (SD) ESR (or CRP where stated)
ACT-RAY ⁵⁷	TCZ + PBO	53.6 (11.9)	78.6	NR	8.3 (8.4)	ESR
	n=277					6.36 (1.00)
	TCZ + MTX	53.0 (13.4)	81.9		8.2 (8.0)	ESR
	n=276					6.33 (0.98)
MEASURE ¹⁰³	PBO + MTX	NR	NR	Yes	NR	NR
	n=69					
	TCZ + MTX	NR	NR		NR	NR
	n=69					
Nishimoto 2004 ¹⁰⁶	PBO	53.0 (31-73) ^b	73.6	NR	8.4 (0.7-52.7) ^b	NR
	n=53					
	TCZ mon	56.0 (25-74) ^b	83.6		8.3 (1.3-45.7) ^b	NR
	n=55					
SAMURA ¹¹⁵ I	cDMARDs	53.1	82	NR	124.8weeks	6.4
	n=145					
	TCZmon	52.9	79.6		114.4weeks	6.5
	n=157					
SATORI ¹¹⁶	PBO + MTX	50.8 (12.2)	(48/64 evaluated)	NR	8.7 (7.1)	
	n=64					6.2 (0.9)
	TCZ + PBO	52.6 (10.6)	90.2		8.5 (8.4)	6.1 (0.9)
	n=61					
TOWARD ¹²¹	PBO + stable cDMARDs	54 (13)	84	Yes	9.8 (9.1)	6.6 (1.0)
	n=415					
	TCZ + stable DMARDs	53 (13)	81		9.8 (8.8)	6.7 (1.0)
	n=805					
TACIT ¹²⁰ unpublished	Combination cDMARDs	58 (13)	70	Yes	4.4 (1.6-9.9) ^a	6.21 (0.92)
	n=107					
	TNFi + DMARD	57 (11)	78	1	5.9 (2.2-13.4) ^a	6.30 (0.81)
	n=107				. ,	

a = median (IQR)b = median (range)

Additional population characteristics are outlined in Tables 349 to 354 (Appendix 3).

5.2.3 Assessment of effectiveness

5.2.3.1 Disease activity and physical function

ACR response

Population 1

One head-to-head RCT in MTX-naïve patients was identified in the systematic review.¹⁰⁰ However, no ACR response data were available in this trial. A total of 12 RCTs of biologic vs. DMARD(s) or PBO reported ACR response data in MTX-naïve patients (5 for adalimumab, 2 for etanercept, 1 for golimumab, and 4 for infliximab) (Table 11). Statistically significant differences in ACR response favouring biologic treatment over comparator were reported for adalimumab (4 studies), etanercept (2 studies), golimumab (1 study) and infliximab (2 studies). Seven of the 12 RCTs contributed data to a NMA of ACR response for population 1 (3 for adalimumab, 1 for etanercept, 1 for golimumab, and 2 for infliximab).

(NB: In the outcome tables that follow throughout Section 5.2., citations are provided where data were extracted from sources additional to the primary publication).

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	N analysed	% achieving ACR20 response	% achieving ACR50 response	% achieving ACR70 response	Data used in NMA?
Bejarano 2008 ⁷⁷	PBO + MTX	56 weeks	73	54.8	45.2	37.5	N
	ADA + MTX	56 weeks	75	71.6	56.0	50.7	
GUEPARD ⁹³	Initial MTX 12 weeks, then step-up therapy in both groups based on DAS28	12 weeks	32	50	27	19	N
	Initial ADA+MTX 12 weeks, then step-up therapy in both groups based on DAS28	12 weeks	33	84	66	44	
GUEPARD ⁹³	Initial MTX 12 weeks, then step-up therapy in both groups based on DAS28	52 weeks	32	81	68	58	N
	Initial ADA+MTX 12 weeks, then step-up therapy in both groups based on DAS28	52 weeks	33	85	67	42	
HIT HARD ⁹⁴	PBO + MTX	24 weeks	85	67.6	48.7	26.8	Y
	ADA + MTX	24 weeks	87	79.0	63.8	48.0 ^a	
OPERA ¹⁰⁷	PBO + MTX + steroid	12 months	91	78	63	45	Ν
	ADA + MTX + steroid	12 months	89	86	80 ^a	65 ^a	
OPTIMA ¹⁴⁵	PBO + MTX	26 weeks	517	57	34	17	Y
	ADA + MTX	26 weeks	515	70 ^b	52 ^b	35 ^b	
PREMIER ¹⁰⁹	PBO + MTX	26 weeks	257	61.5	40.5	22.2	Y
(supplementary data	ADA mon + PBO	26 weeks	274	53.3	35.0	19.7	
identified via Clinicaltrials.gov)	ADA + MTX	26 weeks	268	68.7	58.6	42.5	
PREMIER ¹⁰⁹	PBO + MTX	1 year	257	63	46	28	Ν
	ADA mon + PBO	1 year	274	54 a (vs. MTX mon)	41	26	
	ADA + MTX	1 year	268	73 ^{a (vs. MTX mon), b} (vs. ADA mon)	62 ^b	46 ^b	
PREMIER ¹⁰⁹	PBO + MTX	2 years	257	56	43	28	Ν
	ADA mon + PBO	2 years	274	49	37	28	

Table 11:ACR response data: Population 1 RCTs of biologic vs. DMARD(s) or PBO

Trial name / Author, year	Treatment arms for which data	Assessment	Ν	% achieving	% achieving	% achieving	Data used
	extraction performed	time point	analysed	ACR20	ACR50	ACR70	in NMA?
				response	response	response	
	ADA + MTX	2 years	268	69 ^a (vs. MTX mon), b (vs. ADA mon)	59 °	47 °	
COMET ⁸¹	PBO + MTX	24 weeks	268	169	102	47	Y
	ETN+MTX	24 weeks	274	224	167	103	
COMET ⁸¹	PBO + MTX	52 weeks	268	67	49	28	N
	ETN+MTX	52 weeks	274	86	71	48 ^b	
COMET ⁸²	MTX in year 1, MTX in year 2	2 years (week 104)	99	61	46	32	N
	MTX year 1, ETN + MTX in year 2	2 years (week 104)	90	81 ^a	66 ^a	48 ^a	
	ETN + MTX in year 1, ETN + MTX in year 2	2 years (week 104)	111	86 ^a	70 ^a	57 ^b	
	ETN + MTX in year 1, ETN in year 2	2 years (week 104)	111	80	64	44	
ERA ¹⁴¹	PBO + MTX	6 months	217	58.2	31.54	14.24	Y
	ETN + PBO	6 months	207	65.42	40.14	20.94 ^a	
ERA ¹⁴¹	PBO + MTX	12 months	217	66 ^c	44 ^c	23 °	N
	ETN + PBO	12 months	207	72 °	49 ^c	26 °	
GO-BEFORE ⁹⁰	PBO + MTX	24 weeks	160	49.4	29.4	15.6	Y
	GOL + MTX	24 weeks	159	61.6 ^a	40.3 ^a	23.9	
GO-BEFORE ¹⁴⁶	PBO + MTX	52 weeks	160	63.1	40.6	24.4	N
	GOL + MTX	52 weeks	159	68.6	43.4	28.3	
ASPIRE ⁷¹	PBO + MTX	54 weeks	274	53.6	32.1	21.2	N
	IFX + MTX	54 weeks	351	62.4 ^a	45.6 ^b	32.5 ^a	
BeST ⁷⁸	Sequential monotherapy	6 months	126	49.69	NR	15.9	Y
	Step-up combination therapy	6 months	121	60.04	NR	11.77	
	Initial combination therapy + prednisone	6 months	133	70.63	NR	26.58	
	Initial combination therapy + IFX	6 months	128	74.3	NR	31.15	
Durez 2007 ¹⁴²	MTX	22 weeks	14	28.13	7.69	0	Y
	MTX + i.v. MP	N/A	N/A	N/A	N/A	N/A	

Trial name / Author, year	Treatment arms for which data	Assessment	Ν	% achieving	% achieving	% achieving	Data used
	extraction performed	time point	analysed	ACR20	ACR50	ACR70	in NMA?
				response	response	response	
	IFX + MTX	22 weeks	15	86.72 ^a	66.85 ^a	33.79 ^a	
Durez 2007 ¹⁴²	MTX	52 weeks	14	46 ^c	39 °	14 ^c	Ν
	MTX + i.v. MP	52 weeks	15	87 °	67 ^c	53 °	
	IFX + MTX	52 weeks	15	80 ^c	65 ^c	29 °	
Quinn 2005 ¹¹⁰	PBO + MTX	14 weeks	10	20	0	0	Ν
	IFX + MTX	14 weeks	10	60	60	60	
Quinn 2005 ¹¹⁰	PBO + MTX	54 weeks	10	60	40	30	Ν
	IFX + MTX	54 weeks	10	80	80	70	

a = P < 0.05

b = P < 0.001

^c = estimated from graphical data

Population 2/3

Four head to head RCTs reporting ACR response data in cDMARD-experienced patients were identified (Table 12). Statistically significantly greater proportions of patients achieved ACR20, ACR50 and ACR70 responses in the infliximab plus methotrexate and abatacept i.v. plus methotrexate treatment groups of the ATTEST trial⁷⁴ when compared against placebo plus methotrexate. Statistically significant findings were also identified in the ADACTA trial, whereby greater proportions of patients receiving tocilizumab monotherapy achieved ACR responses than among patients receiving adalimumab monotherapy.⁵⁸ Thirty six RCTS evaluating biologic vs. DMARD(s) or PBO in cDMARD-experienced patients reported ACR response data. Statistically significant findings were reported (4 adalimumab trials, 1 certolizumab pegol trial, 8 etanercept trials, 3 golimumab trials, 5 infliximab trials and 4 tocilizumab trials) for ACR response across a range of time points favouring biologic over comparator treatment.

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	Numbers analysed	% achieving ACR20 response	% achieving ACR50 response	% achieving ACR70 response	Data used in NMA?
ATTEST ⁷⁴	PBO + MTX	Day 197	110	41.8	20	9.1	Y
	IFX + MTX	Day 197	165	59.4 ^{a vs. PBO}	37 ^{a vs. PBO}	24.2 ^{a vs. PBO}	
	ABT i.v. + MTX	Day 197	156	66.7 ^{b vs. PBO}	40.4 ^{b vs. PBO}	20.5 ^{a vs. PBO}	
AMPLE ⁶⁶	ABT s.c.	28 weeks (197 days)	328	66.13	45.7	24.19	Y
	ADA	28 weeks (197 days)	318	64.52	42.47	22.58	
AMPLE ¹⁴⁷	ABT s.c.	1 year	328	64.8	46.2	29.2	N
	ADA	1 year	318	63.4	46	26.2	
ADACTA ⁵⁸	TCZ + s.c. PBO	24 weeks	163	65.0 ^a	47.2 ^a	32.5 ^a	Y
	ADA + i.v. PBO	24 weeks	162	49.4	27.8	17.9	
De Filippis 2011 ⁸⁵	ETN + MTX	22 weeks	15	60	26	7	Y
	IFX + MTX	22 weeks	15	60	33	7	
De Filippis 2011 ⁸⁵	ETN + MTX	54 weeks	15	74	53	7	Ν
	IFX + MTX	54 weeks	15	60	19	20	

Table 12: ACR response data: Population 2/3 biologic head to head RCTs

a = P < 0.05b = P < 0.001

Trial name /	Treatment arms for which	Assessment time point	Numbers	% achieving	% achieving	% achieving	Data used
Author, year	data extraction performed		analysed	ACR20	ACR50	ACR70	in NMA?
				response	response	response	
AIM^{62}	PBO + MTX	6 months	219	39.7	16.8	6.5	Y
	ABT i.v.+ MTX	6 months	433	67.9	39.9	19.8	
AIM^{62}	PBO + MTX	12 months	219	39.7	18.2	6.1	Ν
	ABT i.v.+ MTX	12 months	433	73.1	48.3	28.8	
AUGUST II ⁷⁶	PBO + MTX	26 weeks	76	46	15	5	Y
	ADA + MTX	26 weeks	79	71 ^b	38 ^b	18 ^a	
CHANGE ⁸⁰	PBO	21 weeks	87	13.8	57	11	v
CHINGE	ADA mon	24 weeks	91	44	24.2	12.1	_ ¹
DF019 ⁸⁴	PBO + MTX	24 weeks	200	29.5	9.5	2.5	V
DE017	ADA + MTX	24 weeks	200	63.3	39.1	20.8	_ ¹
DE019 ⁸⁴	PBO + MTX	52 weeks	200	24.0	95	4 5	N
DEGITY	ADA + MTX	52 weeks	207	58.9 ^b	41 5 ^b	23.2 b	1
STAR ¹¹⁷	PBO + cDMARDs	24 weeks	318	34.9	11.3	3.5	Y
STIR	ADA + cDMARDs	24 weeks	318	52.8 ^a	28.9 ^a	14.8 ^a	1
van de Putte	PBO s.c.	26 weeks	110	19.1	8.2	1.8	Y
2004 ¹²²	ADA mon	26 weeks	113	46.0 ^b	22.1 ^a	12.4 ^a	
ARMADA ⁶⁹	PBO + MTX	24 weeks	62	14.5	8.1	4.8	Y
	ADA + MTX	24 weeks	67	67.2	55.2	26.9	_
Kim 2007 ⁹⁹	PBO + MTX	24 weeks	63	36.5	14.3	7.9	Y
	ADA + MTX	24 weeks	65	61.5	43.1	21.5	
CERTAIN ⁷⁹	PBO + cDMARDs	24 weeks	98	15.3	7.1	3.1	Y
	CTZ + DMARDs	24 weeks	96	36.5 ^a	20.8 ^a	9.4	
REALISTIC ¹¹³	PBO + existing cDMARDs	12 weeks	29	20.7	NR	NR	Ν
	CTZ + existing cDMARDs	12 weeks	134	54.5	NR	NR	
ADORE ^{59,60}	ETN mon	16 weeks	155	71.0	41.9	17.4	N
	ETN + MTX	16 weeks	152	67.1	40.1	18.4	
CREATE 116 ^{96 148}		21 weeks	65	32.3	16.0	16	V
	$FTN50 \pm DMARD$	27 weeks	64	65.6	16.9	23 /	- ^Y
FTN309 ⁸⁹	$PBO \pm SS7$	27 weeks	50	28.0	14.0	2.0	v
L111309	FTN + PRO	27 weeks	103	73.8	14.0	2.0	- ¹
			105	a vs. SSZ	0.0	21.4	

Table 13:ACR response data: Population 2/3 RCTs of biologic vs. DMARD(s) or PBO

Trial name /	Treatment arms for which	Assessment time point	Numbers	% achieving	% achieving	% achieving	Data used
Author, year	data extraction performed		analysed	ACR20	ACR50	ACR70	in NMA?
				response	response	response	
	ETN + SSZ	24 weeks	101	74.0 a vs. SSZ, NS vs.	52.0 a vs. SSZ, NS vs.	25.0 a vs. SSZ, NS vs.	
				ETN+PBO	ETN+PBO	ETN+PBO	
ETN309 ⁸⁹	PBO + SSZ	104 weeks	50	34	10 °	2 °	Ν
	ETN + PBO	104 weeks	103	67 ^{a vs. SSZ}	45 ^{a vs. SSZ, c}	24 ^{a vs. SSZ, c}	_
	ETN + SSZ	104 weeks	101	77 ^{a vs. SSZ}	58 ^{a vs. SSZ, c}	27 ^{a vs. SSZ, c}	
JESMR ¹⁴⁴	ETN mon	24 weeks	69	63.8	47.8	26.1	Y
	ETN + MTX	24 weeks	73	90.4 ^b	64.4	38.4	
JESMR ¹⁴⁴	ETN mon	52 weeks	69	63.8	43.5	29	Ν
	ETN + MTX	52 weeks	73	86.3 ^b	76.7 ^b	50.7 ^a	
Lan 2004 ¹⁰¹	PBO + MTX	12 weeks	29	34	10	0	N
	ETN + MTX	12 weeks	29	90 ^b	66 ^b	24	
LARA ¹⁰²	MTX + DMARD	24 weeks	142	50	23.2	11.3	Y
	ETN50 + MTX	24 weeks	279	83.2 ^b	62 ^b	34.8 ^b	
Moreland 1999 ¹⁰⁴	РВО	3 months	80	23	8	4	N
105	ETN + PBO	3 months	78	62 ^b	41 ^b	15 ^a	
Moreland 1999 ¹⁰⁴	РВО	6 months	80	11	5	1	Y
105	ETN + PBO	6 months	78	59 ^b	40 ^b	15 ^b	
RACAT ¹¹¹	MTX + SSZ + HCQ	24 weeks	159	55.97	25.79	5.03	Y
	ETN50 + MTX	24 weeks	163	55.21	35.58	15.95 ^a	
RACAT ¹¹¹	MTX + SSZ + HCQ In analysis n=154 (of whom 39 switched to ETN)	48 weeks	154	57.4	35.5	18.1	N
	ETN50 + MTX n=175 In analysis n=155 (of whom 41 switched to MTX+SSZ+HCO)	48 weeks	155	65.8	42.6	26.5	
Waidula 2000 ¹²³	PBO	12 weeks	100	12	5	1	N
Wajdula 2000 ¹²³	ETN	12 weeks	109	70	34	13	1
Weinblatt 1999 ¹²⁵	PBO + MTX	24 weeks	30	27	3	0	Y
	ETN + MTX	24 weeks	59	71 ^b	39 ^b	15 ^a	1
Trial name /	Treatment arms for which	Assessment time point	Numbers	% achieving	% achieving	% achieving	Data used
--------------------------	---------------------------	---------------------------------	----------	-------------------	-------------------	-------------------	-----------
Author, year	data extraction performed		analysed	ACR20	ACR50	ACR70	in NMA?
	_		-	response	response	response	
APPEAL 67	MTX + DMARD (SSZ, HCQ	16 weeks	103	58	35	7	Ν
	or LEF)						
	ETN + MTX	16 weeks	197	79 ^b	57 ^b	19 ^a	
GO-FORTH ⁹¹	PBO + MTX	14 weeks	88	27.3	9.1	2.3	N
	GOL + MTX	14 weeks	86	72.1 ^b	43.0 ^b	22.1 ^b	
GO-FORTH ⁹¹	PBO + MTX	24 weeks	88	33.0	14.8	5.7	Y
	GOL + MTX	24 weeks	86	70.9 ^b	41.9 ^b	26.7 ^b	
GO-FORWARD ⁹²	PBO + MTX	14 weeks	133	33.1	9.8	3.8	Ν
	GOL + MTX	14 weeks	89	55.1 ^b	34.8 ^b	13.5 ^a	
GO-FORWARD ⁹²	PBO + MTX	24 weeks	133	27.8	13.5	5.3	Y
	GOL + MTX	24 weeks	89	59.6 ^b	37.1 ^b	20.2 ^b	
Kay 2008 ⁹⁸	PBO + MTX	16 weeks	35	37.1	5.7	0	N
	GOL + MTX	16 weeks	35	60.0	37.1 ^b	8.6	
EC							
Abe 2006 ⁵⁶	PBO + MTX	14 weeks	47	23.4	8.5	0	N
	IFX + MTX	14 weeks	49	61.2	30.6	10.2	
ATTRACT ⁷⁵	PBO + MTX	30 weeks	84	20	5	0	Y
	IFX + MTX	30 weeks	83	50	27 ^b	8 ^a	
ATTRACT	PBO + MTX	54 week	88	17	8	2	Ν
Lipsky et al.,	IFX + MTX	54 week	86	42 ^b	21 ^a	10 ^a	
2000 149							
Durez 2004 ⁸⁶	MP i.v. + MTX	14 weeks	12	8	0	0	Ν
	IFX + MTX	14 weeks	9	67 ^a	44 ^a	0	
Swefot ¹¹⁹	SSZ + HCQ + MTX	12 months after study inclusion	130	28	15	7	Ν
		(8-9 months (35-39 weeks) after					
		randomisation)					
	IFX + MTX	12 months after study inclusion	128	42 ^a	25 ^a	12	
		(8-9 months (35-39 weeks) after					
		randomisation)					

Trial name /	Treatment arms for which	Assessment time point	Numbers	% achieving	% achieving	% achieving	Data used
Author, year	data extraction performed		analysed	ACR20	ACR50	ACR70	in NMA?
				response	response	response	
Swefot ¹⁵⁰	SSZ + HCQ + MTX	24 months after study inclusion (20- 21 months (87-91 weeks) after randomisation)	130	33	22	14	N
	IFX + MTX	24 months after study inclusion (20- 21 months (87-91 weeks) after randomisation)	128	40	30	16	
START ¹¹⁸	PBO + MTX	22 weeks	363	25.5	9.7	4.7	Y
	IFX + MTX	22 weeks	360	58.0 ^b	32.1 ^b	14.0 ^b	
Zhang 2006 ¹²⁷	PBO + MTX	18 weeks	NR (86 randomised)	48.84	25.58	13.95	N
	IFX + MTX	18 weeks	NR (87 randomised)	75.86 ^b	43.68 ^a	22.99	
ACT-RAY ⁵⁷	TCZ + oral PBO	24 weeks	276	70.3	40.2	25.4	Y
	TCZ + MTX	24 weeks	277	71.5	45.5	24.5	
MEASURE ¹⁰³	PBO + MTX	12 weeks	NR	25	6	3	Ν
	TCZ + MTX	12 weeks	NR	51	17	10	
Nishimoto 2004 ¹⁰⁶	РВО	12 weeks	53	11.3	1.9	0	N
	TCZ	12 weeks	55	78.2 ^b	40.0 ^b	16.4 ^a	
SAMURAI ¹¹⁵	cDMARDs	24 weeks	145	38.67	17.64	6.86	Y
	TCZ	24 weeks	157	82.06	57.27	33.82	
SAMURAI ¹¹⁵	cDMARDs	52 weeks	145	34	13	6	Ν
	TCZ	52 weeks	157	78 ^b	64 ^b	44 ^b	
SATORI ¹¹⁶	PBO + MTX	24 weeks	64	25.0	10.9	6.3	Y
	TCZ + PBO capsules	24 weeks	61	80.0	49.2	29.5	
TOWARD ¹²¹	PBO + stable cDMARDs	24 weeks	413	24.5	9	2.9	Y
	TCZ + stable DMARDs	24 weeks	803	60.8 ^b	37.6 ^b	20.5 ^b	

a = P < 0.05 b = P < 0.001 c = estimated from graphical data

EULAR response

Population 1

The only head-to-head trial for methotrexate-naive patients (Kume 2011¹⁰⁰) did not report EULAR data. Three methotrexate-naive trials reported EULAR data, of which two were adalimumab trials (GUEPARD⁹³, OPERA¹⁰⁷), and one was a golimumab trial (GO-BEFORE⁹⁰) (Table 14 EULAR Population 1 vs DMARD(s) or placebo). GUEPARD⁹³ reported a significantly better EULAR response for adalimumab plus methotrexate compared with methotrexate alone at 12 weeks follow-up, but at one year follow-up when both groups had undergone step-up therapy, both groups were responding similarly well. OPERA¹⁰⁷ reported similar EULAR responses for adalimumab plus methotrexate plus placebo plus steroid at one year follow-up. GO-BEFORE⁹⁰, at 24 weeks, reported a significantly better EULAR response for golimumab plus methotrexate and for placebo plus methotrexate but at one year follow-up both groups were doing similarly well. GO-BEFORE⁹⁰ contributed EULAR data to the NMA, whereas the others did not report data within 22-30 weeks follow-up.

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	N analysed	% achieving <u>no</u> EULAR response	% achieving <u>moderate</u> EULAR response	% achieving <u>good</u> EULAR response	% EULAR responder (moderate/good)	In NMA?
GUEPARD ⁹³	MTX	week 12	32	NR	NR	25	NR	No
	ADA+MTX	week 12	33	NR	NR	63.6 a	NR	No
GUEPARD ⁹³	Initial MTX 12 weeks, then step-up therapy	week 52	32	NR	NR	65.6	NR	No
	Initial ADA+MTX 12 weeks, then step-up therapy	week 52	33	NR	NR	63.6	NR	No
OPERA ¹⁰⁷	MTX + PBO + steroid	12 months	91	7	20	74	94	No
	ADA + MTX + steroid	12 months	89	7	11	82	93	No
GO-	PBO + MTX	24 weeks	160	38.7	NR	NR	61.3	Yes
BEFORE ⁹⁰	GOL + MTX	24 weeks	159	27	NR	NR	73 ^a	Yes
GO- BEFORE ¹⁴⁶	PBO + MTX	52 weeks	160	25.6	NR	NR	74.4	No
	GOL + MTX	52 weeks	159	19.5	NR	NR	80.5	No

 Table 14:
 EULAR response: Population 1 RCTs of biologic vs. DMARD(s) or PBO

a = P < 0.05 reported

Population 2/3

There were three trials of head-to-head biologics for cDMARD experienced patients that reported EULAR response data (Table 15 EULAR Population 2/3 Head to head). ATTEST⁷⁴ showed that abatacept plus methotrexate and infliximab plus methotrexate responded similarly at six months follow-up. RED-SEA¹¹⁴ reported adalimumab plus cDMARDs and etanercept 50mg once a week plus cDMARDs treated patients responding similarly well at one year follow-up. ADACTA⁵⁸ reported that significantly more tocilizumab plus placebo treated patients achieved a good EULAR response than adalimumab plus placebo treated patients at six months follow-up. ADACTA⁵⁸ and ATTEST⁷⁴ contributed EULAR data to the NMA, whereas RED-SEA¹¹⁴ did not report data within 22-30 weeks follow-up.

Eleven other published trials reported EULAR data for biologics (Table 15 EULAR Population 2 vs DMARD(s) or placebo). With the exception of CTZ, data were available for all interventions of interest. Two adalimumab trials reported EULAR data. AUGUST II⁷⁶ reported a significantly better EULAR result for adalimumab plus methotrexate than for methotrexate plus placebo at six months. Adalimumab monotherapy had a significantly higher percentage of patients achieving at least moderate EULAR response than a placebo arm (van de Putte¹²²). Of four etanercept trials, two compared etanercept monotherapy with etanercept combined with methotrexate. One of these studies (ADORE⁵⁹) found similar EULAR responses for the groups at 16 weeks, whereas the other (JESMR ¹⁴⁴) reported significantly better results for combination therapy than for monotherapy at six months and one year. LARA¹⁰² reported significantly better EULAR response for etanercept 50mg once a week plus methotrexate compared with methotrexate in combination with either sulfasalazine or hydrochloroqunine at six months. Etanercept plus methotrexate had a similar percentage of participants with good or moderate EULAR response to methotrexate plus DMARD (sulfasalazine, hydrochloroqunine or leflunomide) in the APPEAL⁶⁷ trial at 16 weeks follow-up. Golimumab plus methotrexate was significantly better than methotrexate plus placebo in terms of EULAR response at both 14 and 24 weeks follow-up in the GO-FORWARD⁹² trial. Swefot¹¹⁹ reported infliximab plus methotrexate having significantly better EULAR response than triple therapy with cDMARDs (sulfasalazine plus hydrochloroqunine plus methotrexate) at one year, with the difference between groups not significant at six months and two years. Tocilizumab monotherapy was investigated in two of the three tocilizumab trials reporting EULAR data. Tocilizumab monotherapy results were similar to Tocilizumab in combination with methotrexate, in the ACT-RAY⁵⁷ trial at six months. tocilizumab monotherapy treatment had significantly better EULAR responses at 12 weeks compared with placebo (Nishimoto 2004¹⁰⁶). The TOWARD¹²¹ trial reported significantly better EULAR responses for tocilizumab in combination with stable cDMARDs than for placebo in combination with stable cDMARDs at six months. The following trials contributed EULAR data to the NMA:

AUGUST II⁷⁶; van de Putte 2004¹²²; JESMR¹⁴⁴; LARA¹⁰²; GO-FORWARD⁹²; Swefot¹¹⁹; ACT-RAY⁵⁷; TOWARD¹²¹. ADORE⁵⁹ and APPEAL⁶⁷ did not have data within 22-30 weeks.

In the unpublished trial TACIT

Table 15:EULAR: Population 2/3 biologic head to head RCTs

Trial name / Author, year	Treatment arms for which data extraction performed	Assessme nt time point	N analyse d	% achievin g <u>no</u> EULAR respons e	% achievin g <u>moderat</u> <u>e</u> EULAR respons e	% achievin g <u>good</u> EULAR respons e	% EULAR responder (moderate/goo d)	In NMA ?
ATTEST ⁷	PBO + MTX	Day 197	102	45.1	44.1	10.8	54.9	Yes
4	ABT + MTX	Day 197	150	23.3	56.7	20.0	76.7	Yes
	IFX + MTX	Day 197	156	34.0	42.9	23.1	66.0	Yes
RED- SEA ¹¹⁴	ADA+cDMAR Ds	52weeks	60	40.4	33.3	26.3	59.6	No
	ETN50 + cDMARDs	52weeks	60	51.5	16.7	31.7	48.4	No
ADACTA	TCZ + PBO	24 weeks	163	22.1	26.4	51.5 ^a	77.9	Yes
58 58	ADA + PBO	24 weeks	162	45.1	35.1	19.8	54.9	Yes

^a = P<0.01 reported

Table 16:EULAR: Population 2/3 RCTs of biologic vs. DMARD(s) or PBO

Trial name / Author, year	Treatme nt arms for which data	Assessment time point	N analyse d	% achievi ng <u>no</u> EULAR respons	% achievi ng <u>modera</u> <u>te</u>	% achievi ng <u>good</u> EULAR respons	% EULAR responder (moderate/go od)	In NMA ?
	extractio n perform ed			e	EULAR respons e	e		
AUGUST II ⁷⁶	MTX + PBO	26weeks	76	41	NR	NR	59	Yes
	ADA + MTX	26weeks	79	19	NR	NR	81 ^a	Yes
van de	PBO	26 weeks	110	73.6	22.8	3.6	26.4	Yes
Putte 2004 ¹²²	ADA	26 weeks	113	44.2	47.0	8.8	55.8	Yes
ADORE ^{59,6}	ETN	16 weeks	156	20.0	NR	NR	80.0	No
	ETN + MTX	16 weeks	151	17.6	NR	NR	82.4%	No
JESMR ¹⁴⁴	ETN	24 weeks	69	29.0	37.7	33.3	71.0	Yes
	ETN + MTX 6- 8mg/wee k	24 weeks	73	4.1 °	43.8 °	52.1 °	95.9	Yes
JESMR ¹⁴⁴	ETN	52 weeks	69	NR	NR	33.3	NR	No
	ETN + MTX 6- 8mg/wee k	52 weeks	73	NR	NR	52.1 ^b	NR	No
LARA ¹⁰²	MTX + DMARD	24weeks	142	35.2	NR	12	64.8	Yes
	ETN50 + MTX	24weeks	279	8.2	NR	47 ^b	91.8 ^b	Yes
APPEAL ^{67,}	MTX + DMARD (SSZ, HCQ or LEF)	16 weeks	103	26.2	NR	NR	73.8	No
	ETN + MTX	16 weeks	197	12.2	NR	NR	87.8	No
GO- FORTH ⁹¹	PBO + MTX	6 months	84	51.2	35.7	13.1	48.8	Yes
	GOL + MTX	6 months	81	16.0	37.0	46.9	84.0	Yes
GO- FORWAR	PBO + MTX	14 weeks	133	55.6	NR	NR	44.4	No
D**	GOL + MTX	14 weeks	89	29.2	NR	NR	70.8 °	No
GO- FORWAR	PBO + MTX	24 weeks	133	57.9	NR	NR	42.1	Yes
D ²	GOL +	24 weeks	89	28.1	NR	NR	71.9	Yes

Trial name	Treatme	Assessment	Ν	%	%	%	% EULAR	In
/ Author,	nt arms	time point	analyse	achievi	achievi	achievi	responder	NMA
year	for which		d	ng <u>no</u> FUL A D	ng	ng <u>good</u>	(moderate/go	?
	data			EULAK respons	te	respons	ou)	
	extractio			e	EULAR	e		
	n				respons			
	perform				e			
	ed							
CT A DT ¹¹⁸	MTX	5.5	222	50	ND	ND	4.4	V
START	PBO + MTV	5.5 months	332	56	NK	NK	44	Yes
	IFX +	5.5 months	333	25	NR	NR	75	Ves
	MTX	5.5 months	555	23	111	1.11	15	105
Swefot ¹¹⁹	SSZ +	23.8 weeks	130	NR	NR	23.8	NR	Yes
	HCQ +							
	MTX							
	IFX +	23.8 weeks	128	NR	NR	33.6	NR	Yes
Swefot ¹¹⁹		12 months	130	51	NP	25	40	No
5 weith	HCO +	after study	150	51		23	49	NO
	MTX	inclusion (8-						
		9 months						
		(35-39						
		weeks) after						
		randomisatio						
	IFX +	12 months	128	40	NR	39 ^a	60	No
	MTX	after study	120	10	1.11	57	00	110
		inclusion (8-						
		9 months						
		(35-39						
		weeks) after						
		n)						
)						
Swefot ¹¹⁹	SSZ +	24 months	130	50	NR	31	50	No
	HCQ +	after study						
	MTX	inclusion						
		(20-21 months (87-						
		91 weeks)						
		after						
		randomisatio						
		n)	120					
	IFX + MTV	24 months	128	41	NR	38	59	No
	IVIIA	inclusion						
		(20-21						
		months (87-						
		91 weeks)						
		after						
		randomisatio						
	TC7 ±	n) 24 weeks	276	13.8	3/1.8	51.4	86.2	Ves
RAY ⁵⁷	PBO	24 WEEKS	270	13.0	54.0	51.4	00.2	105
	TCZ +	24 weeks	277	10.5	27.8	61.7	89.5	Yes
	MTX							
Nishimoto	PBO	12 weeks	53	81.1	NR	0	18.9	No

Trial name / Author, year	Treatme nt arms for which data extractio n perform ed	Assessment time point	N analyse d	% achievi ng <u>no</u> EULAR respons e	% achievi ng <u>modera</u> <u>te</u> EULAR respons e	% achievi ng <u>good</u> EULAR respons e	% EULAR responder (moderate/go od)	In NMA ?
2004^{106}	TCZ	12 weeks	55	9.1	NR	18.2 ^b	90.9 ^b	No
SATORI ¹¹⁶	MTX	6 months	64	60.3	36.5	3.2	39.7	Yes
	TCZ	6 months	61	3.4	31.1	65.5	96.6	Yes
TOWARD ¹	PBO + stable cDMAR Ds	24 weeks	413	62.5	NR	NR	37.5	Yes
	TCZ + stable DMARD s	24 weeks	803	20.3	NR	NR	79.7 ^b	Yes
TACIT ¹²⁰ (AIC)	intensive DMARD s	6 months						Yes
	grouped biologics	6 months						Yes

^a = P<0.05 reported

^b = P<0.01 reported

DAS28

Population 1

Population 1 (methotrexate-naive patients) DAS

One head-to-head biologics trial of methotrexate-naive patients reported DAS28 data.¹⁰⁰ (Appendix 3, Table 355 DAS Population 1 Head to head trial). At 24 weeks follow-up, Kume ¹⁰⁰ reported similar mean change from baseline in DAS28-ESR for adalimumab monotherapy and etanercept monotherapy.

Thirteen other trials reported DAS28 mean change or remission data for methotrexate-naive patient trials, comprising five adalimumab trials (GUEPARD⁹³, HIT HARD⁹⁴, OPERA¹⁰⁷, OPTIMA¹⁰⁸, PREMIER¹⁰⁹), one etanercept trial (COMET⁸¹), one golimumab trial (GO-BEFORE⁹⁰), and five infliximab trials (ASPIRE⁷¹, BeST⁷⁸ Durez 2007⁸⁶, IDEA⁹⁵, Quinn 2005¹¹⁰). Across all interventions, where reported, mean DAS28 improved slightly in all treatment arms, including control cDMARD arms. Biologic treatment arms reported significantly higher percentage of patients meeting predefined DAS28 remission (usually <2.6), or having significantly more improved DAS28 than baseline, than controls for: adalimumab plus methotrexate than methotrexate plus placebo (HIT HARD⁹⁴, PREMIER¹⁰⁹); adalimumab plus methotrexate plus steroid than methotrexate plus placebo

than steroid (OPERA¹⁰⁷); etanercept plus methotrexate than methotrexate plus placebo (COMET⁸¹); golimumab plus methotrexate than methotrexate plus placebo at six months (not one year follow-up) (GO-BEFORE⁹⁰); infliximab plus methotrexate than methotrexate plus placebo (ASPIRE⁷¹, Quinn 2005¹¹⁰ 2005). Adalimumab monotherapy had similar DAS28 results to methotrexate plus placebo (PREMIER¹⁰⁹), as did infliximab plus methotrexate to methotrexate plus MP (Durez 2007⁸⁶, IDEA⁹⁵). Step-up therapy with initial adalimumab (GUEPARD⁹³) or infliximab (BeST⁷⁸) did not differ from control groups after one year or six months respectively. Results are shown in table (Table 356 DAS Population 1 vs. DMARD(s) or PBO) in Appendix 3.

Population 2/3

Four head-to-head trials of cDMARD-experienced patients reported DAS28 results (ATTEST⁷⁴, AMPLE⁶⁶, RED-SEA¹¹⁴, ADACTA⁵⁸) (Appendix 3, Table 357 DAS Population 2 Head-to-head trials). Abatacept, adalimumab, etanercept 50mg once weekly, infliximab and tocilizumab treatment arms all showed some improvement in DAS28. There were similar levels of DAS28 improvement for abatacept plus methotrexate and infliximab plus methotrexate (both of which were significantly more improved than methotrexate plus placebo) (ATTEST⁷⁴), abatacept and adalimumab monotherapies (AMPLE⁶⁶), and adalimumab and etanercept 50mg once weekly both in combination with cDMARDs (RED-SEA¹¹⁴). ADACTA⁵⁸ reported significantly more improvement for tocilizumab monotherapy.

Twenty other trials reported DAS28 mean change or remission data for cDMARD experienced patient trials (Appendix 3, Table 358 DAS Population 2 vs DMARD(s) or PBO), comprising two abatacept trials (AIM⁶², ASSET⁷²), one adalimumab trial (van de Putte 2004¹²²), two certolizumab pegol trials (CERTAIN⁷⁹, REALISTIC¹¹³), five etanercept trials (CREATE IIB⁹⁶, JESMR, LARA¹⁰², RACAT¹⁵¹, APPEAL ⁶⁷), three golimumab trials (GO-FORTH⁹¹, GO-FORWARD⁹², Kay 2008⁹⁸), two infliximab trials (START¹¹⁸, Wong 2009¹²⁶) and five tocilizumab trials (ACT-RAY⁵⁷, MEASURE¹⁰³, SAMURAI¹¹⁵, SATORI¹¹⁶, TOWARD¹²¹). Across all interventions, where reported, mean DAS28 improved in all treatment arms, including control cDMARD arms. Biologic treatments arms reported higher percentages of patients meeting pre-defined DAS28 remission (usually <2.6) than non-biologic control arms with one or two cDMARDs or baseline cDMARDs. There were significantly higher percentage of patients meeting pre-defined DAS28 remission (usually <2.6), or having significantly more improved DAS28 than baseline, than controls for: abatacept plus methotrexate than methotrexate plus placebo (AIM⁶²); adalimumab monotherapy than placebo (van de Putte¹²²); etanercept 50mg once weekly plus methotrexate than methotrexate plus one other cDMARD (LARA¹⁰², APPEAL⁶⁷); etanercept 50mg once weekly plus methotrexate than methotrexate plus sulfasalazine plus hydrochloroqunine at 24 weeks (in an analysis of treatment completers only, although not after 48 weeks with option to switch therapy) (RACAT¹⁵¹); golimumab plus methotrexate than methotrexate plus placebo at six months (not one year follow-up) (GO-FORTH⁹¹, GO-FORWARD⁹², Kay 2008⁹⁸); infliximab plus methotrexate than methotrexate plus placebo (START,¹¹⁸ Wong 2009¹²⁶); tocilizumab plus methotrexate than tocilizumab monotherapy (ACT-RAY⁵⁷) or than methotrexate plus placebo (MEASURE¹⁰³); tocilizumab monotherapy than cDMARDs (SAMURAI¹¹⁵), although not compared with methotrexate plus placebo (SATORI¹¹⁶); tocilizumab plus DMARDS than DMARDs plus placebo (TOWARD¹²¹). Etanercept plus methotrexate performed significantly better than etanercept monotherapy (JESMR), although not at 16 weeks follow-up (ADORE⁵⁹).

In the unpublished trial TACIT, treatment with grouped biologics had a slightly better (significance testing not available at time of writing) DAS28 improvement than intensive DMARDs at six months.

HAQ-DI

Population 1

Ten trials reported HAQ-DI change from baseline (Table 359 HAQ-DI Population 1 trials, Appendix 3). These comprised on head-to-head trial (Kume 2011), six adalimumab trials (Bejarano 2008^{77,77}, GUEPARD⁹³, HIT HARD⁹⁴, OPERA,¹⁰⁷ OPTIMA¹⁰⁸, PREMIER¹⁰⁹), two etanercept trials (COMET⁸¹, ERA⁸⁷), and one golimumab trial (GO-BEFORE⁹⁰). There were improvements in HAQ-DI for most treatments, interventions and controls, although there tended to be more improvement for biologics than control arms, although not in all cases (ERA⁸⁷).

Population 2/3

Four head to head trials (ATTEST⁷⁴, AMPLE⁶⁶, ADACTA⁵⁸, DeFilippis 2006⁸⁵) reported HAQ-DI change from baseline (Table 360 HAQ-DI Population 2 Head-to-head trials, Appendix 3). All trial arms improved HAQ-DI. Abatacept-treated patients achieved similar results to infliximab (ATTEST⁷⁴) and adalimumab (AMPLE⁶⁶). Tocilizumab monotherapy produced slightly more improvement than adalimumab monotherapy [significance testing not reported] (ADACTA⁵⁸). In a small trial (n=32) etanercept plus methotrexate produced slightly better HAQ-DI results than infliximab plus methotrexate (DeFilippis 2006⁸⁵).

Twenty eight other trials reported HAQ-DI change from baseline for cDMARD-experienced patients (Appendix 3, Table 361 HAQ-DI Population 2 vs. DMARD(s) or PBO), comprising two abatacept trials (AIM⁶², ASSURE⁷³), four adalimumab trials (CHANGE⁸⁰, DE019⁸⁴,van de Putte 2004¹²², ARMADA⁶⁹), two certolizumab pegol trials (CERTAIN⁷⁹, REALISTIC¹¹³), eleven etanercept trials (ADORE⁵⁹, etanercept Study 309⁸⁸, JESMR, Lan 2004,¹⁰¹ LARA¹⁰², Moreland 1999¹⁰⁴, RACAT¹⁵¹, Wajdula 2000¹²³, Weinblatt 1999¹²⁴, APPEAL ⁶⁷, IIbCREATE), two golimumab trials (GO-FORTH⁹¹, GO-FORWARD⁹²), four infliximab trials (ATTRACT⁷⁵, Durez 2004, START,¹¹⁸ Zhang 2006¹²⁷) and two tocilizumab trials (ACT-RAY⁵⁷, TOWARD¹²¹). Generally, there was some improvement in

HAQ-DI for all trial arms, with more improvement for biologics than control arms. In the unpublished trial TACIT, treatment with grouped biologics had slightly less reduction in HAQ-DI from baseline compared with intensive DMARDs at six months.

Joint counts and assessment of inflammation markers (CRP and ESR)

Population 1

The only head to head RCT in methotrexate-naïve patients identified in this review ¹⁰⁰ did not report any follow-up or change data on joint counts or assessment of inflammation markers. A total of seven RCTs of biologic vs. DMARD(s) or PBO reported follow-up or change data on joint counts or assessment of inflammation markers in methotrexate-naïve patients (3 for adalimumab, 1 for etanercept, 1 for golimumab, and 2 for infliximab) (Table 362, Appendix 3). Statistically significant differences in swollen joint count favouring biologic treatment over comparator were reported for adalimumab (1 study) and etanercept (1 study). Statistically significant differences in tender joint count favouring biologic treatment over comparator were reported for adalimumab (2 studies) and golimumab (1 study). Statistically significant differences in CRP response favouring biologic treatment over comparator were reported for adalimumab (1 study). Statistically significant differences in ESR response were not identified in any trials.

Population 2/3

Four head to head RCTs reporting data on joint counts and/or assessment of inflammation markers in cDMARD-experienced patients were identified (Table 363, Appendix 3). Similar improvements were made in swollen joint count, tender joint count and CRP level among patients in the subcutaneous abatacept plus methotrexate and adalimumab plus methotrexate arms of the AMPLE trial.¹⁴⁷ Likewise, swollen joint count, tender joint count and CRP level were not significantly different between patients in the adalimumab plus cDMARDs and etanercept plus cDMARDs arms of the RED SEA trial.¹¹⁴ The De Filippis trial¹⁴³ reported no difference in percentage change between arms for swollen joint count and CRP level but reported significantly greater improvements in tender joint count in the etanercept plus methotrexate arm relative to the infliximab vs. methotrexate arm. Finally, similar reductions in swollen joint count and tender joint count were reported for patients in the double-dummy trial ADACTA.⁵⁸

Twenty RCTs of biologic vs. DMARD(s) or PBO reported follow-up or change data on joint counts or assessment of inflammation markers in cDMARD-experienced patients (Table 364, Appendix 3). Statistically significant differences in swollen joint count favouring biologic treatment over comparator were reported in nine trials (1 adalimumab trial, 5 etanercept trials, 1 golimumab trial, 1 tocilizumab trial and 1 trial of TNF inhibitors). Statistically significant differences in tender joint

count favouring biologic treatment over comparator were reported in nine trials (1 adalimumab trial, 4 etanercept trials, 1 golimumab trials, 1 infliximab trial, 1 tocilizumab trial and 1 trial of TNF inhibitors). Statistically significant differences in CRP response favouring biologic treatment over comparator were reported in six trials (1 adalimumab trial, 4 etanercept trials and 1 tocilizumab trial). Statistically significant differences in ESR response favouring biologic treatment over comparator were reported in seven trials (5 etanercept trials, 1 tocilizumab trial and 1 trial of TNF inhibitors).

One trial of biologic and cDMARD combination therapy (etanercept plus methotrexate) versus biologic monotherapy (JESMR) reported significantly greater improvements in swollen joint count tender joint count and ESR in the combination therapy arm, but significantly greater improvements in CRP in the monotherapy arm.⁹⁷ Another trial of biologic and cDMARD combination therapy versus monotherapy (ACT-RAY⁵⁷; tocilizumab plus methotrexate versus tocilizumab plus placebo) reported similar changes from baseline in swollen joint count and tender joint count.⁵⁷

Patient and physician global assessments of disease activity

Population 1

No data were available for this outcome from the single identified head to head RCT in methotrexatenaïve patients. ¹⁰⁰ Four population 1 trials in methotrexate-naïve patients contributed global assessment evidence (presented in Table 365), of which 2 were for adalimumab, 1 for golimumab and 1 for infliximab. Of these 4 trials, statistically significant improvements in global assessments of disease activity were reported for 1 trial favouring golimumab plus methotrexate over placebo and methotrexate (GO-BEFORE),⁹⁰ and for 1 trial (BeST)¹⁵² which favoured initial combination cDMARD therapy plus prednisone and initial combination cDMARD therapy plus infliximab over sequential cDMARD monotherapy and step-up combination cDMARD therapy.

Population 2/3

Patient and physical global assessment of disease activity data were reported in 3 head to head RCTs of cDMARD-experienced patients (Table 366). No statistically significant differences in treatment response were reported.

A total of 23 further RCTs evaluated global assessments of disease activity in 4 adalimumab trials, 4 etanercept trials, 1 golimumab trial and 3 infliximab trials, Table 367.

5.2.3.2 Radiological progression / Joint damage Population 1

Data were extracted from RCTs where absolute baseline and follow-up, mean change from baseline or proportion change from baseline in joint outcomes were available.

No joint damage / radiological progression data were identified from the single identified head-tohead population 1 trial.¹⁰⁰ Six trials of biologic interventions vs. DMARD(s) or PBO in methotrexatenaïve patients reported change in radiographic scores and/or radiographic non-progression (3 adalimumab trials, 2 etanercept trials and 1 infliximab trial). Joint outcomes were assessed using a range of radiographic scores,¹⁵³ and magnetic resonance imaging. Data for radiographic scores are presented in Table 368 (Appendix 3). Statistically significant results favouring intervention in the reduction of radiological progression were reported for 2 adalimumab trials, 1 etanercept trial, and 1 infliximab trial. Two trials (1 each for adalimumab and golimumab) provided joint assessment data as measured by magnetic resonance imaging (both of which reported statistically significant findings favouring biologic treatment (Table 369).

Population 2/3

One head to head trial (Table 370) (adalimumab vs. abatacept) and ten trials of biologic interventions vs. DMARD(s) or PBO in cDMARD-experienced patients reported change in radiographic scores and/or rates of radiographic non-progression (1 for abatacept, 1 for adalimumab, 3 for etanercept, 1 for golimumab, 2 for infliximab and 2 for tocilizumab) (Table 371). Statistically significant results indicating reduced radiological progression were reported for 1 abatacept trial, 1 adalimumab trial, 2 etanercept trials, 1 golimumab trial, both infliximab trials, and 1 tocilizumab trial. Joint outcome data as assessed by magnetic resonance imaging were presented in 3 trials (1 each for abatacept, golimumab and infliximab) (Table 372), with statistically significant benefits to joint outcomes reported for the golimumab trial.

5.2.3.3 Pain

Population 1

Six trials reported pain VAS score change from baseline (Table 373 Pain VAS Population 1 vs DMARD(s) or PBO, Appendix 3). These comprised three adalimumab trials (OPERA¹⁰⁷, OPTIMA¹⁰⁸, PREMIER¹⁰⁹), one etanercept trial (COMET⁸¹), one golimumab trial (GO-BEFORE⁹⁰), and one infliximab trial (BeST⁷⁸). There were reductions in pain VAS for most treatments, and there were significant benefits for all four biologics compared with controls.

Population 2/3

Two head-to-head trials (AMPLE⁶⁶, DeFilippis 2006⁸⁵) reported pain VAS change from baseline (Table 374 Pain VAS Population 2 Head to head trials, Appendix 3). All trial arms reduced pain VAS score. No significant differences were reported between groups.

Twenty seven other trials reported Pain VAS change from baseline for cDMARD-experienced patients (Appendix 3, Table 375 HAQ-DI Population 2 vs DMARD(s) or PBO), comprising two abatacept (AIM⁶², ASSURE⁷³), five adalimumab trials (CHANGE⁸⁰, DE019⁸⁴,van de Putte 2004¹²², ARMADA⁶⁹, Kim 2007⁹⁹), one certolizumab pegol trial (CERTAIN⁷⁹), nine etanercept trials (ADORE⁵⁹, etanercept Study 309⁸⁸, JESMR, Lan 2004,¹⁰¹ LARA¹⁰², Moreland 1999¹⁰⁴, RACAT¹⁵¹, Weinblatt 1999¹²⁴, APPEAL⁶⁷), one golimumab trial (GO-FORWARD⁹²), two infliximab trials (ATTRACT⁷⁵, START¹¹⁸) and one tocilizumab trial (ACT-RAY⁵⁷). Generally, there was some reduction in pain VAS for all trial arms. Abatacept had similar reductions compared with control groups (AIM⁶², ASSURE⁷³). There was at least one trial reporting significantly more pain VAS reduction than control for each of adalimumab, certolizumab pegol, etanercept, golimumab and infliximab. In the RACAT¹⁵¹ trial etanercept 50mg once weekly plus methotrexate had similar results to methotrexate plus sulfasalazine plus hydrochloroquinine. In the ACT-RAY⁵⁷ trial tocilizumab monotherapy had similar results to tocilizumab plus methotrexate.

5.2.3.4 *Fatigue*

Population 1

The only head to head RCT in MTX-naïve patients identified in this review ¹⁰⁰ did not report any follow-up or change data on fatigue. A total of 3 RCTs of biologic vs. DMARD(s) or PBO reported follow-up or change data on fatigue in MTX-naïve patients (2 for adalimumab and 1 for etanercept) (Tables 376 – 377, Appendix 3). Statistically significant differences favouring biologic treatment over comparator were reported for VAS score (1 etanercept trial) and FACIT-F score (1 adalimumab trial). One further adalimumab trial reported significant differences between adalimumab and methotrexate arms at follow-up in a mixed-model repeated measures analysis, but the values appear to be similar.

Population 2/3

Two head to head RCTs reporting data on fatigue in cDMARD-experienced patients were identified (Tables 378 - 379, Appendix 3). Similar improvements were made on fatigue VAS score among patients in the subcutaneous abatacept plus methotrexate and adalimumab plus methotrexate arms of the AMPLE trial ¹⁴⁷ and on FACIT-F score among patients in the tocilizumab plus placebo adalimumab and adalimumab plus placebo tocilizumab arms in the ADACTA trial.⁵⁸

Twenty RCTs of biologic vs. DMARD(s) or PBO reported follow-up or change data on fatigue data in cDMARD-experienced patients (Tables 380 - 381, Appendix 3). A statistically significant difference in VAS fatigue score swollen joint count favouring biologic treatment over comparator was reported in one abatacept trial. Statistically significant differences in FACIT-F score favouring biologic treatment over comparator were reported in four trials (1 adalimumab trial, 1 etanercept trial, 1 golimumab trial, and 1 tocilizumab trial). Mean (SD) change from baseline in the Fatigue Assessment Scale has been reported for the CERTAIN⁷⁹ trial of 0.1 (2.12) in the placebo arm and -1.2 (2.24) in CTZ the at week 24 (clinicaltrials.gov, NCT00674362) and arm

5.2.3.5 Health-related quality of life

154

Population 1

The only head to head RCT in MTX-naïve patients identified in this review ¹⁰⁰ did not report any follow-up or change data on health-related quality of life. A total of 9 RCTs of biologic vs. DMARD(s) or PBO reported follow-up or change data on health-related quality of life in MTX-naïve patients (4 for adalimumab, 2 for etanercept and 3 for infliximab) (Tables 382 - 387, Appendix 3). Statistically significant differences in SF-36 components and domains favouring biologic treatment over comparator were reported for adalimumab (1 study), etanercept (2 studies) and infliximab (1 study). One further adalimumab trial reported significant differences between adalimumab and methotrexate arms at follow-up in a mixed-model repeated measures analysis, but the values appear to be similar. One study reported a statistically significant differences in RAQoL score favouring biologic treatment over comparator were reported for adalimumab (1 study) and infliximab (1 study). One further adalimumab trial reported for adalimumab (1 study) and infliximab (1 study). One further adalimumab significant differences on SF6D score between adalimumab and methotrexate arms at follow-up in a mixed-model repeated measures analysis, but the values appear similar. One study reported a statistically significant differences on SF6D score between adalimumab and methotrexate arms at follow-up in a mixed-model repeated measures analysis, but the values appear similar. One study reported a statistically significant differences on SF6D score between adalimumab and methotrexate arms at follow-up in a mixed-model repeated measures analysis, but the values appear similar. One study reported a statistically significant difference on EQ5D score for adalimumab.

Population 2/3

Three head to head RCTs reporting data on health-related quality of life in cDMARD-experienced patients were identified (Tables 388 – 390, Appendix 3). Similar improvements were made on SF-36 components and domains scores among patients in the subcutaneous abatacept plus methotrexate and adalimumab plus methotrexate arms of the AMPLE trial¹⁴⁷ and among patients in the abatacept plus methotrexate, infliximab plus methotrexate and methotrexate plus placebo arms of the ATTEST trial.⁷⁴ Significantly greater improvements were reported on SF-36 mental component score among patients in the tocilizumab (plus placebo adalimumab) arm than in the adalimumab (plus placebo

tocilizumab) arm in the ADACTA trial.⁵⁸ Similar improvements were made on EQ-5D score among patients in the adalimumab and etanercept arms of the RED-SEA trial.¹¹⁴

Nine RCTs of biologic vs. DMARD(s) or PBO reported follow-up or change data on health-related quality of life data in cDMARD-experienced patients (Tables 391 - 396, Appendix 3). Statistically significant differences in SF-36 components and domains scores favouring biologic treatment over comparator were reported in 5 trials (1 abatacept trial, 1 etanercept trial, 1 golimumab trial, 1 infliximab trial and 1 tocilizumab trial). In one trial of TNF inhibitors versus cDMARDs, there was a statistically significantly greater reduction (worsening) in SF-36 component and domain scores in the TNF inhibitor arm. Statistically significant differences in EQ-5D domain scores favouring biologic treatment over comparator were reported in 1 etanercept trial and a further etanercept trial reported a statistically significant improvement in EuroQol VAS score.

5.2.3.6 Extra-articular manifestations of disease

No included RCTs specifically evaluated the impact of biologic interventions on extra-articular manifestations of RA.

5.2.3.7 Adverse effects of treatment

Data were extracted relating to discontinuations due to adverse events, number of patients experiencing 1 or more adverse events and number of patients experiencing 1 or more serious adverse event. Details are presented in Tables 397 – 399. Specific adverse events of important note as highlighted in the FDA prescribing information for each intervention were extracted from RCTs and associated LTEs of individual included RCTs and tabulated (Tables 400 to 402, Appendix 3). These key safety issues identified across the range of interventions included the number of patients experiencing one or more infections, number of patients experiencing one or more serious infections (with pneumonia and reactivation of tuberculosis noted as important safety issues), number of patients experiencing one or more malignancy, and the occurrences of infusion-related or injection-site reactions (as appropriate to the mode of administration for each intervention).

5.2.3.8 Mortality

Details of number of deaths, cause(s) of death and judgement by study team / adjudicator as to whether death was potentially attributable to study drug were extracted and have been tabulated (Tables 403 to 402, Appendix 3).

5.2.4 Additional evidence (trial data not eligible for full systematic review but included to inform NMA sensitivity analyses for populations 2 and 3)

Study and population characteristics for the trials ineligible for the full systematic review but provided as additional evidence to inform sensitivity analyses are presented in Table 342) (Appendix 3). Two RCTs in which tofacitinib was evaluated were included as evidence to supplement the network.

Trial name / Author,	Treatment arms for which	Assessment	Ν	% achieving	% achieving	% achieving	Data used
year	data extraction performed	time point	analysed	ACR20 response	ACR50 response	ACR70 response	in NMA?
ACQUIRE ¹³⁰	ABT s.c. +PBO + MTX	26 weeks	736	74.8	50.2	25.8	Y (SAs)
	ABT i.v+ PBO +MTX	26 weeks	721	74.3	48.6	24.2	
NCT00254293 ¹³⁵	PBO + MTX	25.7 weeks	119	35.3	11.8	1.7	Y (SAs)
	ABT i.v+ MTX	25.7 weeks	115	60 ^a	36.5 ^a	16.5 ^a	
ORAL	PBO + MTX	26 weeks	106	28.3	12	2	Y (SAs)
STANDARD ¹³⁷	TOF5 + MTX	26 weeks	196	51.5	36	20	
	TOF10 + MTX	26 weeks	196	52.6	33	22.5	
	ADA + MTX	26 weeks	199	47.2	27	9.5	
Yamamoto 2011 /	PBO + MTX	24 weeks	77	24.7	16.9	1.3	Y (SAs)
JRAPID ¹³³	CTZ + MTX	24 weeks	82	73.2 ^b	54.9 ^b	29.3 ^b	
RA0025 ¹³⁸	PBO + MTX	24 weeks	40	27.5	20	2.5	Y (SAs)
	CTZ + MTX	24 weeks	81	66.7 ^b	43.2 ^a	17.3 ^a	
RAPID1 ¹³⁹	PBO + MTX	24 weeks	199	13.6	7.6	3	Y (SAs)
	CTZ + MTX	24 weeks	393	58.8 ^b	37.1 ^b	21.4 ^b	
RAPID2 ¹⁴⁰	PBO + MTX	24 weeks	127	8.7	3.1	0.8	Y (SAs)
	CTZ + MTX	24 weeks	246	57.3 ^b	32.5 ^b	15.9 a (comparison of ORs	
						from logistic regressions)	
TEAR ⁵⁴	MTX mon	24 weeks	379	39.39	19	3.43	Y (SAs)
	MTX + SSZ + HCQ	24 weeks	132	55.32	31.14	8.52	
	ETN50 + MTX	24 weeks	244	55.7	32.3	12.04	
TEMPO ⁵⁵	MTX mon	24 weeks	228	74.18	41.31	15.9	Y (SAs)
	ETN mon	24 weeks	223	71.58	41.31	17.98	
	ETN + MTX	24 weeks	231	82.53	60.09	36.65	
LITHE ¹⁵⁵	PBO + MTX	24 weeks	393	27	10	2	Y (SAs)
	TCZ + MTX	24 weeks	398	56 ^b	32 ^b	13 ^b	
OPTION ¹³⁶	PBO + MTX	24 weeks	204	26	11	2	Y (SAs)
	TCZ + MTX	24 weeks	205	59 ^b	44 ^b	22 ^b	
AMBITION ¹³²	MTX (MTX experienced	24 weeks	88	47.7	30.7	15.9	Y (SAs)
	subgroup)						
	TCZ (MTX experienced	24 weeks	89	71.9 ^a	40.4	28.1	

Table 17:ACR response: population 2/3 RCTs used in the sensitivity analyses of the NMA

Trial name / Author,	Treatment arms for which	Assessment	Ν	% achieving	% achieving	% achieving	Data used
year	data extraction performed	time point	analysed	ACR20 response	ACR50 response	ACR70 response	in NMA?
	subgroup)						
van der Heijde	PBO + MTX	26 weeks	160	25.3	8.4	1.3	Y (SAs)
2013 ¹²⁹	TOF5 + MTX	26 weeks	321	51.5 ^b added vs PBO+MTX	32.4 ^{b added vs} PBO+MTX	14.6 ^{b added vs PBO+MTX}	
	TOF10 + MTX	26 weeks	316	61.8 ^b added vs PBO+MTX	43.7 ^{b added vs} PBO+MTX	22.3 ^b added vs PBO+MTX	
Kremer 2012 ¹²⁸	PBO + MTX	24 weeks	69	24.62	23.08	19.87	Y (SAs)
	TOF5 + MTX	24 weeks	71	47.44	33.33	19.23 ^{a added vs PBO+MTX}	
	TOF10 + MTX	24 weeks	74	54.49 ^{a added vs} PBO+MTX	34.62	16.67 ^{a added vs PBO+MTX}	

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	N analysed	% achieving <u>no</u> EULAR response	% achieving <u>moderate</u> EULAR response	% achieving <u>good</u> EULAR response	% EULAR responder (moderate/good)	In NMA?
JRAPID ¹³³	PBO + MTX	24 weeks	77	70.1	NR	NR	29.9	Y (SAs)
Yamamoto 2011 / JRAPID ¹³³	CTZ + MTX	24 weeks	82	14.6	NR	NR	85.4	Y (SAs)
RAPID1 ¹³⁹	PBO + MTX	24 weeks	199	72.9	NR	NR		Y (SAs)
RAPID1 ¹³⁹	CTZ + MTX	24 weeks	393	19.1	NR	NR		Y (SAs)
OPTION ¹³⁶	PBO+MTX	24 weeks	205	64.9	32.2	2.9	28.8	Y (SAs)
OPTION ¹³⁶	TCZ+ MTX	24 weeks	204	20.6	41.2 ^b	38.2 ^b	79.4	Y (SAs)

Table 18:EULAR response: population 2/3 RCTs used in the sensitivity analyses of the NMA

5.3 NMA Results

For ease of interpretation a summary of the data used in the NMA is provided. These are contained in Table 19 through to Table 22. As described earlier a number of sensitivity analyses were undertaken to allow the impact of further information, albeit subject to potential biases, including a small proportion of patients with prior bDMARD use, and including studies in which the patients (for populations 2 and 3) have low background methotrexate use and may not be truly methotrexate failures. The RCTs have been grouped into those that fit within the Assessment Group base case, and those that have prior bDMARD use and / or low background methotrexate use.

Additionally the trials with EULAR data have been further subdivided into whether data were reported for all three categories or whether these were aggregated differently, for example only values for response or no response was provided. Data from the TACIT study was provided as academic-in-confidence.

Tables 19 and 20 provide data for populations 2 and 3 using EULAR and ACR criteria respectively.

Tables 21 and 22 provide data for population 1 using EULAR and ACR criteria respectively. Only one RCT that reported EULAR data met the criteria for inclusion.

In all tables the data have been apportioned so that these are mutually exclusive, i.e. that ACR20 now refers to patients who made an ACR 20 response but not an ACR50 response. Typically the RCTs would include patients with an ACR50 or ACR70 response within the ACR20 category, with the sum of the ACR responses being larger than the total number within the trial arm.

	Interventio	erventions		Mean Disease Duratio n	e Intervention 1 (Number of patients)			Intervention 2 (Number of patients)				Intervention 3 (Number of patients)				
	1	2	3	Weeks	No Response	Mod EULAR	Good EULAR	Tot Pop	No Response	Mod EULAR	Good EULAR	Tot Pop	No Response	Mod EULAR	Good EULAR	Tot Pop
Base case – f	ull data repo	rted														
ACT- RAY ⁵⁷	TCZ + MTX	TCZ		676	29	77	171	277	38	96	142	276				
ADACTA ⁵⁸	ADA	TCZ		354	73	57	32	162	36	43	84	163				
ATTEST ⁷⁴	cDMAR D	ABT i.v. +MTX	IFX + MTX	405	46	45	11	102	35	85	30	150	53	67	36	156
CERTAIN ⁷	cDMAR D	CTZ + MTX		239	42	16	11	69	18	32	29	79				
GO- FORTH ⁹¹	cDMAR D	GOL + MTX		455	43	30	11	84	13	30	38	81				
JESMR ¹⁴⁴	ETN + MTX	ETN		485	3	32	38	73	20	26	23	69				
LARA ¹⁰²	Int cDMAR			420	50	75	17	142	22	125	121	270				
SATORI ¹¹⁶	cDMAR	EIN + MIX		430	50	15	17	142	23	125	131	219				
120	D	TCZ		447	39	23	2	64	2	19	40	61				
TACIT ¹²⁰	Int cDMAR D	Grouped biologics + MTX														
van de Putte ¹²²	ADA	PBO		577	50	53	10	113	81	25	4	110				
Base case - N	o Response :	and Response (i	e Moder	ate and Goo	d combined)	renorted										
ALICHOT	io response i						1	1	1	1	1	1	1	1	1	
II ⁷⁶	cDMAR D	ADA + MTX		447	31			76	15			79				
GO- FORWAR D ⁹²	cDMAR D	GOL + MTX		421	77			133	25			89				
START ¹¹⁸	cDMAR D	IFX + MTX			186			332	83			333				
TOWARD ¹	cDMAR D	TCZ + MTX		510	258			413	163			803				
Base case - G	ood and Not	Good (i.e. Mod	erate and	l No Respon	se combined)	reported										

Table 19: The EULAR data used in the NMA for populations 2 and 3

				Mean Disease												
				Duratio		Interven	tion 1			Interver	tion 2			Interve	ntion 3	
	Interventio	ons		n		(Number of	patients)			(Number of	patients)			(Number of	f patients)	
					No	Mod	Good	Tot	No	Mod	Good	Tot	No	Mod	Good	Tot
	1	2	3	Weeks	Response	EULAR	EULAR	Рор	Response	EULAR	EULAR	Рор	Response	EULAR	EULAR	Рор
Swefot ¹¹⁹	Int															
	cDMAR															
	D	IFX + MTX		27			31	130			43	128				
Sensitivity A	nalyses: Prio	r bDMARD use	e for some	e patients – f	ull data repo	rted										
OPTION ¹³⁶	cDMAR															
	D	TCZ + MTX		398	133	66	6	205	42	84	78	204				
Sensitivity A	nalyses: Prio	r biologics - No	Respons	e and Respo	onse (i.e. Mod	erate and G	ood combin	ed) report	ed							
	cDMAR															
RAPID1139	D	CTZ + MTX		319	145	54		199	75	318		393				
	cDMAR															
Yamamoto	D	CTZ + MTX		296	54	23		77	12	70		82				

ABT i.v. – abatacept i.v.; ADA – adalimumab; bDMARD – biologic DMARD; Grouped biologics – a clinician's choice of adalimumab or etanercept or infliximab all with methotrexate; cDMARD – conventional DMARDs; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; Int cDMARD – Intensive cDMARDs; MTX – methotrexate; PBO – placebo; TCZ – tocilizumab;

	Interventio	ons			Mean Disease Duration		(N	Interventio lumber of pa	n 1 tients)			I (Nui	ntervention 2 mber of patients)		
Trial Name	1	2	3	4	Weeks	n No Response	n ACR20 Response	nACR50 response	nACR70 response	N Tot Pop	n No Response	n ACR20 Response	nACR50 response	nACR70 response	N Tot Pop
Base case – full d	ata reported														<u> </u>
H_{CDEATE}^{96}	ata reported	ETNL			1				3						
IIDCKEATE	CDMARD	EIN + MTX			419	44	10	8	5	65	22	12	15	15	64
ACT-RAY57		MIX			417		10	0	68	05	22	12	15	15	
	MTX	TCZ			676	79	72	58		277	82	83	41	70	276
ADACTA ⁵⁸									29						
	ADA	TCZ			354	82	35	16		162	57	29	24	53	163
AIM ⁶¹		ABT i.v.							14						
	cDMARD	+ MTX			449	132	50	23		219	139	121	87	86	433
	ADA +	ABT s.c.							74						
AMPLE ¹⁴⁷	MTX	+ MTX			94	117	72	65		328	108	65	68	77	318
ARMADA		ADA +							3						
A 7775 077 ⁷⁴	cDMARD	MTX			607	53	4	2	10	62	22	8	19	18	67
ATTEST	DIADD	ABT i.v.	ITY.		105	<i>C</i> 1	24	10	10	110	50	41	21	22	150
	CDMARD	+ M1X	IFX+		405	64	24	12	0	110	52	41	31	32	156
ATTRACT	CDMARD	IFX + MTX			N/P	67	13	4	0	84	12	10	16	7	83
AUGUST II ⁷⁶	CDWARD				11/K	07	15	+	4	04	42	19	10	/	0.5
AUGUSTII	cDMARD	MTX			447	40	24	8		76	23	26	16	14	79
CERTAIN ⁷⁹		CTZ ±							3						
	cDMARD	MTX			239	83	8	4		98	61	15	11	9	96
CHANGE ⁸⁰									11						
	ADA	PBO			477	51	18	11		91	75	7	4	1	87
	ETN +	IFX +							1						
De Filippis ⁸⁵	MTX	MTX				7	5	3		16	7	4	4	1	16
DE019 ⁸⁰		ADA +							5		_				
FTN 20089	cDMARD	MTX			569	141	40	14		200	76	50	38	43	207
EIN309	DMARD	ETN +	ETN		241	20	7	6	1	50	27	22	27	25	101
GO-FORTH ⁹¹	CDMARD		EIN		541	30	/	0	5	50	21	22	27	25	101
50-1 0K111	CDMARD	GOL + MTV			155	50	16	Q	5	88	25	25	13	22	86
GO-	UNIARD	GOL			433		10	0	7	00	23	23	15	23	80
FORWARD ⁹²	cDMARD	MTX			421	96	19	11	, í	133	36	20	15	18	89
JESMR ¹⁴⁴	ETN +			1		20			28	100	50			10	
	MTX	ETN			485	7	19	19		73	25	11	15	18	69

Table 20: The ACR data used in the NMA for populations 2 and 3

					Mean							_			
	T				Disease		()	Interventio	n 1			I (No)	ntervention 2		
	Interventio	ons	1		Duration	n No		umber of pa	nACP70		n No		nder of patients)	nACD70	N Tot
Trial Name	1	2	3	4	Weeks	Response	Response	response	response	N Tot Pop	Response	Response	response	response	Pop
Kim2007 ⁹⁹		ADA +	-			r	F	F	5		F	r	F	P	- • F
	cDMARD	MTX			356	40	14	4		63	25	12	14	14	65
LARA ¹⁰²	Int	ETN +							16						
	cDMARD	MTX			430	71	38	17		142	47	59	76	97	279
Mathias ¹⁰⁵									12						
	ETN	PBO			598	31	15	20		78	71	5	3	1	80
O'Dell ¹¹²	Int	ETN +							8						
	cDMARD	MTX			271	70	48	33		159	73	32	32	26	163
SAMURAI									10						
a trop till	cDMARD	TCZ			119	89	30	16		145	28	39	37	53	157
SATORING		-				10	_		7		10		10	20	
CT A D117	cDMARD	TCZ			447	48	5	4	11	64	12	16	13	20	61
STAK	DMADD	ADA +			5.41	207	75	25	11	210	150	76	15	47	210
START ¹¹⁸	CDMARD	MIX			541	207	/5	25	17	318	150	/6	45	47	318
START		IEV			N/D	271	57	19	17	262	152	02	65	50	260
TOWARD ¹²¹	CDWARD	II'A			IN/K	271	57	10	12	303	132	93	05	50	300
TOWIND	cDMARD	TCZ			510	312	64	25	12	413	315	186	137	165	803
van de Putte ¹²²	CDIMIND	102			510	512		25	14	415	515	100	157	105	005
	ADA	РВО			577	61	27	11		113	89	12	7	2	110
Weinblatt ¹²⁴		ETN +							0						
	cDMARD	MTX			676	22	7	1		30	17	19	14	9	59
		-			•				•		•		•		
Sensitivity Analyse	es: Prior bDN	IARD use for	some patients	s – full data re	eported					1	1				
ACQUIRE ¹³⁰	ABT i.v.	ABT s.c.							174						
	+ MTX	+ MTX			398	186	185	176	14	721	185	181	180	190	736
W		TOF5 +	TOF10 +		444	50	1	2	14	(0)	27	10	10	14	71
Kreiner	CDMARD	MIA	MIA		444	52	1	Z	8	09	57	10	10	14	/1
LITHE ¹³⁴	CDMARD	ICZ + MTX			476	287	67	31	0	303	174	96	76	52	308
	UDWARD				470	207	07	51	2	393	1/4	90	/0	52	570
NCT00254293 ¹³⁵	cDMARD	+ MTX			483	77	28	12	2	119	46	27	23	19	115
110100231233	CDIMIND				105		20	12	4	117	10	21	23	1)	115
OPTION ¹³⁶	cDMARD	MTX			398	151	31	18		204	84	31	45	45	205
RA0025 ¹³⁸		CTZ +							1						
	cDMARD	MTX			303	29	3	7		40	27	19	21	14	81
RAPID1 ¹³⁹		CTZ +							6						
	cDMARD	MTX			319	171	12	9		199	162	85	62	84	393

	Interventio	Interventions 1 2 3 4			Mean Disease Duration		(N	Interventio	n 1 tients)			I (Nu	ntervention 2 mber of patients)		
Trial Name	1	2	2	4	Washa	n No Damara	n ACR20	nACR50	nACR70	N Tet Deer	n No	n ACR20	nACR50	nACR70	N Tot
DADID2 ¹⁴⁰	1	2 (TT7)	3	4	weeks	Response	Response	response	response 1	N Tot Pop	Kesponse	Response	response	response	гор
KAPID2	cDMARD	MTX			308	116	7	3	1	127	105	61	41	39	246
van der Heijde ¹²⁹	DIGDD	TOF5 +	TOF10 +		1.07	120	27		2	1.00	150	(1		17	221
Vamamoto	CDMARD	MIX	MIX		46/	120	27	11	1	160	156	61	57	47	321
1 amamoto	cDMARD	CTZ + MTX			296	58	6	12	1	77	22	15	21	24	82
	U DIM HED				270	00	, v	12		,,			21		02
Sensitivity Analy	ses: Prior biol	ogics No AC	CR50 or ACR	70 reported.											
ORAL 127		ADA +	TOF5 +	TOF10 +											
STANDARD ¹³⁷	cDMARD	MTX	MTX	MTX	402	76	30			106	105	94	n/a	n/a	199
Sensitivity Analys	ses: Prior biolo	ogics – full dat	ta reported, an	nd low backgr	round MTX use	-	-	-					-	-	
AMBITION ¹³¹	cDMARD	TCZ			330	46	15	13	14	88	25	28	11	25	89
Sensitivity															
analyses: low															
MTX use															
TE A D ⁵⁴			ETN + MTX		19	220	77	50	12	270	50	22	20	11	122
ILAK	CDMARD	ETN +	MIX		18	230	11	39	13	579	59	32		11	132
TEMPO ⁵⁵	CDMARD	MTX	FTN		345	59	75	58	36	228	40	52	54	85	231

	Interv	vention			Intervention (Number of pat	n 3 tients)			Inte (Numb	ervention 4 er of patients)					
Trial Name	3	4	n No Response	n ACR20 Response	nACR50 response	nACR70 response	N Tot Pop	n No Response	n ACR20 Response	nACR50 response	nACR70 response	N Tot Pop			
Base case – full d	ase case – full data reported														
ATTEST ⁷⁴	IFX + MTX		67	37	21	40	165								
ETN309 ⁸⁹	ETN		27	28	26	22	103								

	Interv	rention			Intervention (Number of pat	n 3 ients)			Inte (Numb	rvention 4 er of patients)					
Trial Name	3	4	n No Response	n ACR20 Response	nACR50 response	nACR70 response	N Tot Pop	n No Response	n ACR20 Response	nACR50 response	nACR70 response	N Tot Pop			
Sensitivity Analys	ses: Prior b	DMARD	use for some pa	tients – full dat	a reported										
Kremer ⁶³	TOF10		24	1.5	12	12									
van der Heijde	TOF10		34	15	13	12	/4								
			121	57	68	70	316								
Sensitivity Analy	Sensitivity Analyses: Prior biologics No ACR50 or ACR70 reported.														
Sensitivity Analyses: Prior biologics No ACR50 or ACR70 reported. ORAL TOF5 TOF10 STANDARD ¹³⁷ Image: Constraint of the sense of the sens															
			95	101	n/a	n/a	196	93	103	n/a	n/a	196			
Sensitivity analyse	es: low bac	kground N	ATX use												
TEAR ⁵⁴	ETN + MTX		109	57	49	29	244								
TEMPO ⁵⁵	ETN														
			63	68	52	40	223								

ABT i.v. – abatacept i.v.; ABT s.c. – abatacept s.c.; ADA – adalimumab; bDMARD – biologic DMARD; Bios – a clinician's choice of adalimumab or etanercept or infliximab all with methotrexate; cDMARD – conventional DMARDs; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; Int cDMARD – Intensive cDMARDs; NR – Not Reported; PBO – placebo; TCZ – tocilizumab; TOF5 – tofacitinib 5mg; TOF10 – tofacitinib 10mg

Table 21: The EULAR data for population 1

	Interventio	ons		Mean Disease Duration		Interven (Number of	tion 1 patients)			Interven (Number of	tion 2 patients)	
	1 2 3 e case - No Response and Response (i			Weeks	n No Response	Mod EULAR	Good EULAR	N Tot Pop	n No Response	Mod EULAR	Good EULAR	N Tot Pop
Base case - No Response and Response (i.e. Moderate and Good combined) reported												
Go- BEFORE ⁹	cDMAR D	GOL + MTX		166	62			160	43			159

cDMARD - conventional DMARDs; GOL - golimumab; IFX - infliximab;

	Interventio	ons			Mean Disease Duration		()	Interventio umber of pa	n 1 tients)			I (Nui	ntervention 2 mber of patients)		
Trial Name	1	2	3	4	Weeks	n No Response	n ACR20 Response	nACR50 response	nACR70 response	N Tot Pop	n No Response	n ACR20 Response	nACR50 response	nACR70 response	N Tot Pop
Base case – fu	ll data reporte	d													
COMET ⁸¹									47						
	cDMARD	ETN +				109	57	55		268	50	57	64	103	274
Durez 2007 ¹⁴²	cDMARD	IFX + MTX			21	10	3	1	0	14	2	3	5	5	15
ERA ¹⁴¹									31						1
	cDMARD	ETN			52	90	58	38		217	65	55	42	45	207
Go- BEFORE ⁹⁰	cDMARD	GOL + MTX			166	81	32	22	25	160	61	34	26	38	159
HIT HARD ⁹⁴	cDMARD	ADA + MTX			7	27	16	19	23	85	20	13	13	41	87
OPTIMA ¹⁰⁸	cDMARD	ADA + MTX			18	222	119	88	88	517	153	93	88	181	515
PREMIER ¹⁰⁹	cDMARD	ADA + MTX	ADA		38	99	54	47	57	2.57	84	27	43	114	268
	- CDIMINE									20,	01	2.			
Base case da	ta reported on	ly for ACR20	and ACR70						_						
BeST ⁷⁸	cDMARD	IFX + MTX	Int cDMARD	Step Up Int cDMARD	NR	63	43		20	126	33	55		40	128
							1	1	1	1				1	1
Sensitivity and	alyses: low ba	ckground MTX	X use	_		_	-	-	-		-	_	-	_	
TEAR ⁵⁴	cDMARD	Int cDMARD	ETN + MTX		18	230	77	59	13	379	59	32	30	11	132
TEMP0 ⁵⁵	cDMARD	ETN + MTX	ETN		345	59	75	58	36	228	40	52	54	85	231

Table 22: The ACR data used in the NMA for population 1

	Interv	vention			Intervention (Number of pat	n 3 :ients)			Inte (Numbe	ervention 4 er of patients)				
Trial Name	3	4	n No Response	n ACR20 Response	nACR50 response	nACR70 response	N Tot Pop	n No Response	n ACR20 Response	nACR50 response	nACR70 response	N Tot Pop		
Base case – ful	Base case – full data reported													
PREMIER ¹⁰⁹														
	ADA		128	50	42	54	274							
Base case –dat	ta reported only	y for ACR20 a	nd ACR70											
BeST ⁷⁸		Step Up												
	Int	Int										1		
	CDMARD	cDMARD	39	59		35	133	48	59		14	121		

	Interv	vention			Interventior (Number of pat	n 3 ients)			Inte (Numb	ervention 4 er of patients)					
Trial	3	4													
Name			n No	n ACR20	nACR50				n ACR20	nACR50	nACR70	N Tot			
			Response	Response	response	nACR70 response	N Tot Pop	n No Response	Response	response	response	Рор			
Sensitivity a	ensitivity analyses: low background MTX use														
TEAR ⁵⁴	ETN +														
	MTX		109	57	49	29	244								
TEMPO ⁵⁵	ETN														
			63	68	52	40	223								

ADA – adalimumab; cDMARD – conventional DMARDs; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; Int cDMARD – Intensive cDMARDs; Step Up Int cDMARD – Int cDMARD with escalation of doses as required.

5.3.1 Population 1 (MTX-naïve)

5.3.1.1 ACR – Main Trials

A network meta-analysis was used to compare the effects of adalimumub (with and without MTX), etanercept (with and without MTX), infliximab + MTX, golimumab + MTX, Intensive cDMARDs, and step-up intensive cDMARDs relative to cDMARDs on ACR response.

Data were available from eight studies comparing two, three or four interventions.

Figure 4 presents the network of evidence and Table 23 presents the frequency with which each pair of treatments was compared. There are eight treatment effects to estimate from eight studies.

Figure 4: ACR (Population 1: Main Trials) – Network of evidence

		/							
Intervention	cDMARDs	ADA + MTX	ADA	ETN + MTX	ETN	IFX + MTX	Gol + MTX	Int	Step-up Int
								cDMARDs	cDMARDs
cDMARDs	-	3	1	1	1	2	1	1	1
ADA+ MTX	-	-	1						
ADA	-	-	-						
ETN + MTX	-	-	-	-					
ETN	-	-	-	-	-				
IFX+ MTX	-	-	-	-	-	-		1	1
Gol+ MTX	-	-	-	-	-	-	-		
Int cDMARDs	-	-	-	-	-	-	-	-	1
Step-up Int	-	-	-	-	-	-	-	-	-
cDMARDs									

Table 23: ACR (Population1: Main Trials) – The numbers of RCTs with which each pair of interventions were compared

The probit transformation provides a transformation of data that can only take values between zero and one to values that cover the whole real line (i.e. to values between $\pm \infty$). It is used to transform parameters that represent probabilities to a transformed parameter on the real line; treatment effects estimated on the real line usually have better statistical properties than estimates on a restricted scale. The transformation makes use of the standard normal distribution, which has mean zero and variance one. Parameters representing probabilities can be thought of as being the area under the standard normal distribution from $-\infty$ to some value that represents the transformed value on the probit scale. In the case of EULAR and ACR, parameters represent the probabilities of being in one of several ordered categories. The statistical model includes parameters representing the baseline response (i.e. "No Response") for the control arm in each study; a cut-off representing the distance on the standard normal scale between the category boundaries; treatment effect representing the number of standard deviations on the standard normal scale. Large negative treatment effects represent positive treatment effects i.e. a smaller proportion of patients in the lower categories.

Figure 5 presents the effects of each intervention relative to cDMARDs on the probit scale, and Figure 6 and Table 24 presents the probabilities of treatment rankings. Treatment rankings should be interpreted as in the following example: for cDMARDs there is a 19.6% probability that it is the 7th most efficacious treatment, a 64.8% probability that is the 8th most efficacious treatment and an 11.5% probability that it is the least effective (i.e. 9th) treatment.

The model fitted the data reasonably well, with the total residual deviance, 64.87, close to the total number of data points, 53, included in the analysis. The largest residual deviances were 5.82 from the Durez study⁸⁶ and 4.21 from the BeST study.⁷⁸

The between-study standard deviation was estimated to be 0.13 (95% CrI: 0.01, 0.52), which implies mild to moderate heterogeneity between studies in intervention effects.

All interventions except for adalimumab were associated with beneficial treatment effects relative to cDMARDs with the greatest effect being associated with infliximab + MTX. However, the treatment effects were only statistically significant for adalimumab + MTX, etanercept + MTX, infliximab + MTX and Intensive cDMARDs at a conventional 5% level. Infliximab + MTX (mean rank 1.6; probability of being the best 0.633) was the treatment that was most likely to be the most effective intervention.

Figure 5:

ACR (Population 1: Main trials) – Effects of interventions relative to cDMARDs on the probit scale

_

Treatment compa	rison (probit scale)		Effect [95% Crl]
vs cDMARDs ADA + MTX ADA ETN + MTX IFX + MTX GOL + MTX INT cDMARDs SU Int cDMARDs			$\begin{array}{c} -0.43 & [-0.71 & , -0.13 \\ 0.14 & [-0.31 & , 0.60] \\ -0.63 & [-1.32 & , -0.15] \\ -0.27 & [-0.76 & , 0.22] \\ -0.78 & [-1.33 & , -0.39] \\ -0.32 & [-0.82 & , 0.19] \\ -0.56 & [-1.12 & , -0.08] \\ -0.19 & [-0.75 & , 0.27] \end{array}$
vs ADA + MTX ADA ETN + MTX ETN IFX + MTX GOL + MTX Int cDMARDs SU Int cDMARDs			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
vs ADA ETN + MTX ETN IFX + MTX — GOL + MTX — Int cDMARDs SU Int cDMARDs			-0.77 [-1.44 , -0.09] -0.41 [-1.08 , 0.27] -0.92 [-1.67 , -0.38] -0.47 [-1.13 , 0.21] -0.70 [-1.44 , -0.08] -0.34 [-1.08 , 0.29]
vs ETN + MTX ETN IFX + MTX GOL + MTX Int cDMARDs SU Int cDMARDs			0.36 [-0.33 , 1.05] -0.15 [-0.90 , 0.42] 0.31 [-0.38 , 1.01] 0.07 [-0.71 , 0.73] 0.44 [-0.33 , 1.09]
<i>vs ETN</i> IFX + MTX GOL + MTX Int cDMARDs SU Int cDMARDs			-0.51 [-1.28 , 0.09] -0.05 [-0.76 , 0.67] -0.29 [-1.06 , 0.38] 0.07 [-0.68 , 0.74]
<i>vs IFX + MTX</i> GOL + MTX Int cDMARDs SU Int cDMARDs			0.46 [-0.14 , 1.24] 0.22 [-0.23 , 0.77] 0.59 [0.13 , 1.13]
vs GOL + MTX Int cDMARDs SU Int cDMARDs	B		-0.24 [-1.01 , 0.43] 0.13 [-0.66 , 0.79]
vs Int cDMARDs SU Int cDMARDs		_	0.37 [-0.15, 0.89]
Γ			
-2.00	-1.00 0.00	1.00 2.00	

Rank									
IXanix	1	2	3	4	5	6	7	8	9
(mean)									
7.8	0.000	0.000	0.000	0.001	0.006	0.034	0.196	0.648	0.115
4.2	0.013	0.057	0.180	0.378	0.234	0.101	0.031	0.005	0.001
8.5	0.001	0.001	0.004	0.007	0.013	0.029	0.066	0.135	0.744
2.6	0.228	0.329	0.242	0.091	0.056	0.030	0.014	0.006	0.004
5.6	0.013	0.030	0.060	0.110	0.204	0.289	0.206	0.050	0.037
1.6	0.633	0.243	0.077	0.027	0.014	0.004	0.001	0.000	0.000
5.2	0.021	0.048	0.093	0.156	0.235	0.229	0.145	0.042	0.030
3.2	0.086	0.278	0.305	0.151	0.099	0.054	0.016	0.007	0.003
62	0.004	0.015	0.039	0.079	0 138	0.230	0 324	0 106	0.065
((mean) 7.8 4.2 8.5 2.6 5.6 1.6 5.2 3.2 6.2	(mean) 7.8 0.000 4.2 0.013 8.5 0.001 2.6 0.228 5.6 0.013 1.6 0.633 5.2 0.021 3.2 0.086 6.2 0.004	(mean) 0.000 0.000 7.8 0.001 0.000 4.2 0.013 0.057 8.5 0.001 0.001 2.6 0.228 0.329 5.6 0.013 0.030 1.6 0.633 0.243 5.2 0.021 0.048 3.2 0.086 0.278 6.2 0.004 0.015	(mean) 0.000 0.000 0.000 7.8 0.000 0.000 0.000 4.2 0.013 0.057 0.180 8.5 0.001 0.001 0.004 2.6 0.228 0.329 0.242 5.6 0.013 0.030 0.060 1.6 0.633 0.243 0.077 5.2 0.021 0.048 0.093 3.2 0.086 0.278 0.305 6.2 0.004 0.015 0.039	(mean) 0.000 0.000 0.000 0.001 4.2 0.013 0.057 0.180 0.378 8.5 0.001 0.001 0.004 0.007 2.6 0.228 0.329 0.242 0.091 5.6 0.013 0.030 0.060 0.110 1.6 0.633 0.243 0.077 0.027 5.2 0.021 0.048 0.093 0.156 3.2 0.086 0.278 0.305 0.151 6.2 0.004 0.015 0.039 0.079	(mean) 7.8 0.000 0.000 0.001 0.006 4.2 0.013 0.057 0.180 0.378 0.234 8.5 0.001 0.001 0.004 0.007 0.013 2.6 0.228 0.329 0.242 0.091 0.056 5.6 0.013 0.030 0.060 0.110 0.204 1.6 0.633 0.243 0.077 0.027 0.014 5.2 0.021 0.048 0.093 0.156 0.235 3.2 0.086 0.278 0.305 0.151 0.099 6.2 0.004 0.015 0.039 0.079 0.138	(mean) 7.8 0.000 0.000 0.001 0.006 0.034 4.2 0.013 0.057 0.180 0.378 0.234 0.101 8.5 0.001 0.001 0.004 0.007 0.013 0.029 2.6 0.228 0.329 0.242 0.091 0.056 0.030 5.6 0.013 0.030 0.060 0.110 0.204 0.289 1.6 0.633 0.243 0.077 0.027 0.014 0.004 5.2 0.021 0.048 0.093 0.156 0.235 0.229 3.2 0.086 0.278 0.305 0.151 0.099 0.054 6.2 0.004 0.015 0.039 0.079 0.138 0.230	(mean)7.80.0000.0000.0010.0060.0340.1964.20.0130.0570.1800.3780.2340.1010.0318.50.0010.0010.0040.0070.0130.0290.0662.60.2280.3290.2420.0910.0560.0300.0145.60.0130.0300.0600.1100.2040.2890.2061.60.6330.2430.0770.0270.0140.0040.0015.20.0210.0480.0930.1560.2350.2290.1453.20.0860.2780.3050.1510.0990.0540.0166.20.0040.0150.0390.0790.1380.2300.324	(mean)7.80.0000.0000.0010.0060.0340.1960.6484.20.0130.0570.1800.3780.2340.1010.0310.0058.50.0010.0010.0040.0070.0130.0290.0660.1352.60.2280.3290.2420.0910.0560.0300.0140.0065.60.0130.0300.0600.1100.2040.2890.2060.0501.60.6330.2430.0770.0270.0140.0040.0010.0005.20.0210.0480.0930.1560.2350.2290.1450.0423.20.0860.2780.3050.1510.0990.0540.0160.0076.20.0040.0150.0390.0790.1380.2300.3240.106

Table 24: ACR (Population 1: Main Trials) – Probability of treatment rankings in terms of efficacy (most efficacious = 1)

Figure 6 (continued): ACR (Population 1: Main Trials)– Probability of treatment rankings in terms of efficacy (most efficacious = 1)

A meta-analysis was used to estimate the proportion of patients experiencing an ACR "No response" when treated with cDMARDs.

Data were available from eight studies.

The model fitted the data reasonably well with the total residual deviance, 11. 74, close to the total number of data points, 8, included in the analysis. The largest residual deviance was 3.35 from the Durez study.⁸⁶

The between-study standard deviation was estimated to be 0.14 (95% CrI: 0.01, 0.44), which implies mild heterogeneity between studies in the baseline response.

Table 25 presents the probabilities of achieving at least an ARC20 response, at least an ACR50 response and at least an ACR70 response. These are derived by combining the treatment effects estimated from the network meta-analysis with the estimate of the cDMARDs "No response" rate.

	At least ACR20	At least ACR50	At least ACR70
	95% CrI	95% CrI	95% CrI
cDMARDs	0.564	0.322	0.169
	0.495, 0.632	0.245, 0.411	0.116, 0.237
ADA + MTX	0.722	0.486	0.298
	0.600, 0.820	0.345, 0.629	0.184, 0.436
ADA	0.507	0.272	0.136
	0.323, 0.692	0.133, 0.457	0.054, 0.276
ETN_MTX	0.785	0.566	0.370
	0.612, 0.903	0.360, 0.754	0.195, 0.578
ETN	0.668	0.424	0.246
	0.466, 0.829	0.235, 0.632	0.112,0.441
IFX +MTX	0.828	0.627	0.432
	0.697, 0.935	0.453, 0.815	0.268, 0.656
GOL + MTX	0.686	0.445	0.263
	0.481, 0.844	0.245, 0.653	0.116, 0.464
Int cDMARDs	0.766	0.542	0.348
	0.586, 0.904	0.339, 0.754	0.179, 0.577
Step-up Int	0.639	0.395	0.223
cDMARDs	0.446, 0.827	0.219, 0.626	0.101, 0.432

 Table 25: ACR (Population 1: Main Trials) – Probabilities of achieving ACR responses

5.3.1.2 ACR - Main Trials plus MTX Experienced

A network meta-analysis was used to compare the effects of adalimumub (with and without MTX), etanercept (with and without MTX), infliximab + MTX, golimumab + MTX, Intensive cDMARDs, and step-up intensive cDMARDs relative to cDMARDs on ACR response.

Data were available from ten studies comparing two, three or four interventions.

Figure 7 presents the network of evidence and Table 26 presents the frequency with which each pair of treatments was compared. There are eight treatment effects to estimate from ten studies.

Intervention	cDMAR	AD	AD	ET	ET	IFX	Gol +	Int	Step-up
	Ds	A +	А	N +	Ν	+	MTX	cDMARDs	Int
		MT		MT		MT			cDMAR
		Х		Х		Х			Ds
cDMARDs	-	3	1	3	2	2	1	8	
ADA+ MTX	-	-	1						
ADA	-	-	-						
ETN + MTX	-	-	-	-	1			1	
ETN	-	-	-	-	-				
IFX+ MTX	-	-	-	-	-	-		1	
Gol+ MTX	-	-	-	-	-	-	-		
Int cDMARDs	-	-	-	-	-	-	-	-	
Step-up Int	-	-	-	-	-	-	-	-	-
cDMARDs									

Table 26: ACR (Population 1: Main Trials plus MTX Experienced) – The numbers of RCTs with which each pair of interventions were compared

Figure 8 presents the effects of each intervention relative to cDMARDs on the probit scale, and Figure 9 and Table 27 presents the probabilities of treatment rankings.

The model fitted the data reasonably well, with the total residual deviance, 84.19, close to the total number of data points, 71, included in the analysis. The largest residual deviances were 5.89 and 3.92 from the PREMIER study¹⁰⁹ and 4.08 from the BeST study.⁷⁸

The between-study standard deviation was estimated to be 0.07 (95% CrI: 0.00, 0.26), which implies mild heterogeneity between studies in intervention effects. The addition of the studies including patients who were MTX experienced has reduced the estimate of the between-study standard deviation.

All interventions except for adalimumab were associated with beneficial treatment effects relative to cDMARDs with the greatest effect being associated with infliximab + MTX. However, the treatment effects were only statistically significant for adalimumab + MTX, etanercept + MTX, infliximab + MTX and Intensive cDMARDs at a conventional 5% level. Infliximab + MTX (mean rank 1.3; probability of being the best 0.801) was the treatment that was most likely to be the most effective intervention.

Figure 8: ACR (Population 1: Main trials plus MTX Experienced) – Effects of interventions relative to cDMARDs on the probit scale

Treatment comparison (p	probit scale)	Effect [95% Crl]
vs cDMARDs ADA + MTX ADA ETN + MTX IFX + MTX GOL + MTX GOL + MTX SU Int cDMARDs SU Int cDMARDs	-#- -#- #_ -#- #_ -#- -#_	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
vs ADA + MTX ADA ETN + MTX ETN IFX + MTX GOL + MTX Int cDMARDs SU Int cDMARDs		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
VS ADA ETN + MTX — ETN + MTX — IFX + MTX — GOL + MTX — Int cDMARDs — SU Int cDMARDs	₽ 	$\begin{array}{c} -0.68 \\ -0.27 \\ -0.84 \\ -0.84 \\ -0.84 \\ -0.87 \\ -0.84 \\ -0.87 \\ -0.99 \\ -0.29 \\ -0.29 \\ -0.28 \\ -0.74 \\ -0.74 \\ -0.13 \\ \end{array}$
vs ETN + MTX ETN IFX + MTX GOL + MTX Int cDMARDs SU Int cDMARDs		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
VS ETN IFX + MTX — GOL + MTX Int cDMARDs SU Int cDMARDs	- ₽ ₽	-8.58 [-0.99 , -0.24] -0.18 [-0.58 , 0.20] -0.35 [-0.66 , -0.07] -0.02 [-0.41 , 0.36]
vs IFX + MTX GOL + MTX Int cDMARDs SU Int cDMARDs		$\begin{array}{c} 0.41\\ 0.23\\ 0.57\\ 0.57\\ \end{array} \begin{bmatrix} -0.02\\ 0.09\\ 0.57\\ 0.22\\ \end{array}, \begin{array}{c} 0.88\\ 0.57\\ 0.93\\ \end{bmatrix}$
vs GOL + MTX Int cDMARDs SU Int cDMARDs	B	-0.18 [-0.57 , 0.21] 0.16 [-0.31 , 0.61]
vs Int cDMARDs SU Int cDMARDs	—	0.33 [0.01 , 0.66]
-2 00 -1 00	0.00 1.00	2.00
2.00 1.00	0.00 1.00	2.00

						Rank				
Intervention	Rank	1	2	3	4	5	6	7	8	9
	(mean)									
cDMARDs	7.8	0.000	0.000	0.000	0.001	0.021	0.032	0.210	0.683	0.086
ADA + MTX	3.8	0.018	0.240	0.443	0.184	0.029	0.032	0.004	0.001	0.000
ADA	8.7	0.000	0.000	0.001	0.004	0.016	0.020	0.045	0.108	0.825
ETN + MTX	2.4	0.130	0.271	0.083	0.020	0.002	0.008	0.000	0.000	0.000
ETN	6.5	0.000	0.002	0.009	0.089	0.398	0.075	0.413	0.068	0.020
IFX +MTX	1.3	0.801	0.050	0.024	0.006	0.001	0.001	0.000	0.000	0.000
GOL + MTX	4.9	0.017	0.074	0.143	0.439	0.177	0.509	0.072	0.021	0.008
Intensive cDMARDs	3.2	0.034	0.351	0.255	0.100	0.009	0.033	0.001	0.000	0.000
Step-up Intensive	<i>с</i> 1	0.000	0.010	0.040	0.157	0.246	0.000	0.055	0.110	0.060
CDMARDS	6.4	0.000	0.012	0.042	0.157	0.346	0.290	0.255	0.119	0.062

Table 27: ACR (Population 1: Main Trials plus MTX Experienced) – Probability of treatment rankings in terms of efficacy (most efficacious = 1)

Figure 9: ACR (Population1: Main Trials plus MTX Experienced) – Probability of treatment rankings in terms of efficacy (most efficacious = 1)

Figure 9 (Continued): ACR (Population1: Main Trials plus MTX Experienced) – Probability of treatment rankings in terms of efficacy (most efficacious = 1)

A meta-analysis was used to estimate the proportion of patients experiencing an ACR "No response" when treated with cDMARDs.

Data were available from ten studies.

The model fitted the data well with the total residual deviance, 10.95, close to the total number of data points, 10, included in the analysis.

The between-study standard deviation was estimated to be 0.32 (95% CrI: 0.18, 0.62), which implies mid to moderate heterogeneity between studies in the baseline response.

Table 28 presents the probabilities of achieving at least an ACR20 response, at least an ACR50 response and at least an ACR70 response. These are derived by combining the treatment effects estimated from the network meta-analysis with the estimate of the cDMARDs "No response" rate.

	At least ACR20	At least ACR50	At least ACR70
	95% Cr1	95% Cr1	95% Cri
cDMARDs	0.559	0.306	0.144
	0.464, 0.650	0.218, 0.406	0.090, 0.216
ADA + MTX	0.718	0.468	0.263
	0.613, 0.806	0.344, 0.595	0.168, 0.379
ADA	0.504	0.259	0.115
	0.356, 0.640	0.153, 0.394	0.056, 0.205
ETN_MTX	0.756	0.515	0.302
	0.658, 0.837	0.391, 0.637	0.201, 0.422
ETN	0.608	0.352	0.174
	0.486, 0.721	0.236, 0.482	0.101, 0.276
IFX +MTX	0.805	0.582	0.364
	0.683, 0.901	0.421, 0.738	0.224, 0.533
GOL + MTX	0.676	0.420	0.224
	0.525, 0.805	0.268, 0.588	0.119, 0.373
Int cDMARDs	0.737	0.491	0.282
	0.621, 0.832	0.355, 0.630	0.174, 0.413
Step-up Int	0.616	0.360	0.180
cDMARDs	0.455, 0.761	0.216, 0.527	0.089, 0.313

 Table 28: ACR (Population 1: Main Trials plus MTX Experinced) – Probabilities of achieving ACR responses

5.3.2 Populations 2/3 (MTX-experienced populations)

5.3.2.1 EULAR - Main Trials

A network meta-analysis was used to compare the effects of abatacept i.v. + MTX, adalimumab (with and without MTX), intensive cDMARDs, etanercept (with and without MTX), golimumab + MTX, infliximab + MTX, placebo (PBO), tocilizumab (with and without MTX), the grouped biologics (from the TACIT RCT) and certolizumab pegol + MTX relative to cDMARDs on EULAR response.

Data were available from 15 studies comparing two or three interventions.

Figure 10 presents the network of evidence and Table 29 presents the frequency with which each pair of treatments was compared. There are 13 treatment effects to estimate from 15 studies.

Intervention	cDMARDs	ABT i.v.	ADA +	ADA	Int	ETN +	ETN	GOL +	IFX +	PBO	TCZ +	TCZ	Grouped	CTZ +
		+ MTX	MTX		cDMARDs	MTX		MTX	MTX		MTX		Biologics	MTX
cDMARDs	-	1	1					2	2		1	1		1
ABT i.v. +	-	-							1					
MTX														
ADA + MTX	-	-	-											
ADA	-	-	-	-						1		1		
Int cDMARDs	-	-	-	-	-	1			1				1	
ETN + MTX	-	-	-	-	-	-	1							
ETN	-	-	-	-	-	-	-							
GOL + MTX	-	-	-	-	-	-	-	-						
IFX + MTX	-	-	-	-	-	-	-	-	-					
РВО	-	-	-	-	-	-	-	-	-	-				
TCZ + MTX	-	-	-	-	-	-	-	-	-	-	-	1		
TCZ	-	-	-	-	-	-	-	-	-	-	-	-		
Grouped	-	-	-	-	-	-	-	-	-	-	-	-	-	
Biologics														
CTZ + MTX														

Table 29: EULAR (Population 2/3: Main Trials) – The numbers of RCTs with which each pair of interventions were compared

Figure 11 presents the effects of each intervention relative to cDMARDs on the probit scale and Figure 12 and Table 30 presents the probabilities of treatment rankings.

The model fitted the data well, with the total residual deviance, 59.57, close to the total number of data points, 52, included in the analysis.

The between-study standard deviation was estimated to be 0.38 (95% CrI: 0.18, 0.73), which implies mild to moderate heterogeneity between studies in intervention effects.

All interventions were associated with beneficial treatment effects relative to cDMARDs with the greatest effects being associated with tocilizumab, tocilizumab + MTX and etanercept + MTX. However, the treatment effects were only statistically significant for golimumab + MTX, tocilizumab and tocilizumab + MTX at a conventional 5% level. There was insufficient evidence to differentiate between treatments, although tocilizumab was ranked highest and was the treatment that was most likely to be the most effective intervention (mean rank 2.4; probability of being the best 0.377).

Figure 11: EULAR (Population 2/3: Main Trials) – Effects of interventions relative to cDMARDs on the probit scale

vs cDMARDs ABT i.v. + MTX ADA + MTX ADA				-0.62 [-1.46 , 0.22]
Int cDMARDs ETN + MTX ETN GOL + MTX IFX + MTX PBO TZC + MTX TZC Grouped Biologics CTZ + MTX				-0.65 [-1.62, 0.31] -0.82 [-2.08, 0.32] -0.33 [-1.45, 0.79] -1.36 [-2.79, 0.05] -0.66 [-2.41, 1.03] -0.92 [-1.57, -0.26] -0.62 [-1.25, 0.01] -0.62 [-1.25, 0.01] -0.11 [-1.68, 1.35] -1.49 [-2.24, -0.78] -1.60 [-2.44, -0.89] -0.78 [-2.23, 0.66] -0.89 [-1.83, 0.04]
vs ABT i.v. + MTX ADA + MTX ADA Int cDMARDs ETN + MTX ETN GOL + MTX IFX + MTX PBO TZC + MTX TZC Grouped Biologics CTZ + MTX			- 	-0.03 [-1.32, 1.23] -0.20 [-1.72, 1.21] 0.29 [-0.99, 1.55] -0.74 [-2.29, 0.79] -0.05 [-1.87, 1.73] -0.30 [-1.36, 0.78] 0.00 [-0.84, 0.84] 0.50 [-1.30, 2.16] -0.87 [-2.03, 0.22] -0.98 [-2.19, 0.11] -0.17 [-1.73, 1.39] -0.27 [-1.57, 0.98]

110

Figure 11 (Continued): EULAR (Population 2/3: Main Trials) – Effects of interventions relative to cDMARDs on the probit scale

111

Figure 11 (Continued): EULAR (Population 2/3: Main Trials) – Effects of interventions relative to cDMARDs on the probit scale

Treatment Com	parison		Effect [95% Crl]
vs Int cDMARDs ETN + MTX ETN GOL + MTX IFX + MTX PBO TZC + MTX TZC Grouped Biologics CTZ + MTX			-1.03 [-1.94 , -0.12] -0.34 [-1.66 , 0.97] -0.59 [-1.88 , 0.73] -0.29 [-1.21 , 0.63] 0.21 [-1.76 , 2.03] -1.16 [-2.52 , 0.16] -1.27 [-2.69 , 0.04] -0.45 [-1.38 , 0.48] -0.56 [-2.04 , 0.88]
vs ETN + MTX ETN GOL + MTX IFX + MTX PBO TZC + MTX TZC Grouped Biologics CTZ + MTX			0.69 [-0.28, 1.64] 0.45 [-1.11, 2.04] 0.75 [-0.53, 2.02] 1.25 [-0.88, 3.27] -0.12 [-1.73, 1.45] -0.24 [-1.90, 1.32] 0.58 [-0.68, 1.89] 0.48 [-1.22, 2.17]
vs ETN GOL + MTX IFX + MTX PBO TZC + MTX TZC Grouped Biologics CTZ + MTX	-2.00 -1.00 0.00 1.00	 2.00	-0.25 [-2.07 , 1.62] 0.05 [-1.53 , 1.67] 0.56 [-1.79 , 2.81] -0.82 [-2.70 , 1.03] -0.93 [-2.83 , 0.91] -0.11 [-1.70 , 1.52] -0.21 [-2.18 , 1.73]

Treatment Comparison

Treatment Comp	arisor	ı				Effect [95% Crl]
vs GOL + MTX IFX + MTX PBO TZC + MTX TZC Grouped Biologics CTZ + MTX		8			→	0.31 [-0.63, 1.20] 0.80 [-0.90, 2.39] -0.57 [-1.58, 0.37] -0.68 [-1.76, 0.26] 0.14 [-1.46, 1.74] 0.03 [-1.12, 1.15]
vs IFX + MTX PBO TZC + MTX TZC Grouped Biologics CTZ + MTX		-		•	→	0.50 [-1.20 , 2.08] -0.88 [-1.87 , 0.07] -0.98 [-2.03 , -0.04] -0.17 [-1.46 , 1.15] -0.27 [-1.40 , 0.84]
vs PBO TZC + MTX TZC Grouped Biologics CTZ + MTX						-1.37 [-2.85 , 0.14] -1.49 [-2.80 , -0.19] -0.67 [-2.69 , 1.49] -0.77 [-2.48 , 1.06]
vs TZC + MTX TZC Grouped Biologics CTZ + MTX				- 8 8		-0.12 [-0.87 , 0.60] 0.71 [-0.89 , 2.36] 0.59 [-0.56 , 1.80]
vs TZC Grouped Biologics CTZ + MTX					→	0.82 [-0.78 , 2.51] 0.71 [-0.44 , 1.97]
vs Grouped Biologics CTZ + MTX	s				_	-0.10 [-1.87 , 1.61]
	Γ	1				
	-2.00	-1.00	0.00	1.00	2.00	

Figure 11 (Continued): EULAR (Population 2/3: Main Trials) – Effects of interventions relative to cDMARDs on the probit scale

								Ra	nk						
Intervention	Rank	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	(mean)														
cDMARDs	12.7	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.008	0.019	0.044	0.090	0.176	0.340	0.319
ABT i.v.+	8.6														0.023
MTX		0.006	0.010	0.023	0.043	0.067	0.090	0.111	0.123	0.129	0.122	0.112	0.089	0.052	
ADA + MTX	8.3	0.015	0.020	0.041	0.061	0.081	0.092	0.096	0.102	0.096	0.096	0.100	0.096	0.067	0.038
ADA	7.1	0.020	0.041	0.093	0.105	0.104	0.100	0.098	0.083	0.079	0.077	0.075	0.075	0.045	0.004
Int cDMARDs	10.7	0.000	0.001	0.006	0.014	0.020	0.037	0.050	0.066	0.085	0.114	0.153	0.187	0.165	0.104
ETN + MTX	3.8	0.268	0.139	0.158	0.116	0.085	0.067	0.048	0.039	0.030	0.022	0.016	0.009	0.004	0.001
ETN	8.2	0.027	0.068	0.054	0.073	0.078	0.073	0.072	0.068	0.071	0.077	0.082	0.079	0.074	0.104
GOL + MTX	6.4	0.015	0.030	0.080	0.127	0.155	0.150	0.126	0.099	0.078	0.060	0.042	0.025	0.010	0.002
IFX + MTX	8.6	0.000	0.002	0.007	0.016	0.042	0.080	0.134	0.175	0.191	0.168	0.113	0.053	0.016	0.003
PBO	11.2	0.006	0.008	0.013	0.028	0.030	0.033	0.040	0.045	0.053	0.064	0.075	0.098	0.151	0.354
TCZ + MTX	3.0	0194	0.308	0.205	0.131	0.070	0.041	0.022	0.014	0.008	0.004	0.002	0.001	0.000	0.000
TCZ	2.4	0.377	0.275	0.164	0.087	0.047	0.023	0.013	0.007	0.004	0.002	0.001	0.000	0.000	0.000
Grouped	7.4														0.037
Biologics		0.037	0.054	0.070	0.087	0.099	0.095	0.083	0.082	0.081	0.082	0.078	0.064	0.051	
CTZ + MTX	6.7	0.034	0.044	0.087	0.111	0.123	0.118	0.104	0.088	0.076	0.068	0.061	0.047	0.025	0.012

 Table 30: EULAR (Population 2/3: Main Trials) – Probability of treatment rankings in terms of efficacy (most efficacious = 1)

Figure 12: EULAR (Population 2/3: Main Trials) – Probability of treatment rankings in terms of efficacy (most efficacious = 1)

Figure 12 (Continued): EULAR (Population 2/3: Main Trials) – Probability of treatment rankings in terms of efficacy (most efficacious = 1)

A meta-analysis was used to estimate the proportion of patients experiencing a EULAR "No response" when treated with cDMARDs.

Data were available from eight studies.

The model fitted the data well with the total residual deviance, 8.63, close to the total number of data points, 8, included in the analysis.

The between-study standard deviation was estimated to be 0.18 (95% CrI: 0.05, 0.44), which implies mild heterogeneity between studies in the baseline response.

Table 31 presents the probabilities of achieving at least a moderate and at least a good EULAR response. These are derived by combining the treatment effects estimated from the network meta-analysis with the estimate of the cDMARDs "No response" rate.

	At least Moderate	At least Good
Intervention	95% CrI	95% CrI
cDMARDs	0.451	0.094
	0.384, 0.520	0.058, 0.144
ABT i.v.+		0.242
MTV	0.690	0.058, 0.571
MITA	0.358, 0.913	
ADA + MTX	0.700	0.252
	0.330, 0.934	0.049, 0.631
ADA	0.757	0.311
	0.328, 0.975	0.050, 0.781
Int cDMARDs	0.581	0.162
	0.180, 0.910	0.017, 0.567
ETN + MTX	0.893	0.519
	0.426, 0.996	0.082, 0.931
ETN	0.706	0.257
	0.121, 0.989	0.009, 0.867
GOL + MTX	0.786	0.345
	0.545, 0.929	0.134, 0.620
IFX + MTX	0.688	0.241
	0.436, 0.874	0.084, 0.490
PBO	0.495	0.115
	0.070, 0.942	0.004, 0.648
TCZ + MTX	0.914	0.568
	0.738, 0.984	0.283, 0.833
TCZ	0.930	0.613
	0.770, 0.990	0.319, 0.875
Grouped		0.298
Biologics	0.746	0.022, 0.823
Diologics	0.211, 0.983	
CTZ + MTX	0.779	0.336
	0.428, 0.957	0.082, 0.708

Table 31: EULAR (Population 2/3: Main Trials) – Probability of achieving EULAR responses

5.3.2.2 EULAR - Main Trials plus Prior Biologics

A network meta-analysis was used to compare the effects of abatacept i.v. + MTX, adalimumab (with and without MTX), intensive cDMARDs, etanercept (with and without MTX), golimumab + MTX, infliximab + MTX, placebo (PBO), tocilizumab (with and without MTX), the grouped biologics (from the TACIT RCT) and certolizumab pegol + MTX relative to cDMARDs on EULAR response.

Data were available from 18 studies comparing two or three interventions.

Figure 13 presents the network of evidence and Table 32 presents the frequency with which each pair of treatments was compared. There are 13 treatment effects to estimate from 18 studies.

Figure 13: EULAR (Population 2/3: Main Trials plus Prior Biologics) – Network of evidence

Intervention	cDMAR	AB	AD	AD	Int	ETN +	ET	GOL +	IFX +	PB	TCZ +	TC	Grouped	CT
	Ds	Т	A +	А	cDMAR	MTX	Ν	MTX	MTX	0	MTX	Z	Biologics	Z +
		i.v.+	MT		Ds									MT
		MT	Х											Х
		Х												
cDMARDs	-	1	1					2	2		2	1		3
ABT i.v.+	-	-							1					
MTX														
ADA + MTX	-	-	-											
ADA	-	-	-	-						1		1		
Int cDMARDs	-	-	-	-	-	1			1				1	
ETN + MTX	-	-	-	-	-	-	1							
ETN	-	-	-	-	-	-	-							
GOL + MTX	-	-	-	-	-	-	-	-						
IFX + MTX	-	-	-	-	-	-	-	-	-					
РВО	-	-	-	-	-	-	-	-	-	-				
TCZ + MTX	-	-	-	-	-	-	-	-	-	-	-	1		
TCZ	-	-	-	-	-	-	-	-	-	-	-	-		
Grouped	-	-	-	-	-	-	-	-	-	-	-	-	-	
Biologics														
CTZ + MTX	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table 32: EULAR (Population 2/3: Main Trials plus Prior Biologics) – The numbers of RCTs with which each pair of interventions were compared

Figure 14 presents the effects of each intervention relative to cDMARDs on the probit scale and Figure 15 and Table 33 presents the probabilities of treatment rankings.

The model fitted the data well, with the total residual deviance, 70.90, close to the total number of data points, 60, included in the analysis.

The between-study standard deviation was estimated to be 0.34 (95% CrI: 0.17, 0.62), which implies mild to moderate heterogeneity between studies in intervention effects. The addition of the studies including patients who had received prior biologics resulted in a small reduction in the estimate of the between-study standard deviation.

All interventions were associated with beneficial treatment effects relative to cDMARDs with the greatest effects being associated with tocilizumab, tocilizumab + MTX, etanercept + MTX and certolizumab + MTX. However, the treatment effects were only statistically significant for etanercept + MTX, golimumab + MTX, infliximab + MTX, tocilizumab + MTX, tocilizumab and certolizumab + MTX at a conventional 5% level. There was insufficient evidence to differentiate between treatments, although tocilizumab was ranked highest and was the treatment that was most likely to be the most effective intervention (mean rank 2.4; probability of being the best 0.377). The addition of the studies including patients who had received prior biologics had the greatest impact on the estimate of the effect of certolizumab + MTX.

Figure 14: EULAR (Population 2/3: Main Trials plus Prior Biologics) – Effects of interventions relative to cDMARDs on the probit scale

	-				-
vs cDMARDs ABT i.v. + MTX ADA + MTX ADA Int cDMARDs ETN + MTX ETN GOL + MTX IFX + MTX PBO TZC + MTX TZC Grouped Biologics CTZ + MTX			_ 	-0.63 [-1.37 -0.65 [-1.51 -0.76 [-1.84 -0.33 [-1.29 -1.36 [-2.61 -0.67 [-2.13 -0.91 [-1.50 -0.62 [-1.17 -0.06 [-1.40 -1.41 [-1.94 -1.55 [-2.23 -0.78 [-2.05 -1.33 [-1.81	, 0.12] , 0.21] , 0.23] , 0.68] , -0.08] , -0.06] , -0.32] , -0.06] , 1.22] , -0.94] , -0.94] , 0.55] , -0.85]
vs ABT i.v. + MTX ADA + MTX ADA Int cDMARDs ETN + MTX ETN GOL + MTX IFX + MTX PBO TZC + MTX TZC Grouped Biologics CTZ + MTX		-1 00		 -0.02 [-1.18 -0.14 [-1.45 0.30 [-0.78 -0.73 [-2.08 -0.04 [-1.61 -0.29 [-1.25 0.01 [-0.71 0.57 [-0.99 -0.79 [-1.70 -0.92 [-1.95 -0.15 [-1.52 -0.70 [-1.59	, 1.10] , 1.10] , 1.41] , 0.63] , 1.57] , 0.65] , 0.75] , 2.03] , 0.09] , 0.03] , 1.25] , 0.19]

Treatment Comparison

Effect [95% Crl]

Figure 14 (Continued): EULAR (Population 2/3: Main Trials plus Prior Biologics) – Effects of interventions relative to cDMARDs on the probit scale

Figure 14 (Continued): EULAR (Population 2/3: Main Trials plus Prior Biologics) – Effects of interventions relative to cDMARDs on the probit scale

Treatment Com	parison	1				Effect [95% Crl]
vs Int cDMARDs ETN + MTX ETN GOL + MTX IFX + MTX PBO TZC + MTX TZC Grouped Biologics CTZ + MTX	_ _ _ _			-		-1.04 [-1.81, -0.23] -0.34 [-1.47, 0.82] -0.59 [-1.74, 0.55] -0.29 [-1.12, 0.52] 0.27 [-1.40, 1.86] -1.08 [-2.23, -0.01] -1.22 [-2.44, -0.09] -0.45 [-1.27, 0.39] -1.00 [-2.10, 0.08]
vs ETN + MTX ETN GOL + MTX IFX + MTX PBO TZC + MTX TZC Grouped Biologics CTZ + MTX	_				 	0.70 [-0.13, 1.54] 0.45 [-0.97, 1.81] 0.74 [-0.41, 1.86] 1.30 [-0.57, 3.05] -0.05 [-1.44, 1.28] -0.19 [-1.66, 1.18] 0.58 [-0.56, 1.72] 0.03 [-1.34, 1.37]
vs ETN GOL + MTX IFX + MTX PBO TZC + MTX TZC Grouped Biologics CTZ + MTX	-2.00	-1.00	• • • • • • •	■ 1.00	2.00	-0.26 [-1.89, 1.34] 0.04 [-1.39, 1.44] 0.60 [-1.49, 2.54] -0.75 [-2.39, 0.80] -0.88 [-2.58, 0.69] -0.12 [-1.55, 1.28] -0.66 [-2.27, 0.90]

124

Figure 14 (Continued): EULAR (Population 2/3: Main Trials plus Prior Biologics) – Effects of interventions relative to cDMARDs on the probit scale

Treatment Comparison	Effect [95% Crl]
vs GOL + MTX IFX + MTX PBO TZC + MTX Grouped Biologics CTZ + MTX	0.30 [-0.50, 1.11] 0.86 [-0.62, 2.26] -0.50 [-1.28, 0.26] -0.63 [-1.55, 0.22] 0.13 [-1.25, 1.57] -0.41 [-1.18, 0.34]
vs IFX + MTX PBO TZC + MTX TZC Grouped Biologics CTZ + MTX	0.56 [-0.90 , 1.95] -0.79 [-1.56 , -0.07] -0.93 [-1.81 , -0.11] -0.16 [-1.31 , 1.02] -0.71 [-1.46 , 0.02]
vs PBO TZC + MTX TZC Grouped Biologics CTZ + MTX	-1.35 [-2.64, -0.04] -1.49 [-2.62, -0.35] -0.72 [-2.46, 1.16] -1.27 [-2.62, 0.19]
vs TZC + MTX TZC Grouped Biologics CTZ + MTX	-0.13 [-0.78 , 0.46] 0.63 [-0.72 , 2.06] 0.08 [-0.58 , 0.80]
vs TZC Grouped Biologics CTZ + MTX	0.76 [-0.61 , 2.27] 0.22 [-0.55 , 1.06]
vs Grouped Biologics CTZ + MTX	-0.54 [-1.94 , 0.80]
-2.00 -1.00 0.00 1.00 2.00)

		Rank													
Intervention	Rank	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	(mean)														
cDMARDs	12.8	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.005	0.013	0.035	0.076	0.164	0.372	0.333
ABT i.v.+ MTX	8.7	0.004	0.006	0.015	0.030	0.058	0.085	0.118	0.138	0.136	0.136	0.122	0.091	0.045	0.016
ADA + MTX	8.5	0.012	0.014	0.026	0.047	0.075	0.096	0.109	0.107	0.107	0.103	0.108	0.100	0.065	0.031
ADA	7.6	0.013	0.035	0.048	0.075	0.099	0.114	0.113	0.098	0.090	0.090	0.088	0.093	0.040	0.003
Int cDMARDs	11.0	0.000	0.001	0.003	0.007	0.011	0.020	0.039	0.059	0.085	0.123	0.172	0.215	0.168	0.096
ETN + MTX	3.7	0.287	0.131	0.113	0.131	0.104	0.074	0.054	0.036	0.027	0.020	0.013	0.007	0.002	0.000
ETN	8.4	0.017	0.064	0.046	0.048	0.073	0.085	0.082	0.082	0.079	0.084	0.089	0.084	0.073	0.095
GOL + MTX	6.7	0.011	0.022	0.045	0.105	0.159	0.169	0.151	0.113	0.084	0.063	0.043	0.024	0.009	0.001
IFX + MTX	8.9	0.000	0.000	0.002	0.008	0.025	0.065	0.121	0.185	0.218	0.185	0.118	0.057	0.015	0.001
PBO	11.7	0.003	0.004	0.008	0.012	0.018	0.027	0.034	0.045	0.050	0.059	0.079	0.103	0.166	0.392
TCZ + MTX	3.2	0.131	0.267	0.244	0.170	0.095	0.050	0.022	0.012	0.005	0.003	0.001	0.000	0.000	0.000
TCZ	2.4	0.377	0.243	0.169	0.103	0.054	0.026	0.013	0.006	0.004	0.002	0.001	0.000	0.000	0.000
Grouped Biologics	7.5	0.033	0.050	0.055	0.063	0.095	0.105	0.101	0.094	0.091	0.091	0.085	0.061	0.044	0.032
CTZ + MTX	3.7	0.113	0.162	0.225	0.200	0.133	0.082	0.042	0.021	0.011	0.006	0.003	0.001	0.000	0.000

Table 33: EULAR (Population 2/3: Main Trials plus Prior Biologics) – Probability of treatment rankings in terms of efficacy (most efficacious = 1)

Figure 15: EULAR (Population 2/3: Main Trials plus Prior Biologics) – Probability of treatment rankings in terms of efficacy (most efficacious = 1)

Figure 15 (Continued): EULAR (Population 2/3: Main Trials plus Prior Biologics) – Probability of treatment rankings in terms of efficacy (most efficacious = 1)

A meta-analysis was used to estimate the proportion of patients experiencing a EULAR "No response" when treated with cDMARDs.

Data were available from 11 studies.

The model fitted the data well with the total residual deviance, 11.42, close to the total number of data points, 11, included in the analysis.

The between-study standard deviation was estimated to be 0.24 (95% CrI: 0.13, 0.46), which implies mild heterogeneity between studies in the baseline response.

Table 34 presents the probabilities of achieving at least a moderate and at least a good EULAR response. These are derived by combining the treatment effects estimated from the network meta-analysis with the estimate of the cDMARDs "No response" rate.

	At least Moderate	At least Good
Intervention	95% CrI	95% CrI
cDMARDs	0.410	0.077
	0.344, 0.479	0.048, 0.117
ABT i.v.+		0.212
MTV	0.655	0.057, 0.494
MIIA	0.356, 0.878	
ADA + MTX	0.664	0.220
	0.327, 0.903	0.048, 0.546
ADA	0.704	0.254
	0.321, 0.948	0.047, 0.669
Int		0.136
	0.539	0.016, 0.463
CDWARDS	0.178, 0.863	
ETN + MTX	0.871	0.473
	0.437, 0.992	0.085, 0.886
ETN	0.670	0.224
	0.132, 0.973	0.010, 0.772
GOL + MTX	0.754	0.305
	0.528, 0.902	0.126, 0.545
IFX + MTX	0.652	0.210
	0.424, 0.832	0.079, 0.416
PBO	0.433	0.086
	0.071, 0.883	0.004, 0.500
TCZ + MTX	0.882	0.495
	0.751, 0.958	0.293, 0.710
TCZ	0.907	0.550
	0.752, 0.979	0.298, 0.800
Grouped		0.260
Biologics	0.711	0.023, 0.743
Diologics	0.217, 0.967	
CTZ + MTX	0.864	0.462
	0.722, 0.946	0.263, 0.668

5.3.2.4 ACR - Main Trials

A network meta-analysis was used to compare the effects of abatacept i.v. + MTX, adalimumab (with and without MTX), intensive cDMARDs, etanercept (with and without MTX), golimumab + MTX, infliximab + MTX, placebo, tocilizumab (with and without MTX), certolizumab pegol + MTX, and abatacept s.c. + MTX relative to cDMARDs on ACR response.

Data were available from 28 studies comparing two or three interventions.

Figure 16 presents the network of evidence and Table 35 presents the frequency with which each pair of treatments was compared. There were 13 treatment effects to estimate from 28 studies.

Figure 16: ACR (Population 2/3: Main Trials) – Network of evidence

Intervention	cDMARD	ABT	ADÁ	ADA	Int	ETN	ETN	GOL	IFX +	PBO	TCZ +	TCZ	CTZ	ABT s.c.+
	S	i.v.+	+		cDMARDs	+		+	MTX		MTX		+	MTX
		MTX	MTX			MTX		MTX					MTX	
cDMARDs	-	2	5			3	1	2	3		1	2	1	
ABT i.v.+	-	-							1					
MTX														
ADA + MTX	-	-	-											1
ADA	-	-	-	-						2		1		
Int cDMARDs	-	-	-	-	-	2								
ETN + MTX	-	-	-	-	-	-	2		1					
ETN	-	-	-	-	-	-	-			1				
GOL + MTX	-	-	-	-	-	-	-	-						
IFX + MTX	-	-	-	-	-	-	-	-	-					
РВО	-	-	-	-	-	-	-	-	-	-				
TCZ + MTX	-	-	-	-	-	-	-	-	-	-	-	1		
TCZ	-	-	-	-	-	-	-	-	-	-	-	-		
CTZ + MTX	-	-	-	-	-	-	-	-	-	-	-	-	-	
ABT s.c.+	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MTX														

 Table 35:ACR (Population 2/3: Main Trials) – Frequency with which each pair of interventions were compared

Figure 17 presents the effects of each intervention relative to cDMARDs on the probit scale and Figure 18 and Table 36 presents the probabilities of treatment rankings.

The model fitted the data well, with the total residual deviance, 185.61, close to the total number of data points, 174, included in the analysis. The largest residual deviances were 7.24 and 3.86 from the O'Dell study,¹¹¹ and 4.99 from the ARMADA study.

The between-study standard deviation was estimated to be 0.24 (95% CrI: 0.14, 0.40), which implies mild heterogeneity between studies in intervention effects.

All interventions except for PBO were associated with beneficial treatment effects relative to cDMARDs with the greatest effects being associated with etanercept + MTX and tocilizumab (with and without MTX). The treatment effects were statistically significant for all interventions except for adalimumab and placebo at a conventional 5% level. There was insufficient evidence to differentiate between treatments, although tocilizumab (mean rank 3.0; probability of being the best 0.234), etanercept + MTX (mean rank 3.1; probability of being the best 0.247) and tocilizumab + MTX (mean rank 3.6; probability of being the best 0.213) were the treatments that were most likely to be the most effective interventions.

Figure 17: ACR (Population 2/3: Main Trials) – Effects of interventions relative to cDMARDs on the probit scale

freddinent Com	Junioon	•				Encor [00 /0 On]
vs cDMARDs ABT i.v. + MTX ADA + MTX ADA Int cDMARDs ETN + MTX ETN GOL + MTX IFX + MTX PBO TZC + MTX TZC CTZ + MTX ABT s.c. + MTX						-0.71 [-1.09, -0.34] -0.82 [-1.10, -0.56] -0.53 [-1.08, 0.02] -0.54 [-1.05, -0.01] -1.09 [-1.43, -0.75] -0.90 [-1.34, -0.47] -0.89 [-1.32, -0.47] -0.77 [-1.08, -0.47] 0.40 [-0.17, 0.98] -1.07 [-1.49, -0.65] -1.10 [-1.46, -0.75] -0.69 [-1.32, -0.06] -0.88 [-1.50, -0.29]
vs ABT i.v. + MTX ADA + MTX ADA Int cDMARDs ETN + MTX ETN GOL + MTX IFX + MTX PBO TZC + MTX TZC CTZ + MTX ABT s.c. + MTX	Γ			 		-0.11 [-0.58, 0.34] 0.19 [-0.48, 0.84] 0.18 [-0.45, 0.82] -0.38 [-0.88, 0.12] -0.19 [-0.76, 0.38] -0.18 [-0.75, 0.39] -0.06 [-0.48, 0.36] 1.12 [0.44, 1.80] -0.36 [-0.92, 0.20] -0.39 [-0.90, 0.12] 0.03 [-0.72, 0.75] -0.17 [-0.89, 0.53]
	-2.00	-1.00	0.00	1.00	2.00	

Treatment Comparison

Effect [95% Crl]
Figure 17 (Continued): ACR (Population 2/3: Main Trials) – Effects of interventions relative to cDMARDs on the probit scale

Treatment Com	parison	Ellect [ab% Cli]
vs ADA + MTX		
ADA		0.29 [-0.30, 0.92]
Int cDMARDs		0.28 [-0.29, 0.89]
ETN + MTX	— B	-0.27 [-0.70, 0.18]
ETN		-0.08 [-0.59, 0.44]
GOL + MTX		-0.07 [-0.57, 0.44]
IFX + MTX		0.05 [-0.35, 0.47]
PBO	—— —	1.23 [0.61 , 1.88]
TZC + MTX		-0.25 [-0.74, 0.27]
TZC	B	-0.28 [-0.72 , 0.17]
CTZ + MTX		0.13 [-0.54, 0.82]
ABT s.c. + MTX		-0.06 [-0.60 , 0.47]
VS ADA		0.01 [0.71 0.70]
		-0.01 [-0.71, 0.70]
		-0.30 [-1.15, 0.03]
		-0.37 [-0.95, 0.20]
		-0.37 [-1.05, 0.32]
		-0.24 [-0.07 , 0.30]
		-0.54 [-1.17, 0.07]
		-0.57 [-1.07, -0.09]
		-0.17 [-0.99, 0.00]
ADT S.C. + MITX		-0.35 [-1.17, 0.44]
	-2.00 -1.00 0.00 1.00	2.00

Treatment Comparison

Effect [05% Crl]

Treatment Comp	arisor	ı				Effect [95% Crl]
vs Int cDMARDs ETN + MTX ETN GOL + MTX IFX + MTX PBO TZC + MTX TZC CTZ + MTX ABT s.c. + MTX				₽	_	-0.56 [-0.95,-0.16] -0.37 [-0.92, 0.18] -0.36 [-1.04, 0.31] -0.23 [-0.83, 0.34] 0.94 [0.24, 1.66] -0.53 [-1.20, 0.12] -0.57 [-1.18, 0.04] -0.15 [-0.96, 0.65] -0.35 [-1.15, 0.44]
vs ETN + MTX ETN GOL + MTX IFX + MTX PBO TZC + MTX TZC CTZ + MTX ABT s.c. + MTX				- -	₽→	0.19 [-0.20, 0.58] 0.20 [-0.35, 0.75] 0.32 [-0.12, 0.74] 1.50 [0.91, 2.09] 0.02 [-0.52, 0.55] -0.01 [-0.48, 0.45] 0.40 [-0.30, 1.11] 0.21 [-0.49, 0.89]
vs ETN GOL + MTX IFX + MTX PBO TZC + MTX TZC CTZ + MTX ABT s.c. + MTX	[- 		- - 		0.01 [-0.60, 0.62] 0.13 [-0.39, 0.65] 1.31 [0.77, 1.86] -0.16 [-0.76, 0.41] -0.20 [-0.72, 0.31] 0.21 [-0.54, 0.97] 0.02 [-0.73, 0.75]
	-2.00	-1.00	0.00	1.00	2.00	

Figure 17 (Continued): ACR (Population 2/3: Main Trials) – Effects of interventions relative to cDMARDs on the probit scale

Treatment Com	parison	Effect [95% Crl]
VS GOL + MTX IFX + MTX PBO TZC + MTX TZC CTZ + MTX ABT s.c. + MTX		0.12 [-0.40, 0.64] 1.30 [0.59, 2.02] -0.18 [-0.78, 0.42] -0.21 [-0.76, 0.34] 0.21 [-0.55, 0.96] 0.01 [-0.74, 0.74]
vs IFX + MTX PBO TZC + MTX TZC CTZ + MTX ABT s.c. + MTX		1.17 [0.54 , 1.83] -0.30 [-0.81 , 0.22] -0.33 [-0.79 , 0.13] 0.08 [-0.61 , 0.78] -0.11 [-0.80 , 0.55]
vs PBO TZC + MTX TZC CTZ + MTX ABT s.c. + MTX		-1.47 [-2.14, -0.83] -1.50 [-2.08, -0.96] -1.10 [-1.95, -0.26] -1.29 [-2.13, -0.48]
vs TZC + MTX TZC CTZ + MTX ABT s.c. + MTX		-0.03 [-0.45 , 0.39] 0.38 [-0.37 , 1.14] 0.19 [-0.55 , 0.91]
vs TZC CTZ + MTX ABT s.c. + MTX	B	0.41 [-0.30 , 1.14] 0.22 [-0.49 , 0.91]
vs CTZ + MTX ABT s.c. + MTX		-0.19 [-1.07, 0.65]
	-2.00 -1.00 0.00 1.00 2.00	

Figure 17 (Continued): ACR (Population 2/3: Main Trials) – Effects of interventions relative to cDMARDs on the probit scale

			Rank												
Intervention	Rank	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	(mean)														
cDMARDs	13.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.063	0.859	0.075
ABT i.v.+	8.3														
MTX		0.007	0.014	0.025	0.039	0.062	0.082	0.108	0.131	0.166	0.169	0.130	0.067	0.001	0.000
ADA + MTX	6.8	0.004	0.019	0.040	0.078	0.122	0.168	0.181	0.164	0.117	0.071	0.029	0.006	0.000	0.000
ADA	10.1	0.003	0.005	0.011	0.017	0.029	0.038	0.049	0.058	0.085	0.136	0.230	0.312	0.027	0.000
Int cDMARDs	10.0	0.001	0.005	0.010	0.016	0.026	0.037	0.050	0.065	0.090	0.144	0.242	0.291	0.022	0.003
ETN + MTX	3.1	0.247	0.210	0.196	0.144	0.089	0.054	0.031	0.017	0.008	0.003	0.001	0.000	0.000	0.000
ETN	5.7	0.045	0.086	0.103	0.136	0.136	0.118	0.101	0.094	0.086	0.064	0.027	0.005	0.000	0.000
GOL + MTX	5.8	0.067	0.079	0.098	0.113	0.124	0.118	0.103	0.094	0.076	0.065	0.042	0.019	0.000	0.000
IFX + MTX	7.8	0.005	0.013	0.030	0.055	0.084	0.119	0.147	0.168	0.166	0.126	0.069	0.019	0.000	0.000
PBO	13.9	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.008	0.071	0.919
TCZ + MTX	3.6	0.213	0.202	0.168	0.133	0.093	0.063	0.049	0.033	0.023	0.015	0.007	0.002	0.000	0.000
TCZ	3.0	0.239	0.251	0.192	0.131	0.080	0.047	0.028	0.017	0.010	0.004	0.001	0.000	0.000	0.000
CTZ + MTX	8.2	0.044	0.037	0.043	0.049	0.060	0.067	0.069	0.081	0.096	0.124	0.149	0.161	0.015	0.003
ABT s.c.+	6.0														
MTX		0.125	0.081	0.083	0.090	0.095	0.089	0.083	0.079	0.077	0.078	0.069	0.047	0.003	0.001

Table 36: ACR (Population 2/3: Main Trials) – Probability of treatment rankings in terms of efficacy (most efficacious = 1)

Figure 18: ACR (Population 2/3: Main Trials) – Probability of treatment rankings in terms of efficacy (most efficacious = 1)

Figure 18 (Continued): ACR (Population 2/3: Main Trials) – Probability of treatment rankings in terms of efficacy (most efficacious = 1)

Figure 18 (Continued): ACR (Population 2/3: Main Trials) – Probability of treatment rankings in terms of efficacy (most efficacious = 1)

A meta-analysis was used to estimate the proportion of patients experiencing an ACR "No response" when treated with cDMARDs.

Data were available from 18 studies.

The model fitted the data well with the total residual deviance, 18.70, close to the total number of data points, 18, included in the analysis.

The between-study standard deviation was estimated to be 0.23 (95% CrI: 0.14, 0.38), which implies mild heterogeneity between studies in the baseline response.

Table 37 presents the probabilities of achieving at least an ACR20, at least an ACR50 and at least an ACR70 response. These are derived by combining the treatment effects estimated from the network meta-analysis with the estimate of the cDMARDs "No response" rate.

	At least ACR20	At least ACR50	At least ACR70
Intervention	95% CrI	95% CrI	95% CrI
cDMARDs	0.298	0.123	0.042
	0.255, 0.344	0.098, 0.153	0.031, 0.056
ABT i.v.+		0.328	0.156
MTV	0.573	0.200, 0.480	0.079, 0.268
MIIA	0.418, 0.719		
ADA + MTX	0.615	0.368	0.183
	0.500, 0.726	0.263, 0.489	0.115, 0.276
ADA	0.499	0.264	0.115
	0.286, 0.712	0.116, 0.472	0.039, 0.263
Int		0.266	0.117
	0.503	0.120, 0.462	0.041, 0.254
CDWIARDS	0.293, 0.704		
ETN + MTX	0.713	0.472	0.263
	0.576, 0.823	0.330, 0.617	0.157, 0.394
ETN	0.645	0.398	0.205
	0.467, 0.798	0.237, 0.580	0.100, 0.359
GOL + MTX	0.642	0.395	0.202
	0.469, 0.793	0.239, 0.573	0.101, 0.351
IFX + MTX	0.595	0.348	0.169
	0.466, 0.718	0.236, 0.479	0.099, 0.268
PBO	0.175	0.059	0.016
	0.063, 0.362	0.015, 0.163	0.003, 0.061
TCZ + MTX	0.706	0.464	0.256
	0.542, 0.837	0.299, 0.638	0.136, 0.415
TCZ	0.717	0.477	0.266
	0.578, 0.830	0.332, 0.627	0.159, 0.405
CTZ + MTX	0.564	0.319	0.150
	0.314, 0.785	0.133, 0.563	0.046, 0.341
ABT s.c.+		0.391	0.199
MTY	0.638	0.188, 0.637	0.073, 0.415
	0.400, 0.837		

Table 37: ACR (Population 2/3: Main Trials) – Probability of achieving ACR responses

5.3.2.5 ACR - Main Trials plus Prior Biologics with AMBITION

A network meta-analysis was used to compare the effects of abatacept i.v. + MTX, adalimumab (with and without MTX), intensive cDMARDs, etanercept (with and without MTX), golimumab + MTX, infliximab + MTX, placebo, tocilizumab (with and without MTX), certolizumab pegol + MTX, abatacept s.c. + MTX, tofacitinib (5mg and 10mg doses) and MTX relative to cDMARDs on ACR response.

Data were available from 40 studies comparing two, three or four interventions.

Figure 19 presents the network of evidence and Table 38 presents the frequency with which each pair of treatments was compared. There were 15 treatment effects to estimate from 40 studies.

		1	1	1			1							1		1
Intervention	cDMAR	AB	AD	AD	Int	ET	ET	GOL +	IFX	PB	TCZ +	TC	CTZ +	AB	ТО	ТО
	Ds	Т	Α	Α	cDMAR	Ν	Ν	MTX	+	0	MTX	Z	MTX	Α	F	F
		i.v.	+		Ds	+			MTX					s.c.	5mg	5mg
		+	MT			MT								+	+	+
		MT	Х			Х								MT	MT	MT
		Х												Х	Х	Х
cDMARDs	-	3	6			3	1	2	3		3	3	5		3	3
ABT i.v.+	-	-							1					1		
MTX																
ADA + MTX	-	-	-											1	1	1
ADA	-	-	-	-						2		1				
Int cDMARDs	-	-	-	-	-	2										
ETN + MTX	-	-	-	-	-	-	2		1							
ETN	-	-	-	-	-	-	-			1						
GOL + MTX	-	-	-	-	-	-	-	-								
IFX + MTX	-	-	-	-	-	-	-	-	-							
PBO	-	-	-	-	-	-	-	-	-	-						
TCZ + MTX	-	-	-	-	-	-	-	-	-	-	-	1				
TCZ	-	-	-	-	-	-	-	-	-	-	-	-				
CTZ + MTX	-	-	-	-	-	-	-	-	-	-	-	-	-			
ABT s.c.+	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
MTX																
TOF 5mg +	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3
MTX																
TOF 10mg +	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MTX																

Table 38: ACR (Population 2/3: Main Trials plus Prior Biologics with AMBITION) – Frequency with which each pair of interventions were compared

Figure 20 presents the effects of each intervention relative to cDMARDs on the probit scale and Figure 21 and Table 39 presents the probabilities of treatment rankings.

There was some suggestion that model was not a good fit to all of the data, with the total residual deviance, 291.84, being larger than the total number of data points, 250, included in the analysis. The largest residual deviances, 14.21 and 14.70, were from the Kremer study¹²⁸ which included patients who received prior biologics and were from the cDMARDs arm on which only one patient had an ACR20 response and two patients had an ACR50 response. The next largest residual deviances were 5.92 and 4.04 from the O'Dell study¹¹¹ and 3.95 from the JESMR study.¹⁴⁴

The between-study standard deviation was estimated to be 0.21 (95% CrI: 0.14, 0.32), which implies mild heterogeneity between studies in intervention effects. The addition of the AMBITION study and studies in which patients had received prior biologics reduced the point estimate and the uncertainty in the between study standard deviation.

All interventions except for placebo were associated with beneficial treatment effects relative to cDMARDs with the greatest effects being associated with certolizumab + MTX and etanercept + MTX. The treatment effects were statistically significant for all interventions except for adalimumab and placebo at a conventional 5% level. There was insufficient evidence to differentiate between treatments, although certolizumab + MTX (mean rank 1.9; probability of being the best 0.538) and etanercept + MTX (mean rank 2.9; probability of being the best 0.263) were the treatments that were most likely to be the most effective interventions. The inclusion of the additional studies has had a small impact on six of the treatment effects. However, the effects of adalimumab (with and without MTX) tocilizumab (with and without MTX), abatacept s.c. + MTX and placebo were smaller, and the effect of certolizumab + MTX were larger relative to cDMARDs.

Figure 20: ACR (Population 2/3: Main Trials plus Prior Biologics with AMBITION) – Effects of interventions relative to cDMARDs on the probit scale

Treatment Comp	parison	1				Effect [95% Crl]
vs cDMARDs ABT i.v. + MTX ADA + MTX ADA Int cDMARDs ETN + MTX ETN GOL + MTX IFX + MTX IFX + MTX PBO TZC + MTX TZC CTZ + MTX ABT s.c. + MTX TOF 5mg TOF 10mg		╡┿╵╹ ┙┿┿┿ ┿┿┿┿		-		$\begin{array}{c} -0.73 & [-0.99 , -0.47] \\ -0.76 & [-0.97 , -0.55] \\ -0.41 & [-0.90 , 0.07] \\ -0.52 & [-1.00 , -0.04] \\ -1.08 & [-1.28 , -0.48] \\ -0.88 & [-1.28 , -0.48] \\ -0.89 & [-1.28 , -0.50] \\ -0.77 & [-1.04 , -0.49] \\ 0.48 & [-0.03 , 1.00] \\ -0.94 & [-1.19 , -0.69] \\ -0.93 & [-1.20 , -0.67] \\ -1.17 & [-1.42 , -0.91] \\ -0.79 & [-1.16 , -0.42] \\ -0.69 & [-0.98 , -0.39] \\ -0.82 & [-1.11 , -0.52] \end{array}$
vs ABT i.v. + MTX ADA + MTX ADA Int cDMARDs ETN + MTX ETN GOL + MTX IFX + MTX IFX + MTX PBO TZC + MTX TZC CTZ + MTX ABT s.c. + MTX TOF 5mg TOF 10mg				 		$\begin{array}{c} -0.03 & [-0.34 \ , \ 0.28 \\ 0.31 & [-0.23 \ , \ 0.86] \\ 0.20 & [-0.33 \ , \ 0.74] \\ -0.36 & [-0.77 \ , \ 0.05] \\ -0.15 & [-0.62 \ , \ 0.32] \\ -0.16 & [-0.63 \ , \ 0.31] \\ -0.04 & [-0.38 \ , \ 0.30] \\ 1.21 & [\ 0.63 \ , \ 1.79] \\ -0.21 & [-0.57 \ , \ 0.15] \\ -0.21 & [-0.57 \ , \ 0.15] \\ -0.21 & [-0.58 \ , \ 0.16] \\ -0.44 & [-0.80 \ , -0.08] \\ -0.06 & [-0.42 \ , \ 0.29] \\ 0.04 & [-0.35 \ , \ 0.43] \\ -0.10 & [-0.47 \ , \ 0.30] \end{array}$
	-2.00	-1.00	0.00	1.00	2.00	

146

Figure 20 (Continued): ACR (Population 2/3: Main Trials plus Prior Biologics with AMBITION) – Effects of interventions relative to cDMARDs on the probit scale

Treatment Compa	arison					Effect [95% Crl]
VS ETN + MTX ETN GOL + MTX IFX + MTX PBO TZC + MTX CTZ + MTX ABT s.c. + MTX ABT s.c. + MTX TOF 10mg				- 	∎→	$\begin{array}{c} 0.21 & [-0.15], & 0.56\\ 0.19 & [-0.31], & 0.71\\ 0.32 & [-0.09], & 0.71\\ 1.57 & [-0.02], & 2.12\\ 0.15 & [-0.25], & 0.56\\ 0.15 & [-0.25], & 0.55\\ -0.09 & [-0.49], & 0.33\\ 0.29 & [-0.19], & 0.78\\ 0.40 & [-0.03], & 0.83\\ 0.26 & [-0.16], & 0.70\\ \end{array}$
vs ETN GOL + MTX IFX + MTX PBO TZC + MTX TZC + MTX CTZ + MTX ABT s.c. + MTX TOF 5mg TOF 10mg				- •		$\begin{array}{c} -0.01 & [-0.57 & 0.55 \\ 0.11 & [-0.36 & 0.58] \\ 1.36 & [0.87 & 1.86] \\ -0.06 & [-0.52 & 0.41] \\ -0.06 & [-0.51 & 0.39] \\ -0.29 & [-0.76 & 0.19] \\ -0.29 & [-0.76 & 0.19] \\ 0.09 & [-0.45 & 0.63] \\ 0.19 & [-0.30 & 0.69] \\ 0.06 & [-0.43 & 0.55] \end{array}$
VS GOL + MTX IFX + MTX PBO TZC + MTX TZC + MTX CTZ + MTX ABT S.C. + MTX TOF 5mg TOF 10mg				- 	→	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
VS IFX + MTX PBO TZC + MTX TZC + MTX CTZ + MTX ABT s.c. + MTX TOF 5mg TOF 10mg	[$\begin{array}{c} 1.25 & [\ 0.67 \ , \ 1.84] \\ -0.17 & [\ -0.54 \ , \ 0.20] \\ -0.17 & [\ -0.54 \ , \ 0.21] \\ -0.40 & [\ -0.77 \ , \ -0.02] \\ -0.02 & [\ -0.46 \ , \ 0.43] \\ 0.08 & [\ -0.33 \ , \ 0.49] \\ -0.06 & [\ -0.45 \ , \ 0.36] \end{array}$
	-2.00	-1.00	0.00	1.00	2.00	

Figure 20 (Continued): ACR (Population 2/3: Main Trials plus Prior Biologics with AMBITION) – Effects of interventions relative to cDMARDs on the probit scale

Figure 20 (Continued): ACR (Population 2/3: Main Trials plus Prior Biologics with AMBITION) – Effects of interventions relative to cDMARDs on the probit scale

Treatment Comp	oarison	Effect [95% Crl]
vs PBO TZC + MTX TZC CTZ + MTX ABT s.c. + MTX TOF 5mg TOF 10mg		-1.42 [-1.98 , -0.86] -1.42 [-1.93 , -0.91] -1.65 [-2.22 , -1.07] -1.27 [-1.92 , -0.64] -1.17 [-1.77 , -0.57] -1.30 [-1.90 , -0.71]
vs TZC + MTX TZC CTZ + MTX ABT s.c. + MTX TOF 5mg TOF 10mg		0.00 [-0.31, 0.31] -0.23 [-0.58, 0.12] 0.15 [-0.30, 0.59] 0.25 [-0.14, 0.64] 0.11 [-0.26, 0.50]
vs TZC CTZ + MTX ABT s.c. + MTX TOF 5mg TOF 10mg		-0.23 [-0.59 , 0.14] 0.14 [-0.32 , 0.60] 0.25 [-0.14 , 0.65] 0.11 [-0.28 , 0.51]
vs CTZ + MTX ABT s.c. + MTX TOF 5mg TOF 10mg		0.38 [-0.07, 0.83] 0.48 [0.09, 0.87] 0.35 [-0.04, 0.74]
vs ABT s.c. + MTX TOF 5mg TOF 10mg		0.10 [-0.36 , 0.58] -0.03 [-0.49 , 0.44]
vs TOF 5mg TOF 10mg		-0.14 [-0.43, 0.16]
	-2.00 -1.00 0.00 1.00	2.00

•			Rank														
Intervention	Rank	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	(mean)																
cDMARDs	15.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.058	0.909	0.032
ABT i.v.+ MTX	9.5	0.001	0.004	0.013	0.024	0.039	0.057	0.082	0.107	0.129	0.144	0.154	0.145	0.078	0.023	0.000	0.000
ADA + MTX	8.9	0.001	0.004	0.010	0.023	0.043	0.076	0.112	0.143	0.165	0.162	0.132	0.088	0.035	0.006	0.000	0.000
ADA	12.9	0.001	0.001	0.003	0.004	0.007	0.010	0.013	0.018	0.021	0.030	0.044	0.073	0.228	0.505	0.043	0.000
Int cDMARDs	11.8	0.000	0.004	0.009	0.014	0.018	0.022	0.030	0.035	0.039	0.051	0.070	0.104	0.299	0.288	0.016	0.001
ETN + MTX	2.9	0.263	0.295	0.165	0.103	0.067	0.042	0.026	0.017	0.011	0.006	0.004	0.001	0.000	0.000	0.000	0.000
ETN	6.4	0.037	0.077	0.122	0.110	0.104	0.098	0.088	0.075	0.067	0.061	0.060	0.072	0.026	0.004	0.000	0.000
GOL + MTX	6.3	0.063	0.096	0.107	0.105	0.102	0.096	0.083	0.070	0.064	0.056	0.056	0.054	0.035	0.014	0.000	0.000
IFX + MTX	8.6	0.003	0.011	0.029	0.049	0.066	0.091	0.105	0.117	0.120	0.116	0.115	0.106	0.056	0.016	0.000	0.000
РВО	16.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.032	0.967
TCZ + MTX	5.1	0.030	0.100	0.153	0.179	0.162	0.123	0.089	0.061	0.041	0.030	0.018	0.010	0.003	0.001	0.000	0.000
TCZ	5.2	0.033	0.093	0.152	0.176	0.154	0.126	0.088	0.064	0.046	0.030	0.022	0.012	0.004	0.000	0.000	0.000
CTZ + MTX	1.9	0.538	0.239	0.115	0.051	0.029	0.014	0.007	0.004	0.002	0.001	0.001	0.000	0.000	0.000	0.000	0.000
ABT s.c.+ MTX	8.0	0.020	0.040	0.054	0.063	0.076	0.086	0.094	0.098	0.096	0.097	0.094	0.090	0.065	0.027	0.000	0.000
TOF 5mg + MTX	10.2	0.001	0.004	0.009	0.017	0.029	0.045	0.064	0.082	0.097	0.123	0.147	0.187	0.142	0.053	0.000	0.000
TOF 10mg + MTX	7.4	0.010	0.032	0.060	0.083	0.103	0.115	0.120	0.110	0.102	0.091	0.083	0.058	0.027	0.006	0.000	0.000

Table 39: ACR (Population 2/3: Main Trials plus Prior Biologics with AMBITION) – Probability of treatment rankings in terms of efficacy (most efficacious = 1)

Figure 21: ACR (Population 2/3: Main Trials plus Prior Biologics with AMBITION) – Probability of treatment rankings in terms of efficacy (most efficacious = 1)

Figure 21 (Continued): ACR (Population 2/3: Main Trials plus Prior Biologics with AMBITION) – Probability of treatment rankings in terms of efficacy (most efficacious = 1)

A meta-analysis was used to estimate the proportion of patients experiencing an ACR "No response" when treated with cDMARDs.

Data were available from 29 studies.

The model fitted the data well with the total residual deviance, 29.14, close to the total number of data points, 29, included in the analysis.

The between-study standard deviation was estimated to be 0.27 (95% CrI: 0.19, 0.38), which implies mild heterogeneity between studies in the baseline response.

Table 40 presents the probabilities of achieving at least an ACR20, at least an ACR50 and at least an ACR70 response. These are derived by combining the treatment effects estimated from the network meta-analysis with the estimate of the cDMARDs "No response" rate.

	At least ACR20	At least ACR50	At least ACR70
	95% CrI	95% CrI	95% CrI
cDMARDs	0.279	0.117	0.038
	0.242, 0.318	0.095, 0.142	0.029, 0.049
ABT i.v.+		0.321	0.148
MTY	0.556	0.228, 0.428	0.092, 0.223
WI I A	0.444, 0.664		
ADA + MTX	0.568	0.332	0.155
	0.475, 0.659	0.252, 0.424	0.106, 0.220
ADA	0.432	0.219	0.088
	0.253, 0.625	0.102, 0.387	0.032, 0.194
Int		0.253	0.106
	0.475	0.123, 0.432	0.041, 0.226
CDWIARDS	0.290, 0.667		
ETN + MTX	0.690	0.457	0.246
	0.563, 0.800	0.328, 0.593	0.152, 0.365
ETN	0.616	0.378	0.187
	0.452, 0.761	0.233, 0.542	0.095, 0.317
GOL + MTX	0.619	0.381	0.189
	0.460, 0.759	0.240, 0.540	0.099, 0.316
IFX + MTX	0.572	0.336	0.158
	0.453, 0.683	0.234, 0.451	0.096, 0.241
PBO	0.143	0.047	0.012
	0.054, 0.293	0.014, 0.126	0.003, 0.042
TCZ + MTX	0.637	0.400	0.202
	0.532, 0.734	0.299, 0.508	0.134, 0.288
TCZ	0.636	0.399	0.201
	0.524, 0.758	0.292, 0.513	0.130, 0.292
CTZ + MTX	0.721	0.492	0.274
	0.620, 0.804	0.381, 0.599	0.189, 0.371
ABT s.c.+		0.344	0.163
MTV	0.580	0.215, 0.496	0.085, 0.278
MIIA	0.428, 0.723		
TOF 5mg +		0.308	0.139
MTV	0.541	0.204, 0.425	0.080, 0.220
	0.413, 0.660		
TOF 10mg +		0.356	0.171
MTY	0.593	0.246, 0.478	0.103, 0.262
	0.469 ,0.708		

 Table 40: ACR (Population 2/3: Main Trials plus Prior Biologics with AMBITION) – Probability of achieving ACR responses

5.3.2.6 ACR – Main Trials plus Prior Biologics without AMBITION

A network meta-analysis was used to compare the effects of abatacept i.v. + MTX, adalimumab (with and without MTX), intensive cDMARDs, etanercept (with and without MTX), golimumab + MTX, infliximab + MTX, placebo, tocilizumab (with and without MTX), certolizumab pegol + MTX, abatacept s.c. + and tofacitinib + MTX(5mg and 10mg doses) relative to cDMARDs on ACR response.

Data were available from 39 studies comparing two, three or four interventions.

Figure 22 presents the network of evidence and Table 41 presents the frequency with which each pair of treatments was compared. There were 15 treatment effects to estimate from 39 studies.

Figure 22: ACR (Population 2/3: Main Trials plus Prior Biologics without AMBITION) – Network of evidence

ETN + ET GOL + IFX + PB TCZ + TC CTZ + TO TO Intervention cDMAR AB AD AD Int AB Ζ MTX cDMAR MTX MTX MTX Т F F Ds Т MTX Ν 0 A +А MT i.v. Ds 10 s.c. 5m Х ++g + mg MT MT MT +MT Х Х Х Х cDMARDs 3 3 2 3 3 2 5 3 3 -6 1 ABT i.v.+ 1 1 --MTX ADA + MTX-1 1 --1 ADA 2 --1 --Int cDMARDs 2 -----ETN + MTX2 ------1 ETN 1 -------GOL + MTX--------IFX + MTX---------PBO ----------TCZ + MTX 1 -----------TCZ ------_ -----CTZ + MTX -------------ABT s.c.+ --------------MTX TOF 5mg + 3 ---------------MTX TOF 10mg + ----------------MTX

Table 41: ACR (Population 2/3: Main Trials plus Prior Biologics without AMBITION) – Frequency with which each pair of interventions were compared

Figure 23 presents the effects of each intervention relative to cDMARDs on the probit scale and Figure 24 and Table 42 presents the probabilities of treatment rankings.

There was some suggestion that model was not a good fit to all of the data, with the total residual deviance, 281.87, being larger than the total number of data points, 244, included in the analysis. The largest residual deviances, 14.8 and 14.21, were from the Kramer study¹²⁸ which included patients who received prior biologics and were from the cDMARDs arm on which only one patient had an ACR20 response and two patients had an ACR50 response. The next largest residual deviances were 5.76 and 4.23 from the O'Dell study¹¹¹4.08 from the JESMR study¹⁴⁴ and 3.86 from the ARMADA study.⁶⁹.

The between-study standard deviation was estimated to be 0.20 (95% CrI: 0.12, 0.31), which implies mild heterogeneity between studies in intervention effects. The exclusion of the AMBITION study had little impact on the estimate of the between study standard deviation from studies including patients who had received prior biologics.

All interventions except for placebo were associated with beneficial treatment effects relative to cDMARDs with the greatest effects being associated with certolizumab + MTX, etanercept + MTX and tocilizumab. The treatment effects were statistically significant for all interventions except for placebo at a conventional 5% level. There was insufficient evidence to differentiate between treatments although certolizumab + MTX (mean rank 2.1; probability of being the best 0.459) and etanercept + MTX (mean rank 3.0; probability of being the best 0.246) were the treatments that were most likely to be the most effective interventions. The exclusion of the AMBITION study has increased the treatment effects for adalimumab, tocilizumab (with and without MTX) back towards the effects estimated from the main studies alone but shrunk the effect of abatacept s.c. + MTX.

Figure 23: ACR (Population 2/3: Main Trials plus Prior Biologics without AMBITION) – Effects of interventions relative to cDMARDs on the probit scale

Treatment Comp	arison					Effect [95% Crl]
vs cDMARDs ABT i.v. + MTX ADA + MTX ADA Int cDMARDs ETN + MTX ETN GOL + MTX IFX + MTX IFX + MTX PBO TZC + MTX TZC CTZ + MTX ABT s.c. + MTX TOF 5mg TOF 10mg	-	╶ ╡ ╡ ╡ ╡ ╡ ╡ ╡ く ╡ く く く く く く く く く く	- -			-0.73 [-0.98, -0.48] -0.75 [-0.95, -0.56] -0.51 [-0.98, -0.05] -0.54 [-1.00, -0.07] -1.10 [-1.41, -0.79] -0.91 [-1.29, -0.52] -0.89 [-1.26, -0.52] -0.77 [-1.04, -0.51] 0.41 [-0.09, 0.91] -0.97 [-1.21, -0.73] -1.06 [-1.36, -0.77] -1.17 [-1.41, -0.93] -0.79 [-1.15, -0.44] -0.69 [-0.97, -0.40] -0.82 [-1.10, -0.53]
vs ABT i.v. + MTX ADA + MTX ADA Int cDMARDs ETN + MTX ETN GOL + MTX IFX + MTX IFX + MTX PBO TZC + MTX TZC CTZ + MTX ABT s.c. + MTX TOF 5mg TOF 10mg		 - - - -		 	_	$\begin{array}{c} -0.03 & [-0.33 , 0.27] \\ 0.21 & [-0.32 , 0.75] \\ 0.19 & [-0.33 , 0.72] \\ -0.37 & [-0.77 , 0.02] \\ -0.18 & [-0.64 , 0.28] \\ -0.16 & [-0.61 , 0.28] \\ -0.04 & [-0.37 , 0.28] \\ -0.04 & [-0.37 , 0.28] \\ 1.13 & [0.59 , 1.70] \\ -0.24 & [-0.59 , 0.11] \\ -0.34 & [-0.72 , 0.05] \\ -0.44 & [-0.79 , -0.09] \\ -0.06 & [-0.40 , 0.28] \\ 0.04 & [-0.33 , 0.41] \\ -0.09 & [-0.46 , 0.29] \end{array}$
	- <mark>2.0</mark> 0	-1.00	0.00	1.00	2.00	

158

Figure 23 (Continued): ACR (Population 2/3: Main Trials plus Prior Biologics without AMBITION) – Effects of interventions relative to cDMARDs on the probit scale

Treatment Comparison		Effect [95% Crl]
vs ETN + MTX ETN GOL + MTX IFX + MTX PBO TZC + MTX CTZ + MTX CTZ + MTX ABT s.c. + MTX TOF 10mg TOF 10mg		$ \begin{array}{c} 0.19 \\ 0.21 \\ 0.23 \\ 0.23 \\ 0.069 \\ 0.33 \\ 0.069 \\ 0.71 \\ 0.26 \\ 0.71 \\ 0.26 \\ 0.71 \\ 0.26 \\ 0.71 \\ 0.26 \\ 0.52 \\$
vs ETN GOL + MTX IFX + MTX PBO TZC + MTX TZC + MTX CTZ + MTX ABT s.c. + MTX TOF 5mg TOF 10mg		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
vs GOL + MTX IFX + MTX PBO TZC + MTX TZC CTZ + MTX ABT s.c. + MTX TOF 5mg TOF 10mg		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
YS IFX + MTX PBO TZC + MTX TZC + MTX CTZ + MTX ABT s.c. + MTX TOF 5mg TOF 10mg		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
-2.00	-1.00 0.00 1.00 2.0	0

Figure 23 (Continued): ACR (Population 2/3: Main Trials plus Prior Biologics without AMBITION) – Effects of interventions relative to cDMARDs on the probit scale

Figure 23 (Continued): ACR (Population 2/3: Main Trials plus Prior Biologics without AMBITION) – Effects of interventions relative to cDMARDs on the probit scale

Treatment Comparison Effect [95% Crl] vs PBO TZC + MTX -1.38 [-1.91 , -0.86 -1.47 [-1.96 , -0.99 TZC -1.58 [-2.13, -1.02 -1.20 [-1.80, -0.59 -1.09 [-1.67, -0.52 CTZ + MTX ABT s.c. + MTX TOF 5mg TOF 10mg -1.23 [-1.79, -0.65] vs TZC + MTX -0.09 [-0.42, 0.22] -0.20 [-0.53, 0.15] TZC CTZ + MTX ABT s.c. + MTX TOF 5mg TOF 10mg 0.18 [-0.25 , 0.61] 0.28 [-0.08 , 0.66] 0.15 [-0.22 , 0.53] vs TZC CTZ + MTX ABT s.c. + MTX -0.11 [-0.48, 0.28] 0.27 [-0.19, 0.74] 0.38 [-0.02, 0.79] 0.24 [-0.15, 0.66] TOF 5mg TOF 10mg vs CTZ + MTX ABT s.c. + MTX TOF 5mg TOF 10mg 0.38 [-0.06, 0.81] 0.48 [0.11, 0.86] 0.35 [-0.02, 0.72] vs ABT s.c. + MTX TOF 5mg 0.10 [-0.33, 0.55] -0.03 [-0.46, 0.42] TOF 10mg vs TOF 5mg TOF 10mg -0.13 [-0.41, 0.15] Г Т Т ٦ -2.00 -1.00 0.00 1.00 2.00

		Rank															
Intervention	Rank	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	(mean)																
cDMARDs	15.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.027	0.921	0.051
ABT i.v.+ MTX	9.7	0.000	0.002	0.007	0.015	0.030	0.051	0.079	0.109	0.133	0.146	0.158	0.148	0.089	0.032	0.000	0.000
ADA + MTX	9.2	0.000	0.001	0.005	0.013	0.031	0.061	0.103	0.146	0.167	0.168	0.148	0.102	0.045	0.011	0.000	0.000
ADA	12.2	0.001	0.002	0.004	0.007	0.013	0.020	0.028	0.030	0.036	0.046	0.058	0.093	0.241	0.405	0.016	0.000
Int cDMARDs	12.0	0.001	0.003	0.005	0.010	0.017	0.024	0.030	0.035	0.042	0.051	0.067	0.099	0.245	0.358	0.013	0.001
ETN + MTX	3.0	0.246	0.253	0.187	0.130	0.080	0.047	0.025	0.013	0.009	0.007	0.003	0.001	0.000	0.000	0.000	0.000
ETN	6.3	0.035	0.073	0.102	0.118	0.130	0.118	0.092	0.076	0.063	0.058	0.054	0.054	0.023	0.004	0.000	0.000
GOL + MTX	6.6	0.046	0.068	0.088	0.104	0.117	0.115	0.098	0.080	0.068	0.060	0.053	0.051	0.035	0.016	0.000	0.000
IFX + MTX	8.9	0.001	0.006	0.017	0.032	0.058	0.091	0.113	0.122	0.124	0.125	0.120	0.108	0.062	0.020	0.000	0.000
РВО	16.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.050	0.948
TCZ + MTX	4.9	0.028	0.085	0.154	0.200	0.191	0.136	0.084	0.049	0.031	0.019	0.013	0.007	0.002	0.000	0.000	0.000
TCZ	3.4	0.164	0.216	0.209	0.163	0.102	0.062	0.034	0.022	0.013	0.008	0.004	0.002	0.001	0.000	0.000	0.000
CTZ + MTX	2.1	0.459	0.243	0.143	0.080	0.041	0.017	0.010	0.003	0.001	0.001	0.001	0.000	0.000	0.000	0.000	0.000
ABT s.c.+ MTX	8.3	0.012	0.026	0.037	0.054	0.073	0.096	0.106	0.107	0.100	0.097	0.095	0.093	0.068	0.036	0.000	0.000
TOF 5mg + MTX	10.5	0.000	0.002	0.004	0.011	0.021	0.036	0.060	0.081	0.101	0.120	0.144	0.184	0.156	0.080	0.000	0.000
TOF 10mg + MTX	7.7	0.006	0.019	0.038	0.064	0.095	0.125	0.139	0.125	0.111	0.094	0.083	0.060	0.031	0.010	0.000	0.000

Table 42: ACR (Population 2/3: Main Trials plus Prior Biologics without AMBITION) – Probability of treatment rankings in terms of efficacy (most efficacious = 1)

Figure 24: ACR (Population 2/3: Main Trials plus Prior Biologics without AMBITION) – Probability of treatment rankings in terms of efficacy (most efficacious = 1)

Figure 24 (Continued): ACR (Population 2/3: Main Trials plus Prior Biologics without AMBITION) – Probability of treatment rankings in terms of efficacy (most efficacious = 1)

Figure 24 (Continued): ACR (Population 2/3: Main Trials plus Prior Biologics without AMBITION) – Probability of treatment rankings in terms of efficacy (most efficacious = 1)

Figure 24 (Continued): ACR (Population 2/3: Main Trials plus Prior Biologics without AMBITION) – Probability of treatment rankings in terms of efficacy (most efficacious = 1)

A meta-analysis was used to estimate the proportion of patients experiencing an ACR "No response" when treated with cDMARDs.

Data were available from 28 studies.

The model fitted the data well with the total residual deviance, 28.26, close to the total number of data points, 28, included in the analysis.

The between-study standard deviation was estimated to be 0.26 (95% CrI: 0.18, 0.37), which implies mild heterogeneity between studies in the baseline response.

Table 43 presents the probabilities of achieving at least an ACR20, at least an ACR50 and at least an ACR70 response. These are derived by combining the treatment effects estimated from the network meta-analysis with the estimate of the cDMARDs "No response" rate.

Ľ	At least ACR20	At least ACR50	At least ACR70
	95% CrI	95% CrI	95% CrI
cDMARDs	0.273	0.114	0.037
	0.238, 0.311	0.093, 0.138	0.028, 0.047
ABT i.v.+		0.316	0.144
MTV	0.550	0.226, 0.421	0.090, 0.217
MIX	0.442, 0.657		
ADA + MTX	0.560	0.325	0.150
	0.472, 0.648	0.249, 0.411	0.103, 0.209
ADA	0.465	0.244	0.101
	0.284, 0.651	0.121, 0.415	0.039, 0.212
Int		0.251	0.105
	0.473	0.125, 0.422	0.041, 0.217
CDWARDS	0.293, 0.658		
ETN + MTX	0.689	0.457	0.244
	0.567, 0.797	0.331, 0.589	0.153, 0.360
ETN	0.619	0.382	0.188
	0.460, 0.758	0.241, 0.539	0.098, 0.314
GOL + MTX	0.613	0.375	0.183
	0.461, 0.748	0.241, 0.527	0.098, 0.303
IFX + MTX	0.566	0.331	0.153
	0.453, 0.675	0.235, 0.442	0.095, 0.232
PBO	0.156	0.053	0.014
	0.064, 0.307	0.017, 0.134	0.003, 0.046
TCZ + MTX	0.643	0.406	0.205
	0.541, 0.736	0.308, 0.512	0.139, 0.290
TCZ	0.678	0.443	0.233
	0.561, 0.781	0.325, 0.569	0.150, 0.340
CTZ + MTX	0.714	0.485	0.267
	0.618, 0.798	0.380, 0.591	0.186, 0.362
ABT s.c.+		0.338	0.158
МТХ	0.574	0.215, 0.484	0.085, 0.266
WI I X	0.428, 0.713		
TOF 5mg +		0.302	0.135
МТХ	0.534	0.204, 0.413	0.079, 0.211
WI I X	0.412, 0.649		
TOF 10mg +		0.350	0.166
MTX	0.586	0.243, 0.466	0.100, 0.251
141177	0.465 ,0.697		

 Table 43: ACR (Population 2/3: Main Trials plus Prior Biologics without AMBITION) –

 Probability of achieving ACR responses

5.3.2.7 ACR – Main Trials plus RCTs that have potentially low prior MTX exposure

A network meta-analysis was used to compare the effects of abatacept i.v. + MTX, adalimumab (with and without MTX), intensive cDMARDs, etanercept (with and without MTX), golimumab + MTX, infliximab + MTX, placebo, tocilizumab (with and without MTX), certolizumab pegol + MTX and abatacept s.c. + MTX) relative to cDMARDs on ACR response.

Data were available from 30 studies comparing two or three interventions.

Figure 25 presents the network of evidence and Table 44 presents the frequency with which each pair of treatments was compared. There were 13 treatment effects to estimate from 30 studies.

Figure 25: ACR (Population 2/3: Main Trials plus RCTs that have potentially low prior MTX exposure) – Network of evidence

Intervention	cDMARD	ABT	ADA	ADA	Int	ETN	ETN	GOL	IFX +	PBO	TCZ +	TCZ	CTZ	ABT s.c.+
	S	i.v.+	+		cDMARDs	+		+	MTX		MTX		+	MTX
		MTX	MTX			MTX		MTX					MTX	
cDMARDs	-	2	5		1	5	2	2	3		1	2	1	
ABT i.v.+	-	-							1					
MTX														
ADA + MTX	-	-	-											1
ADA	-	-	-	-						2		1		
Int cDMARDs	-	-	-	-	-	3								
ETN + MTX	-	-	-	-	-	-	3		1					
ETN	-	-	-	-	-	-	-			1				
GOL + MTX	-	-	-	-	-	-	-	-						
IFX + MTX	-	-	-	-	-	-	-	-	-					
PBO	-	-	-	-	-	-	-	-	-	-				
TCZ + MTX	-	-	-	-	-	-	-	-	-	-	-	1		
TCZ	-	-	-	-	-	-	-	-	-	-	-	-		
CTZ + MTX	-	-	-	-	-	-	-	-	-	-	-	-	-	
ABT s.c.+	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MTX														

 Table 44: ACR (Population 2/3: Main Trials plus RCTs that have potentially low prior MTX exposure) – Frequency with which each pair of interventions were compared

Figure 26 presents the effects of each intervention relative to cDMARDs on the probit scale and Figure 27 and Table 45 presents the probabilities of treatment rankings.

The model fitted the data well, with the total residual deviance, 198.62, close to the total number of data points, 192, included in the analysis. The largest residual deviances were 5.999 from the O'Dell study¹¹¹ and 3.913 from the START study.¹¹⁸

The between-study standard deviation was estimated to be 0.30 (95% CrI: 0.20, 0.46), which implies mild heterogeneity between studies in intervention effects. The addition of the TEAR⁵⁴ and TEMPO⁵⁵ studies has increased the variability between treatment effects relative to that estimated from the main studies alone.

All interventions except for PBO were associated with beneficial treatment effects relative to cDMARDs with the greatest effects being associated with tocilizumab (with and without MTX). The treatment effects were statistically significant for all interventions except for certolizumab pegol + MTX, adalimumab, Int cDMARDs and placebo at a conventional 5% level. There was insufficient evidence to differentiate between treatments although tocilizumab (mean rank 2.95; probability of being the best 0.251) and Tocilizumab + MTX (mean rank 3.28; probability of being the best 0.269) were the treatments that were most likely to be the most effective interventions.
Figure 26: ACR (Population 2/3: Main Trials plus RCTs that have potentially low prior MTX exposure) – Effects of interventions relative to cDMARDs on the probit scale

vs cDMARDs ABT i.v. + MTX ADA + MTX ADA Int cDMARDs ETN + MTX ETN GOL + MTX IFX + MTX PBO TZC + MTX TZC CTZ + MTX ABT s.c. + MTX	-			-∎		-0.71 [-1.15, -0.26] -0.84 [-1.16, -0.53] -0.37 [-1.00, 0.26] -0.39 [-0.84, 0.04] -0.83 [-1.13, -0.55] -0.52 [-0.93, -0.14] -0.90 [-1.40, -0.40] -0.75 [-1.12, -0.39] 0.64 [-0.02, 1.28] -1.05 [-1.55, -0.55] -1.07 [-1.48, -0.65] -0.69 [-1.43, 0.04] -0.90 [-1.63, -0.18]
vs ABT i.v. + MTX ADA + MTX ADA Int cDMARDS ETN + MTX ETN GOL + MTX IFX + MTX PBO TZC + MTX TZC CTZ + MTX ABT s.c. + MTX						-0.13 [-0.68, 0.41] 0.34 [-0.43, 1.11] 0.32 [-0.31, 0.94] -0.12 [-0.65, 0.40] 0.19 [-0.42, 0.77] -0.19 [-0.86, 0.49] -0.04 [-0.55, 0.47] 1.35 [0.55, 2.12] -0.34 [-1.02, 0.34] -0.35 [-0.97, 0.24] 0.02 [-0.84, 0.88] -0.19 [-1.04, 0.66]
	-2.00	-1.00	0.00	1.00	2.00	

Effect [95% Crl]

Figure 26 (Continued): ACR (Population 2/3: Main Trials plus RCTs that have potentially low prior MTX exposure) – Effects of interventions relative to cDMARDs on the probit scale

3011	Ellect [30 /8 Old
	0.47 [-0.23 , 1.17]
	0.45 [-0.09, 0.98]
— —	0.01 [-0.43, 0.44]
	0.32 [-0.19, 0.81]
	-0.06 [-0.64, 0.55]
	0.09 [-0.39, 0.57]
∎→	1.48 [0.76 , 2.19]
	-0.21 [-0.81, 0.38]
	-0.23 [-0.75, 0.30]
	0.15 [-0.64, 0.95]
	-0.06 [-0.71, 0.59]
	-0.02 [-0.76, 0.71]
	-0.46 [-1.13, 0.19]
B	-0.16 [-0.81 , 0.47]
B	-0.53 [-1.32, 0.27]
B	-0.38 [-1.10, 0.35]
	1.00 [0.53 , 1.48]
B	-0.68 [-1.41, 0.05]
B	-0.70 [-1.28 , -0.12]
	-0.32 [-1.29, 0.65]
B	-0.53 [-1.48, 0.42]
]
00 -100 0.00 1.00 2.0	00

Treatment Comparison

Effect [95% Crl]

Figure 26 (Continued_: ACR (Population 2/3: Main Trials plus RCTs that have potentially low prior MTX exposure) – Effects of interventions relative to cDMARDs on the probit scale

		-				
vs Int cDMARDs ETN + MTX ETN GOL + MTX IFX + MTX PBO TZC + MTX TZC CTZ + MTX ABT s.c. + MTX						-0.44 [-0.82,-0.07] -0.14 [-0.65, 0.38] -0.51 [-1.15, 0.16] -0.36 [-0.90, 0.20] 1.03 [0.28, 1.78] -0.66 [-1.32, 0.01] -0.68 [-1.26,-0.07] -0.30 [-1.14, 0.56] -0.51 [-1.35, 0.34]
vs ETN + MTX ETN GOL + MTX IFX + MTX PBO TZC + MTX TZC CTZ + MTX ABT s.c. + MTX				 	₽→	0.30 [-0.07, 0.67] -0.07 [-0.64, 0.52] 0.08 [-0.36, 0.53] 1.47 [0.80, 2.14] -0.22 [-0.79, 0.36] -0.24 [-0.73, 0.26] 0.14 [-0.64, 0.93] -0.07 [-0.85, 0.72]
VS ETN GOL + MTX IFX + MTX PBO TZC + MTX TZC CTZ + MTX ABT s.c. + MTX			8 -8 P P 8			-0.37 [-1.00, 0.28] -0.22 [-0.73, 0.31] 1.16 [0.55, 1.79] -0.52 [-1.15, 0.11] -0.54 [-1.06, 0.00] -0.17 [-0.99, 0.68] -0.37 [-1.19, 0.46]
	-2.00	-1.00	0.00	1.00	2.00	

Treatment Comparison

Effect [95% Crl]

Treatment Comparison Effect [95% Crl] vs GOL + MTX IFX + MTX 0.15 [-0.47, 0.77 0.71, 2.35 PBO 1.53 -0.15 [-0.87, 0.55] -0.17 [-0.82, 0.47] 0.21 [-0.67, 1.09] 0.00 [-0.89, 0.87] TZC + MTX TZC CTZ + MTX ABT s.c. + MTX vs IFX + MTX 1.38 [0.66 , 2.11] -0.30 [-0.91 , 0.31] PBO TZC + MTX -0.32 [-0.87, 0.24] 0.06 [-0.76, 0.88] -0.15 [-0.96, 0.65] TZC CTZ + MTX ABT s.c. + MTX vs PBO TZC + MTX TZC -1.69 [-2.44, -0.92] -1.70 [-2.34, -1.06] -1.33 [-2.30, -0.35] -1.53 [-2.50, -0.56] CTZ + MTX ABT s.c. + MTX vs TZC + MTX -0.01 [-0.52, 0.49] 0.36 [-0.52, 1.24] 0.15 [-0.72, 1.03] TZC CTZ + MTX ABT s.c. + MTX vs TZC CTZ + MTX 0.38 [-0.45, 1.22] 0.17 [-0.66, 1.00] ABT s.c. + MTX vs CTZ + MTX ABT s.c. + MTX -0.21 [-1.25, 0.81] Г Т Т ٦ -2.00 -1.00 0.00 1.00 2.00

Figure 26 (Continued): ACR (Population 2/3: Main Trials plus RCTs that have potentially low prior MTX exposure) – Effects of interventions relative to cDMARDs on the probit scale

]	Rank						
Intervention	Rank	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	(mean)														
cDMARDs	12.83	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.015	0.167	0.791	0.026
ABT i.v.+	7.12														
MTX		0.019	0.037	0.058	0.078	0.089	0.108	0.124	0.147	0.137	0.099	0.068	0.034	0.002	0.000
ADA + MTX	5.48	0.020	0.068	0.109	0.159	0.174	0.165	0.127	0.095	0.054	0.025	0.010	0.001	0.000	0.000
ADA	10.32	0.002	0.006	0.012	0.019	0.022	0.028	0.036	0.054	0.085	0.134	0.203	0.285	0.113	0.000
Int cDMARDs	10.47	0.001	0.002	0.002	0.006	0.011	0.015	0.029	0.053	0.100	0.183	0.281	0.284	0.031	0.002
ETN + MTX	5.48	0.020	0.056	0.105	0.148	0.170	0.176	0.151	0.103	0.057	0.012	0.002	0.000	0.000	0.000
ETN	9.28	0.001	0.003	0.008	0.014	0.024	0.043	0.068	0.110	0.184	0.264	0.206	0.071	0.003	0.000
GOL + MTX	4.91	0.122	0.125	0.136	0.120	0.108	0.094	0.085	0.076	0.061	0.039	0.025	0.011	0.001	0.000
IFX + MTX	6.60	0.017	0.034	0.061	0.088	0.116	0.133	0.158	0.157	0.119	0.072	0.034	0.011	0.000	0.000
РВО	13.96	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.005	0.025	0.968
TCZ + MTX	3.28	0.269	0.224	0.157	0.102	0.072	0.055	0.047	0.032	0.023	0.012	0.006	0.002	0.000	0.000
TCZ	2.95	0.251	0.275	0.178	0.108	0.074	0.046	0.032	0.021	0.011	0.004	0.001	0.000	0.000	0.000
CTZ + MTX	7.18	0.082	0.066	0.068	0.065	0.061	0.066	0.074	0.085	0.104	0.101	0.103	0.094	0.027	0.003
ABT s.c.+	5.10														
MTX		0.196	0.111	0.106	0.093	0.078	0.070	0.069	0.068	0.067	0.054	0.046	0.034	0.007	0.001

Table 45: ACR (Population 2/3: Main Trials plus RCTs that have potentially low prior MTX exposure) – Probability of treatment rankings in terms of efficacy (most efficacious = 1)

Figure 27 (Continued): ACR (Population 2/3: Main Trials plus RCTs that have potentially low prior MTX exposure) – Probability of treatment rankings in terms of efficacy (most efficacious = 1)

Figure 27 (Continued): ACR (Population 2/3: Main Trials plus RCTs that have potentially low prior MTX exposure) – Probability of treatment rankings in terms of efficacy (most efficacious = 1)

A meta-analysis was used to estimate the proportion of patients experiencing an ACR "No response" when treated with cDMARDs.

Data were available from 20 studies.

The model fitted the data well with the total residual deviance, 19.53, close to the total number of data points, 20, included in the analysis.

The between-study standard deviation was estimated to be 0.37 (95% CrI: 0.26, 0.55), which implies mild to moderate heterogeneity between studies in the baseline response. The addition of the TEAR⁵⁴ and TEMPO⁵⁵ studies has increased the variability between studies in the CDMARDs "No response" rate relative to that estimated from the main studies alone.

Table 46 presents the probabilities of achieving at least an ACR20, at least an ACR50 and at least an ACR70. These are derived by combining the treatment effects estimated from the network metaanalysis with the estimate of the cDMARDs "No response" rate.

·	At least ACR20	At least ACR50	At least ACR70
	95% CrI	95% CrI	95% CrI
cDMARDs	0.323	0.136	0.046
	0.264, 0.389	0.102, 0.180	0.031, 0.067
ABT i.v.+		0.351	0.166
MTV	0.601	0.192, 0.537	0.073, 0.309
MITA	0.410, 0.767		
ADA + MTX	0.649	0.400	0.199
	0.509, 0.771	0.268, 0.542	0.113, 0.315
ADA	0.466	0.234	0.095
	0.228, 0.713	0.083, 0.472	0.024, 0.256
Int		0.240	0.098
	0.473	0.120, 0.412	0.039, 0.209
CDWARDS	0.296, 0.662		
ETN + MTX	0.645	0.396	0.197
	0.515, 0.765	0.273, 0.534	0.117, 0.307
ETN	0.526	0.284	0.123
	0.360, 0.695	0.160, 0.450	0.057, 0.238
GOL + MTX	0.670	0.421	0.216
	0.463, 0.833	0.232, 0.629	0.093, 0.398
IFX + MTX	0.614	0.364	0.175
	0.456, 0.758	0.227, 0.525	0.090, 0.300
PBO	0.136	0.042	0.010
	0.039, 0.337	0.008, 0.146	0.001, 0.050
TCZ + MTX	0.723	0.483	0.264
	0.524, 0.870	0.280, 0.689	0.121, 0.462
TCZ	0.729	0.489	0.268
	0.563, 0.857	0.316, 0.666	0.142, 0.437
CTZ + MTX	0.593	0.343	0.160
	0.300, 0.839	0.122, 0.637	0.040, 0.406
ABT s.c.+		0.422	0.216
MTY	0.670	0.175, 0.710	0.063, 0.487
MIIA	0.383 0.883		

Table 46: ACR (Population 2/3: Main Trials plus RCTs that have potentially low prior MTX exposure) – Probability of achieving ACR responses

5.4 Discussion of systematic reviewing results

This review differed from other reviews of biologics in RA,^{123,156-167} in that it only included licensed doses of biologics, was limited to first line biologics, and considered separately methotrexate-naive and cDMARD experienced trials.

Sixty trials met the inclusion criteria for the systematic review of clinical effectiveness and safety evidence. Of these, 38 trials were also used in the NMA (8 for population 1 and 30 for populations 2 and 3).

Seven MTX-naïve trials and 24 cDMARD-experienced trials (of which 4 were head-to-head evidence) were included in the NMA for ACR response. One MTX-naive trial and fifteen cDMARD experienced trials were included in the NMA for EULAR data.

In addition, 14 trials (12 trials with interventions of interest and 2 tofacitinib trials) were included in sensitivity analyses for popultions 2 and 3 (all 14 with ACR data and three with EULAR data). Two of these trials (presenting ACR data only) were used in sensitivity analyses for population 1.

Many of the trials were of good quality (see figure 3). They were mostly phase III trials. Some trials did not report in enough detail to judge randomisation method or allocation concealment, or whether all outcomes were reported. Further details regarding study quality are provided in Table 333 (Appendix 3)

There were several large, multinational, multicentre studies. A few trials were conducted in a single country. For the cDMARD experienced population, some trial populations may not have had adequate MTX to class as failure. Of particular note, for Population 2/3, are the trials that were conducted in Japan only, as some of these trials also utilised low dose MTX treatment prior to randomisation, potentially impacting on the extent of MTX failure among trial populations and restricting external validity to the UK. Further details regarding geographical location are provided in Tables 334 - 337 (Appendix 3). Based on the results shown within the company submissions made by Abbvie and MSD which did nto show a marked difference when Asian studies were excluded no formal analyses were undertaken removing such studies.

The issues relating to the external validity of RCTs in RA including i) the application of strict trial inclusion criteria resulting in narrower study populations relative to RA clinical practice and ii) the limitations of RCTs in general in capturing rare adverse events, have been previously discussed and should be borne in mind when considering the generalisability of the trial evidence.^{168,169} Some trials had step-up therapy, which in the opinion of our clinical advisors is consistent with real world practice.

Strengths of this systematic review included: the undertaking of a comprehensive search for evidence; the extensive number of RCTs that were identified relating to the decision problem; data were identified for all interventions of interest; there were long-term safety data from long-term extensions of trials; trials that were not eligible for inclusion in the systematic review or NMA base case (e.g. trials with populations having $\leq 20\%$ prior biologic experience) were explored in sensitivity analyses; and graphical data for the NMA were extracted using Engauge version 4.1.

Limitations of the review included: evidence was restricted to English language publications; ongoing/unpublished trial resources could not be explored due to the timescales of the assessment; some studies (and consequently some interventions) could not be included in a NMA of EULAR

outcome data where this was not reported; and, due to the extensive variability in the range of available outcome measures reported in trials it was necessary to prioritise the assessment of the most widely used measures.

Whilst there was uncertainty in, and overlap between, the effects of treatment on ACR for interventions for patients in Population 1, infliximab + MTX was associated with the biggest increase in response rate and this was likely to be the most effective intervention. Other interventions were less effective and appeared to fall into three groups; etanercept + MTX, intensive cDMARDs and adalimumab + MTX; golimumab + MTX, etanercept and step-up intensive cDMARDs; CDMARDs and adalimumab.

Whilst there was uncertainty in, and overlap between the effects of treatment on EULAR for interventions in Population 2 and 3 in the main trials, tocilizumab, tocilizumab + MTX and etanercept + MTX were associated with the biggest increase in response rate. Other interventions were less effective and appeared to fall into two groups: golimumab + MTX, certolizumab pegol + MTX, adalimumab, grouped biologics, etanercept, adalimumab + MTX, abatacept i.v. + MTX and infliximab + MTX; intensive cDMARDs, placebo and cDMARDs. The inclusion of the additional studies in which patients received prior biologics resulted in broadly the same groupings, although the effect of certolizumab pegol + MTX was much greater and similar to that for tocilizumab, tocilizumab + MTX and etanercept +MTX.

Whilst there was uncertainty in, and overlap between the effects of treatment on ACR for interventions in Population 2 and 3 in the main trials, etanercept + MTX, tocilizumab and tocilizumab + MTX were associated with the biggest increase in response rate. Other interventions were less effective and appeared to fall into two groups: etanercept, golimumab + MTX, abatacept s.c. + MTX, adalimumab + MTX, infliximab + MTX, certolizumab pegol + MTX and abatacept i.v. + MTX; intensive cDMARDs, adalimumab and cDMARds. The inclusion of the additional studies in which patients received prior biologics suggested resulted in a greater estimate of the effect of certolizumab pegol + MTX. Other interventions appeared to give rise to broadly similar response rates.

5.4.1 Other efficacy outcomes

Population 1 MTX-naive

Where there was step-up therapy with initial biologic or control, the groups were similar after six months to a year (i.e. after step-up). Biologic monotherapy was better than PBO, but similar to MTX. Biologic combined with MTX was better than MTX+PBO.

Population 2/3 cDMARD experienced

Head-to-head trials indicate similarity of biologics. One exception was the ADACTA trial.

This reported greater improvement with TCZ monotherapy than ADA monotherapy for DAS and MCS of SF-36 at 24 weeks (ADACTA) although this trial had similar results for ADA and TCZ for swollen and tender joint counts, and fatigue. This suggests that the impacts of different biologics on different outcomes may not be straightforward.

Biologics combined with MTX treatment arms reported more improvement than non-biologic control arms with one or two cDMARDs or baseline cDMARDs. Biologics combined with MTX did better than biologic monotherapy, except for TCZ for joint counts and HAQ-DI.

6. ASSESSMENT OF COST-EFFECTIVENESS

6.1 Systematic review of existing cost-effectiveness evidence

The Assessment Group conducted a systematic review of published economic evaluations undertaken of the RA interventions being assessed. The objective of this systematic review is to summarise the existing economic evidence for the use of each intervention in patients with RA. The systematic review will assess the strengths and limitations of each specific economic evaluation.

6.1.1 Methods for reviewing existing cost-effectiveness evidence

Systematic searches of online databases were undertaken to identify all published economic evaluations of disease modifying therapies for rheumatoid arthritis. To ensure that the systematic search had high sensitivity, the search was developed by applying economic terms to a general disease search for rheumatoid arthritis and disease modifying therapies. Database filters to identify economic evaluations were used from the InterTASC Information Specialists' Sub-Group (ISSG) website^{*}.

Population	Rheumatoid Arthritis, RA
Intervention/Comparator	Disease modifying, disease-modifying, DMARD, biologic, therapy, treatment, anti-rheumatic, anti rheumatic, TNF, tumor necrosis factor alpha, tumour necrosis factor alpha, TNF-alpha, TNF inhibitor, TNF blocker, interleukin 1, IL-1, monoclonal antibody, costimulation blocker, interleukin 6, IL-6
Outcomes	Economic, economics, cost, cost-effectiveness, cost-utility, cost- benefit, utility, health related quality of life, quality of life, quality adjusted life year, QALY

Table 47.	Koywords	for syst	amatic	roviow
Table 4/:	Keyworus	101° SYSI	ematic	review

The search strategies used MeSH terms, including 'rheumatoid arthritis' and 'economics' and text string terms which were combined in the search strategy using Boolean logic. The search strategies were designed to maximise sensitivity (i.e. the identification of all appropriate studies) however this was at the cost of poor specificity (the rejection of inappropriate studies). This meant the search returned a lot of inappropriate studies and was reliant on hand sifting, including the removal of economic evaluations of treatments that are not included in this appraisal (rituximab, conventional DMARDs, anakinra etc.).

Systematic searches were conducted in ten databases. Reference search was undertaken on all included studies, including any identified reviews of published economic evaluations of disease modifying therapies for rheumatoid arthritis.

^{*} www.york.ac.uk/inst/crd/intertasc/index.htm

Database	Date
BIOSIS (all databases)	1899 – Feb 2013
Cochrane Database of Systematic Reviews (CDSR)	All years – Feb 2013
Cochrane Database of Methodological Reviews	All years – Feb 2013
Cochrane Central Register of Controlled Trials (CCRCT)	All years – Feb 2013

Cumulative Index to Nursing and Allied Health Literature (CINAHL)

Table 48: Systematic review databases

Database of Abstracts of Reviews and Effects (DARE)

NHS Economic Evaluations Database (NHSEED)

Science Citation Index: Web of Science

Embase

MEDLINE

All database searches were undertaken on 1st February 2013, and no date restriction was applied. No study type or language restrictions were applied to the electronic search. The search strategies were reviewed by an information specialist.

All years – Feb 2013

1994 - Feb 2013

1974 – Feb 2013

1945 – Feb 2013

All years – Feb 2013 1899 – Feb 2013

The objective of the systematic search was to identify economic evaluations of abatacept, adalimumab, certolizumab pegol, etanercept, golimumab, infliximab and tocilizumab within Populations 1, 2 and 3. The search was irrespective of the decision-making context or the geographical location. The eligibility criteria are presented in Table 49.

Table 49:Eligibility Criteria

•	Economic evaluation including a comparison of costs and benefits based on outcomes data or undertaken using decision-analytic methods
•	Economic evaluations of interventions targeting a change to the natural disease profile of people with rheumatoid arthritis (i.e. disease-modifying therapies)
٠	Studies reporting costs and health outcomes
Exclus	sion Criteria
•	Evaluations of treatments not under review in this appraisal
•	Evaluations in patient populations not under review in this appraisal (e.g. sequential biologics)
•	Partial or non-comparative economic evaluations
•	Cost analyses/Cost-of-illness/Burden-of-illness studies
٠	Methodological papers which do not report economic and health benefit outcomes
•	Commentaries, letters, editorials
•	Conference abstracts
•	Studies which claim cost-effectiveness but with no empirical estimation of the costs and effectiveness outcomes
٠	Economic evaluations of therapies and treatments which do not modify the natural progression of rheumatoid arthritis
•	Non-English language

The identified studies were appraised using the commonly used and validated Drummond 'Critical appraisal of a published article' checklist¹⁷⁰.

6.1.2 Results

From the systematic searching of electronic databases, 8,281 citations were identified (QUOROM flow-diagram provided in Figure 28). After excluding 3,250 duplicate citations electronically, the remaining 5,031 citations were screened by their abstract. Of these, 4,913 abstracts did not meet the inclusion criteria and 118 full papers were retrieved for a full inspection. A total of 97 papers were excluded for not meeting the inclusion criteria, and 9 other studies were identified by reference searches and searching any identified systematic reviews. 30 studies were included in the systematic review.

Figure 28: QUOROM flow diagram

The studies identified are summarised in Table 50. 23 of the 30 studies (77%) were evaluations of bDMARDs in patients who had already had DMARD therapy previously. 6 studies (20%) were in DMARD naïve patients, with one study (3%) in both DMARD naïve and experienced populations.

No studies were identified that evaluated golimumab and certolizumab pegol, with the majority focussing on etanercept, infliximab and adalimumab.

27 of the 30 studies (90%) were CUA's, and a wide range of model methods and time horizons were adopted.

Study	Treatment history	Disease severity	Country (sponsor)	Interventions considered	Form of economic analysis	Model used	Time Horizon
Bansback <i>et al.</i> 2005 ¹⁷¹	2 cDMARDs	Moderate / Severe	Sweden (Abbott)	TNFα with or without MTX vs. cDMARDs	CUA	Individual level Markov model	Lifetime
Barbieri <i>et al.</i> 2005 ¹⁷²	cDMARDs and resistant to MTX	Severe	UK (Schering- Plough)	IFX+MTX vs. MTX	CUA	Markov model	1 year and lifetime
Barton <i>et al</i> . 2004 ¹⁷³	SSZ and MTX	Unclear	UK (HTA)	ETN vs. IFX vs. cDMARD sequence	CUA	Individual Sampling Model	Lifetime
Benucci <i>et al.</i> 2009 ¹⁷⁴	2 cDMARDs	Moderate / Severe	Italy (None reported)	ABT with LEF or MTX vs. ETN with LEF or MTX	CUA	Observational analysis	2 years
Brennan <i>et al.</i> 2004^{175}	2 cDMARDs	Unclear	UK (Wyeth)	ETN vs. cDMARD sequence	CUA	Individual Sampling Model	Lifetime
Brennan <i>et al.</i> 2007^{176}	At least 2 cDMARDs	Active	UK (BSRBR)	TNFα vs. cDMARDs	CUA	Individual Sampling Model	Lifetime
Chen <i>et al</i> . 2006 ¹²³	None (at least for first line comparator s)	Active	UK (HTA)	TNF α with or without MTX at first line or third line	CUA	Individual Sampling Model	Lifetime
Chiou <i>et al</i> . 2004 ¹⁷⁷	Unclear	Moderate / Severe	US (None reported)	ANA vs. ETN vs. ADA vs. IFX	CUA	Decision tree	1 year
Choi et al. 2002 ¹⁷⁸	MTX	Unclear	US (No funding	cDMARD mono and combo vs.	CEA	Decision tree	6

Table 50:Health economic studies assessing bDMARDs in bDMARD naïve patients with RA

Study	Treatment history	Disease severity	Country (sponsor)	Interventions considered	Form of economic analysis	Model used	Time Horizon
			source)	bDMARD mono and combo			months
Coyle <i>et al</i> . 2006 ¹⁷⁹	None	Aggressive	Canada (CCOHTA)	GLD vs. bDMARD mono and combo	CUA	Markov model	5 years
Davies <i>et al</i> . 2009 ¹⁸⁰	None	Unclear	US (Abbott)	MTX vs. ADA+MTX vs. ETN vs. IFX+MTX vs. ADA+MTX	CUA	Individual Sampling Model	Lifetime
Diamantopoulos <i>et al.</i> 2012 ¹⁸¹	cDMARDs	Moderate / Severe	Italy (Roche)	Sequential bDMARD use	CUA	Individual Sampling Model	lifetime
Finckh <i>et al</i> . 2009 ¹⁸²	None	Active	US (Arthritis Foundation)	Symptomatic therapy vs. MTX vs. bDMARDs	CUA	Individual Sampling Model	Lifetime
Jobanputra <i>et al.</i> 2002 ¹⁶⁷	SSZ and MTX	Active	UK (HTA)	Adding ETN and IFX into a cDMARD sequence	CUA	Individual Sampling Model	Lifetime
Kobelt <i>et al.</i> 2003 ¹⁸³	cDMARDS including MTX IR	Unclear, "advanced"	Sweden, UK (Schering- Plough)	IFX+MTX vs. MTX	CUA	Markov model	10 year
Kobelt <i>et al</i> . 2004 ¹⁸⁴	2 cDMARDS including MTX IR	Unclear	Sweden (multiple funders)	TNFα vs. cDMARDs	CUA	Trial analysis	1 year
Kobelt <i>et al.</i> 2005 ¹⁸⁵	cDMARDs other than MTX	Severe	Sweden (Wyeth)	ETN vs. MTX vs. ETN+MTX	CUA	Markov model	5 year/ 10 year
Kobelt <i>et al.</i> 2011 ¹⁸⁶	None	Severe	Sweden (Wyeth)	ETN+MTX vs. MTX	CUA	Markov model	10 year

Study	Treatment history	Disease severity	Country (sponsor)	Interventions considered	Form of economic analysis	Model used	Time Horizon
Lekander <i>et al</i> . 2010 ¹⁸⁷	no TNF αs	Active	Sweden (Schering- Plough)	IFX vs. cDMARDs	CUA	Markov model	20 year
Marra <i>et al</i> . 2007 ¹⁸⁸	cDMARDs	Active	Canada (None reported)	IFX+MTX vs. MTX	CUA	Markov model	10 years
Nuijten <i>et al</i> . 2001 ¹⁸⁹	2 cDMARDs	Unclear	Netherlands (Wyeth)	ETN vs. IFX	СМА	Unclear	1 year
Rubio-Terrés <i>et al.</i> 2001^{190}	cDMARDs (inc MTX)	Active	Spain (None reported)	IFX+MTX vs. LEF	СМА	Unclear	1 year
Soini <i>et al.</i> 2012 ¹⁹¹	At least 1 cDMARD	Moderate / Severe	Finland (Roche)	ADA vs. ETN vs. TCZ	CUA	Individual Sampling Model	Lifetime
Spalding <i>et al</i> . 2006 ¹⁹²	None	Unclear	US (University of Southern California)	MTX vs. bDMARD mono and combos	CUA	Markov model	Lifetime
Tanno <i>et al</i> . 2006 ¹⁹³	Bucillamin e	Unclear	Japan (Japanese Government)	Adding ETN to a cDMARD sequence	CUA	Markov model	Lifetime
van den Hout <i>et al.</i> 2009 ¹⁹⁴	None	Active	Netherlands (multiple funders)	Comparing cDMARD combos vs. IFX combo therapy	CUA	Trial analysis	2 year
Vera-Llonch <i>et al.</i> 2008 ¹⁹⁵	MTX	Moderate / Severe	US (None reported)	ABT vs. cDMARDs	CUA	Individual Sampling Model	Lifetime
Wailoo <i>et al</i> . 2008 ¹⁹⁶	No bDMARDs	Unclear	US (US AHRQ)	ETN vs. ADA vs. ANA vs. IFX	CUA	Individual Sampling Model	Lifetime

Study	Treatment history	Disease severity	Country (sponsor)	Interventions considered	Form of economic analysis	Model used	Time Horizon
Welsing <i>et al.</i> 2004 ¹⁹⁷	cDMARDs	Active	Netherlands (None reported)	Usual care vs. LEF vs. TNFα vs. LEF,TNFα sequences	CUA	Markov model	5 years
Wong <i>et al.</i> 2002 ¹⁹⁸	MTX	Active refractory disease	US (Schering- Plough, NIH)	IFX+MTX vs. MTX	CUA	Markov model	Lifetime

For ease of reading, the cost-effectiveness results are split into cDMARD naïve (Table 51) and bDMARD naive (Table 52) populations.

The range of price year, currencies, discount rates and time horizons mean that drawing strong conclusions regarding the cost-effectiveness of particular therapies is not possible, and would likely be misleading. Also, the complex nature of RA and the range of parameters required to develop a cost-effectiveness model mean that a very detailed review of each study would be required, which was not feasible. In some instances, the price year was not reported, and in a few cases it was not clear if bDMARDs were given with concomitant MTX or if they were a monotherapy. Results in GBP \pounds are all above the £30k per QALY threshold.

In general, the results in Table 52 suggest that bDMARDs are unlikely to be cost-effective in patients who have not undertaken DMARD therapy.

Drug	Comparator	Study	Price Year	Time	Previous	ICER (per QALY
				horizon	treatments	gained)
ADA	MTX	Spalding et al. 2006 ¹⁹²	2005	Lifetime	None	\$64,000
	cDMARDs	Chen <i>et al.</i> 2006 ¹²³	2004	Lifetime	None	£53,000
ADA + MTX	MTX	Spalding et al. 2006 ¹⁹²	2005	Lifetime	None	\$195,000
	cDMARDs	Davies <i>et al.</i> 2009 ¹⁸⁰	2007	Lifetime	None	\$23,000
	cDMARDs	Chen <i>et al.</i> 2006 ¹²³	2004	Lifetime	None	£170,000
ETN	MTX	Spalding et al. 2006 ¹⁹²	2005	Lifetime	None	\$90,000
	cDMARDs	Chen <i>et al.</i> 2006 ¹²³	2004	Lifetime	None	£49,000
	cDMARDs	Davies <i>et al.</i> 2009 ¹⁸⁰	2007	Lifetime	None	\$28,000
ETN + MTX	MTX	Kobelt <i>et al.</i> 2011 ¹⁸⁶	2008	10 year	None	€14,000
	cDMARDs	Coyle <i>et al</i> . 2006 ¹⁷⁹	?	5 years	None	Before/After GLD = Can\$145,000/Can\$126,00 0
	cDMARDs	Chen <i>et al.</i> 2006 ¹²³	2004	Lifetime	None	£78,000
IFX + MTX	MTX	Spalding et al. 2006 ¹⁹²	2005	Lifetime	None	\$410,000
	cDMARDs	Coyle <i>et al.</i> 2006 ¹⁷⁹	?	5 years	None	Before/After GLD = Can\$113,000/Can\$98,000
	cDMARDs	Davies <i>et al.</i> 2009^{180}	2007	Lifetime	None	\$32,000
	cDMARDs	Chen <i>et al.</i> 2006 ¹²³	2004	Lifetime	None	£650,000
	Combination cDMARDs	van den Hout <i>et al.</i> 2009^{194}	2008	2 year	None	€130,000
ΤΝFα	cDMARDs	Finckh <i>et al.</i> 2009 ¹⁸²	2007	Lifetime	None	Dominated

 Table 51:
 Cost-effectiveness results for studies in DMARD naïve patients with RA

Like the DMARD naïve population, it is not possible to provide conclusions regarding the costeffectiveness of individual treatments in the bDMARD naive population.

Many bDMARDs have ICERs close to £30k per QALY threshold. No one bDMARD consistently seems to be cost effective compared to any other bDMARD.

Jobanputra *et al.* 2002¹⁶⁷, Barton *et al.* 2004¹⁷³ and Chen *et al.* 2006¹²³ are HTA reports which informed the development of NICE TA36 and TA130¹⁹⁹. Taking the most recent HTA report by Chen *et al.* 2006¹²³, ADA, ADA+MTX, ETN, ETN+MTX and IFX+MTX all have ICERs compared to cDMARDs exceeding £20k per QALY, and in many instances above £30k per QALY. However these drugs have since been recommended in certain patient populations. This highlights the sensitivity of cost-effectiveness models to key parameters and modelling assumptions, and careful consideration of all aspects is required to ensure confidence in the final reported ICERs.

Drug	Comparator	Study	Price Year	Time horizon	Previous treatments	ICER (per QALY gained)
ABT i.v. + MTX	MTX	Vera-Llonch <i>et al.</i> 2008 ¹⁹⁵	2006	Lifetime	MTX	\$46,000
ADA	MTX	Bansback et al. 2005 ¹⁷¹	2001	Lifetime	2 previous cDMARDs	€42,000
	cDMARDs	Chen <i>et al.</i> 2006 ¹²³	2004	Lifetime	2 previous cDMARDs	£35-140,000
	Anakinra	Chiou <i>et al</i> . 2004 ¹⁷⁷	2003	1 year	Unclear	Dominated
	Anakinra	Wailoo <i>et al</i> . 2008 ¹⁹⁶	?	Lifetime	No bDMARDs	\$143,000
	IFX + MTX	Wailoo et al. 2008 ¹⁹⁶	?	Lifetime	No bDMARDs	Dominates
ADA + MTX	MTX	Bansback et al. 2005 ¹⁷¹	2001	Lifetime	2 previous cDMARDs	€34,000
	MTX	Soini et al. 2012 ¹⁹¹	2010	Lifetime	At least 1 cDMARD	€21,000
	cDMARDs	Chen <i>et al.</i> 2006 ¹²³	2004	Lifetime	2 previous cDMARDs	£30-64,000
	Anakinra	Chiou <i>et al</i> . 2004 ¹⁷⁷	2003	1 year	Unclear	Dominated
ETN	MTX	Bansback et al. 2005 ¹⁷¹	2001	Lifetime	2 previous cDMARDs	€37k
	MTX	Tanno <i>et al</i> . 2006 ¹⁹³	2005	Lifetime	Bucillamine	Yen 2.5million
	MTX	Kobelt <i>et al</i> . 2005 ¹⁸⁵	2004	5 years / 10 years	cDMARDs other than MTX	5 year / 10 year = €152,000 / 124,000
	cDMARDs	Chen <i>et al.</i> 2006 ¹²³	2004	Lifetime	2 previous cDMARDs	£24-47,000
	Anakinra	Chiou <i>et al.</i> 2004 ¹⁷⁷	2003	1 year	Unclear	\$13,000

 Table 52:
 Cost-effectiveness results for studies in bDMARD naïve patients with RA

Drug	Comparator	Study	Price Year	Time horizon	Previous treatments	ICER (per QALY gained)
	IFX + MTX	Nuijten <i>et al</i> . 2001 ¹⁸⁹	1999	1 year	2 cDMARDs	Dominates
	ETN + MTX and cDMARD strategies	Choi <i>et al</i> . 2002 ¹⁷⁸	1999	6 months	MTX	Extendedly dominated
ETN + MTX	MTX	Bansback et al. 2005 ¹⁷¹	2001	Lifetime	2 previous cDMARDs	€36,000
	MTX	Soini <i>et al</i> . 2012 ¹⁹¹	2010	Lifetime	At least 1 cDMARD	€21,000
	MTX	Kobelt <i>et al</i> . 2005 ¹⁸⁵	2004	5 year / 10 year	cDMARDs other than MTX	5 year / 10 year = €55,000 / 37,000
	cDMARDs	Barton <i>et al.</i> 2004 ¹⁷³	2000	Lifetime	SSZ and MTX	£50,000
	cDMARDs	Brennan et al. 2004 ¹⁷⁵	2000	Lifetime	2 cDMARDs	£16,000
	cDMARDs	Jobanputra et al. 2002 ¹⁶⁷	2000	Lifetime	SSZ and MTX	£64,000
	cDMARDs	Chen <i>et al.</i> 2006 ¹²³	2004	Lifetime	2 previous cDMARDs	£24-50,000
	Anakinra	Chiou <i>et al</i> . 2004 ¹⁷⁷	2003	1 year	Unclear	\$8,000
	ADA + MTX	Benucci <i>et al</i> . 2009 ¹⁷⁴	?	2 years	2 cDMARDs	\$25,000
	ADA + MTX	Wailoo <i>et al</i> . 2008 ¹⁹⁶	?	Lifetime	No bDMARDs	\$92,000
	IFX + MTX	Wailoo <i>et al</i> . 2008 ¹⁹⁶	?	Lifetime	No bDMARDs	Dominates
	IFX + MTX	Barton <i>et al.</i> 2004 ¹⁷³	2000	Lifetime	SSZ and MTX	£28,000
	IFX + MTX	Jobanputra et al. 2002 ¹⁶⁷	2000	Lifetime	SSZ and MTX	£35,000
	IFX + MTX	Nuijten et al. 2001 ¹⁸⁹	1999	1 year	2 cDMARDs	Dominates
	ETN	Choi <i>et al.</i> 2002 ¹⁷⁸	1999	6 months	MTX	\$43,000 (per ACR 20 response), \$35,000 (per ACR 70 response)

Drug	Comparator	Study	Price Year	Time horizon	Previous treatments	ICER (per QALY gained)
IFX + MTX	MTX	Bansback et al. 2005 ¹⁷¹	2001	Lifetime	2 previous cDMARDs	€48,000
	MTX	Barbieri <i>et al.</i> 2005 ¹⁷²	2000	1 year/Lifetime	cDMARDs and resistant to MTX	£34,000(1 year), £24,000 (Lifetime)
	MTX	Kobelt <i>et al</i> . 2003 ¹⁸³	?	10 year	cDMARDS including MTX IR	£22,000
	MTX	Marra <i>et al</i> . 2007 ¹⁸⁸	2002	10 year	cDMARDs	\$46,000
	MTX	Wong et al. 2002 ¹⁹⁸	1998	Lifetime	MTX	\$307,000
	LEF	Rubio-Terrés <i>et al.</i> 2001 ¹⁹⁰	1999	1 year	cDMARDs (inc MTX)	Dominated (CMA)
	cDMARDs	Barton <i>et al.</i> 2004 ¹⁷³	2000	Lifetime	SSZ and MTX	£68,000
	cDMARDs	Jobanputra et al. 2002 ¹⁶⁷	2000	Lifetime	SSZ and MTX	£89,000
	cDMARDs	Lekander et al. 2010 ¹⁸⁷	2007	20 year	no TNFas	€23,000
	cDMARDs	Chen <i>et al.</i> 2006 ¹²³	2004	Lifetime	2 previous cDMARDs	£30-140,000
	Anakinra	Chiou <i>et al</i> . 2004 ¹⁷⁷	2003	1 year	Unclear	Dominated
	ADA + MTX	Wailoo <i>et al.</i> 2008 ¹⁹⁶	?	Lifetime	No bDMARDs	Dominated
	ETN + MTX	Wailoo et al. 2008 ¹⁹⁶	?	Lifetime	No bDMARDs	Dominated
TCZ + MTX	ETA + MTX	Diamantopoulos <i>et al.</i> 2012^{181}	2009	Lifetime	cDMARDs	Dominates
	ADA + MTX	Diamantopoulos <i>et al.</i> 2012^{181}	2009	Lifetime	cDMARDs	Dominates
	IFX + MTX	Diamantopoulos <i>et al.</i> 2012^{181}	2009	Lifetime	cDMARDs	€3,000

Drug	Comparator	Study	Price Year	Time horizon	Previous treatments	ICER (per QALY gained)
	Add TCZ into first biologic position	Diamantopoulos <i>et al</i> . 2012 ¹⁸¹	2009	Lifetime	cDMARDs	€17,000
	MTX	Soini <i>et al</i> . 2012 ¹⁹¹	2010	Lifetime	At least 1 cDMARD	€19,000
Grouped bDMARDs	cDMARD	Brennan <i>et al.</i> 2007 ¹⁷⁶	2004	Lifetime	At least 2cDMARDs	£24,000
	Previous years' DMARD use	Kobelt <i>et al.</i> 2004 ¹⁸⁴	2002	1 year	2 cDMARDS including MTX IR	€44,000
ΤΝFα	LEF	Welsing <i>et al.</i> 2004 ¹⁹⁷	?	5 year	cDMARDs	€544,000

6.2 Critique of the manufacturers' submissions

The Assessment Group received submissions for seven interventions.^{154,155,200-204} These were from six manufacturers as golimumab and infliximab are both manufactured by MSD. The submission by BMS evaluated both the intravenous and subcutaneous formulation of abatacept. The length and quality of the submissions varied. For information Figure 29 details the number of pages within each manufacturer's submission. In addition each submission contained a mathematical model.

Figure 29: The number of pages in each submission (including appendices)

An initial review of the submissions indicated that there were a multitude of methods employed and that attempting to summarise all seven submissions individually would likely not aid the reader. With this aim, the submissions have been summarised jointly under a number of categories to allow the reader to compare and contrast the methodologies used. This would remove the need for cross-referencing were the reader wanting to know the different assumptions made for a key variable or to quickly compare outputs from the model. Formal evaluation of these models using checklists such as the BMJ or Eddy checklists^{205,206} was not possible within the timescales of the assessment however clear deviances from recommended methods have been outlined in the critique.

Where appropriate tables and figures will be taken from the manufacturers' submissions. Minor amendments, such as to the intervention abbreviations have been made to ensure consistency throughout the report, where possible.

The broad headings chosen were the:

Decision Problem Addressed

- Strategies modelled
- Model Structure / Time Cycle
- Time Horizon
- Perspective
- Discounting
- Population characteristics
- The assumed costs of the interventions
- Costs of administration and monitoring
- Comparative treatment efficacy (Network Meta-Analyses)
- Responder criteria
- HAQ / EQ-5D changes in relation to response levels
- HAQ trajectory following initial response
- Time to discontinuation of treatment
- Rebound post-treatment
- Assumed NHS costs per HAQ band
- Utility related to HAQ
- Assumed costs and disutilities associated with adverse events
- Mortality associated with RA
- Cost-effectiveness results
- Cost implications within England and Wales

6.2.1 Decision Problem Addressed

Tables 53 summarises the decision problems addressed within the manufacturers' submissions for those drugs that are licensed as monotherapy and for those that cannot. No detailed information is given in the tables which serve as reference only, with subtleties regarding each analysis provided in later sections. Four interventions (abatacept i.v., abatacept s.c., certolizumab and tocilizumab) are not licenced before the use of MTX. Four interventions (abatacept i.v., abatacept i.v., abatacept s.c., golimumab and infliximab) are not licenced as monotherapy.

6.2.1.1 Summary

It is seen that there was considerable variation in the decision problems addressed by the manufacturers with only the submissions by AbbVie and UCB evaluating all the subgroups both within the scope and the licence of their product.

				Manufact	urer				
	Decision Problem								
Analysis		AG's interpretation of the scope	AbbVie (ADA)	BMS (ABT)	MSD (GOL)	MSD (IFX)	Pfizer (ETN)	Roche (TCZ)	UCB (CTZ)
1	Population 2 in combination with MTX	~	V		~	V	~		~
2	Population 3 in combination with MTX	~	~				~		~
3	Population 1 in combination with MTX	V	~				V		
4	Population 2 monotherapy	~	~				~		~
5	Population 3 monotherapy	~	~						~
6	Population 1 monotherapy	~	~						
7	General RA Population who can tolerate MTX $^{\Delta}$			~	~	~			
8	MTX intolerant or contraindicated RA population †							~	
Shade	d cells indicate the intervention is not licensed in this po	pulation							
ADA =	= adalimumab; ABT = abatacept; GOL = golimumab; II	FX = inflixe	imab; ETN =	etanercept; 7	ΓCZ =				
Tociliz	zumab; CTZ = certolizumab pegol; MTX = MTX. i.v. =	intravenou	s; s.c. = subc	utaneous					
$^{\Delta}$ In es	sence, analyses 1 and 2 combined † In essence, analyses								

 Table 53:
 The decision problem addressed within the manufacturers' submission

6.2.2 Strategies Modelled

The strategies modelled for each submission have been detailed individually for each manufacturer collated by the analyses numbers provided in the Decision Problem addressed section. These are:

- 1. Population 3 in combination with MTX
- 2. Population 2 in combination with MTX
- 3. Population 1 in combination with MTX
- 4. Population 3 monotherapy
- 5. Population 2 monotherapy
- 6. Population 1 monotherapy
- 7. General RA Population who can receive MTX
- 8. MTX intolerant or contraindicated RA population

6.2.2.1 In summary, most strategies appeared reasonable although it is noted that there were a few anomalies compared with NICE guidance or intervention licences:

- MSD (golimumab and infliximab) and UCB (certolizumab pegol) assumed that tocilizumab would not be used following rituximab;
- MSD assumed in one strategy that rituximab could be used without a bDMARD having been provided previously
- Pfizer (etanercept) assumed that abatacept i.v. would be used third-line if tocilizumab was used first line.
- Roche (tocilizumab) assumed a standard sequence of care for those intolerant of contraindicated to MTX that included three lines of bDMARDs, and evaluated only one sequence where tocilizumab was inserted as the first-line treatment to create four lines of bDMARDs.
- Importantly UCB did not compare with a cDMARD-only option for Analyses 1 and 4.

6.2.2.2 AbbVie

The strategies employed in the AbbVie submission are contained in Tables 54 to 57. These appear appropriate, although it is noted that 'Rescue' treatment was not explicitly defined by the manufacturer.

Treatme				Sequen	ce Number			
nt	1	2	3	4	5	6	7	8
Number								
1	LEF	ADA+M	ETN+M	IFX+MT	CTZ+M	GOL+M	ABT+M	TCZ+M
		TX	TX	Х	TX	TX	TX	TX
2	SSZ	RTX+M	RTX+M	RTX+M	RTX+M	RTX+M	RTX+M	RTX+M
		TX	TX	TX	TX	TX	TX	TX
3	CYC	TCZ+MT	TCZ+M	TCZ+M	TCZ+M	TCZ+M	TCZ+M	LEF
		Х	TX	TX	TX	TX	TX	
4	Resc	LEF	LEF	LEF	LEF	LEF	LEF	SSZ
	ue							
5		SSZ	SSZ	SSZ	SSZ	SSZ	SSZ	CYC
6		CYC	CYC	CYC	CYC	CYC	CYC	Rescue
7		Rescue	Rescue	Rescue	Rescue	Rescue	Rescue	

Table 54:Strategies modelled by AbbVie for Analyses 1 and 2

ABT – abatacept i.v.; ADA – adalimumab; CTZ – certolizumab; CYC – cyclosporine; ETN – etanercept; GOL – golimumab; IFX - infliximab; LEF – leflunomide; MTX – MTX, RTX – rituximab; SSZ – sulfasalazine, TCZ – tocilizumab.

Table 55:Strategies modelled by AbbVie for Analysis 3

Treatment			Se	quence Numb	er	
Number	1	2	3	4	5	6
1	MTX	ADA+ MTX	ETN+MTX	IFX+MTX	GOL+MTX	MTX+HCQ
2	SSZ	RTX+M TX	RTX+MTX	RTX+MTX	RTX+MTX	ADA+MTX
3	HCQ	TCZ+M TX	TCZ+MTX	TCZ+MTX	TCZ+MTX	RTX+MTX
4	LEF	LEF	LEF	LEF	LEF	TCZ+MTX
5	CYC	SSZ	SSZ	SSZ	SSZ	LEF
6	Rescue	CYC	CYC	CYC	CYC	SSZ
7		Rescue	Rescue	Rescue	Rescue	CYC
8						Rescue

ADA – adalimumab; CYC – cyclosporine; ETA – etanercept; GOL – golimumab; HCQ – hydroxychlorine; INF - infliximab; LEF – leflunomide; MTX – MTX, RTX – rituximab; SSZ – sulfasalazine, TOC – tocilizumab.

I uble e of	Briangie	Strategies modelied by 1155 the for finallyses faile									
Treatment		Sequence Number									
Number	1	2	3	4	5						
1	SSZ+HCQ	ADA	ETN	CTZ	TCX						
2	LEF	LEF	LEF	LEF	LEF						
3	SSZ	SSZ	SSZ	SSZ	SSZ						
4	CYC	CYC	CYC	CYC	CYC						
5	Rescue	Rescue	Rescue	Rescue	Rescue						

Table 56:Strategies modelled by AbbVie for Analyses 4 and 5

ADA – adalimumab; CTZ – certolizumab; CYC – cyclosporine; ETN – etanercept; HCQ – hydroxychlorine; LEF – leflunomide; SSZ – sulfasalazine; TCZ – tocilizumab.

Iusicent	Strategies modelied by 1155 (16 for 11nd								
Treatment	Number	•							
Number	1	2	3	4					
1	SSZ+HCQ	ADA	ETN	SSZ+HCQ					
2	LEF	LEF	LEF	ADA					
3	SSZ	SSZ	SSZ	LEF					
4	CYC	CYC	CYC	SSZ					
5	Rescue	Rescue	Rescue	CYC					
6				Rescue					

Table 57:Strategies modelled by AbbVie for Analysis 6

ADA – adalimumab; CYC – cyclosporine; ETA – etanercept; HCQ – hydroxychlorine; LEF – leflunomide; SSZ – sulfasalazine.

6.2.2.3 BMS

The strategies employed in the BMS submission are contained in Table 58. These appear appropriate. The analyses assumed that if a patient had an adverse event within the first 6 months that a randomly sampled (and previously unused bDMARD would be used instead).

If a patient was contraindicated to rituximab then a randomly sampled (and previously unused bDMARD would be used instead).

From the model structure it appears that if there is a good response to rituximab then tocilizumab would not be used as a third line treatment option.

	Sequences											
1	LEF	ABT i.v.	ABT s.c.	ADA	CTZ +MTX	ETN +MTX	GOL+MTX	IFX+MTX	TCZ+MTX			
		+MTX	+MTX	+MTX								
2	GLD	$RTX+MTX^{\dagger}$										
3	CYC	TCZ+MTX*	LEF									
4	AZA	LEF	LEF	LEF	LEF	LEF	LEF	GLD	GLD			
5	PC	GLD	GLD	GLD	GLD	GLD	GLD	CYC	CYC			
6		CYC	CYC	CYC	CYC	CYC	CYC	AZA	AZA			
7		AZA	AZA	AZA	AZA	AZA	AZA	PC	PC			
8		PC	PC	PC	PC	PC	PC					

Table 58: Strategies modelled by BMS for Analyses 1 and 7

ABT i.v. - abatacept i.v.; ABT s.c. - abatacept s.c.; ADA - adalimumab; AZA - azathioprine; CTZ - certolizumab; CYC - cyclosporine A; ETN - etanercept; GOL - golimumab; GLD = injectable gold; INF - infliximab; LEF - leflunomide; MTX - MTX, PC - palliative care; RTX - rituximab; TCZ - tocilizumab

* It appears that TCZ + MTX would not be used if there was a DAS28 improvement of 1.2 or greater at six months

[†] If RTX is contradicted a randomly sampled treatment not previously used was substituted.

6.2.2.4 MSD

For brevity the strategies for golimumab and infliximab have been discussed jointly as they are identical. The strategies employed in the MSD submissions are contained in Table 59. It is noted that these do not allow tocilizumab to be used as a third line biologic as allowed within NICE guidance. MSD assume that the first and second line treatment options have been used prior to the decision point. The Assessment Group comment that the use of rituximab in the MTX arm is outside of licence as a bDMARD must have been provided prior to rituximab.

Treatment	Infliximab arm	Golimumab arm	Other biologic DMARD arm	MTX arm
Number				
1	IFX + MTX	GOL + MTX	Biologic DMARD + MTX	MTX
2	RTX	RTX	RTX	RTX
3	LEF	LEF	LEF	LEF
4	GLD	GLD	GLD	GLD
5	AZA	AZA	AZA	AZA
6	CYC	CYC	СҮС	CYC
7	Palliative care	Palliative care	Palliative care	Palliative care

Table 59:Strategies modelled by MSD for Analyses 1 and 7

All patients were assumed to have previous lines of methotrexate and sulfasalazine + MTX

The other bDMARDs evaluated were: etanercept; adalimumab; certolizumab; tocilizumab; abatacept i.v. and abatacept s.c...

6.2.2.5 Pfizer

The strategies employed in the Pfizer submission are contained in Table 60. It is noted that the strategy with tocilizumab first does not follow NICE guidance in that abatacept i.v. is used as a third-line treatment.

	Sequences									
Treatment Number	1	2	3	4	5	6	7	8	9	10
1	ETN	ABT i.v.	ABTs.c.	CTZ	ADA	IFX	TCZ	GOL	cDMARD	Comb cDMARD
2	RTX	RTX	RTX	RTX	RTX	RTX	RTX	RTX	RTX	RTX
3	TCZ	TCZ	TCZ	TCZ	TCZ	TCZ	ABT i.v.	TCZ	TCZ	TCZ
4	SSZ	SSZ	SSZ	SSZ	SSZ	SSZ	SSZ	SSZ	SSZ	SSZ
5	LEF	LEF	LEF	LEF	LEF	LEF	LEF	LEF	LEF	LEF
6	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC
Treatment sequences applied by analysis										
Analysis 1	>	V	~	>	V	V	V	V	~	
Analysis 2	~								~	
Analysis 3	~								~	V

Table 60:Strategies modelled by Pfizer for Analyses 1, 2 and 3

ABT i.v. – abatacept i.v.; ABT s.c. – abatacept s.c.; ADA – adalimumab; AZA – azathioprine; cDMARD – conventional DMARD; comb cDMARD – combination cDMARDs; CTZ – certolizumab; CYC – cyclosporine A; ETN – etanercept; GOL – golimumab; INF - infliximab; LEF – leflunomide; PC – palliative care; RTX – rituximab; TCZ – tocilizumab.

Table 61:Strategies modelled by Pfizer for Analysis 4

	Sequences					
Treatment Number	1	2	3	4	5	
1	ETN	ADA	TCZ	TCZ	cDMARD	
2	ADA	ETN	ETN	ADA	ETN	
3	SSZ	SSZ	SSZ	SSZ	SSZ	
4	LEF	LEF	LEF	LEF	LEF	
5	PC	PC	PC	PC	PC	

ADA – adalimumab; AZA – azathioprine; ETN – etanercept; LEF – leflunomide; PC – palliative care; TCZ – tocilizumab.
6.2.2.6 Roche

Roche evaluated a very limited set of sequences which consisted of inserting tocilizumab before a standard sequence of care. This is replicated in Figure 30. Roche only evaluated a sequence of MTX intolerant or contraindicated RA population. It is noted that Roche assumes that the standard of care sequence has three lines of bDMARD treatments (followed by palliative care) which is not in accordance with current NICE guidance. Roche evaluated only one sequence where tocilizumab was inserted as the first-line treatment to create four lines of bDMARDs.

6.2.2.7 UCB

The strategies modelled by UCB are given in Table 62. The assessment note that in the MTX experienced populations with DAS>5.1 that continuing use of cDMARDs was not a comparator strategy which is a serious deviation from the published scope.

Set-up	Interventions/regimens					
	Combination with MTX					
	CTZ					
	ADA					
	ETN					
	GOL					
	TCZ					
Componetors	IFX					
Comparators	ABT					
	Monotherapies					
	CTZ					
	ADA					
	ETN					
	TCZ					
	RTX + MTX					
	AZA					
	CYC					
Follow-on	GLD					
interventions	HCQ					
	LEF					
	Penicillamine					
	Palliation					

Table 62:S	Strategies modelled by UCB for Analyses 1 a	nd 4
a .		

Table 63:	Strategies modelled by UCB for Analyses 2 and 5
Set-up	Parameter
	CTZ + MTX
Componetors	CTZ + cDMARDs
Comparators	PBO + MTX
	PBO + cDMARDs
	MTX + SSZ
	MTX + SSZ + HCQ
	MTX + HCQ
Follow-on	MTX + LEF
interventions	SSZ + HCQ
	CYC
	Penicillamine
	Palliation

6.2.3 Model Structure / Time cycle

This section details the model structure employed by each manufacturer. The two submissions from MSD have been assessed jointly due to having the same structure.

6.2.3.1 Broad Summary

Four individual patient models and two cohort models were submitted. Of the four individual patient level models three used discrete event simulation (DES) techniques, which do not need time cycles, with the remainder using a 6 month cycle. Of the two cohort models one used a six month time cycle, whilst the other adopted this after the initial year, with either three cycles of 6, 3 and 3 months in the first year, or 3, 4.5 and 4.5 months depending on the user input. Both cohort models used a half-cycle correction.

Four of the models were constructed in Microsoft Excel (©Microsoft Corporation); one in Arena (©Rockwell Automation); and one in Simul8 (©Simul8 Corporation)

6.2.3.2 AbbVie

The model is an individual patient simulation based within Arena (©Rockwell Automation) run for a cohort of 1,000 patients, each with specific baseline characteristics, which are sampled from distributions specified in an Excel input shell. 150 replications are done for each analysis to create 150,000 patients per treatment sequence. The overview of the model logic is shown in Figure 31. The model uses a discrete event simulation approach thus there are no time cycles, although all patients are assumed to stay on treatment for 6 months (unless an AE occurs)

Figure 31: The AbbVie Model Structure

6.2.3.3BMS

BMS reproduced the individual patient model built by Malottki et al.¹⁶⁶ but added first-line biologics to the beginning of the model. This was implemented in Simul8 (©Simul8 Corporation) and does not require time cycles. The model logic is shown in Figure 32.

Figure 32: The BMS Model Structure

6.2.3.4 MSD

A Markov model constructed in Excel (© Microsoft Corporation) was used to estimate the expected costs and QALYs of patients with RA. A time cycle of six months was used with half-cycle correction.

Figure 33: The MSD Model Structure

6.2.3.5 Pfizer

The model was developed in Microsoft Excel (©Microsoft Corporation) with Visual Basic for Applications and uses a DES approach to model individual patients. As the model uses a DES approach no time cycles were necessary.

Time on treatment and disease progression are time-dependent, whilst modelling the effects of treatment withdrawal, and any subsequent rebound effect, requires knowledge of patients' disease status prior to treatment.

The model structure is summarised in Figure 34 and is applicable to each decision problem evaluated.

Figure 34: The Pfizer Model Structure

* Cease treatment not available for palliation

Abbreviations: HAQ, Health Assessment Questionnaire

6.2.3.6 Roche

The manufacturer reports that the design of the economic analysis follows guidelines set by the OMERACT (Outcome Measures in Rheumatoid Arthritis Clinical Trials) Economics Working Group.^{207,208}

The economic analysis is based on an individual patient model designed in Microsoft Excel (©Microsoft Corporation) with the use of visual basic applications. The model tracks the characteristics of the individuals and maintains a history in particular of a patient's response to treatment in their assigned drug sequence and change in HAQ score over time.

The model algorithm is presented in Figure 35:

Figure 35: The individual simulation process reported by Roche

Start the simulation
For patients $i=1, 2,, n$, cycles $k=1, 2,, n$ a random number drawn by a continuous uniform distribution $\theta \sim U[0,1]$, and the relevant risk factor <i>p</i> .
Determine the path of patient <i>i</i> through the model by $\theta_{i,k} \leq p_k$
Determine cost c_i and utility u_i for individual i
End the simulation
Estimate the mean cost and utility $E[(C, U)]$ by
$\hat{a}_n = \frac{1}{n} \sum_{i=1}^n (c_i, u_i)$

The model implements a 6 month cycle length, which is in line with timing of available efficacy evidence (ACR data). Patients transition through the model by sequentially moving on to each treatment. Once patients exhaust all treatments in the sequence, they move into palliative care where they remain until death.

6.2.3.7 UCB

The cost-effectiveness model is a Markov (cohort health state transition) structure constructed in Microsoft Excel.

The first model cycle is either 3 or 6 months (12 or 24 weeks), depending on the definition of response selected in the model and reflective of the published clinical guidance (6 months (24 weeks) is used in the base case). The model allows for clinical response to be measured by either ACR response criteria (developed by the American College of Rheumatology), or EULAR response criteria (developed by the European League Against Rheumatism).

There are two further model cycles in the first year which are common to both the severe and moderate disease activity populations. Where the first model cycle has been chosen to be 3 months, the subsequent two time-steps are each 4.5 months long. Where the first model cycle has been chosen to be 6 months, the subsequent two time-steps are each 3 months long. The maximum time-step length in the model is 6 months.

At the end of the next and following cycles, patients may remain in the same Markov state, discontinue treatment due to an adverse event, discontinue treatment due to lack of efficacy or intolerance, or die. There are no state transitions other than discontinuation of treatment and death. Discontinuation of treatment was assumed to be the same for all comparators, which was deemed to be a conservative assumption. Transition probabilities were calculated to appropriately reflect the varying length of time-steps in the first model year. After the first 12 months, the cycle length is 6

months, reflecting the frequency of monitoring recommended by NICE and the British Society of Rheumatology. A half-cycle correction was employed.

Figure 36: Markov structure – severe disease activity population; model structure based on ACR response presented by UCB

*Follow-up treatment states: duplicated for each follow-up treatment. Patients not responding in first 6 months of follow-up treatment will move to the next treatment in the sequence; **Reason for discontinuation (lack of efficacy) governed by probabilities after leaving treatment health state.

HAQ-DI categories relate to the non-treatment specific costs associated with disability.

Figure 37: Markov structure – moderate disease activity population; model structure based on EULAR response presented by UCB

*Follow-up treatment states: duplicated for each follow-up treatment. Patients not responding in first 6 months of follow-up treatment will move to the next treatment in the sequence; **Reason for discontinuation (lack of efficacy) governed by probabilities after leaving treatment health state.

HAQ-DI categories relate to the non-treatment specific costs associated with disability.

6.2.4 Time Horizon

The time horizon for each model is detailed below. In summary, all models adopted a lifetime, or approximately lifetime time horizon.

6.2.4.1 AbbVie

The AbbVie model used a lifetime horizon

6.2.4.2 BMS

The BMS model used a lifetime horizon

6.2.4.3 MSD

The MSD model used a time horizon of 45 years, assuming that patients with moderate to severe RA would die at a maximum 95 years and those with severe RA would die at a maximum age 96 years. Shorter analysis timeframes were used in the sensitivity analyses.

6.2.4.4 Pfizer

The Pfizer model used a lifetime horizon. Shorter analysis timeframes were used in the sensitivity analyses.

6.2.4.5 Roche

The BMS model used a lifetime horizon

6.2.4.6 UCB

The time horizon in the base case analysis was an approximation of the lifetime of a patient. UCB stated that analysis of BSRBR data has revealed an average age of patients starting on TNF inhibitors of 55 years.²⁰⁹ A timeframe of 45 years would assume that patients would die at a maximum age of 100 years. Shorter analysis timeframes were used in the sensitivity analyses.

6.2.5 Perspective

The perspectives adopted in the submissions are detailed below. In summary, all submissions used an NHS and personal social services perspective

6.2.5.1 AbbVie

The base case analysis of the economic evaluation was conducted from an NHS and Personal Social Services perspective. AbbVie note that resource use data related to Personal and Social Services for the management of RA in the UK were not available for costing purposes.

6.2.5.2 BMS

Whilst not explicitly stated the BMS model adopts a NHS and personal social services perspective

6.2.5.3 MSD

The MSD analysis is conducted from the UK NHS perspective. Direct costs included the drug cost, administration cost, and heath care resource use.

6.2.5.4 Pfizer

The current analysis was conducted from the perspective of the UK National Health Service (NHS) and Personal Social Services.

6.2.5.5 Roche

The Roche submission used an NHS and personal social services perspective.

6.2.5.6 UCB

The model takes a payer perspective (i.e. that of the NHS and Personal Social Services (PSS)), as per NICE guidance, and includes direct medical costs such as hospital care (inpatient and outpatient), primary care and home visits. Sensitivity analyses were conducted using a societal perspective.

6.2.6 Discounting

The discount rates used within the submissions are shown in Table 64. In summary, each submission used the appropriate discount rate in the base case analysis.

Manufacturer		Base Case	Sen	sitivity Analyses
	Costs	QALYs	Costs	QALYs
AbbVie	3.5%	3.5%	6.0%	1.5%
			1.5%	1.5%
BMS	3.5%	3.5%		
MSD	3.5%	3.5%	0.0%	3.5%
			3.5%	0.0%
			0.0%	0.0%
Pfizer	3.5%	3.5%	6.0%	1.5%
Roche	3.5%	3.5%		
UCB	3.5%	3.5%	6.0%	1.5%
			1.5%	6.0%
			1.5%	1.5%
			6.0%	6.0%

 Table 64:
 The discount rates used per annum within the submissions

6.2.7 Population Characteristics

The population characteristics for each submission are detailed in this section. In summary the manufacturers often use drug specific data from the BSRBR, or from the trials related to their intervention. Typically no comment is made regarding the correlation between parameters with the exception of Pfizer's model.

6.2.7.1 AbbVie

The baseline characteristics for patients considered within the AbbVie analyses come from different sources, of which it was stated that wherever possible the source were chosen to reflect the composition of the treated population for RA in the UK. For MTX-experienced patients with moderate disease activity the source was the ReAct study.²¹⁰ Data from the British Society of Rheumatology Biologics Register (BSRBR) for this patient population could not be used, because historically patients in the UK have always required a DAS28>5.1 to receive an anti-TNF; as such, any patients in the BSRBR with a DAS28<5.1 who received an anti-TNF are very select group of patients with non-normal characteristics. For MTX-experienced patients with severe disease activity the source was the BSRBR data AbbVie report that analysis was undertaken on BSRBR data for adalimumab from raw BSRBR and this was presented as academic-in-confidence data. For MTX-naïve patients with severe disease activity the source was the PREMIER trial.¹⁰⁹ The characteristics of patients for each of those populations are outlined in Tables 65 to 67 No comment is made on the correlation of parameters.

	Value (Standard Deviation)
Gender (% female)	81.4%
Age (years)	54.6
Baseline HAQ-DI	1.5 (0.65)
Disease Duration (years)	10.65m (8.56)

Table 65:The baseline Patient Characteristics for MTX-experienced patients with
moderate disease activity assumed by AbbVie

All sources: Burmester et al, 2007²¹⁰

Table 66:The baseline patient characteristics for MTX-experienced patients with severe
disease activity assumed by AbbVie

	Value (Standard Deviation)
Gender (% female)	
Age (years) [Males / Females]	
Baseline HAQ-DI [Males / Females]	
Disease Duration (years)	
All sources: Abbvie analysis of BSRBR data	

Table 67:The baseline patient characteristics for MTX-naive patients with severe disease
activity assumed by AbbVie

.58 (0.65)
•

All sources: Breedveld et al, 2006¹⁰⁹

For each sub-population several sensitivity analyses were conducted, to take into account the effect in the cost-effectiveness estimates of applying the sequences to: a fully male or fully female population; a population with average starting age 55, or 65; a population with average baseline HAQ of 1.0, 1.5, or 2.0. There is no comment on the correlation assumed between the distributions.

6.2.7.2 BMS

The BMS patient-level simulation model generates a group of virtual patients, who are assigned individual characteristics, such that each patient has their own gender, age and HAQ score. These values were taken from Chen et al, and reproduced in Tables 68 and 69. It is not commented whether the age and gender distributions are assumed to be correlated with HAQ distribution.

 Table 68:
 Age and Gender distributions of patients in the BMS model

	Age							
Gender	15-24	25-34	35-44	45-54	55-64	65-74	75-84	Total
Male	0.9%	2.5%	5.4%	8.3%	9.0%	6.8%	5.1%	38%
Female	1.5%	4.0%	8.8%	13.7%	14.7%	10.9%	8.4%	62%

Starting HAQ-DI score	0.125	0.25	0.375	0.5	0.625	0.75	0.875	1	1.125	1.25	1.375	1.5
Patients	3.1%	6.7%	6.7%	5.8%	5.3%	4.9%	4.8%	3.1%	6.7%	6.7%	5.8%	6.3%
Starting HAQ-DI score	1.625	1.75	1.875	2	2.125	2.25	2.375	2.5	2.625	2.75	2.875	3
Patients	6.6%	7.0%	6.9%	6.2%	4.7%	2.7%	0.9%	0.1%	0%	0%	0%	0%

Table 69:HAQ score distribution of patients in the BMS model

It is commented that the mean of the assumed duration is a HAQ of 1.22

6.2.7.3 MSD – Golimumab

It is reported that the base case analysis reflects the GO-FORWARD²¹¹ population and the subgroup analysis reflects the severe patient group (DAS>5.1) from GO-FORWARD⁹². No comment is made on the correlation between parameters.

6.2.7.4 MSD – Infliximab

It is reported that the base case analysis reflects the $ATTRACT^{75}$ population and the subgroup analysis reflects the severe patient group (DAS28 > 5.1) from ATTRACT. No comment is made on the correlation between parameters.

6.2.7.5 Pfizer

The characteristics of patients used in the Pfizer model are subdivided into three groups: severe DMARD-IR; moderate to severe-IR; and severe naïve patients. The following text is taken largely from the Pfizer submission.

Severe DMARD-IR

Characteristics of individual patients in the Severe DMARD-IR population were sampled (with replacement) directly from the baseline etanercept BSRBR patient cohort (Table 70). This method has the advantage of maintaining correlation between variables without reliance on strong distributional assumptions, such as multivariate normality, or complex copula-based processes to specify arbitrary marginal distributions. Table 70 presents a summary of the population characteristics assumed within the model for all populations.

Moderate to Severe DMARD-IR

The etanercept BSRBR cohort with DAS ≤ 5.1 was not considered sufficiently generalisable to the Moderate to Severe population. Patient characteristics for the Moderate to Severe population were simulated using summary statistics from PRESERVE,²¹² with the correlation structure taken from the BSRBR (n=3,780). The implicit assumption is that the correlation between variables in these two populations is the same. The population was generated with no restrictions on DAS, and then an acceptance-rejection algorithm was used to redraw characteristics for patients in whom the simulated DAS28 was outside the 3.2 - 5.1 range or who had a simulated age < 18. This avoided any artificial truncation caused by, for example, assuming all patients simulated with a DAS28 < 3.2 had a DAS28 = 3.2 and preserved the correlation between variables.

Severe DMARD-Naïve patients

Patients within the etanercept BSRBR cohort enter the registry within the context of current clinical practice. As current clinical guidance from NICE does not permit the use of bDMARDs before the failure of two conventional DMARDs, the etanercept BSRBR cohort does not contain a patient population generalisable to the Severe DMARD-naïve population. In order to generate this cohort, characteristics were sampled using summary statistics from COMET⁸¹, assuming the correlation structure from the etanercept BSRBR cohort. The simulation of patients used acceptance/rejection criteria as described for moderate to severe DMARD-IR in order to ensure all patients had a DAS28 > 5.1 and age ≥ 18 .

	Se (ETN BS	vere DMAI SRBR coho	RD-IR ort N=3,780)	Severe (COM	Naïve ET ⁸¹)	Moderate to Severe (PRESERVE)	
Variable	Mean	SD	Range	Mean	SD	Mean	SD
HAQ	2.09	0.55	0.00 - 3.00	1.70	0.70	1.10	0.6
DAS28	6.73	0.85	5.11 - 9.20	6.50	1.00	4.40	0.40
Weight (kg)	73	17	33 – 178	73^{\dagger}	17	72 [‡]	16
Age (years)	56.1	12.0	18.0 - 84.3	51.4	0.4	48.4	11.9
Female (%)	77			73		83	
DD (years)	14	9	0-64	1	0	7	7

 Table 70:
 The baseline characteristics of patients sampled in the Pfizer models.

Abbreviations: DAS, disease activity score-28 joints; DD, disease duration; DMARD-IR, disease modifying antirheumatic drug inadequate response; HAQ, Health Assessment Questionnaire; SD, standard deviation; \dagger From ETN BSRBR cohort with DAS \geq 5.1; \ddagger From ETN BSRBR cohort with DAS \leq 5.1.

6.2.7.6 Roche

Roche report that the modelled patient population is consistent with both the drug license and populations from TCZ and comparator Phase III trials. The population comprises moderate to severe RA patients who have had an inadequate response to one or cDMARDs, and who are intolerant or contraindicated to MTX.

All baseline characteristics in the model are taken from the Phase IV ADACTA study with the exception of the average patient weight. The average patient weight in the ADACTA study was 77kg, significantly higher than previous estimates for the UK population.

Therefore Roche used the 70kg weight previously accepted in NICE technology appraisals. (TA 130, 195, and 247). The Assessment Group comment that the assumed lower weight assumed by Roche is likely to underestimate the costs of tocilizumab as a person weighing 70kg requires a 400mg and 200mg vial, whereas a person weighing 77kg would require an additional 80mg vial.

A summary of the patient characteristic data assumed by Roche is provided in Table 71. No comment is made on the correlation of the parameters.

Table 71: The patient characteristic data assumed by Roche

Parameter	Value	Source
Gender: Female	79%	ADACTA ⁵⁸
Mean age	53.8	ADACTA ⁵⁸
Starting HAQ score	1.65	ADACTA ⁵⁸
Mean weight (kg)*	70	Previous NICE Appraisals ^{22,24,26,199}

6.2.7.7 UCB

UCB simulated patients with RA and a moderate or severe disease activity that have had an inadequate response to MTX. The cost-effectiveness of certolizumab pegol vs. alternative treatments was evaluated separately for the moderate and severe disease activity populations.

Baseline characteristics of the severe RA population and the moderate to severe RA population were based on mean estimates from the certolizumab pegol trials, which were assumed to reflect the population eligible for treatment with certolizumab pegol in clinical practice (Table 72). Baseline characteristics for the severe disease activity population were based on the pooled estimates from RAPID 1¹³⁹, RAPID 2¹⁴⁰ and FAST4WARD²¹³studies (including both the certolizumab pegol and placebo treatment arms). Baseline characteristics for the moderate disease activity population were based on estimates from the CERTAIN⁷⁹ study (including both the CZP and PBO treatment arms).

Some data were presented as academic-in-confidence. No comment is made on the correlation between parameters.

<u>Characteristic</u>	Severe disease activity population	Moderate disease activity population	
Age (years), mean	52.2	53.7	
Gender (% female)	82.7%	80.4%	
HAQ score, mean	1.62		
Utility (EQ-5D score)*, mean	0.38		
Number of previous	1 34	1 1 2	
DMARDs, mean	1.34	1.12	
Disease duration (years), mean	6.54	4.61	
Antibody status (% negative)	92.9%	100%	

 Table 72:
 The baseline characteristics of the modelled population assumed by UCB

*Utility weight estimates were based on the pooled data from the RAPID 1 and RAPID 2 trials for the severe RA population, and on the CERTAIN⁷⁹ study for the moderate RA population

6.2.8 The assumed costs of the interventions

This section details the costs assumed by each manufacturer; administration and monitoring costs are included in a separate section. In summary the costs seem appropriate apart from the following points: AbbVie do not consider current patient access schemes; BMS and Roche assume that all patients weigh 70kg which is likely to underestimate the costs for weight-based dosages (bar golimumab); neither Pfizer nor UCB include patient access schemes for tocilizumab or abatacept as these are commercial-in-confidence; MSD do not include the patient access scheme for abatacept.

All manufacturers assumed vial wastage for abatacept i.v., tocilizumab and infliximab; although Roche discuss that where the appropriate dose is only marginally above that produced by a combination of vials a clinician may not opt to open a new vial.

Both Roche and UCB assume that it is possible that treatment be discontinued after 3 rather than 6 months through lack of efficacy.

6.2.8.1 AbbVie

The cost of all drugs used in the AbbVie analyses was calculated based on the recommended dosages and vial prices given in the Monthly Index of Medical Specialties 2013. Importantly the impact to the NHS of Patient Access Schemes (PAS) on the cost of certain drugs was not taken into account in the analysis, with AbbVie citing the NICE Methods Guide²¹⁴ states that PAS are valid until NICE technology appraisal review, at which point manufacturers will need to agree a new PAS (even if it's the same) in the current appraisal. As such, it is not known if all the current PAS in existence will be agreed again by PASLU and this is why they have not been included in the analysis. No sensitivity analyses were conducted using existing patient access schemes. This is unfavourable to: certolizumab pegol, where the initial 10 doses are provided free; abatacept and tocilizumab, where academic-in-confidence discounts are provided; and golimumab who provide the 100-mg dose of golimumab at the same price as the 50-mg dose.

AbbVie provide detailed breakdown of all conventional DMARDs and biologic treatments and do take patient weight into consideration. Abatacept s.c. is not considered. The cost per dose for biologic treatments assumed by AbbVie is reproduced in Table 73.

Treatment	Dose regimen	Cost per dose
ADA	40 mg; every other week	£352.14
ETN	50 mg; every week	£178.75
IFX	3 mg/kg: 0, 2, 6 then every 8 weeks	£1,133.28
ABT	500 mg below 60 kg, 750 mg between 60-100	
	kg, 1000 mg above 100 kg; 0, 2 and 4 weeks	£856.27
	then every 4 weeks thereafter	
RTX	1000 mg followed by 1000 mg 2 weeks later	f1 746 30
	repeated every 9 months	~1,7 10.50
GOL	50 mg below 100 kg, 100 mg above 100 kg, per	£832.09
	month	2002109
TCZ	8 mg/kg every four weeks	£782.67
CTZ	400 mg, repeated 2 weeks and 4 weeks after	f715.00
	initial injection	~
CTZ	200 mg repeated every 2 weeks thereafter	£357.50

Table 73:The costs of bDMARDs assumed by AbbVie

For interventions that are weight dependent AbbVie examined the weight distribution of patients enrolled in the BSRBR from the adalimumab cohort (N=4,364 patients) to determine the most likely average annual drug acquisition cost of tocilizumab, abatacept, infliximab and golimumab in the UK.

Tables 74 to 77 show the calculations undertaken by AbbVie to establish average cost per dose

Possible combinations of tocilizumab vials	Total dose (mg)	Lower weight (kg)	Upper weight (kg)	Cost per dose	% patients in BSRBR	Annual cost
80+80+80	240	-	30	£307.20	0.05%	£3,993.60
200+80	280	31	35	£358.40	0.18%	£4,659.20
200+80+80	360	36	45	£460.80	1.67%	£5,990.40
400	400	46	50	£512.00	3.94%	£6,656.00
400+80	480	51	60	£614.40	18.42%	£7,987.20
400+80+80	560	61	70	£716.80	23.97%	£9,318.40
400+200	600	71	75	£768.00	11.07%	£9,984.00
400+200+80	680	76	85	£870.40	17.42%	£11,315.20
400+200+80+80	760	86	95	£972.80	11.73%	£12,646.40
400+400	800	96	-	£1,024.00	11.55%	£13,312.00
Average cost per dose £782.67 Average cost per year (13						
doses)						£10,174.65

Table 74:The calculation undertaken by AbbVie to establish the average expected cost per
tocilizumab treatment

Number of vials	Lower weight (kg)	Upper weight (kg)	Cost per dose	% patients in BSRBR	Annual cost (1 st year)	Annual cost (2 nd year and beyond)
2	-	60	£604.80	24.27%	£8,467.20	£7,862.40
3	61	100	£907.20	68.31%	£12,700.80	£11,793.60
4	36	45	£1,209.60	7.42%	£16,934.40	£15,724.80
Average cost per dose Average cost per year (14 doses in the first year, 13 doses for year 2 and			£856.27			
beyond)					£11,987.76	£11,131.49

Table 75:The calculation undertaken by AbbVie to establish the average expected cost per
abatacept treatment

Table 76:The calculation undertaken by AbbVie to establish the average expected cost per
infliximab treatment

Number of vials	Lower weight (kg)	Upper weight (kg)	Cost per dose	% patients in BSRBR	Annual cost (1 st year)	Annual cost (2 nd year and beyond)
1	-	33	£419.62	0.14%	£3,356.96	£2,727.53
2	34	66	£839.24	38.13%	£6,713.92	£5,455.06
3	67	99	£1,258.86	54.31%	£10,070.88	£8,182.59
4	100	133	£1,678.48	6.58%	£13,427.84	£10,910.12
5	134	166	£2,098.10	0.64%	£16,784.80	£13,637.65
6	167	-	£2,517.72	0.21%	£20,141.76	£16,365.18
Average cost per dose Average cost per year (8 doses in the first year, 6.5 doses on average for year 2			£1,133.28			
and beyond)					£9,066.25	£7,366.33

Number of pens	Lower weight (kg)	Upper weight (kg)	Cost per dose	% patients in BSRBR	Annual cost
1	-	100	£774.58	92.58%	£9,294.96
2	101	-	£1,549.16	7.42%	£18,589.92
Average cost per dose Average cost per year (12 doses)			£832.09		£11,649.23

Table 77:The calculation undertaken by AbbVie to establish the average expected cost per
golimumab treatment

6.2.8.2 BMS

BMS estimate the yearly costs of each intervention and additional costs incurred in the first year due to loading doses. BMS assume that all patients weight 70kg, the lack of uncertainty in this value will likely favour those interventions that are weight based, and in particular tocilizumab. BMS consider PAS in place at the start of the appraisal, two of which, for tocilizumab and for both abatacept formulations are commercial-in-confidence. The bDMARDs costs assumed by BMS are replicated in Table 78.

Table 78:The intervention costs assumed by BMS

Treatment	Annual cost	Year 1 Start-up cost
ABT i.v		
ABT s.c.		
ADA	£9,187	£0
ETN	£9,327	£0
IFX	£8,211	£1,259
TCZ		
GOL	£9,156	£0
CTZ	£9,327	-£2,503*
RTX	£4,817	£0
LEF	£747	£0
Injectable GLD	£135	£225
CYC A	£1,685	£0
AZA	£98	£0
MTX	£18	£0

* The year 1 additional cost for certolizumab pegol is negative due to the free doses in the PAS. However, patients receive certolizumab pegol for a minimum of 6 months, so the cost is always positive. IV: intravenous; SC: subcutaneous.

6.2.8.3 MSD

MSD have distinguished between the costs in the first 6 months, where loading doses may be needed, and costs in following six month cycles. These are replicated in Table 79. The PAS for certolizumab pegol and golimumab have been applied, but neither the tocilizumab nor the abatacept PASs (which are commercial-in-confidence) is used.

	Cost per dose	No. doses per first 6 months	No. doses post 6 months	Treatment cost first 6 months	Treatment cost post 6
					months
GOL	£762.97	6	6	£4,577.82	£4,577.82
Adalimumab	£352.14	13	13	£4,577.82	£4,577.82
IFX ^A	£1,133.20	5	3.25	£5,666.00	£3,682.90
ETN	£89.38	52	52	£4,647.76	£4,647.76
TCZ ^B	£698.32	7	6.5	£4,888.24	£4,539.08
CTZ^{C}	£357.50	6	13	£2,145.00	£4,647.50
LEF	£1.88	205	178	£385.40	£334.64
GLD	£13.48	26	26	£350.48	£350.48
AZA	£0.07	547.5	547.5	£38.33	£38.33
ciclosporin	£2.14	365	365	£781.10	£781.10
MTX	£0.05	78	78	£3.90	£3.90
ABT IV ^D	£864.92	8	6.5	£6,919.35	£5,621.97
ABT SC ^E	£302.40	26	26	£8,727.32	£7,862.40
RTX	£1,746.30	2	1.3	£3,492.60	£2,270.19

Table 79:	The intervention c	osts assumed by MSD

(A) average 2.70 vials with wastage; (B) average cost per infusion \pounds 887.32 with wastage; (C) includes PAS; (D) includes average 2.86 vials with wastage; (E) includes IV loading dose

The costs for weight based doses were calculated based on the weight distributions of 2,775 infliximab patients within the BSRBR database to estimate the average number of *full* vials that are used per patient (or in the case of tocilizumab the weighted average cost per patient). These data are shown in Table 80. The Assessment Group note that the tocilizumab costs are inaccurate, as a patient weighing between 46 and 50kg would be most inexpensively treated with a 400mg vial alone, an option not considered.

	0-33 kg	34-59 kg	60-66 kg	67-100 kg	101-133 kg	>134 kg (Max weight 174)	Total
Number in each IFX weight group	2	574	465	1,546	176	12	2,775
Percentage in each group	0.07%	20.68%	16.76%	55.71%	6.34%	0.43%	100%
IFX vials per group (3 mg/kg)	1	2	2	3	4	6	-
ABT IV vials per group	2	2	3	3	4	4	-
				•			
TCZ vials per group (8 mg/kg)	200 mg + 80mg	400 mg + 80 mg	400 mg + 80 mg + 80mg	400 mg + 400 mg	400 mg + 400 mg	400 mg + 400 mg	-
Cost per patient per weight group	£358.40	£614.40	£716.80	£1,024.00	£1,024.00	£1,024.00	
Weighted average infliximab vials per infusion: 2.70							
Weighted avera	age abatacep	ot i.v. vials p	er infusion: 2	2.86			
Weighted average tocilizumab cost per infusion: £887.32							

 Table 80:
 The number of vials assumed by MSD for weight based interventions

As an example, the calculation for the weighted average vials of infliximab is as follows:

$$(0.07\% * 1) + (20.68\% * 2) + (16.76\% * 2) + (55.71\% * 3) + (6.34\% * 4) + (0.43\% * 6)$$

= 2.70

6.2.8.4 Pfizer

Drug costs in the Pfizer submission were taken from publicly available sources including patient access schemes for certolizumab pegol and golimumab. Patient access schemes which are not in the public domain, such as those for tocilizumab, abatacept i.v. and abatacept s.c. were not included.

For therapies administered based on the individual's weight, costs were calculated for each patient individually, and vial-wastage was permitted.

Palliative care was assumed to consist of a combination of MTX, leflunomide and ciclosporin. This was assumed to represent a proxy for the cost of treatment in this line of therapy given the heterogeneous nature of treatments that are likely to be given at this stage, in order, to try and control disease progression. Costs at this line of therapy are likely to be extremely heterogeneous and no accurate cost estimate was available, however given that patients reach palliative care after several lines of therapy, potentially taking many years, the effect of discounting will be to make this assumption less influential.

Where applicable (in for example the severe DMARD-IR (monotherapy) population), the cost of the generic 'cDMARD' therapy was assumed to have the cost of MTX. Again, the cost was intended to act as a proxy for a generic therapy of this class in the absence of a definitive patient pathway. This is likely to be a conservative estimation given that MTX is the one of the cheapest cDMARDs available. A summary of the drug costs with dosing assumptions is provided in Table 81.

Treatment	Dosing assumptions	Unit cost¶	Unit dose (mg)
ABT i.v.	Body-weight <60kg, 500mg, 50–100kg, 750mg, > 100kg, 100mg repeated 2 weeks and 4 weeks after initial infusion, then every 4 weeks (291)	£302.40	250
ADA	40 mg every other wk (291)	£352.14	40
CZP	400 mg 0, 2 and 4 weeks then 200 mg every 2 weeks (PAS 10 for free) (291)	£357.50	200
CIC	Max of 4 mg/kg daily in 2 divided doses (291)	£51.50	3000
ETN	25 mg BIW (291)	£89.38	25
ABT s.c.	Loading dose by IV initially, then first 125 mg s.c. injection given within a day, followed by 125 mg s.c. OW.(294, 295)	£302.40††	125
GOL	50 mg every 4 weeks (291)	£762.97	50
INF	3 mg/kg wk 0, 2 and 6 thereafter every 8 weeks (294)	£419.62	100
LEF	Assumed 20mg OD	£61.36	600
MTX	15 mg OW (291)	£48.44	1000
РС	Assumed to be additive combination of MTX, LEF, CIC (oral)	NA	NA
RTX	1000 mg repeated two weeks after initial infusion=1 course; each course 9 months apart (291)	£873.15	500
SUL	2000 mg/day (291)	£14.83	56000
TOC	8mg/kg every 4 weeks (291)	£102.40	80
Comb cDMARD	Assumed to be additive combination of MTX and SUL	NA	NA

Table 81:The intervention costs assumed by Pfizer

Abbreviations: ABT, abatacept (iv); ABS, abatacept subcutaneous; BIW, twice weekly; cDMARD, conventional disease modifying antirheumatic drug; CIC, ciclosporin; comb cDMARD, combination therapy with cDMARDs; ETN, etanercept; GOL, golimumab; INF, infliximab; iv, intravenous; LEF, leflunomide; max, maximum; MTX, MTX; OD, once daily; OW, once weekly; PAS, patient-access scheme; PC, palliative care; RTX, rituximab; s.c., subcutaneous; SUL, sulfasalazine; TOC, tocilizumab. †Uplifted from costs presented by Roche in TA198 (111) to 2011/12 prices using Curtis, 2012 (293);‡ One hour community nurse time from Curtis, 2012 (293);§ 2 * day case cost for HD23C Inflammatory Spine, Joint or Connective Tissue Disorders, without CC (296); ¶ BNF 64 (291);†† BNF January 2013 (295); ‡‡model includes cost of iv loading dose – assumed to be the same as first administration of ABT and applied at the start of the strategy; §§Because the dose for RTX is 1000 mg and unit size is 500 mg, there was no vial wastage required.

6.2.8.5 Roche

The Roche submission only considered the use of tocilizumab in patients who are intolerant or contraindicated to MTX. It was assumed that all patients weigh 70kg although this was altered to 65kg and 75kg in sensitivity analyses. Table 82 presents the costs assumed by Roche, although it is noted that Table 103 does not include the patient access scheme for tocilizumab that is used within the mathematical model. It is commented that it has been assumed that non-responders would be removed from treatment at 3 months which may underestimate the acquisition costs of treatments.

					Cost per
			Cost for first 6 months		subsequent
					cycle
			Non-		
Treatment	Dose regimen*	Unit cost**	responders	Responders	Responders
ADA	40mg every 2	£352.14 per 40mg vial	£2,289	£4,578	£4,578
	weeks				
CTZ	200mg every 2	£357.50 per 200mg	£0	£2,324	£4,646
	weeks	syringe			
ETA	50mg every week	£178.75 per 50mg	£2,324	£4,648	£4,648
		syringe			
TCZ	8mg/kg every 4	£1.28 per mg	£2,330	£4,659	£4,659
	weeks				

Table 82:The intervention costs assumed by Roche

*Source for dose regimen: [The Electronic Medicines Compendium, 2011]

**Source for unit cost: [British National Formulary 2011]

6.2.8.6 UCB

The costs of drug acquisition were based on the recommended dosing schedules for treatment multiplied by the unit cost of treatment as reported in the British National Formulary 64 (2012^{30}) . The PASs for certolizumab pegol and golimumab were included but the commercial-in-confidence PASs for abatacept and tocilizumab were not incorporated

For IV drugs that are administered based on body weight (abatacept, infliximab, tocilizumab, azathioprine and cyclosporine), the weight distribution of patients enrolled to either the RAPID 1, RAPID 2 and FAST4WARD trials (severe disease activity population) or the CERTAIN⁷⁹ study (moderate disease activity population) was applied to estimate the number of vials used.

For drugs that require loading doses or irregular administration, various assumptions were made to estimate the dose received by patients during the first and subsequent 6 months of treatment:

- For abatacept, it was assumed that during the first 6 months, treatment was administered at weeks 0, 2, 4, 8, 12, 16, 20 and 24, equating to 8 administrations. During the subsequent 6 months, it was assumed that administrations occurred at a frequency of every 4 weeks, equating to 6.5 administrations over a 26-week cycle.
- For infliximab, similar assumptions were made when estimating dosing, where treatment was administered at weeks 0, 2, 6, 14, and 22 during the first 6 months, and an average of 3.25 administrations during any subsequent 6-month period.
- For CZP, treatment was administered at weeks 0, 2 and 4 during the first month of treatment, with further doses administered every two weeks on a continuous basis until cessation.

A summary of the acquisition costs assumed by UCB is provided in Table 83

	First 6 months	Every 6 months thereafter
Treatment	Acquisition costs	Acquisition costs
Combination treatments with MTX (severe		
disease activity population)		
CTZ + MTX	£2,163	£4,666
ABT i.v. + MTX	£7,005	£5,695
IFX + MTX	£5,648	£3,677
TCZ + MTX	£6,475	£6,475
Adalimumab + MTX	£4,596	£4,596
ETN + MTX	£4,666	£4,666
GOL + MTX	£4,596	£4,596
Monotherapies (severe disease activity		
population)		
CTZ	£2,145	£4,648
TCZ	£6,457	£6,457
Adalimumab	£4,578	£4,578
ETN	£4,648	£4,648
Combination treatments (moderate disease		
activity population)		
CTZ + MTX	£2,163	£4,666
CTZ + cDMARDs	£2,255	£4,758
PBO + MTX	£18	£18
PBO + cDMARDs	£111	£111

Table 83:The intervention costs assumed by UCB

6.2.9 Administration and monitoring costs

This section details the administration and monitoring costs assumed within the manufacturers' submission. Many submissions provide detailed descriptions with multiple tables to support the monitoring costs used. These have been abridged within this summary for brevity. In summary the monitoring costs are broadly comparable, and are unlikely to have a big impact on the conclusions of the cost-effectiveness analyses. The costs of infusion were typically between £100 and £200 per infusion in the submissions, although AbbVie use a value of £501 per infusion. Some submissions have costs associated with subcutaneous injections.

It is commented that in a recent NICE review (TA247²¹⁵) the Appraisal Committee agreed that the value of \pounds 154 per infusion was 'acceptable'. No comment was made on the manufacturer's assumption that 10% of subcutaneous injections would require administration by a district nurse.

6.2.9.1 AbbVie

Administration costs of £501.48 were assumed in the AbbVie submission for each intravenous treatment, using data from NHS Reference Costs²¹⁶ and weighting the unit cost per day case admission (91%) and outpatient admission (9%) by activity levels. This assumption is based on the approach used in the NICE guidance for the use of infliximab for treatment of adults with psoriasis.²¹⁷ An administration cost of 416.12 corresponding to the cost of an outpatient visit was tested in the scenario analysis.²¹⁸

Monitoring requirements have been modelled based on UK practice based on share care guidelines and monitoring protocols for rheumatology patients in Bradford teaching hospitals²¹⁸ as detailed in Table 84 and validated by clinical experts prior to the previous NICE submission. Monitoring costs were not applied for abatacept, infliximab, rituximab or tocilizumab to avoid double-counting as 91% of patients are assumed to be admitted as a day case at each administration and the laboratory tests are included in the tariff. The monitoring requirements are however presented in Table 85 for completeness.

In the model, costs of monitoring/lab tests required at baseline are applied once the patients start the treatment. Additionally, the scheduled monitoring required in 12 months are applied as a daily cost during the treatment duration. Unit costs for monitoring were taken from published sources and are displayed in Table 83.

Monitoring costs at baseline and for subsequent 12 months are presented in Table 105 and Table 106, respectively.

AbbVie report that "As per the guidelines it was assumed that any monitoring or lab tests in the first three months would be done by a specialist nurse and a shared care arrangement made with general practitioners (GPs) thereafter with routine clinic follow-up on a regular basis. We assumed that a health care visit was associated with each sequence of laboratory tests. Monitoring subsequently to the first three months was assumed to occur at a primary care setting in 60%–70% of cases as advised by experts, with the remainder of monitoring being carried out at a hospital. To calculate the distribution of visits the total number of visits beyond the first three months was multiplied by 65% and rounded to the closest integer to obtain the number of GP visits. For annual monitoring beyond six months, where the number of health care visits was calculated to be below four, equal distribution between primary and secondary care settings was used to account for regular clinic attendances.

Protocols were not available for golimumab, thus, the same monitoring pattern as for adalimumab was assumed. For combination therapies the maximum requirement for each test from the respective therapies was assumed.

"Monitoring costs are set to zero for rescue therapy, apart from an outpatient visit cost every two months as advised by clinical experts. These experts further advised that patients on rescue therapy would be subject to one inpatient admission of approximately three weeks annually. This was not included as additional resource use to avoid double-counting with HAQ-based inpatient and surgery costs. Rescue therapy refers to medical treatment once all active therapies, including traditional DMARDs and biologic treatments, have failed; and is assumed to consist of MTX."

Test	Unit cost	MTX/ MTX+HC Q+SSZ	SSZ/LEF	СҮС	HCQ	ADA/ETN/ CTZ/GOL Mono or Combination with MTX	Rescu e
CXR	£29.33	1	0	0	0	1	0
FBC	£3.39	8	8	9	1	9	0
U& E	£6.36	8	8	9	1	9	0
LFT	£8.91	8	8	9	1	9	0
CRP	£8.49	8	8	9	1	8	0
Urinalysis	£7.84	0	0	1	0	1	0
Mantoux test	£16.34	0	0	0	0	1	0
Hepatitis serology	£7.84	0	0	0	0	1	0
ANA	£8.49	0	0	0	0	3	0
DNA	£8.49	0	0	0	0	1	0
Uric acid	£1.27	0	0	3	0	0	0
Lipids	£3.82	0	0	3	0	0	0
GP visit	£36.36	3	3	3	0	3	0
Outpatient visit	£132.7 5	5	5	6	1	6	3
Total		1019.36	990.03	1173.0 4	159.9	1236.75	398.2 5

Table 84:	Monitoring costs assumed by AbbVie in the first six months
-----------	--

ADA = adalimumab; ANA = antinuclear antibody; CRP = C-reactive protein; CTZ = certolizumab; CXR = chest x-ray; CYC = ciclosporin; DNA = deoxyribonucleic acid; ETN = etanercept; FBC = full blood count; GOL = golimumab; GP = general practitioner; HCQ = hydroxychloroquine; LEF = leflunomide; LFT = liver function test; MTX = MTX; SSZ = sulfasalazine; U&E = urea & electrolytes

Source: Bradford teaching hospitals July 2010²¹⁸, NHS reference costs 2010-2011,²¹⁶ NICE (CG33) Tuberculosis costing template,²¹⁹ PSSRU 2011.²²⁰

Test	Unit cost	MTX/LEF, SSZ/MTX+HCQ+SSZ	ADA/ETN/CTZ/ GOL/monotherapy or combination	CYC	НCQ	Rescue
CXR	£29.33	0	0	0	0	0
FBC	£3.39	4	4	4	2	0
U& E	£6.36	4	4	4	2	0
LFT	£8.91	4	4	4	2	0
CRP	£8.49	4	4	4	2	0
ANA	£8.49	0	4	0	0	0
Uric acid	£1.27	0	0	4	0	0
Lipids	£3.82	0	0	4	0	0
GP visit	£36.36	2	2	2	1	0
Outpatient visit	£132.75	2	2	2	1	6
Total		446.82	480.78	467.18	223.41	796.5

 Table 85:
 Annual monitoring costs assumed by AbbVie after the first six months

ADA = adalimumab; ANA = antinuclear antibody; CRP = C-reactive protein; CTZ = certolizumab; CXR = chest x-ray;

CYC = ciclosporin; ETN = etanercept; FBC = full blood count; GOL = golimumab; GP = general practitioner;

HCQ = hydroxychloroquine; LEF = leflunomide; LFT = liver function test; MTX = MTX; SSZ = sulfasalazine;

U&E = urea & electrolytes

Source: Bradford teaching hospitals July 2010,²¹⁸ NICE (CG33) Tuberculosis costing template,²¹⁹ PSSRU 2011²²⁰

AbbVie acknowledge that monitoring protocols from the British Society of Rheumatology (BSR) would be more representative to the population modelled, rather than regional guidelines detailed in the Bradford Primary Care Trust protocols. As monitoring patterns from the BSR²²¹ are not detailed for biologic therapies, the Bradford protocols were used in the base case as all relevant comparators were included, thus, allowing for consistent costing of monitoring patterns without the requirement of further assumptions. AbbVie demonstrate the total costs of monitoring for DMARDs between the two sources were reasonably comparable with slightly higher estimates obtained using Bradford protocols. Alternative monitoring patterns from the BSR, assuming the same monitoring pattern as that of MTX for biologic arms were tested in scenario analysis. In addition the sensitivity of monitoring costs was tested by increasing the total monitoring costs for each comparator by 50%.

6.2.9.2 BMS

Infliximab, abatacept i.v., and tocilizumab are administered as infusions, with subcutaneous treatments assumed to require visits to a nurse specialist in year 1.²²² Treatment with injectable gold requires a visit to a general practitioner (GP) for each dose. The annual and year 1 administration costs are shown in Table 107. BMS assume that cDMARDs and tocilizumab require tests before and during treatment. The annual monitoring costs assumed by BMS are shown in Table 86.

	Administration Costs		Monitor	ing Costs
Treatment	Annual cost	Year 1	Annual cost	Year 1
		additional		additional
		cost		cost
IV ABT	£1,777	£136	£0	£0
SC ABT	£0	£283	£0	£0
ADA	£0	£147	£0	£0
ETN	£0	£147	£0	£0
IFX	£888	£136	£0	£0
TCZ	£1,777	£0	£557	£554
GOL	£0	£147	£0	£0
CTZ	£0	£147	£0	£0
RTX	£188	£0	£0	£0
LEF	£0	£0	£854	£1,263
Injectable GLD	£516	£860	£1,710	£2,849
CYC A	£0	£0	£1,671	£1,127
AZA	£0	£0	£1,709	£854
MTX	£0	£0	£1,709	£570
Palliative Care			£545	£0

Table 86:	The administration costs and monitoring costs assumed by BMS
-----------	--

IV: intravenous; SC: subcutaneous.

BMS present a combined intervention acquisition, administration and monitoring costs. All of the bDMARDs are co-prescribed with MTX, so all include the annual costs for MTX treatment. The additional year 1 costs for MTX are included only once in the model, as it is assumed that patients move straight onto the next biologic treatment and so do not cease and re-start treatment with MTX. These values are replicated in Table 87.

Treatment	Annual cost	Start-up cost
IV ABT		
SC ABT		
ADA	£10,913.92	£147.00
ETN	£11,053.76	£147.00
IFX	£10,825.87	£1,395.06
TCZ		
GOL	£10,882.48	£147.00
CTZ	£11,053.76	-£2,355.50*
RTX	£6,732.08	£0.00
LEF	£1,601.34	£1,408.44
Injectable GLD	£2,360.40	£4,079.56
CYC A	£3,356.35	£1,275.33
AZA	£1,806.55	£999.75
Palliative care	£544.80	£0.00
MTX		£733.48

 Table 87:
 Summarised total and annual costs assumed by BMS

* The year 1 additional cost for certolizumab pegol is negative due to drug costs (the free doses in the PAS). However, patients receive certolizumab pegol for a minimum of 6 months, so the cost is always positive. All costs include cost of MTX. IV: intravenous; SC: subcutaneous.

6.2.9.3 MSD

MSD note that although many of the $TNF\alpha$ inhibitors are administered at home, patients are often initially taught how to administer treatment within a hospital. This is calculated as a one-off administration cost.

MSD report that the current clinical management of this condition requires patients to have a regular contact with the specialist rheumatology centres in the UK. This was estimated in consultation with two expert clinicians in the UK. Initial resource use estimates were made based on the assumptions made in the BRAM. These were reviewed and validated or changed by the clinical experts. Recent guidelines from the American College of Rheumatology and the British Society for Rheumatology were also reviewed for consistency with our assumptions.

In order to determine the total treatment cost in the model, routine monitoring costs of patients is aggregated. In the UK patient monitoring includes visits to a rheumatologist after 6 months then every 12 months, general practitioner visits every 6 months, and a specialist nurse visit every 6 months.

Resource use costs for the UK were sourced from the NHS reference costs (2010-2011), and the Personal Social Services Research Unit (2011). It is common in the UK for patients to regularly visit a specialist rheumatology nurse more frequently than their rheumatologist. Table 88 present the unit costs assumed by MSD.

Healthcare resource	Unit cost (£)	Source
Rheumatologist	132.07	NHS reference cost 2010-2011 (Consultant Led: Follow
		up Attendance Non-Admitted Face to Face 410)
General practitioner	53.00	PSSRU (2011) p.149
Specialist nurse	50.00	PSSRU (2011) p.144
Nurse practitioner	42.00	PSSRU (2011) p.146
Full blood count	3.36	NHS reference cost 2010-2011 (NHS Trusts Direct
		Access: Pathology Services DAP823)
Erythrocyte	1.26	NHS reference cost 2010-2011 (NHS Trusts Direct
sedimentation rate		Access: Pathology Services DAP841)
Biochemistry profile	3.36	NHS reference cost 2010-2011 (NHS Trusts Direct
		Access: Pathology Services DAP823)
CRP	3.36	NHS reference cost 2010-2011 (NHS Trusts Direct
		Access: Pathology Services DAP823)
TB test	1.26	NHS reference cost 2010-2011 (NHS Trusts Direct
		Access: Pathology Services DAP841)
Hep B and Hep C	3.36	NHS reference cost 2010-2011 (NHS Trusts Direct
		Access: Pathology Services DAP823)
Urinalysis	1.26	NHS reference cost 2010-2011 (NHS Trusts Direct
		Access: Pathology Services DAP841)
Chest X-ray	29.04	NHS reference cost 2010-2011 (NHS Trusts Outpatient
		DAPF)

Table 88:The unit costs of monitoring assumed by MSD

For intravenous drugs (infliximab, tocilizumab, and abatacept i.v.) administration costs are higher and incurred at every administration of treatment. In the UK the cost of infusion is £50 with an additional £59 administration cost. The cost of infusion is assumed equivalent to a visit to a specialist nurse plus an hourly charge for the care of the patient whilst they are on the ward. MSD assumed that infusion costs can only be charged per whole hour.

In order to account for the difference in cost between initiation of treatment and maintenance treatment, the cost of the first cycle of treatment is aggregated separately to the cost of subsequent cycles of treatment. Table 89 reports the cost of administration treatment included in the model. As this was combined with intervention acquisition costs these have been included for completeness.
	Cost per	No. doses	No.	Treatment	Treatment	Cost per	Total cost	Total cost
	dose	per first 6	doses	cost first 6	cost pot 6	administration	first 6	post 6
		months	post 6	months	months	first 6 months	months	months
			months					
GOL	£762.97	6	6	£4,577.82	£4,577.82	£59.00	£4,636.82	£4,577.82
ADA	£352.14	13	13	£4,577.82	£4,577.82	£59.00	£4,636.82	£4,577.82
IFX ^A	£1,133.20	5	3.25	£5,666.00	£3,682.90	£109.00	£6,211.00	£4,037.15
ETN	£89.38	52	52	£4,647.76	£4,647.76	£59.00	£4,706.76	£4,647.76
TCZ ^B	£698.32	7	6.5	£4,888.24	£4,539.08	£109.00	£5,651.24	£5,247.58
CTZ ^C	£357.50	6	13	£2,145.00	£4,647.50	£59.00	£2,204.00	£4,647.50
LEF	£1.88	205	178	£385.40	£334.64	£0.00	£385.40	£334.64
GLD	£13.48	26	26	£350.48	£350.48	£0.00	£350.48	£350.48
AZA	£0.07	547.5	547.5	£38.33	£38.33	£0.00	£38.33	£38.33
CYC	£2.14	365	365	£781.10	£781.10	£0.00	£781.10	£781.10
MTX	£0.05	78	78	£3.90	£3.90	£0.00	£3.90	£3.90
ABT IV ^D	£864.92	8	6.5	£6,919.35	£5,621.97	£109.00	£7,791.35	£6,330.47
ABT SC ^E	£302.40	26	26	£8,727.32	£7,862.40	£59.00	£8,895.32	£7,862.40
RTX	£1,746.30	2	1.3	£3,492.60	£2,270.19	£109.00	£3,710.60	£2,411.89

Table 89: The assumed administration, monitoring and drug acquisition costs assumed by MSD

(A) average 2.70 vials with wastage; (B) average cost per infusion £887.32 with wastage; (C) includes PAS; (D) includes PAS and average 2.86 vials with wastage; (E) includes IV loading dose and associated administration cost

6.2.9.4 Pfizer

Pfizer assessed the costs of pre-treatment monitoring were included in the model as per previous evidence review group models and recent manufacturer's submission to NICE. These were reported to be then validated at an advisory board. In addition to the costs of tests, an outpatient rheumatology contact (service code 410) was assumed, at a cost of $\pounds 137^{223}$ Table 90 provides the unit costs of pre-treatment test whilst Table 91 summarises the estimated total cost per intervention. Monitoring costs were assumed to be included in the general costs per HAQ band and were thus not included.

The costs of infusion were uplifted by Pfizer from costs presented by Roche in TA198²²⁴ to 2011/12 prices using Curtis, 2012.²²⁵

Table 90: Unit costs of pre-treatment tests assumed by Pfizer

Test	Code	Cost	Source
Full blood count	FBC	£3.36	Department of Health. National
			Schedule of Reference Costs Year:
			2010-11 - NHS Trusts and PCTs
			combined. 2012. (Direct Access:
			Pathology Services, Haematology,
			DAP823)(296)
ESR	ESR	£3.36	Department of Health. National
			Schedule of Reference Costs Year:
			2010-11 - NHS Trusts and PCTs
			combined. 2012. (Direct Access:
			Pathology Services, Haematology,
			DAP823)(296)
Biochemical	BCP	£1.26	NHS Reference Costs 2011 (Direct
profile			Access: Pathology Services,
1			Haematology, DAP841)
Chest x-ray	CXR	£19.17	Malottki et al. 2011(7)
5			
			Uplifted to 2011/12 prices using Curtis
			2012, assuming reported above were
			2004/05 (293)
Urinalysis	URI	£1.26	Department of Health. National
5			Schedule of Reference Costs Year:
			2010-11 - NHS Trusts and PCTs
			combined. 2012. (Direct Access:
			Pathology Services, Haematology,
			DAP841)(296)
Hep B & Hep C	HBC	£6.72	2 x NHS Reference Costs 2011 (Direct
			Access: Pathology Services,
			Haematology, DAP823)
Lipid test	LIP	£3.36	Department of Health. National
•			Schedule of Reference Costs Year:
			2010-11 - NHS Trusts and PCTs
			combined. 2012. (Direct Access:
			Pathology Services, Haematology,
			DAP823)(296)
C-reactive protein	CRP	£3.36	Department of Health. National
•			Schedule of Reference Costs Year:
			2010-11 - NHS Trusts and PCTs
			combined. 2012. (Direct Access:
			Pathology Services, Haematology,
			DAP823)(296)
TB test	ТВ	£3.36	Department of Health. National
			Schedule of Reference Costs Year:
			2010-11 - NHS Trusts and PCTs
			combined. 2012. (Direct Access:
			Pathology Services, Haematology,
			DAP823)(296)

Treatment	Pre-treatment assumptions	Total cost
ABT, ABS†, ADA, CZP, ETN, GOL, IFX	FBC, ESR, BCP, CXR, CRP, TBT	£171
LEF	FBC, ESR, BCP, URI CRP	£150
PC	FBC, ESR, BCP, URI CRP	£168
MTX, combination cDMARD‡	FBC, ESR, BCP, CXR	£164
RTX	FBC, ESR, BCP, HBC, CXR, CRP, TBT	£178
SSZ	FBC, ESR, BCP	£145
TCZ	FBC, ESR, BCP, CXR, LIP, CRP, TBT	£174

Table 91: Pre-treatment costs per intervention assumed by Pfizer

Abbreviations: ABT, abatacept; ABS, abatacept subcutaneous; ADA, adalimumab; BCP, biochemical profile; cDMARD, conventional disease modifying antirheumatic drug; CRP, C-reactive protein; CXR, chest x-ray; CZP, certolizumab pegol; ETN, etanercept; FBC, full blood count; ESR, erythrocyte sedimentation rate; GOL, golimumab; HBC, Hep B&C; IFX, infliximab LEF, leflunomide; LIP, lipid test; MTX, MTX; PC, palliative care; RTX, rituximab; SSZL, sulfasalazine; TBT, TB test; TOC, tocilizumab; URI, urinalysis; †n Assumed to be the same as ABT in the absence of evidence; ‡ Assumed to be the same as MTX in the absence of evidence

The summary of acquisition costs, monitoring and administration costs provided by MSD is replicated in Table 92.

	Dosing		Unit	Administrat	Assume	
Treatmen t	assumption s	Unit cost¶	dose (mg)	First administration	Subsequent administratio n	vial wastage ?
ABT i.v.	Body-weight <60kg, 500mg, 50– 100kg, 750mg, > 100kg, 100mg repeated 2 weeks and 4 weeks after initial infusion, then every 4 weeks (291)	£302.40	250	£151.95†	£151.95†	YES
ADA	40 mg every other wk (291)	£352.14	40	£49.00‡	£0.00	NA
CTZ	400 mg 0, 2 and 4 weeks then 200 mg every 2 weeks (PAS 10 for free) (291)	£357.50	200	£49.00‡	£0.00	NA
СҮС	Max of 4 mg/kg daily in 2 divided doses (291)	£51.50	3000	£0.00	£0.00	NA
ETN	25 mg BIW (291)	£89.38	25	£49.00‡	£0.00	NA
ABS	Loading dose by IV initially, then first 125 mg sc injection given within a day, followed by 125 mg sc OW.(294, 295)	£302.40† †	125	£49.00 (of sc first administration)‡ ‡	£0.00	NA
GOL	50 mg every 4 weeks (291)	£762.97	50	£49.00‡	£0.00	NA
IFX	3 mg/kg wk 0, 2 and 6	£419.62	100	£151.95†	£151.95†	YES

Table 92:The assumed acquisition and administration costs assumed by Pfizer

	Desing		Unit	Administra	Assume	
Treatmen t	assumption s	Unit cost¶	dose (mg)	First administration	Subsequent administratio n	vial wastage ?
	thereafter every 8 weeks (294)					
LEF	Assumed 20mg OD	£61.36	600	£0.00	£0.00	NA
MTX	15 mg OW (291)	£48.44	1000	£0.00	£0.00	NA
PC	Assumed to be additive combination of MTX, LEF, CIC (oral)	NA	NA	£0.00	£0.00	NA
RTX	1000 mg repeated two weeks after initial infusion=1 course; each course 9 months apart (291)	£873.15	500	£441.00§	£441.00§	NA§§
SSZ	2000 mg/day (291)	£14.83	5600 0	£0.00	£0.00	NA
TCZ	8mg/kg every 4 weeks (291)	£102.40	80	£151.95†	£151.95†	YES
Comb cDMARD	Assumed to be additive combination of MTX and SUL	NA	NA	£0.00	£0.00	NA

Abbreviations: ABT, abatacept (iv); ABS, abatacept subcutaneous; BIW, twice weekly; cDMARD, conventional disease modifying antirheumatic drug; CTZ certolizumab pegol; CyC, cyclosporin; comb cDMARD, combination therapy with cDMARDs; ETN, etanercept; GOL, golimumab; INF, infliximab; iv, intravenous; LEF, leflunomide; max, maximum; MTX, MTX; OD, once daily; OW, once weekly; PAS, patient-access scheme; PC, palliative care; RTX, rituximab; s.c., subcutaneous;; SSZ, sulfasalazine; TCZ, tocilizumab. †Uplifted from costs presented by Roche in TA198 (111) to 2011/12 prices using Curtis, 2012 (293);‡ One hour community nurse time from Curtis, 2012 (293);§ 2 * day case cost for HD23C Inflammatory Spine, Joint or Connective Tissue Disorders, without CC (296); ¶ BNF 64 (291);†† BNF January 2013 (295); ‡‡model includes cost of iv loading dose – assumed to be the same as first administration of ABT and applied at the start of the strategy; §§Because the dose for RTX is 1000 mg and unit size is 500 mg, there was no vial wastage required.

6.2.9.5 Roche

Table 93 presents administration costs for all the treatments. The model assumes a district nurse will administer 10% of the subcutaneous injection treatments.

The economic model assumes the same schedule of monitoring for all biologics as in the previous NICE submission for TCZ (2011). The cost of tocilizumab monitoring is assumed to be included in the administration cost; £171.33 per IV infusion [Barton 2004¹⁷³] updated to 2009/10 prices.²²⁶

Treatment	Total cost of administration first 6 months and subsequent cycles (responders)	Assumptions	Source (cost)
ADA	£35.10	10% of injections are given by district nurse; cost of district nurse: £27.00	Curtis 2010
CTZ	£35.10	10% of injections are given by district nurse; cost of district nurse: £27.00	Curtis 2010
ETA	£70.20	10% of injections are given by district nurse; cost of district nurse: £27.00	Curtis 2010
TCZ	£1,113.63	Cost of £171.33 for each infusion given in a cycle (inflated 2000 to 2010)	Barton 2004

Table 93:The administration costs assumed by Roche

The monitoring cost of adalimumab, certolizumab pegol and etanercept is assumed to follow the schedule presented in Table 94. Palliative care is assumed to have only monitoring costs but a greater number of outpatient follow up visits in the first cycle, and greater resource use in subsequent cycles resulting in costs of £2589 and subsequent costs of £1287

		Monitoring frequency per 6	Total cost (first	Frequency of monitoring per 6 months	Total cost	
Resource or test	Unit Cost	months (first cycle)	cycle: responder)	(subsequent cvcles)	(subsequent cvcles)	Source
Outpatient visit first attendance	£214.00	1	£214.00	0	£0.00	Department of Health, 2011
Outpatient visit follow- up visit	£126.00	6	£756.00	3	£378.00	Department of Health, 2011
GP visit	£53.00	4	£212.00	3	£159.00	Department of Health, 2011
Full blood count	£3.00	14	£42.00	3	£9.00	Department of Health, 2011
Erythrocyte sedimentation and Creative protein	£15.41	14	£215.68	3	£46.22	Barton 2004
Liver function test	£8.55	14	£119.74	3	£25.66	Barton 2004
Urea, electrolytes and creatinine	£8.55	14	£119.74	3	£25.66	Barton 2004
Chest X-ray	£27.63	1	£27.63	0	£0.00	Barton 2004
Total			£1,706.79		£643.53	

Table 94:The monitoring costs assumed by Roche for adalimumab, certolizumab
pegol and etanercept

Roche provide a summary table of acquisition, monitoring and administration costs. This is replicated in Table 95

Table 95:	The total costs of treatment assumed by Roche
-----------	---

Treatment	Total cost: bi-annual (first cycle on treatment, non- responder)	Total cost: bi-annual (first cycle on treatment, responder)	Total cost: bi-annual (subsequent cycles on treatment, responder)
ADA	£3,159.85	£6,319.71	£5,256.45
CTZ	£870.94	£4,065.64	£5,326.13
ETN	£3,212.24	£6,424.49	£5,361.23
TCZ	£2,886.42	£5,772.83	£5,772.83
Palliative care	£2,588.79	£2,588.79	£1,287.07

6.2.9.6 UCB

The monitoring schedule assumed by UCB is replicated in Table 96. UCB present unit costs, but for brevity only the summarised monitoring data, together with drug acquisition costs are provided in Table 96.

	First 6	months	Every 6 months thereafter		
	GP visit	Outpatient visit	GP visit	Outpatient visit	
CTZ	5	1	2	1	
CTZ + MTX	12	1	5	1	
ABT	0	0	0	0	
ABT + MTX (*)	0	0	0	0	
IFX + MTX (*)	0	0	0	0	
RTX + MTX (*)	0	0	0	0	
TCZ (*)	0	0	0	0	
TCZ + MTX (*)	0	0	0	0	
ADA	5	1	2	1	
ADA + MTX	12	1	5	1	
ETN	5	1	2	1	
ETN + MTX	12	1	5	1	
GOL	5	1	2	1	
GOL + MTX	12	1	5	1	
PBO + MTX	12	1	5	1	
AZA	12	1	5	1	
CYC	8	1	5	1	
GLD	23	1	8	1	
HCQ	2	1	1	1	
LEF	12	1	3	1	
Penicillamine	10.7	1	6	1	
SSZ	7	1	1	1	
Palliation	0	2	0	2	
MTX + SSZ	12	1	5	1	
MTX + SSZ + HCQ	12	1	5	1	
MTX + HCQ	12	1	5	1	
HCQ + SSZ	7	1	1	1	
MTX + LEF	12	1	5	1	
MTX	12	1	5	1	

Table 96:Drug monitoring schedule: visits during first 6 months and every 6months thereafter assumed by UCB

Note: (*) cost of administration of treatment is assumed to cover healthcare visits for tests and monitoring

	First 6 months				Every 6 months thereafter				First year
Treatment	Acquisition	Administration	Monitoring	Total	Acquisition	Administration	Monitoring	Total	Total costs
	costs	costs	costs	costs	costs	costs	costs	costs	10141 00515
Combination treatments with MTX (severe disease activity population)									
CTZ + MTX	£2,163	£45	£818	£3,026	£4,666	£0	£377	£5,043	£8,070
ABT + MTX	£7,005	£3,328	£101	£10,434	£5,695	£2,704	£34	£8,433	£18,868
IFX + MTX	£5,648	£2,080	£101	£7,829	£3,677	£1,352	£39	£5,068	£12,897
TCZ + MTX	£6,475	£832	£101	£7,408	£6,475	£832	£34	£7,341	£14,749
ADA + MTX	£4,596	£45	£818	£5,459	£4,596	£0	£377	£4,973	£10,433
ETN + MTX	£4,666	£45	£818	£5,529	£4,666	£0	£377	£5,043	£10,573
GOL + MTX	£4,596	£45	£818	£5,459	£4,596	£0	£377	£4,973	£10,433
Monotherapies (seve	re disease acti	vity population)							
CTZ	£2,145	£45	£491	£2,681	£4,648	£0	£230	£4,877	£7,559
TCZ	£6,457	£832	£77	£7,366	£6,457	£832	£16	£7,304	£14,670
ADA	£4,578	£45	£491	£5,114	£4,578	£0	£230	£4,808	£9,922
ETN	£4,648	£45	£491	£5,184	£4,648	£0	£230	£4,878	£10,062
Combination treatments (moderate disease activity population)									
CTZ + MTX	£2,163	£45	£880	£3,088	£4,666	£0	£406	£5,071	£8,159
CTZ + cDMARDs	£2,255	£45	£954	£3,254	£4,758	$\pounds 0$	£427	£5,185	£8,439
PBO + MTX	£18	£0	£861	£879	£18	£0	£398	£417	£1,296
PBO + cDMARDs	£111	£0	£935	£1,046	£111	£0	£412	£522	£1,568

Table 97: Summary of drug acquisition, administration and monitoring costs for each treatment comparator in the UCB model

Note: the costs for certolizumab pegol account for the patient access scheme agreed with the NHS; the cost of tocilizumab and abatacept is based on the publically available list price as reported by the British National Formulary; therefore the reported cost does not take into account the confidential price discount patient access scheme agreed between the manufacturers and the Department of Health

6.2.10 Comparative treatment efficacy (Network Meta Analysis)

This section contains the analyses regarding comparative efficacies undertaken by each manufacturer. For consistency, the term NMA has been used even when a manufacturer has denoted the analysis to be a mixed treatment comparison.

The level of detail in the analyses and in the reporting was very diverse ranging from the submission by AbbVie which included a 378 page Appendix to the submission by Roche that consisted of one page concerning the NMA. The Assessment Group has attempted to capture all key points made by the manufacturer but has had, for brevity reasons, to abridge some analyses. Detailed discussions on the methods used, goodness of fits, consistency checking and convergence have not been incorporated. Similarly, replications of the list of studies that have been used in the NMA by the manufacturers have not been undertaken.

6.2.10.1 AbbVie

The trials included in AbbVie's base case NMA are depicted in Figure 38 which has been reproduced directly from the AbbVie submission. The numbers on the line have been included by AbbVie without a reference, but are believed to represent codes for RCTs; thus 6 numbers would indicate six trials informing the direct comparison. Furthermore Abbvie used different abbreviations to that used in by the Assessment Group. It is commented that there is no cDMARD node which is assumed to be subsumed within the placebo arm.

AbbVie incorporated hurdles within the analyses to eliminate illogical results such as the possibility that a patient may be simulated an ACR50 response, but not an ACR20 response. This was achieved by using parameters such as for those that have gained an ACR20 response what proportion achieved an ACR50 response. Within the base case AbbVie adjusted for baseline risk, prior MTX exposure, prior biologic DMARD exposure and concomitant standard DMARD. AbbVie report that additional sensitivity analysis controlling for differences in baseline HAQ-DI and disease duration slightly worsened model fit assessed by the deviance information criterion and had little effect on overall results.

AbbVie present posterior simulated ACR responses for four main groups:

- MTX-experienced patients who can receive cDMARDs, (Figure 39)
- MTX-experienced patients who receive bDMARD monotherapy, (Figure 40)
- MTX-experienced patients who can receive cDMARDs, (Figure 41)
- MTX-experienced patients who receive bDMARD monotherapy, (Figure 42)

Further analyses (not shown in the Assessment Group summary) investigated a number of sensitivity analyses. These included

- The efficacy of tocilizumab and rituximab compared with MTX when used after a bDMARD. These results indicated that the efficacy of tocilizumab was lower following an initial bDMARD than in people who were bDMARD naïve.
- The inclusion of Asian studies which was shown to favour tocilizumab monotherapy and slightly favour certolizumab pegol.
- Limiting the data to a 3 month dataset. AbbVie comment that as one would expect, there are lower estimated median response probabilities at higher levels of response, particularly for ACR70 for most treatments including adalimumab, certolizumab, etanercept, golimumab and tocilizumab, compared to the "6 month" estimates. The only exceptions are abatacept and infliximab in the MTX-experienced, combination therapy scenario.

Figure 38: The evidence network in AbbVie's base case

Abbreviations: ADA – adalimumab; ABT – abatacept i.v.; CTZ – certolizumab pegol; ETN – etanercept; GLM – golimumab; IFX – infliximab; OTT – oral triple therapy; PBO – placebo; RTX – rituximab; TCZ – tocilizumab; TFC – tofacitinib

Figure 39: Posterior simulated ACR response for combination therapy in a MTXexperienced population presented by AbbVie

Figure 40: Posterior simulated ACR response for monotherapy in a MTXexperienced population presented by AbbVie

Figure 41: Posterior simulated ACR response for combination therapy in a MTXnaive population presented by AbbVie

Figure 42: Posterior simulated ACR response for monotherapy in a MTX-naive population presented by AbbVie

AbbVie's interpretation of the NMA data

AbbVie state that "for the MTX-experienced patient population, biologics in combination with MTX or other DMARDs, median posterior simulated ACR20 responses for the 6 month estimates are

highest for etanercept and lowest for golimumab. The interquartile ranges are tighter for the three older anti-TNFs, adalimumab, etanercept and infliximab, as well as abatacept than for golimumab and certolizumab. Median posterior simulated ACR50 responses are highest for etanercept and lowest for infliximab, while ACR70 responses are highest for adalimumab and certolizumab and lowest for abatacept and infliximab. Estimated responses get tighter the higher the level of ACR response."

6.2.10.2BMS

The inclusion and exclusion criteria for selecting the RCTs to be evaluated in the NMA was not wellreported as were the time points at which data were extracted; the methods used within the NMA; the assumed properties of the frequentist and Bayesian analyses. BMS provide NMA analyses of HAQ scores and of DAS scores. BMS did not report whether the frequentist or Bayesian values were used within the analyses. The network for the HAQ scores is shown in Figure 43.

Figure 43: The network of evidence for HAQ scores as supplied by BMS

The mean change in HAQ shown in Figure 44 and absolute mean change shown in Figure 29.

Figure 44: The mean change in HAQ scores relative to placebo as estimated by BMS

 Frequentist
 Bayesian

 Placebo+MTX
 Etanercept

 Infliximab+MTX
 Infliximab+MTX

 Tocilizumab+MTX
 Infliximab+MTX

 Etanercept+MTX
 Infliximab+MTX

 SC Abatacept+MTX
 Infliximab+MTX

 IV Abatacept+MTX
 IV Abatacept+MTX

 SC Golimumab+MTX
 IV Abatacept+MTX

 IV Abatacept+MTX
 IV Abatacep

Figure 45:The mean absolute change in HAQ scores as estimated by BMS

The probability of being the most efficacious treatment is detailed in Figure 46, although the Assessment Group note that, strictly, it is impossible to quantify the probability of being most efficacious using a frequentist approach.

Figure 46: The probability of being the most efficacious treatment (on HAQ score) as estimated by BMS

The analysis of DAS scores by BMS used a linear regression to estimate DAS scores from HAQ scores where these data were not provided. The assumed relationship is shown in Figure 47. No comment was made on the relationship between change in DAS and change in HAQ scores.

Figure 47: The relationship assumed by BMS between HAQ and DAS scores

The network assumed in the DAS analyses therefore replicates that for the HAQ analyses (Figure 43). As with the HAQ analyses, mean changes in DAS scores, absolute mean changes in DAS scores and the probability of being the most efficacious treatment are provided. These are shown in Figures 48 to 49.

Figure 48 The mean change in DAS scores relative to placebo as estimated by BMS

Figure 49: The mean absolute change in DAS scores as estimated by BMS

The probability of being the most efficacious treatment is detailed in Figure 50, although the Assessment Group note that, strictly, it is impossible to quantify the probability of being most efficacious using a frequentist approach.

Figure 50: The probability of being the most efficacious treatment (on DAS score) as estimated by BMS

BMS's interpretation of the NMA data

BMS state that "certolizumab + MTX seems to be the best treatment at reducing both HAQ and DAS scores...... golimumab + MTX also appears to be an effective treatment in improving QoL, along with etanercept + MTX and s.c. abatacept + MTX" and "Infliximab + MTX and etanercept alone are expected to yield the smallest negative changes in both HAQ and DAS scores other than placebo + MTX"

6.2.10.3 MSD

The data used in the NMA conducted by MSD are contained in Tables 16-18 of both the infliximab and the golimumab submission with the network reproduced in Figure 51. No steps were taken to ensure legitimacy (for example, that the ACR 50 value was lower than the ACR20 example).

Figure 51: The network for DMARD-experienced patients as supplied by MSD

MSD present results in terms of the drug that is the focus of the submission (i.e. golimumab or infliximab). The ACR results for golimumab are shown in Figures 52 to 54, whilst those for infliximab are shown in Figures 39 to 41.

Figure 52: ACR20 - DMARD Experienced Patients at 24 Weeks estimated by MSD in the golimumab submission

Figure 53: ACR50 - DMARD Experienced Patients at 24 Weeks estimated by MSD in the

golimumab submission

Figure 54: ACR70 - DMARD Experienced Patients at 24 Weeks estimated by MSD in the golimumab submission

Figure 55: ACR20 - DMARD Experienced Patients at 24 Weeks estimated by MSD in the infliximab submission

Figure 56: ACR50 - DMARD Experienced Patients at 24 Weeks estimated by MSD in the

infliximab submission

Figure 57: ACR70 - DMARD Experienced Patients at 24 Weeks estimated by MSD in the infliximab submission

MSD conducted sensitivity analyses excluding open-label studies as these may have a higher potential for bias. This did not materially affect the ACR 20 or ACR50 results, but had a larger (although non-patterned) impact at ACR70.

A second sensitivity analyses was conducted where Asian studies were included (Figure 58 reproduces a Figure supplied by MSD and indicates lower background MTX use in these studies) in GO-FORTH,⁹¹ SAMURAI¹¹⁵, Abe et al⁵⁶ and Kim et al.⁹⁹

Figure 58 Comparison of MTX Usage (average mg/week) in East Asian versus Non-East Asian Studies supplied by MSD

The exclusion of non-Asian studies did not markedly alter the odds ratios which remain with wide credible intervals.

MSD's interpretation of the results

MSD summarise the results of the NMA for golimumab and infliximab as below:

o ACR20: no significant differences were observed between golimumab / infliximab and other biologic DMARDs, with the exception of adalimumab monotherapy and tocilizumab monotherapy

o ACR50: no significant differences were observed between golimumab / infliximab and other biologic DMARDs, with the exception of adalimumab monotherapy, tocilizumab monotherapy, and etanercept monotherapy

o ACR70: no significant differences were observed between golimumab / infliximab and other biologic DMARDs, with the exception of adalimumab monotherapy, tocilizumab monotherapy, and etanercept monotherapy

In each of the exceptions listed above golimumab and infliximab were assumed to be statistically significantly better than the named intervention.

6.2.10.4 Pfizer

Pfizer undertook three separate NMAs: ACR20/50/70 responses for a severe cDMARD-experienced population; HAQ changes for a severe cDMARD-experienced population; and ACR20/50/70 responses for a severe cDMARD experienced population who were treated with bDMARD monotherapy. The networks for these NMAs are reproduced in Figures 59 to 61.

The results produced by each of these analyses in the base case are provided in Tables 98 to 100.

No steps were taken to ensure legitimacy (for example, that the ACR 50 value was lower than the ACR20 example)

Figure 59: The network diagram for combination therapy, ACR responses in severe DMARD experienced patients as produced by Pfizer

Note: numbers refer to key, not to reference list.

Key: 1: Abe 2006; 2: Chen 2009; 3: Combe 2006; 4: Genovese 2004; 5: Genovese 2008 (TOWARD); 6: Huang 2009; 7: Kameda 2010 (JESMR); 8: Kay 2008; 9: Keystone 2004 (DE019); 10: Keystone 2008 (RAPID 1); 11: Keystone 2009 (GO-FORWARD); 12: Kim 2007; 13: Kremer 2003; 14: Kremer 2006 (AIM); 15: Lan 2004; 16: Maini 1999 (ATTRACT); 17: Maini 2006 (CHARISMA); 18: Schiff 2008; (ATTEST); 19: Smolen 2008 (OPTION); 20: Smolen 2009a (RAPID 2); 21: van Riel 2006 (ADORE); 22: Weinblatt 1999; 23: Weinblatt 2003 (ARMADA); 24: Westhovens 2006b (START); 25: Zhang 2006; 26: Tanaka 2012 (GO-FORTH); 27: Kim 2012 (APPEAL); 28: Dougados 2012 (ACT-RAY); 29: Genovese 2011; 30:Weinblatt 2013 (AMPLE)

Figure 60: The network diagram for combination therapy, HAQ changes in severe DMARD experienced patients as produced by Pfizer

Note: numbers refer to key, not to reference list.

Key: 1: Chen 2009; 2: Keystone 2004 (DE019); 3: Keystone 2008 (RAPID 1);4: Kim 2007; 5: Lan 2004; 6: Smolen 2008 (OPTION); 7: Smolen 2009a (RAPID 2);8: Weinblatt 1999; 9: Weinblatt 2003 (ARMADA);10: Zhang 2006;11: Combe 2006; 12: Tanaka 2012 (GO-FORTH);13: van Vollenhoven 2012 (ORAL Standard); 14: Genovese 2011

Figure 61: The network diagram for monotherapy, ACR responses in severe DMARD experienced patients as produced by Pfizer

Note: numbers refer to key, not to reference list.

Key: 1: Combe 2006; 2: Dougados 2012 (ACT-RAY); 3: Johnsen 2006; 4: Maini 2006 (CHARISMA); 5: Moreland, 1999; 6: van de Putte 2004¹²²; 7: van Riel 2006 (ADORE); 8: Kameda 2010 (JESMR); 9: Miyasaka 2008 (Change); 10: Nishimoto 2004 (STREAM); 11: Nishimoto 2009 (SATORI).

Table 98:The NMA base case results for combination therapy, ACR responses in severe
DMARD experienced patients as produced by Pfizer

		Random effects		
Treatment	Control	OR v control (95%		
		CrI)		
ACR20				
ETN 2x25mg/week + DMARD	ABT10mg/kg/4 weeks+			
	DMARD	2.975 (1.288, 7.185)		
ETN 2x25mg/week + DMARD	DMARD	2.970 (1.115, 8.248) [†]		
ETN 2x25mg/week + DMARD	ADA 40mg/2 weeks + DMARD	$3.050 (1.366, 7.111)^{\dagger}$		
ETN 2x25mg/week + DMARD	CZP 200mg/2 weeks + DMARD	0.852 (0.317, 2.338)		
ETN 2x25mg/week + DMARD	GOL 50mg/4 weeks + DMARD	2.520 (0.994, 6.711)		
ETN 2x25mg/week + DMARD	INF 3mg/kg/8 weeks + DMARD	$2.847~(1.250, 6.682)^{\dagger}$		
ETN 2x25mg/week + DMARD	TOC 8mg/kg/4 weeks + DMARD	2.174 (0.907, 5.477)		
ACR50				
ETN 2x25mg/week + DMARD	ABT10mg/kg/4 weeks+ DMARD	3.164 (1.119, 9.683) [†]		
ETN 2x25mg/week + DMARD	ABA 125mg/week s.c. + DMARD	3.038 (0.920, 10.870)		
ETN 2x25mg/week + DMARD	ADA 40mg/2 weeks + DMARD	$3.111(1.139, 9.147)^{\dagger}$		
ETN 2x25mg/week + DMARD	CZP 200mg/2 weeks + DMARD	1.143 (0.330, 4.087)		
ETN 2x25mg/week + DMARD	GOL 50mg/4 weeks + DMARD	2.431 (0.765, 8.130)		
ETN 2x25mg/week + DMARD	INF 3mg/kg/8 weeks + DMARD	3.116 (1.115, 9.244) [†]		
ETN 2x25mg/week + DMARD	TOC 8mg/kg/4 weeks + DMARD	2.141 (0.725, 6.950)		
ACR70 (continuity corrected [CC])				
ETN 2x25mg/week + DMARD	ABT10mg/kg/4 weeks+ DMARD	5.321 (1.103, 46.550) [†]		
ETN 2x25mg/week + DMARD	ABT 125mg/week s.c. + DMARD	5.228 (0.968, 49.190)		
ETN 2x25mg/week + DMARD	ADA 40mg/2 weeks + DMARD	4.956 (1.052, 43.980) [†]		
ETN 2x25mg/week + DMARD	CZP 200mg/2 weeks + DMARD	1.646 (0.258, 16.337)		
ETN 2x25mg/week + DMARD	GOL 50mg/4 weeks + DMARD	3.702 (0.632, 34.352)		
ETN 2x25mg/week + DMARD	INF 3mg/kg/8 weeks + DMARD	5.445 (1.150, 48.140) [†]		
ETN 2x25mg/week + DMARD	TOC 8mg/kg/4 weeks + DMARD	2.654 (0.529, 23.680)		

Abbreviations: ABA, Abatacept; ADA, Adalimumab; CC data with continuity correction; CrI, credible interval (Bayesian probability interval); CZP, certolizumab pegol; DMARD, disease-modifying anti-rheumatic drugs (MTX or SUL); ETN, etanercept; exp, experienced; GOL, golimumab; INF, infliximab; MTX, MTX; OR, odds ratio; SUL, sulfasalazine, TOC, Tocilizumab. Note: medians are presented as the best estimate for the central value, since means may be overly influenced by outliers; † Licensed ETN combination has significantly higher odds of ACR outcome compared with other licensed bDMARD combination (based on the 95% CrI).

Table 99:The base case NMA results for combination therapy, HAQ changes in severe
DMARD experienced patients, etanercept vs other bDMARDs as produced by
Pfizer

Treatment	Control	WMD v control (95% CrI)		
ACR20				
ETN 2x25mg/week +	ADA 40mg/2 weeks + DMARD	-0.051 (-0.236, 0.127)		
DMARD	ADA 40111g/2 weeks + DWARD			
ETN 2x25mg/week +	Certolizumab pegol 200mg/2 weeks +	0.032 (-0.164, 0.218,)		
DMARD	DMARD			
ETN 2x25mg/week +	COL 50mg/4 weeks + DMAPD	0.052 (0.200.0.181)		
DMARD	GOL Joing/4 weeks + DMARD	-0.033 (-0.299,0.181)		
ETN 2x25mg/week +	IEV 2mg/kg/8 wooks + DMADD	-0.044 (-0.317,0.219)		
DMARD	IFA SIIIg/kg/8 weeks + DMARD			
ETN 2x25mg/week +	TOC 9mg/kg/4 weeks + DMARD	-0.101 (-0.308,0.100)		
DMARD	TOC omg/kg/4 weeks + DMAKD			

Abbreviations: CrI, credible interval (Bayesian probability interval); DMARD, disease-modifying anti-rheumatic drugs; ETN, etanercept; TOC, Tocilizumab; WMD, weighted mean difference.

Table 100:The NMA base case results for monotherapy, ACR responses in severe
DMARD experienced patients as produced by Pfizer

Tractment	Control	Random effects	
1 reatment	Control	OR v control (95% CrI)	
ACR20			
ETN 2x25mg/week	ADA 40mg/2 weeks	2.797 (0.104, 70.572)	
ETN 2x25mg/week	TOC 8mg/kg/4 weeks	0.384 (0.008, 17.430)	
ETN 2x25mg/week	SUL	7.485 (0.526, 106.508)	
ACR50			
ETN 2x25mg/week	ADA 40mg/2 weeks	3.300 (0.186, 57.078)	
ETN 2x25mg/week	TOC 8mg/kg/4 weeks	0.252 (0.003, 10.440)	
ETN 2x25mg/week	SUL	5.685 (0.591, 56.370)	
ACR70 (continuity corrected data)			
ETN 2x25mg/week	ADA 40mg/2 weeks	1.935 (0.051, 131.285)	
ETN 2x25mg/week	TOC 8mg/kg/4 weeks	0.436 (0.000, 73.390)	
ETN 2x25mg/week	SUL	19.936 (1.159, 908.265)†	

Abbreviations: ADA, Adalimumab; CrI, credible interval (Bayesian probability interval); DMARD, disease-modifying anti-rheumatic drugs; ETN, etanercept; exp, experienced; SUL, sulfasalazine, TOC, Tocilizumab. Note: medians are presented as the best estimate for the central value, since means may be overly influenced by outliers; † Licensed ETN has significantly higher odds of ACR outcome compared to other licensed DMARD (based on the 95% CrI).

Pfizer's interpretation of the NMA results

Pfizer state that for combination therapy in cDMARD experienced severe RA patients "ETN was consistently significantly better than ABT IV, ADA and INF for ACR20/50/70 outcomes. Furthermore, with regards to ACR20/70 outcomes ETN was shown to be significantly better than ABT (s.c.), otherwise was similar in efficacy to CZP, GOL, and TOC."

For combination therapy in cDMARD experienced severe RA patients Pfizer state that "though all bDMARDs had significantly lower HAQ compared to DMARD control at follow-up, none of the bDMARDs had significantly lower HAQ compared with each other.

For cDMARD experienced severe RA patients who are treated with monotherapy Pfizer state that "based on the random-effects network meta-analysis; adalimumab, etanercept and tocilizumab have significantly higher odds of ACR 70 than placebo and etanercept and tocilizumab have significantly higher odds of ACR 50 than placebo but none of the bDMARDs are significantly better than another"

The conclusion made by Pfizer in the executive summary is that " the network meta analysis in this submission demonstrated that etanercept is significantly better than adalimumab and infliximab for ACR20/50/70 outcomes. Furthermore, etanercept was shown to be significantly better than abatacept i.v. with regards to ACR20/50/70 outcomes and abatacept subcutaneous for ACR20/70."

6.2.10.5 Roche

Roche report that "the proportion of patients who fall within each response category was informed by a network meta-analysis, performed within a Bayesian framework. This meta-analysis was undertaken to allow indirect comparison of tocilizumab monotherapy with biologics currently recommended by NICE for use as monotherapy in the DMARD-IR setting." Figure 62 reproduces the model setup supplied by Roche. The number of trials informing each 'link' in the meta-analysis is indicated next to each line.

CTZ, certolizumab pegol; ADA, adalimumab; ETN, etanercept; TCZ, tocilizumab

The ACR outcomes adjusted within the framework of the network meta-analysis used within the economic model by Roche are presented in Table 122.²²⁷ Unadjusted ACR rates are provided for

comparison. The forest plot in Figure 63 was produced by Roche and gives an overview of the uncertainty about each estimate after adjustment in the meta-analysis.^{124,213,228}

Table 122: ACR response by treatment – unadjusted and adjusted			Figure 1: Biologic monotherapy ACR responses used in economic model	
Treatment	ACR20	ACR5 0	ACR7 0	% 0 20 40 60 80
Adjusted Values (from network meta-analysis): ADA CTZ ETA TCZ	% 44 44 53 61	% 22 24 35 40	% 10 8 11 19	ACR20 ADA CTZ ETA TCZ ACR50 ETA TCZ ADA CTZ ETA TCZ ADA CTZ ETA TCZ ADA
<u>Unadjusted</u> <u>Values:</u> ADA CTZ ETA TCZ	% 49 44 59 65	% 28 23 40 47	% 18 7 15 33	ACR70 $\begin{array}{c} CTZ \\ ETA \\ TCZ \end{array}$ $\begin{array}{c} & & & & & & \\ \hline & & & & & & \\ \hline & & & &$

Figure 63: Results from the meta-analysis conducted by Roche

Roche's interpretation of the NMA results

Roche state that "results from the analysis suggest that tocilizumab monotherapy was associated with superior outcomes on ACR20, ACR50 and ACR70 response measures, compared with adalimumab, certolizumab pegol and etanercept monotherapy."

6.2.10.6 UCB

UCB undertook NMAs at both 12 and 24 weeks for each ACR response, and also DAS28 (ESR) remission and low disease activity (24 week data only). These analyses were undertaken for both bDMARDs in combination with MTX and bDMARD monotherapy (with the exception of DAS28 (ESR) low disease activity). The results have, however, been marked as academic-in-confidence.

The results for combination therapy are shown in Figures 64 to 67. The results for monotherapy are shown in Figures 68 to 71

Figure 64: UCB's NMA results: severe disease activity population, bDMARDs in combination with MTX: ACR 20 responses at 12 and 24 weeks

Figure 65:UCB's NMA results: severe disease activity population, bDMARDs in
combination with MTX: ACR 50 responses at 12 and 24 weeks

Figure 66:UCB's NMA results: severe disease activity population, bDMARDs in
combination with MTX: ACR 70 responses at 12 and 24 weeks

Figure 67: UCB's NMA results: severe disease activity population, bDMARDs in combination with MTX: DAS28 (ESR) remission at 12 and 24 weeks

Figure 68: UCB's NMA results: severe disease activity population, bDMARD monotherapy: ACR 20 responses at 12 and 24 weeks

Figure 69:UCB's NMA results: severe disease activity population, bDMARD
monotherapy: ACR 50 responses at 12 and 24 weeks

Figure 70: UCB's NMA results: severe disease activity population, bDMARD monotherapy: ACR 70 responses at 12 and 24 weeks

Figure 71: UCB's NMA results: severe disease activity population, bDMARD monotherapy: DAS28 (ESR) remission at 12 and 24 weeks

UCB's interpretation of the results from the NMA.

In the circumstance where a patient can receive MTX UCB state that "The [NMA] conducted showed that certolizumab pegol plus MTX is at least as effective to the other comparators considered in the vast majority of cases. The RR of that certolizumab pegol plus MTX vs. comparators in combination with MTX was greater than one for all outcomes investigated for the majority of cases, which indicated better outcomes in favour of that certolizumab pegol plus MTX. The wide credible intervals noted in most of these cases reflect the minimal differences in relative clinical effect between certolizumab pegol and the comparators considered."

In the circumstance where bDMARD monotherapy is used UCB state that "The [NMA] showed that certolizumab pegol was at least as effective to the other monotherapies considered. In the majority of cases, the RR of certolizumab pegol compared to the other monotherapies considered was greater than one, however, no differences were statistically significant.

6.2.11 Responder Criteria

This section details the criteria to be designated a responder within the submissions. In summary, five submissions used ACR response as a measure of a responder. Three of these assumed that ACR 20 measured at 24 weeks / 6 months was the minimal response, one (AbbVie) assumed that an ACR 50 response was required, with one (UCB) allowing an evaluation of ACR20 at either 3 or 6 months. The UCB submission used a EULAR response of moderate or good (at either 3 or 6 months) in those with moderate to severe disease. The BMS submission assumed a DAS 28 reduction of 1.2 at 6 months to designate a responder.

6.2.11.1 AbbVie

The minimal response required for continuation of treatment after the initial 6 month period is ACR50. The Assessment Group note that the comparative results for AbbVie's intervention (adalimumab) appears to perform relatively better using ACR50 than by using ACR20

6.2.11.2 BMS

Inadequate treatment is determined by the change in DAS28 – in the base case defined as DAS28 score not improved by at least 1.2 by month 6. Patients who discontinue within the first 6 months would then try another first-line biologic.

6.2.11.3 MSD

Response is defined as at least an ACR20 response at 24 weeks.

6.2.11.4 Pfizer

Patients were assumed to discontinue therapy if response (defined as at least an ACR20 response) was not achieved citing previous NICE submissions.^{224,229,230}

6.2.11.5 Roche

Response is defined as at least an ACR20 response at 24 weeks.

6.2.11.6 UCB

The responder definition in the submission from UCB is variable due to the flexibility of the model. For the severe disease activity population a response of at least ACR20 is required to continue treatment. For the moderate disease activity population at least a moderate EULAR response was required. The time at which response was measured could be varied between 3 and 6 months.

6.2.12 HAQ / EQ-5D changes in relation to response levels

This section details how the submissions related response levels to changes in HAQ. In summary, the majority of submissions assessed the associated HAQ change with response levels from their own data and then assumed that this was applicable to all bDMARDs. All submissions showed that a greater response was associated with a greater HAQ reduction. UCB used EQ-5D data recorded within their trials to model the improvement post response. There was not a consistent approach to modelling how the response was assumed to be accumulated. This ranged from assuming that the response at six months was assumed to be experienced throughout the six month response period, that it was accumulated linearly, or that the full effect was applied but a one-off reduction modelled to assume that the HAQ improvement would not be observed immediately.

6.2.12.1 AbbVie

AbbVie assumed that the HAQ change by ACR response for all bDMARDs would be the same as for adalimumab, while the changes associated with conventional DMARDs would be the same as for MTX.

HAQ changes are divided into the initial response period (defined as either 12 or 24 weeks) and then from the response period until 52 weeks. The base case assumes a 24 week response period.

HAQ changes are assumed to be linear until the response period and linearly between the response period and week 52.

Inputs for the MTX-naive patients were based on the DE013 trial (AbbVie, data on file) and those for MTX-experienced patients were from the DE019 trial (AbbVie, data on file). AbbVie report that data specific for monotherapy were not available in DE019 trial thus an assumption was made that the relative HAQ changes for monotherapy in MTX-experienced patients were similar to those observed in the MTX-naive patients (i.e., DE013). As sample sizes were deemed insufficient for analysis of relative changes in HAQ by stage or RA (moderate or severe), data were pooled for moderate and severe patients.

Tables 101 to 103 reproduce the data supplied by AbbVie.

Table 101:The relative change reported by AbbVie in HAQ score by ACR response by
treatment - moderate and severe RA, MTX-experienced for bDMARD plus
MTX

	ADA + MTX			MTX			
	mean % change	SD	N	mean % change	SD	N	
Baseline to 24 weeks							
ACR <20	-13.7%	72.5%	41	-5.6%	57.6%	88	
ACR20-<50	-38.6%	33.0%	52	-31.5%	33.6%	41	
ACR50-<70	-55.7%	30.1%	42	-55.5%	30.3%	14	
ACR70-100	-80.0%	22.5%	38	-74.0%	31.7%	6	
24-52 weeks							
ACR <20	4.7%	45.4%	32	-3.2%	44.2%	74	
ACR20-<50	-2.1%	73.5%	41	5.5%	45.7%	34	
ACR50-<70	-12.8%	51.7%	33	2.8%	32.1%	11	
ACR70-100	-40.0%	48.6%	17	-22.9%	14.7%	2	

Source: DE019 pooled data for moderate $(3.2 \le DAS28 \le 5.1)$ and severe (DAS28 > 5.1) disease activity

Table 102:The relative change reported by AbbVie in HAQ score by ACR response by
treatment - severe RA, MTX-naive for bDMARD plus MTX

	ADA + MTX			MTX			
	Mean % Change	SD	Ν	Mean % Change	SD	Ν	
Baseline to 24 weeks							
ACR <20	-30.4%	43.0%	36	-27.9%	36.2%	48	
ACR20-<50	-53.1%	38.5%	41	-43.3%	45.2%	53	
ACR50-<70	-61.8%	31.9%	51	-53.7%	44.2%	52	
ACR70-100	-83.6%	24.0%	108	-82.9%	22.7%	62	
24–52 weeks							
ACR <20	-25.2%	28.5%	26	10.7%	104.2%	35	
ACR20-<50	-12.1%	40.9%	24	-4.6%	58.2%	42	
ACR50-<70	-28.8%	62.5%	34	-11.4%	47.9%	43	
ACR70-100	-14.5%	80.2%	50	-24.6%	60.3%	28	

ACR = American College of Rheumatology; ADA = adalimumab; MTX = MTX; SD = standard deviation Source: DE013 (PREMIER¹⁰⁹) pooled data for moderate and severe [AbbVie data on file]
Table 103:The relative change reported by AbbVie in HAQ score by ACR response by
treatment - moderate and severe RA, MTX-experienced or naïve for bDMARD
monotherapy

	ADA		MTX			
	Mean % Change	SD	Ν	Mean % Change	SD	Ν
		Bas	seline to 24 we	eks		
ACR <20	-18.7%	43.6%	70	-27.9%	36.2%	48
ACR20-<50	-45.8%	33.8%	50	-43.3%	45.2%	53
ACR50-<70	-68.0%	26.8%	48	-53.7%	44.2%	52
ACR70-100	-83.2%	23.7%	52	-82.9%	22.7%	62
	24–52 weeks					
ACR <20	-10.1%	41.9%	50	10.7%	104.2%	35
ACR20-<50	22.2%	112.3%	38	-4.6%	58.2%	42
ACR50-<70	31.1%	135.8%	35	-11.4%	47.9%	43
ACR70-100	54.0%	199.7%	22	-24.6%	60.3%	28

ACR = American College of Rheumatology; ADA = adalimumab; MTX = MTX; SD = standard deviation Source: DE013 [AbbVie data on file] pooled data for moderate and severe

6.2.12.2 BMS

BMS provides a table that details the assumed reduction in HAQ. This is reproduced in Table 126. The Assessment Group comment that it has been assumed that the HAQ reduction for cDMARDs used after bDMARDs was halved, however the data for bDMARDs used after an initial bDMARD appear to generally perform better than the same bDMARD used first line.

BMS report that since the improvement in HAQ-DI score upon starting each treatment would actually be more gradual than a sudden decrease, "start and end effects" are applied as a one-off deduction in quality-adjusted life years (QALYs) upon starting and ending each treatment. This deduction is equal to 20% of the increase in quality of life. No justification for this value was provided.

Treatment	HAQ (reduction)	HAQ change from	Source
	change from baseline	baseline – standard	
	- mean	error	
1 st line biologics			
IV ABT	0.344	0.063	BMS NMA (2013)
SC ABT	0.332	0.112	
ADA	0.326	0.077	
ETN	0.279	0.097	
EFX	0.199	0.063	
TCZ	0.213	0.100	
GOL	0.333	0.112	
CTZ	0.386	0.069	
2 nd line biologics	·	•	·
IV ABT	0.5	0.05	Malottki et al (2011) ¹⁶⁶
ADA	0.48	0.048	Malottki et al (2011) ¹⁶⁶
ETN	0.35	0.035	Malottki et al $(2011)^{166}$
IFX	0.35	0.035	Malottki et al $(2011)^{166}$
TCZ	0.39	0.039	Strand et al $(2012)^{231}$
GOL	0.25	0.025	Smolen et al $(2009)^{232}$
RTX	0.4	0.04	Malottki et al $(2011)^{166}$
DMARDs			
			Chen et al $(2006)^{123}$ -
LEF	0.24	0.024	halved
			Chen et al $(2006)^{123}$ -
Injectable GLD	0.2	0.02	halved
			Chen et al $(2006)^{123}$ -
CYC A	0.2	0.02	halved
			Chen et al $(2006)^{123}$ -
AZA	0.1	0.01	halved

Table 104: The assumed reduction in HAQ detailed by BMS

Table 33: HAQ-DI change from baseline

For 2nd line biologics and DMARDs, the standard deviation is assumed to be 10% of the mean. DMARDs: disease modifying antirheumatic drugs; HAQ-DI: Health Assessment Questionnaire Disease Index; IV: intravenous; SC: subcutaneous. Malottki et al (2011) assumed halved the change in HAQ-DI from Chen et al (2006) as this was for an earlier line indication.

6.2.12.3 MSD

MSD present EQ-5D data for patients dependent on their health state (non-responder, ACR20; ACR50; ACR70). These values have been calculated with the HAQ score being transformed to a utility using the equation of Hurst et al.²³³ Substantially different values are provided for the golimumab submission and for the infliximab submission, with these data being assumed to apply to all interventions in the relevant submission. MSD does not comment on this discrepancy.

a) Golimumab data

Table 105 provides data on the assumed utility for each health state. These data have been taken from GO-FORWARD²¹¹ and GO-FORTH²³⁴ for the DMARD experienced population and from Go-Forward for the severe subgroup. These values have been calculated by the HAQ score being used within the Hurst mapping.

Health state	DMARD experienced	DMARD experienced severe subgroup (DAS>5.1) (GO-FORWARD)
Baseline	0.401	0.355
GOL treated non-responder	0.461	0.362
GOL treated ACR 20	0.581	0.636
GOL treated ACR 50	0.638	0.689
GOL treated ACR 70	0.787	0.790

 Table 105:
 Utility assumed by health state by MSD in the golimumab submission

b) Infliximab data

Table 106 provides data on the assumed utility for each health state. These data have been taken from START¹¹⁸ and ATTRACT⁷⁵ for the DMARD experienced population and from ATTRACT for the severe subgroup. These values have been calculated by the HAQ score being used within the Hurst mapping.

 Table 106:
 Utility assumed by health state by MSD in the infliximab submission

Health state	DMARD experienced	DMARD experienced severe subgroup (DAS28 >5.1) (ATTRACT ⁷⁵)
Baseline	0.282	0.271
IFX treated non-responder	0.307	0.290
IFX treated ACR20	0.462	0.452
IFX treated ACR50	0.568	0.554
IFX treated ACR70	0.684	0.660

6.2.12.4Pfizer

Pfizer present the HAQ improvement associated with each of four response levels: No ACR response; ACR 20; ACR 50; and ACR70. Pfizer state that following a systematic review only one reference allowed separate estimates to be made for c-DMARD-IR and bDMARD-IR.²²⁴

This source permitted the estimation of HAQ change associated with each ACR response category separately for both cDMARD-IR (first line within a treatment sequence) and bDMARD-IR (second and subsequent lines within a treatment sequence) patients. Table 107 presents the estimates of HAQ improvement used in cDMARD-IR and bDMARD-IR patients. Pfizer note that this approach may lead to further uncertainty in the model due to the extra mapping function, so a comparison using available HAQ data from the NMA was undertaken as a sensitivity analysis.

ACR response	cDMARD-IR		bDMARD-IR	
	Mean	SE	Mean	SE
No response	0.136	0.017	0.098	0.022
ACR 20	0.443	0.018	0.405	0.034
ACR 50	0.668	0.026	0.670	0.058
ACR 70	0.923	0.032	0.949	0.064

 Table 107:
 The HAQ improvement by ACR response category reported by Pfizer

Abbreviations: ACR, American College of Rheumatology; bDMARD-IR, biological disease modifying antirheumatic drug inadequate responder; DMARD-IR, DMARD-inadequate response; SE, standard error.

6.2.12.5Roche

The Roche analysis assumes that response to treatment has an impact on disease severity (as measured by individual HAQ score). Data from ADACTA²²⁸ was analysed to estimate the relationship between ACR response and individual HAQ score for the first 24 weeks. The data from the first 24 weeks of the study suggest that the higher the observed ACR response the greater the drop in HAQ score. Table 108 presents the individual HAQ score drop per ACR response and the corresponding standard errors.

For every response to a new treatment, the model applies the corresponding HAQ score reduction to every simulated individual during the first cycle on treatment (first six months). The relationship between ACR response and initial HAQ drop is assumed to be conditional only to ACR response; it is applied universally to all interventions.

 Table 108:
 Improvement in HAQ score associated with ACR response assumed by Roche

ACR response	Mean	SE	Source
No response	0.11	0.00797	
ACR20	0.44	0.00709	
ACR50	0.76	0.01433	ADACTA
ACR70	1.07	0.00832	

6.2.12.6 UCB

UCB recorded EQ-5D data within the RAPID trials which was used for patients with severe RA and within the CERTAIN⁷⁹ study for those will moderate to severe RA. These are detailed in Table 131 although the data for CERTAIN⁷⁹ was marked academic-in-confidence.

The data for the severe population was calculated using a regression analysis of EQ-5D vs. ACR in RAPID trials, no further information was provided.

The data for the severe population calculated using a regression analysis of was

Table 109: The EQ-5D data reported by UCB associated with response level					
Severe RA population		Moderate to severe	e RA population		
No response	0.062				
ACR20	0.173				
ACR50	0.238				
ACR70	0.358				

6.2.13 HAQ trajectory following initial response

This section details the HAQ trajectory post the initial response. In summary, the majority of submissions use data from previous NICE appraisals although the Assessment Group comments that the evidence base for these values is very limited. Given that HAQ progression is linked in the majority of models to utility, disease costs, and mortality any inaccuracies in the projected HAQ trajectories could have a marked impact on the results.

6.2.13.1 AbbVie

AbbVie report that In line with current NICE guidance on the use of adalimumab, etanercept and infliximab for the treatment of RA¹⁹⁹, the model assumes different levels of HAQ progression for patients receiving anti-TNF therapy, conventional DMARD therapy and non-responders after one year. The assumption on long-term HAQ-DI progression while on biological therapy is based on the results of a variety of long-term studies on adalimumab and etanercept.^{110,235,236} Two sensitivity analyses were undertaken changing: the HAQ-progression whilst on bDMARDs to 0.030; and the HAQ-progression on cDMARDs to 0.030

		HAQ-DI progression	
	Base Case	Scenario 1	Scenario 2
Biologic therapy	0.000	0.030	0.000
Conventional DMARD	0.045	0.045	0.030
Non-responders	0.060	0.060	0.060

Table 110: Absolute annual HAQ-DI progression assumed by Abbvie

6.2.13.2 BMS

BMS assume that the HAQ score increases (clinically worsens) gradually over time while the patient is receiving treatment with DMARDs or palliative care. This is modelled as an increase of 0.125 every 2.7 years on DMARDs and 0.125 every 2 years on palliative care. It is assumed that patients on bDMARDs have a constant HAQ. These assumptions are based on Malottki et al.¹⁶⁶

6.2.13.3 MSD

In the MSD model the HAQ score declines at a rate of 0.045 per year if a patient is receiving cDMARDs. Patients receiving palliative care have an assumed HAQ progression of 0.06 per year. The model assumes that biologic DMARD treatment halts disease progression and thus the HAQ progression per year is 0.00. This assumption is aligned with comments from the NICE technology appraisal TA130¹⁹⁹ which states that it is "appropriate to primarily examine the estimates of cost-effectiveness based on the assumption of no HAQ progression while on TNF- α inhibitor therapy, while acknowledging the effects on the estimates of incorporating different assumptions of HAQ progression" and assumes the same holds true for the other biologic DMARDs.

6.2.13.4 Pfizer

Pfizer assume an annual HAQ progression rate of 0.00 for bDMARDs, 0.046 for cDMARDs and 0.06 per year for palliative care citing that these values have been used in previous NICE appraisals.

Different rates of HAQ progression were explored as sensitivity analyses in both Moderate to Severe and Severe Naïve populations.

Scenario analysis within the Moderate to Severe population uses rates of progression observed within PRESERVE Period 2 week 36–88 Rates of progression in Period 2 of PRESERVE were greater for MTX than those used in previous economic evaluations. While rates of HAQ for etanercept +MTX initially increase in the first four weeks after randomisation, but these stabilise from week 40 to week 88 suggesting little or no further HAQ progression over this period. HAQ change from week 36, 40, and 56 to week 88 for both etanercept + MTX and MTX alone has been included in the sensitivity analyses.

Scenario analysis within the Severe Naïve population uses rates of progression from Period 2 of COMET⁸¹ week 52-104.

A further scenario analysis within the all populations uses rates of progression (0.031 for cDMARDs and 0.0102 for bDMARDs) observed by Scott et al, 2000.²³⁷

6.2.13.5 Roche

Roche report that there is a dearth of evidence on the changes a patient's condition undergoes whilst on treatment. Moreover, there are no available data from the Roche clinical trials [ACT-RAY²⁰⁸ and ADACTA^{228,238}] following the first 24 weeks (first cycle).

For these reasons Roche states that their model uses evidence in previous submissions to NICE. The model assumes no HAQ score progression for all treatments while patients continue responding. For patients in palliative care, a per-cycle HAQ score progression (worsening) of 0.03 is assumed.

Table 111:HAQ progression while on treatment after the initial 24 week period assumed byRoche

Treatment	HAQ score change per 6-month cycle	Source
bDMARDs	0.00	NICE TA 130
Palliative care	0.03	NICE TA 130

6.2.13.6 UCB

In the UCB model it was assumed that HAQ would decrease at a rate of 0.1913 per annum whilst on treatment, but increase by 0.048 per annum when a second line bDMARD was used. However it appears that there are typographical errors within the model as the 6 month response on bDMARDs was half that of the 3 month response, and the changes at 3 months and 6 months for follow up biologics were equal. For patients on palliative care or cDMARDs HAQ progression was assumed to be 0.06 per annum. UCB cite previous NICE guidance for these figures except the HAQ change on first line treatment that was calculated from data on file.

6.2.14 Time to discontinuation of treatment

This section details the methods used by the manufacturers to determine when a patient discontinued treatment. In summary a multitude of methods were used by the manufacturers.

6.2.14.1AbbVie

Time to treatment discontinuation curves from Edwards et al. (2005²³⁹) (based on GPRD data) were used to model overall (due to any reasons) withdrawal whilst on cDMARDs. AbbVie state that these curves, although somewhat dated, have been judged as representative of withdrawal patterns from non-biologic DMARDs today by a practicing UK rheumatologist; although it was indicated that withdrawal due to hydroxychloroquine was not expected to be so low. Assumptions were made for combination DMARDs not examined by Edwards et al that time on treatment would be similar to time on treatment with MTX.

The digitised curves (reading in 90+ points from each curve) were used to create mock patient level data—following the method of Hoyle & Henley²⁴⁰ when number of patients at risk was available (anti-TNFs) and Tierney et al.,²⁴¹ when number of patients at risk is unavailable (DMARDs). Parametric survival models were estimated using SAS (and STATA for Gompertz), and provided parameter estimates and variance-covariance matrices. For the time to treatment discontinuation data

the exponential, Weibull, Gompertz, lognormal, loglogistic and gamma survival models were estimated. The gamma model was only estimated for information purposes, as the Arena model submitted by AbbVie cannot generate samples from it. The fits of the curves were compared visually, as well as using the Akaike information criterion (AIC) and Bayesian information criterion (BIC).

Curves for MTX, SSZ and HCQ in the GPRD study were fitted best by the lognormal function and these were, therefore, used for modelling time on treatment. The fitted curves to the data are shown in Table 112. The correlation between the parameters was not provided in the report.

Treatment	Lan	ıbda	Gamma	
Treatment	Mean	SE	Mean	SE
MTX	2.1163	0.0531	2.8986	0.0472
MTX + HCQ ^a	2.1163	0.0531	2.8986	0.0472
SSZ + HCQ ^a	2.1163	0.0531	2.8986	0.0472
LEF ^a	2.1163	0.0531	2.8986	0.0472
HCQ	0.4165	0.0802	2.1706	0.0674
SSZ	0.6336	0.0303	2.4548	0.0259
CYC ^b	0.6336	0.0303	2.4548	0.0259

 Table 112:
 The estimated lognormal curve for cDMARD withdrawal rate calculated by AbbVie

CYC = ciclosporin; HCQ = hydroxychloroquine; LEF = leflunomide; MTX = MTX; SE = standard error;

SSZ = sulfasalazine

a. Assume similar time on treatment as MTX

b. Assume similar time on treatment as sulfasalazine

AbbVie state that "for anti-TNFs, separate withdrawal curves by reason either through adverse or lack of efficacy are presented in the published literature. Modelling these two reasons separately allows more flexibility in modelling the time on treatment and corresponds to the new treat to target paradigm; for patients on non-biologic DMARDs, they would be evaluated monthly and could start dropping off immediately, while for those on biologics, patients would have to stay on the drug for at least three to six months for the assessment of response.²⁴²"

Patients on biologics are subjected to risk of withdrawal due to AEs immediately after start of therapy based on analysis of BSRBR data presented in Soliman et al.²⁴³ The same withdrawal pattern was assumed applicable for all biologic therapies including anti-TNFs due to lack of data on the newer

biologics not included in BSRBR, the lack of recent comparative data across anti-TNFs in BSRBR, and conflicting comparative withdrawal evidence about the anti-TNFs in the international literature.^{244,245} Biologic monotherapy was assumed to have a higher withdrawal rate due to AEs (evidenced by a recent BSRBR based analysis, Soliman et al., 2011²⁴³).

AbbVie comment that although the Cochrane review found evidence of differences among clinical trials of biologics, various design elements (e.g., mandatory and optional early escape in some but not all trials) make it difficult to compare withdrawal and to generalise trial results for long-term withdrawal patterns.

The Gompertz model fitted best in the AbbVie analyses for the AE-specific withdrawal data from BSRBR for all anti-TNFs presented by Soliman et al, 2011.²⁴³ It assumes that after approximately 9 years on biologic treatment, there would be no further withdrawals due specifically to AEs (i.e., all long-term withdrawals are due to lack of efficacy). This was consistent with the experience of a UK practicing clinician consulted by AbbVie. AbbVie stated that since the Gompertz survival model is a proportional hazard model, published reason-specific adjusted hazard ratios in the same study for the anti-TNF monotherapy versus anti-TNF combination therapy with MTX have been applied to obtain monotherapy withdrawal curves.²⁴³ The paper did not present reason-specific Kaplan-Meier curves for anti-TNFs as monotherapy vs anti-TNF+MTX specifically. The assumption used was that overall anti-TNF AE withdrawal curve is identical to the combination therapy AE withdrawal curve. This assumption is supported by data from the study in which similar proportions of patients discontinued the treatment due to adverse events at year 5, this was shown between those receiving anti-TNFs in combination with MTX and the overall anti-TNF cohort (28% vs. 29%, see Table 2 in Soliman et al. In addition, the Kaplan-Meier curves of the observed overall persistence between these two groups run very close to each other (Table 112). Parameter estimates for modelling of withdrawals due to AEs for biologics are shown in Soliman et al.

Figure 72: Kaplan–Meier estimates of the observed persistence with all anti-TNFs and with the combination therapy of anti-TNFs and MTX in BSRBR

Table 113 provides data on withdrawals from bDMARD therapy due to adverse events. The correlation between the parameters was not provided in the report.

Table 113:Parameter estimates for biologic treatment withdrawal due to AEs (Gompertz
Function) calculated by AbbVie

Treatment	Lam	bda	Gamma	
	Mean	SE	Mean	SE
Combination with MTX	-1.5164	0.0308	-0.6247	-0.0005
Monotherapy	-1.1311 ^a	0.0308	-0.6247	-0.0005

SE = standard error

a. Estimated by applying the published adjusted hazard ratio of 1.47 to the lambda parameter of the combination therapy²⁴

Data on withdrawal due to lack of efficacy have been presented for overall anti-TNF groups by the same study.²⁴³ This curve starts sloping downwards at around three months, and the slope is very flat i.e., there is no evidence of a stopping rule being applied despite clinical guidance on stopping patients on biologic therapy if adequate response is not observed at six months.²⁴²

In the AbbVie base case, the model applies a stopping rule based on response rates; all those without an ACR 50 or ACR 20 (in a sensitivity analysis) response would be stopped at a given time (i.e., 12 or

24 weeks). AbbVie state "therefore, the initial part of the withdrawal curve due to lack of efficacy from BSRBR is ignored. The differences in response rates would result in differential withdrawal due to lack of efficacy on biologics, including monotherapy versus combination therapy (i.e., with MTX); no additional adjustment would be applied. Beyond the time point of response assessment, the lack of efficacy curves from BSRBR would be applied to allow for further drop out due to lack of efficacy. In other words, the model predicts a time to withdrawal due to lack of efficacy for all patients in the simulation when each treatment is initiated. If the time predicted is earlier than the stopping rule (i.e., 12 or 24 weeks), it is ignored. If it is later than the stopping rule, and the patient is a responder not stopping treatment at e.g., 12 or 24 weeks, they would be withdrawn at that time".

For withdrawal beyond the non-responder withdrawal (i.e., at 12 or 24 weeks), the same curve is applied across all biologics.

Due to the flat initial part of the withdrawal due to loss of efficacy curve, AbbVie report that no survival model provided a good fit to the overall data. However, the fit was much improved when the flat part of the curve for the initial 3.337 months was removed from the data. The best fit for the truncated data was provided by the lognormal function. Time to withdrawal due to lack of efficacy predicted from these parameters was added back by 3.337 months in the simulation. Table 114 provides the parameter estimates given by AbbVie. The correlation between the parameters was not provided in the report.

Treatment	Lan	ıbda	Gamma	
Treatment	Mean	SE	Mean	SE
Biologics	3.1171	0.0643	3.0225	0.0512

Table 114:	Parameter estimates for biologics treatment withdrawal due to loss of efficacy
	(Lognormal Function) provided by AbbVie

SE = standard error

6.2.14.2 BMS

The probabilities of adverse events assumed by BMS are shown in Table 28. The source for these data appears to be a NMA of adverse events undertaken within the BMS submission. As with the NMA for comparative efficacy the reporting of the NMA assumptions is lacking.

	At Month 6/Week 24
Treatment	Probability of adverse event
IV ABT	0.023
SC ABT	0.016
ADA	0.041
ETN	0.030
IFX	0.086
TCZ	0.041
GOL	0.020
CTZ	0.096

 Table 115:
 The probability of adverse event for first-line biologics assumed by BMS

IV: intravenous; SC subcutaneous.

For all first-line biologic treatments, if an adverse event had not been simulated then time on treatment is sampled from a Weibull distribution with shape parameter 0.71 and scale parameter 7.06, giving a mean time on treatment 4.21 years (BMS's submission document to NICE for TA234).

BMS assumes that the probability of having an adverse event on rituximab is 3.54%, as 17 of 480 patients discontinued due to adverse events in the REFLEX study.²⁴⁶ If the patient does not discontinue treatment with rituximab at 6 months, their long-term time on rituximab is sampled from a Weibull distribution with shape 0.474 and scale 5.1.²²²

Malottki et al.,²²² considered IV abatacept, adalimumab, etanercept, infliximab and rituximab, so BMS state that it was necessary to find inputs for SC abatacept, golimumab and tocilizumab. SC abatacept was assumed to have the same efficacy and safety profile as IV abatacept. The early withdrawal inputs for golimumab and tocilizumab came from the GO-AFTER study²⁴⁷ and the RADIATE study,²⁴⁸ respectively. Golimumab is an anti-TNF, so the long-term time on treatment is assumed to be the same as that of the other anti-TNFs -(adalimumab, etanercept and infliximab) as reported by Malottki et al. Tocilizumab is not an anti-TNF, but, in the absence of data, the long-term time on treatment is assumed to be the same as that of the other anti-TNFs. Inputs for short-term and long-term time on treatment are shown in Table 116 and Table 117, respectively.

Treatment	Parameter	Point estimate (%)
ADA	Probability of withdrawal at 12 weeks	9.9
	Proportion of the discontinuations at 12 weeks that are due to ineffectiveness	56.2
ETN	Probability of withdrawal at 13 weeks	5.2
	Proportion of the discontinuations at 13 weeks that are due to ineffectiveness	16.7
IFX	Probability of withdrawal at 16 weeks	23
	Proportion of the discontinuations at 16 weeks that are due to ineffectiveness	66.7
ABT	Probability of withdrawal at 24 weeks	13.6
	Proportion of the discontinuations at 24 weeks that are due to ineffectiveness	25.7
TCZ	Probability of withdrawal at 24 weeks	14.7
	Proportion of the discontinuations at 24 weeks that are due to ineffectiveness	64.5
GOL	Probability of withdrawal at 24 weeks	12.4
	Proportion of the discontinuations at 24 weeks that are due to ineffectiveness	72.0

Table 116:The probability of early discontinuation on second-line biologics as estimated by
BMS

Third-line tocilizumab use was assumed to have the same rate of adverse events, and time to withdrawal as second-line tocilizumab treatment.

Treatment	Weibull shape	Weibull scale	Mean (years)	
	parameter	parameter		
ADA	0.701	3.21	4.06	
ETN	0.701	3.21	4.06	
IFX	0.701	3.21	4.06	
ABT	0.81	5.49	6.17	
TCZ	0.701	3.21	4.06	
GOL	0.701	3.21	4.06	

 Table 117:
 The long-term time on second-line biologics as estimated by BMS

For cDMARDs, BMS used data reported by Malottki et al. These data are reproduced in Tables 118 and 119.

Treatment	Parameter	Point estimate (%)
LEF	Probability of withdrawal at 6 weeks	13
	Probability of withdrawal at 6-24 weeks	30
	Proportion of the discontinuations at 24 weeks that are due to	33.2
	ineffectiveness	
Injectable	Probability of withdrawal at 6 weeks	14
GLD	Probability of withdrawal at 6-24 weeks	27.1
	Proportion of the discontinuations at 24 weeks that are due to	66.7
	ineffectiveness	
CYC A	Probability of withdrawal at 6 weeks	8
	Probability of withdrawal at 6-24 weeks	24
	Proportion of the discontinuations at 24 weeks that are due to	50
	ineffectiveness	
AZA	Probability of withdrawal at 6 weeks	15
	Probability of withdrawal at 6-24 weeks	25
	Proportion of the discontinuations at 24 weeks that are due to	50
	ineffectiveness	

 Table 118:
 The probability of early discontinuation cDMARDs as assumed by BMS

Table 119:Long-term time on cDMARDs as assumed by BMS

Treatment	Alpha weibull	Beta weibull	Mean (years)
	parameter	parameter	
LEF	1	5.98	5.98
Injectable GLD	0.48	1.81	3.91
CYC A	0.5	4.35	8.70
AZA	0.39	4.35	15.53

6.2.14.3 MSD

MSD state that no studies with sufficient follow-up were identified for golimumab, adalimumab, certolizumab, tocilizumab or abatacept and thus these were all set equivalent to infliximab. This is stated to be a very conservative assumption for golimumab given that the drop-out rate after 52 weeks of golimumab 50 mg is very low in the GO-FORWARD clinical trial,²¹¹ only 6% at week 52. The long-term drop-out rates for the other biologic DMARDs from clinical trials were stated to be more

aligned with the evidence available for infliximab. Keystone²⁴⁹ report comparable drop-out rates at week 52 to those observed in a 52 week trial for infliximab.

A summary of the probability of discontinuation due to long-term loss of efficacy parameters used by MSD is shown in Table 120. The probability of remaining on treatment at a given month (x) was estimated from the following equation:

P(remaining on treatment) = $\exp(-\lambda * x^{\gamma})$

Long-term discontinuation due to loss of efficacy							
Treatment	λ	γ	Mean (years)				
GOL	0.103	0.532	9 years				
ADA	0.103	0.532	9 years				
IFX	0.103	0.532	9 years				
ETN	0.027	0.738	12 years				
CTZ	0.103	0.532	9 years				
TCZ	0.103	0.532	9 years				
ABT i.v.	0.103	0.532	9 years				
ABT s.c.	0.103	0.532	9 years				
MTX	0.091	0.438	20 years				

Table 120:Time to treatment withdrawal assumed by MSD

6.2.14.4 *Pfizer*

Pfizer used five-year data from the etanercept cohort of the BSRBR to estimate treatment cessation. This was selected because it represented the most appropriate long-term evidence available. Calculations in the etanercept cohort were made separately for combination and monotherapy patients. Severe disease status (relative to Moderate to Severe disease status) was included within the analysis as a covariate, allowing separate estimates of treatment cessation for both Severe and Moderate to Severe populations.

Whilst Pfizer acknowledge the limitations of the use of the ETN BSRBR cohort in the Moderate to Severe population, in the absence of any long-term data in this population these estimates were considered the best available. It is hypothesised that such patients may be at greater risk of progression than a more representative Moderate to Severe population, and therefore treatment cessation may be overestimated within this cohort. In the absence of data in the Severe DMARD-naïve patient population, treatment discontinuation was assumed to be equivalent to that of the Severe DMARD-IR combination therapy population.

Parametric survival curves were fitted to the data with the log-logistic distribution found to provide the best fit to data based on the Akaike Information Criterion.²⁵⁰ Figure 73 presents the estimated

cumulative hazard of treatment cessation vs the observed treatment cessation for the etanercept BSRBR cohort, both combination and monotherapy, although these are marked as commercial-in-confidence.

Figure 73: The estimated cumulative hazard of discontinuation modelled from the Etanercept BSRBR cohort

Data for treatment discontinuation were not accessible for comparator therapies from the BSRBR. Therefore, an observational study by Hetland et al.,²⁵¹ was selected which presented Kaplan-Meier curves for all-cause treatment cessation for etanercept, infliximab and adalimumab from the DANBIO registry²⁵² which was considered the most similar to the UK population from registries identified in a Pfizer systematic review. Curves were digitised using Engauge Digitizer²⁵³ and a pseudo-patient-level dataset was created for all three therapies.^{240,254,255} These datasets were used to fit log-logistic parametric survival models which provided relative treatment effects for both infliximab and adalimumab vs etanercept. (Figure 74)

These relative effects were applied to the baseline estimates for etanercept from the BSRBR in order to generate time-on-treatment estimates for infliximab and adalimumab.

In the absence of long-term data for other therapies, the relative effect for adalimumab was assumed by Pfizer to apply to certolizumab pegol and golimumab, on the basis that they are also monoclonal antibodies (mAbs). Tocilizumab, abatacept i.v., abatacept s.c. and rituximab were conservatively assumed to share the same time on treatment as etanercept. A scenario analysis was performed by Pfizer in which there was assumed to be no difference in treatment cessation between bDMARDs.

A cDMARD curve was also generated from the BSRBR control cohort, and this was used for all cDMARDs. Severe disease status (relative to Moderate to Severe disease status) was also included within the analysis as a covariate. Figure 75 (commercial-in confidence) presents the time on treatment assumptions graphically for the Severe DMARD-IR combination therapy population.

Figure 75: Treatment cessation assumptions provided by Pfizer (based on 50,000 simulations)[†]

As Pfizer believe it is difficult to appreciate differences in treatment cessation across all therapies within Figure 75 the same data is presented as a conditional inference tree in Figure 76. A conditional inference tree performs univariate partitioning of the simulated times to treatment cessation by using a significance test procedure in order to identify differences between time on treatment by therapy. Differences in treatment cessation are identified where partitioning occurs. There are four resulting patterns of 'times' based on the assumptions described previously; infliximab, cDMARD, those based on that of adalimumab (certolizumab pegol and golimumab) and those based on that of etanercept (abatacept i.v., abatacept s.c., tocilizumab and rituximab).

Figure 76:Conditional inference tree of 1st line treatment cessation, showing patterns of
treatment cessation within the economic model, (left to right) shortest to longest
times presented by Pfizer

The resulting treatment cessation curves for the model 1st line therapy were adjusted by Pfizer to reflect the increased risk of cessation in subsequent lines of therapy. The (log) time ratio for 2nd line vs 1st line therapy was estimated as -0.365 using the same methodology of patient-level dataset generation as described above, with data taken from DANBIO.²⁵² This effect was applied in all subsequent lines of therapy and to all therapies (including cDMARDs). Figure 76 presents a comparison of original data and model output. Note that the model output here does not include the effects of the treatment discontinuation rule. The model by default actually models time to start of next therapy (rather than end of current therapy); in order to provide a representative comparison, the time between cessation of rituximab therapy and the start of the next therapy was ignored in the generation of Figure 77 The model was able to recreate the effects of 2nd and subsequent line treatment cessation accurately.

Figure 77: Treatment cessation in second and subsequent lines estimated by Pfizer

Figure 1 Drug survival during the first and second treatment of all switchers (n = 235) and in the whole population (all rheumatoid arthritis patients receiving their first biological therapy, n = 1021). Kaplan-Meier plots are shown.

Treatment cessation data used in the model is presented in Table 121. Times were generated stochastically for each patient using a random number combined with the inverse survival distributions.¹⁷³

Table 121:Log-logistic survival models for all-cause treatment cessation as estimated by
Pfizer

Abbreviations: SE, standard error; † Unless specified, the relative treatment effect was assumed to be 0.000. ‡ Also used for certolizumab pegol and golimumab.

6.2.14.5 Roche

The Roche model assumes that all patients receive each treatment for a minimum of one cycle, until response is evaluated. This is consistent both with previous evidence submissions and with the available efficacy evidence. At 6 months patients will continue on their first therapy, providing they achieved a response greater than or equal to ACR20. Therapy is stopped for a non-responding patient, and they move on to the next drug.

Soliman and colleagues published an analysis of treatment duration using British Society for Rheumatology Biologics Register (BSRBR) data (large cohort with $N=10,396^{243}$). A proportion of these patients do not receive any concomitant DMARD treatment (32.1% N=3,339) and this fact was

used in the economic analysis as a basis for estimating the withdrawal risk of patients receiving biologic monotherapy.

Roche provided a Kaplan-Meier curve showing treatment persistence with anti-TNF. A Weibull and an exponential model were explored to derive a discontinuation rate from the Kaplan-Meier curve. Both models appear to overestimate discontinuation. Roche assumed that the steep rate of discontinuation in the first 2 years reflects the "non-responders", whereas the flat rate after 2.5 years reflects the "good-responders". Roche fitted an exponential distribution to the Kaplan-Meier curve after the first 2.5 years and used that as the probability of discontinuation from treatment for patients with initial response; annual rate of 0.098 (R^2 =0.99), 6-month probability of 0.05.

Figure 78: The Weibull and exponential model fitted by Roche to data from Soliman et al.

An adjustment to these curves is based on data from Anderson et al.,²⁵⁶ a study that explores predicting factors of response to treatment in rheumatoid arthritis. The study suggests that disease duration is one of the most important factors predicting response. Anderson analysed data from randomised control trials of drugs or devices in RA, and found that the disease duration effect on odds of response was 0.98 per extra year of disease duration. This is not included in the base case but has been tested in the sensitivity analysis.

6.2.14.6 UCB

UCB present data on the risk of treatment discontinuation due to adverse events explicitly and due to all causes. The discontinuation due to adverse events was denoted academic-in-confidence.

For all discontinuations the time spent on treatment was based on values from a study including over 2,300 patients treated with a TNF- α inhibitor over nine years (DuPan et al. 2009²⁴⁵). Results from this study showed that the median time on treatment with a TNF- α inhibitor was 37 months (3.08 years). The same treatment duration was assumed for all biologics.

6.2.15 Rebound post treatment

All Interventions

Following the cessation of treatment a patient's HAQ score is updated to reflect the loss of HAQ improvement on the previous line of therapy. MSD, Pfizer, Roche and UCB conduct sensitivity analyses around this assumption. UCB assume that the loss of efficacy from the previous treatment and the gain in efficacy from the subsequent treatment happen simultaneously.

6.2.16 Assumed NHS costs per HAQ band.

The hospital costs assumed to be associated with HAQ score in each model are reported in this section. In summary a number of different sources are used, the data have been graphed in Figure 79. The data from MSD have been omitted as this is based on a more complex formula incorporating factors such as: age, disease duration and previous number of DMARDS and cannot be easily summarised. Pfizer and UCB purport to use the same source and the reason for the slight discrepancy is unclear.

Figure 79: A summation of the hospital costs assumed associated with each HAQ band

6.2.16.1AbbVie

AbbVie report that patients with more severe symptoms of joint disease are more likely to be hospitalised and may require surgical procedures such as joint replacement. Disease related hospital costs were estimated based on the Norfolk Arthritis Register (NOAR) database²⁵⁷ and multiplied by National Reference costs.²⁵⁸ The resource use for HAQ costs, assumed by AbbVie are given in Table 122.

HAQ band	Total Cost
0.0 < 0.5	£167.41
0.5 < 1.0	£102.54
1.0 < 1.5	£364.68
1.5 < 2.0	£523.68
2.0 < 2.5	£1,246.26
2.5 < 3.0	£2,687.97

Table 122:The hospital costs by HAQ band assumed by AbbVie

6.2.16.2 BMS

BMS assume a cost per unit HAQI score, to incorporate costs for hospitalisation and joint replacement based on Malottki et al.²²² This was inflated to $\pm 1,245$ per HAQ unit score to reflect 2011/12 prices.²²⁵

6.2.16.3 MSD

Data from Brennan et al.,¹⁷⁶ were used to estimate the number of hospitalisations within the UK for every cycle of the model dependent on a number of characteristics, including TNF α inhibitor treatment which is used as a proxy for biologic DMARD treatment. The coefficients reported in Brennan are reproduced in Table 123. Costs of an inpatient day were estimated from NHS reference cost 2010-2011 (non-elective inpatient PA34B) with a mean of £517.

Table 123:Multivariate regression used by MSD to estimate the number of days of hospital
stay

Independent variable	Coefficient
Intercept	0.2351
Utility at baseline	-0.5467
Age (years)	0.0078
Disease duration	0.0075
Previous number of DMARDs	0.0648
Anti-TNF	-0.062

6.2.16.4Pfizer

Direct annual costs of medical resource use, stratified by HAQ score, were uplifted²²⁵ to 2011/12 prices from estimates provided by Kobelt et al, 2002,²⁵⁹ derived from a UK observational database (The Early Rheumatoid Arthritis Study). Pfizer considered these data to be the most appropriate because it involved a multifaceted approach from the perspective of the NHS. Approaches to estimating costs in other identified sources were more restrictive in the items included. For example, Brennan et al.,¹⁷⁶ included only inpatient and monitoring costs.

These costs encompassed a broad range of resource use including hospitalisations, surgical interventions, outpatient visits, medication, and drug monitoring. The analysis did not include the costs of lost productivity, which have been used previously (220), which do not meet the NICE reference case (217). Alternative cost scenarios were considered in scenario analysis, including those used by Malottki et al.²²²

HAQ score interval	Mean annual costs
< 0.6	£1,138
0.6 < 1.1	£2,922
1.1 < 1.6	£1,938
1.6 < 2.1	£2,862
2.1 < 2.6	£3,153
≥2.6	£2,500

 Table 124:
 The assumed annual costs of RA associated with HAQ score assumed by Pfizer

6.2.16.5Roche

It is assumed that patients often require inpatient care associated with RA in addition to the NHS resources utilised for drug administration and routine patient monitoring. Inpatient costs were calculated using the NOAR database. Inpatient hospitalisation was grouped by six HAQ score bands and are shown in Table 125.

HAQ Band at	Patients	Patients with		Number of days in hospital in the			
Registration	in band	inpatient stay		following 12 months			
	Ν	n	%	Mean	Median	IQR	Range
0.0 < HAQ score < 0.5	326	7	0.02	0.26	0	0-0	0-26
0.6 < HAQ score < 1.0	800	16	0.02	0.13	0	0-0	0-21
1.1 < HAQ score < 1.5	386	11	0.03	0.51	0	0-0	0-83
1.6 < HAQ score < 2.0	229	12	0.05	0.72	0	0-0	0-25
2.1 < HAQ score < 2.6	127	25	0.13	1.86	0	0-0	0-48
2.6 < HAQ score < 3.0	148	31	0.21	4.16	0	0-0	0-50

 Table 125:
 The inpatients visit by HAQ score assumed by Roche

The method to incorporate resource utilisation in this analysis follows Kobelt and colleagues.^{260,261}

Each HAQ score category was assigned an inpatient cost of $\pounds 240.00$ per day which is multiplied with the utilisation factor corresponding to each HAQ score category. The resulting inpatient resource utilisation values used in the analysis is summarised in Table 126. Note the Assessment Group have altered a typographical error in the last column (which read $\pounds 62.40$) and have changed the term per cycle (which is six months in the Roche model) to annual costs.

HAQ scores	0<0.5	0.6<1	1.1<1.5	1.6<2.0	2.1<2.6	2.6<3.0
Inpatient cost	£62.40	£31.20	£122.40	£172.80	£446.40	£998.40
per year						

 Table 126:
 The inpatient costs assumed by HAQ score by Roche

6.2.16.6 UCB

Additional costs by HAQ-DI category, used by UCB were taken from a study by Kobelt et al.²⁵⁹ In this study, a cohort of 916 patients in the UK was followed up for a mean of 7.8 years. Costs included the use of healthcare resources (direct) and loss of work capacity (indirect). Regression analyses were performed according to patients' HAQ-DI categories. Values were stated to be converted to Great British Pounds (GBP), although it is unclear why this was necessary given a UK cohort and inflated to a cost year of 2012.²²⁵ The costs are applied at each cycle within the model, based on the HAQ score of each health state at each time-point. Only direct costs were included in the base case analysis, although the indirect costs were taken into account in a sensitivity analysis. The Assessment Group noted a slight discrepancy between the numbers reported by *UCB* and those used in the model. These are reported in Table 127.

HAQ category	Direct costs (used in base case)	Direct Values used in the model	Total costs including indirect costs (used in sensitivity analyses)
<0.6	£1,102	£1082	£1,212
0.6 - 1.1	£2,827	£2,777	£5,000
1.1 - 1.6	£1,876	£1842	£4,902
1.6 - 2.1	£2,769	£2719	£7,388
2.1 - 2.6	£3,051	£2996	£10,105
≥2.6	£2,419	£2376	£9,781

 Table 127:
 Costs by HAQ-DI category

6.2.17 Utility related to HAQ

This section details the utility values used in the models and a summary of the studies used in the submissions. Figure 80 provides a graphical estimation of the relationship between HAQ and utility assumed in the manufacturers' models. Data from UCB are not shown as UCB use EQ-5D data collected in the trial for ACR and EULAR categories and base utility around response categories.

Figure 80: The relationship between HAQ and utility assumed in the manufacturers' models

6.2.17.1 AbbVie

The utility values used in the base case analysis by AbbVie were calculated using an equation reported within a poster²⁶² which maps between HAQ and EQ-5D, according to the UK specific EQ-5D tariff derived by Dolan.²⁶³

Both linear and non-linear equations for mapping HAQ to EQ-5D were presented. Using the linear utility mapping equation it is not possible for patients to achieve a negative utility, whereas the non-linear utility mapping equation relates a HAQ-DI score greater than approximately 2.7 to an EQ-5D score of less than zero.

Several studies examining quality of life in patients with RA indicate that severe RA health states can be associated with negative utility values indicating that the non-linear mapping equation more accurately represents the relationship between HAQ and quality of life in patients with very severe RA and functional impairment.²⁶⁴⁻²⁶⁷ This is supported by Ducournau²⁶² and colleagues who report that the inclusion of a non-linear term resulted in an improved fit, and that the non-linear term was a significant coefficient. Previous analyses have also suggested a non-linear relationship between HAQ-DI and utility in RA patients.²⁶⁸

The main report provides no details whatsoever on issues required to judge the appropriateness or otherwise of the statistical models. No details of how uncertainty in the estimates was propagated in the model, if at all, are provided. No details are provided either on the data used to estimate the relationship, or the performance of the models in that dataset. The appendix reports an additional model from the same dataset that also includes age as a covariate, though the coefficient is quite small. No details are given as to why this was not used.

The provided poster of the Ducournau et al. reference ²⁶² gives little additional detail. The overall numbers of patients reported in the trials are reported but no details on the numbers of observations used in the statistical analyses are provided.

The quadratic mapping equation was therefore selected for the base case analysis while the linear mapping equation was examined in sensitivity analyses.

The model used to calculate utility values in the base case analysis is:

$$EQ - 5D = 0.804 - 0.203 \times HAQ - 0.045 \times HAQ^2$$

In order to investigate the impact of the quadratic term on the results of the cost-effectiveness analysis, a sensitivity analysis was conducted using the linear regression model reported by Ducournau et al.

The linear regression model used in the sensitivity analysis was:

$$EQ-5D = 0.89 - 0.28* HAQ-DI$$

6.2.17.2BMS

The HAQ score is converted into a utility value using the mapping algorithm used by Malottki et al (2011^{222}) :

$$EQ - 5D = 0.804 - 0.203 \times HAQ - 0.045 \times HAQ^2$$

The report does not state whether the parameter uncertainty in this regression was taken into account (e.g. by using the variances /covariances) or if the error terms were also included in order to reflect the additional heterogeneity in the patient level sample. BMS consider a sensitivity analysis that uses an alternative linear regression from Malottki et al.,²²² which excludes the quadratic term.

Malottki et al.,²²² report this regression as "Birmingham analysis of dataset from Hurst.²³³" Only confidence intervals on the coefficients are reported, not the covariances. Hurst et al is a study from

1997 of 233 RA patients. Note that in their regression work they also find that pain as well as HAQ score are significant predictors of EQ5D. No detail of model fit is provided.

6.2.17.3 MSD

The quality of life equations used in the MSD submission is provided in Table 128 with reference to Chen et al.¹²³ It is not clear if the uncertainty, and covariance in the estimated coefficients was considered in sensitivity analysis.

Table 128:	The quality	of life equations	used in the MS	D submission
-------------------	-------------	-------------------	----------------	--------------

	Regression estimate	SE
Constant	0.862	0.034
Coefficient for HAQ score	-0.327	0.0201

6.2.17.4 Pfizer

The primary analysis in all populations used the algorithm derived by Malottki et al.²²² The equation for this is:

$$EQ - 5D = 0.804 - 0.203 \times HAQ - 0.045 \times HAQ^2$$

Pfizer undertook a systematic review of mapping studies in RA (Section 4.3.3.2.2). Many studies were discarded because the studies were conducted using patients from a non UK patient population.

The Assessment Group comment that there is no requirement in the NICE Methods Guide (either version 2008²⁶⁹ or 2013²⁷⁰) for patients to be selected from the UK, nor is there any obvious theoretical reason why this should be the case. The Guide requires that the valuations of health states described by these patients are drawn from the UK, and in RA this would be appropriately achieved by using the UK tariff of the EQ-5D instrument.

The use of this criterion in their selection of studies is therefore misguided.

Three studies remain in Pfizer's Table 50: Hurst et al.,²³³ (and the subsequent fitting of a quadratic equation to the same data in Malottki et al.,²²²), Bansback et al.,²⁷¹ and Hernandez et al.²⁷² The submission uses the Malottki equation as the base case and the original Hurst et al regression in scenario analysis. Table 50 provides their rationale for discarding the Bansback et al and Hernandez et

al studies. Further details are given for each of these studies below but some key points require addressing here:

The reporting of the characteristics of these three studies is misleading:

- Bansback et al is discarded on the basis that it includes both UK and Canadian patients. However, it is clearly stated that the UK tariff is applied to the EQ-5D analysis and therefore the criticism is misguided.

- Hurst is claimed to have "Relevant summary statistics reported" whereas Hernandez et al is "The sample of the statistical analysis is not clearly stated" In fact the sample of patients is fully described in the accompanying clinical trial paper referred to in the manuscript. Critical to the selection of an appropriate statistical model is the distributional characteristics of the dependent variable – this is not reported in Hurst et al.²³³

- Doubt is cast on the Hernandez et al results since the patients are defined as having early RA at baseline which may not be generalizable to more established disease. However Hurst et al; comprises a mixed population of both early and late stage disease, there is a clear relationship between patient degree of functional severity and disease duration (Table I), but there is no statistically significant relationship between duration and EQ5D (Table V) and nor does it feature in any of the regression analyses (though the study may be too small to detect any effect). It is therefore difficult to see how the same criticism of the relevance of the Hernandez et al paper to the current decision problem does not also apply to the Hurst et al analysis.

- The most important issue is stated as VAS pain is not estimated over time, therefore did not support the current model approach. For clarity, the Hernandez et al work did include pain score as a separate covariate alongside HAQ because a much more powerful model results (this was also found by Hurst et al). It is the Pfizer cost effectiveness model that does not consider pain and therefore was considered incapable of using the results, though of course a HAQ based model could be adapted to also include the assessment of pain.

6.2.17.5Roche

The method to assign utility weights to simulated patients and to derive QALY outcomes in the model is the same as used in our TCZ and MTX combination therapy NICE submission (2011). The analysis uses a mechanism of mapping utility from patient HAQ score. This technique is also similar to previously published cost-utility studies and reimbursement submissions of biologic treatments in RA [Bansback 2005], [Brennan 2004]. A description of the methods is presented in the Appendix.

The base case analysis uses a quadratic equation to map HAQ to utility: $EQ5D = 0.82 - 0.11*HAQ - 0.07*HAQ^2$ (p-value < 0.0001; for both coefficients) The estimates come from two phase 3 trials (OPTION¹³⁶ and LITHE²⁷³). The numbers within the analyses are not reported, nor is any information on the distribution of the data. Only p-values are given for the estimated coefficients: no standard errors or confidence intervals. There is no information that allows one to judge the fit of the model to the actual data. Roche compared HAQ and HAQ^2 models, and one with age (not age^2). Roche found the age coefficient was very small (surprisingly and not consistent with most other findings that EQ5D is strongly related to age) so dropped these analyses.

The model with HAQ^2 is selected because it has a better fit, but this is not assessed using any kind of penalised likelihood test. In fact their chi-squared test is equivalent to the p-value on the HAQ^2 coefficient and not appropriate for comparing models. This is important because adding an additional covariate will improve fit, but it is not good practice to simply improve fit by adding covariates: this risks losing generalisability.

In sensitivity analysis three alternatives are tested, though it is not reported where they have come from except the last which is based on Hernandez Alava et al.,²⁷² however, the uncertainty in the coefficients were not used.

6.2.17.6 UCB

UCB have a different model structure to the others in that they are basing it predominantly around response categories within a Markov framework.

This is done in several steps:

Critically, in the severe disease population:

i) Initial response is defined in terms of ACR category and a mean EQ5D improvement estimated from a linear regression using trial data from the RAPID^{139,140} RCTs. No information on key statistics such as fit, sample was provided making it impossible to judge appropriateness or otherwise. It was unclear how PSA implemented nor how additional covariates were selected or used.

ii) Continued improvement in HAQ is converted to EQ-5D score from Bansback et al 2006.²⁷⁴

In the moderate disease population:

i) Initial response is defined in terms of EULAR category. Regression analysis is used to estimate EQ5D change by EULAR category based on data from the CERTAIN study.⁷⁹ No details are given. Different estimates are made according to the treatment strategy i.e. this is not assumed to be a relationship that is independent of treatment.

ii) The same Bansback et al. estimate is then used for other elements of the model.

Summary of studies used in submissions:

Hurst et al.,²³³ and Malottki et al. ²²² are used as the base case by BMS, MSD and Pfizer, and used in sensitivity analysis by tocilizumab.

Hurst et al. recruited 233 patients with RA from Scottish RA outpatient departments. They also aimed to recruit more severe patients from inpatients and via GPs and residential care. They failed to recruit desired numbers of patients into functional severity class 4. The paper reports 3-month follow up data and compares it to baseline data. There is no combined analysis.

The paper does not display the distribution of HAQ or EQ5D tariff score.

Linear regression was used to estimate EQ-5D as a function of HAQ and other covariates, with stepwise regression used to select variables.

The reported model for EQ-5D at three months includes HAQ, HAQ mood score, pain VAS, disease activity and ESR.

The simple linear model that only uses HAQ as an explanatory variable is not reported in the Hurst et al paper but is reported in Chen et al.,¹²³ who were supplied with the Hurst et al dataset. They report no details about the sample used (whether this was identical to that reported in the paper), its spread, how repeated observations were dealt with, the distribution of the explanatory variable and its range, how the model performed in terms of fit, bias, predictions outside the feasible range. No details of the uncertainty in the estimated coefficients is provided by Chen et al. Malottki et al.,²²² is an update from the same group and they similarly report no details on any relevant information required to make a judgement as to the appropriateness or otherwise of the statistical model. The only change made is the addition of a quadratic term.

6.2.18 The assumed costs and disutilities associated with adverse events

The assumptions regarding adverse events within each submission is detailed in this section. In summary, only two of the six manufacturers explicitly included the costs of SAEs within the submission. These were AbbVie (\pounds 4568 per episode) and Pfizer (\pounds 1497 per episode) with Pfizer only examining this within a sensitivity analysis.

Only Pfizer included disutility associated with a serious adverse event, assuming a disutility of 0.156 for a period of 28 days, equating to approximately a 0.012 QALY loss.

Data on the rates of adverse events are summarised in the section entitled 'Time to discontinuation of treatment'.

6.2.18.1 AbbVie

AbbVie taken into account serious infections are in the model, citing the important consequences arising in terms of resource utilisation following serious infection. It was assumed that mild or moderate AEs had minimal impact on a patient's quality of life and have minimal cost implications. The baseline annual risk of serious infections under treatment with non-biologic DMARDs was extracted from a prospective observational study using BSRBR²⁷⁵ data and assumed to be the same for all non-biologic DMARDs.

Baseline values for conventional DMARDs were extracted from BSRBR data, the risk of serious infections for biologic treatments being adjusted through risk parameters derived from a meta-analysis of safety parameters from clinical studies of biologics used in majority in RA.

Risk of serious infections under treatment with biologics was derived using odds ratios of serious infections of biologics versus control treatment derived from a systematic review and meta-analysis of 160 randomised clinical trials by the Cochrane collaboration (erroneously referenced as Hetland et al²⁴⁴). Although the meta-analysis includes trials of biologics in indications other than RA (but excluding HIV), the majority of trials have been conducted in RA, and AEs are considered to happen irrespective of indication.

To calculate the risks of serious infections under treatment of biologics the baseline risk for DMARDs was converted to odds, the odds for each respective biologic were calculated using the odds ratios which were subsequently converted to risks. Serious infections risks employed in the base case analyses as well as odds ratios employed to estimate these are displayed in Table 129. The Assessment Group comment that the odds ratios shown in Table 129 do not match Figure 4 in the most recent version of Singh et al.²⁷⁶

Treatment	Risk	Odds Ratio ^b
DMARDS (MTX, MTX+HCQ,	0.031493 ^a	Reference treatment
SSZ+HCQ, LEF, SSZ, CYC, HCQ		
ABA (+/-MTX)	0.018198	0.57
ADA (+/-MTX)	0.035140	1.12
ETA (+/-MTX)	0.033320	1.08
INF (+/-MTX)	0.045027	3.51
RTX (+/-MTX)	0.030578	1.06
GOL (+/-MTX)	0.040259	1.29
TOC (+/-MTX)	0.048867	1.45
CTZ (+/-MTX)	0.102444	0.97

 Table 129:
 The risk of serious infections assumed in the AbbVie model

ABT = abatacept; ADA = adalimumab; CTZ = certolizumab; CYC = ciclosporin; ETN = etanercept; GOL = golimumab; HCQ = hydroxychloroquine; IFX = infliximab; LEF = leflunomide; MTX = MTX; RTX = rituximab; SSZ = sulfasalazine; TCZ = tocilizumab Source:

a. Galloway 2011²⁷⁵

b. Singh et al. 2011²⁷⁶

A sensitivity analysis was conducted setting the risk of adverse events for etanercept, adalimumab and infliximab to 0.03767, 0.04075 and 0.04075 respectively (higher), based on the Galloway BSRBR data. Data are not available for other biologics from this BSRBR analysis.

The cost of serious infections was obtained from NHS reference costs and was assumed to be $\pounds4,568.38$ per episode of care corresponding to the elective spell tariff of inflammatory spine, joint or connective tissue disorders with major complications (HD23A). The mean length of stay corresponding to the elective spell tariff was 8.2 which was comparable to the median of seven days suggested by Galloway²⁷⁵ and colleagues used to derive baseline AE risks. Despite commenting on the effect on patients on serious infections no disutility associated with serious AEs were used.

6.2.18.2BMS

The probabilities of adverse events used within the BMS model are shown in Table 130. The source for these data was not provided in the submission. AEs only result in discontinuation of present treatment. There are no cost implications, not explicit utility implications.

	At Month 6/Week 24	
Treatment	Probability of	
	adverse event	
IV ABT	0.023	
SC ABT	0.016	
ADA	0.041	
ETN	0.030	
IFX	0.086	
TCZ	0.041	
GOL	0.020	
CTZ	0.096	

Table 130: The assumed probability of adverse events used in the BMS models

6.2.18.3 MSD

Adverse events are incorporated into the model based on the proportion of patients who discontinue treatment due to adverse events in the first 24 weeks. (Figure 81)

Figure 81: Odds Ratio of discontinuations due to adverse events in cDMARD experienced patients assumed by MSD

Comparator	Odds Ratio (95% CrI)	Odds Ratio (95% Crl)
vs. Placebo + MTX vs. Etapercept 25mg + MTX		1.80 (0.61 to 5.76)
vs. Abatacept 10mg_kg + MTX		1.68 (0.42 to 7.05)
vs. Etanercept 25mg	>	1.61 (0.40 to 7.76)
vs. Adalimumab 40mg + MTX	>	1.51 (0.40 to 6.91)
vs. Placebo	>	1.48 (0.32 to 7.99)
vs. Certolizumab 200mg	< <u> </u>	1.12 (0.16 to 9.46)
vs. Tocilizumab 8mg_kg + MTX	$\leftarrow \circ \rightarrow$	1.11 (0.15 to 10.2)
vs. Abatacept 10mg_kg	0>	1.09 (0.21 to 6.91)
vs. Tocilizumab 8mg_kg		1.02 (0.20 to 6.47)
vs. Infliximab 3mg_kg + MTX		0.94 (0.25 to 3.87)
vs. Abatacept 125mg + MTX	$\leftarrow \circ \rightarrow$	0.87 (0.16 to 5.77)
vs. Adalimumab 40mg	< − 0	0.60 (0.10 to 4.06)
vs. Certolizumab 200mg + MTX	<	0.55 (0.07 to 3.78)
	0.2 5	
	Favours comparator Favours golimuma	ıb
Adverse events are assumed to be class related therefore the costs and utility outcomes are assumed to be equivalent between the biologic DMARDs. This rate does not appear to be tabulated in the submission. No costs or disutility associated with adverse events are included in the MSD model although MSD comment that it is possible that adverse event disutility associated with rheumatoid arthritis treatment was already incorporated into the mapping equation from HAQ to utility.

6.2.18.4Pfizer

Pfizer's base case did not model AEs, with the manufacturer noting that several manufacturers' submissions for NICE appraisals RA have not modelled AEs.^{224,229,230}

A scenario analysis including serious infections was performed. The medical resource use estimates derived from data presented by Kobelt et al.,²⁵⁹ contain costs of hospitalisations, and therefore AEs were not concluded within the primary analysis in order to avoid any 'double-counting' of these costs (218). Serious infections were selected for the model as opposed to, for example, serious adverse events [SAEs] as HRQL consequences associated with infection in alternative populations has been well documented.²⁷⁷ Following a serious infection, the Summary of Product Characteristics for all bDMARDs stipulates treatment cessation, which is not the case for other SAEs. Pfizer argue that the treatment of other AEs is unlikely to utilise a significant amount of medical resources or costs to the NHS.

Pfizer performed a network meta-analysis to estimate hazard ratios of serious infection (SI) vs cDMARDs. These hazard ratios were applied to the risk of serious infection for MTX,²⁷⁸ estimated from NMA, to provide the cumulative probability of serious infection and are replicated in Table 131. Golimumab and Infliximab were assumed to have the same rate of serious infection as adalimumab as all have a similar mode of action. Rituximab was assumed to have the same rate of serious infection as adalimumab as Tocilizumab as both are intravenously administered treatments.

	Severe DMARD-IR							
	Fixed effect NMA							
	Median OR	Lower 95% CrI	Upper 95% CrI					
ABT	1.282	-4.440	6.850					
ADA	2.945	0.075	9.150					
CZP	1.540	-4.007	7.334					
$\operatorname{CIC}^{\dagger}$	0.000	0.000	0.000					
ETN	1.108	-3.377	7.202					
ABS	0.556	-7.481	8.323					
GOL [‡]	2.945	0.075	9.150					
INF [‡]	2.945	0.075	9.150					
LEF^{\dagger}	0.000	0.000	0.000					
MTX	0.000	0.000	0.000					
PC^{\dagger}	0.000	0.000	0.000					
RTX [§]	1.213	-1.334	6.019					
SUL [†]	0.000	0.000	0.000					
TOC	1.213	-1.334	6.019					
Comb cDMARD ^{\dagger}	0.000	0.000	0.000					

 Table 131:
 Hazard Ratio of serious infection vs cDMARDs presented by Pfizer

Abbreviations: ABT, abatacept (iv);ABS, abatacept subcutaneous; ADA, adalimumab; cDMARD, conventional disease modifying antirheumatic drug; comb cDMARD, combination conventional disease modifying antirheumatic drug; CIC, ciclosporin; Crl, credible interval ; CZP, certolizumab pegol; ETN, etanercept; GOL, golimumab; INF, infliximab; LEF, leflunomide; NMA, network meta-analysis; OR, odds ratio; PC, palliative care; TNF- α , tumour necrosis factor alpha; RTX, rituximab; SUL, sulfasalazine; TOC, tocilizumab; TX, treatment; † assumed to be equivalent to MTX ; ‡assumed to be equivalent to adalimumab; [§] assumed to be equivalent to tocilizumab.

Cost of AEs

Within the adverse events scenario analysis, the cost of serious infection was assumed to be £1,497 based on relevant NHS costs, weighted by inpatient activity.²²³ Relevant HRG codes were identified based on Lekander et al, 2010.¹⁸⁷ Conservatively the without complications and contraindications HRG costs were used.

Currency Code	Currency Description	Activity	National Average Unit Cost
WA03Y	Septicaemia without CC	595	£1,752
DZ23C	Bronchopneumonia without CC	320	£1,438
LA04F	Kidney or Urinary Tract Infections with length of stay 2 days or more without CC	11601	£1,408
PA16B	Major Infections without CC	3866	£2,623
DZ22C	Unspecified Acute Lower Respiratory Infection without CC	3969	£1,079
DZ21K	Chronic Obstructive Pulmonary Disease or Bronchitis without NIV without Intubation without CC	10053	£1,266
Weighted av	erage cost		£1,479

 Table 132: Costs of serious infection (using in scenario analysis only)

Abbreviations: CC, complications; NIV, Non-invasive ventilation; source: NHS reference costs schedules 2010-11 (296)

Serious infections were assumed to persist for 28 days and confer a disutility 0.156 during that time.²⁷⁷

6.2.18.5Roche

The economic model does not assume a difference in adverse events between biologic treatments and assumes neither associated costs nor utility decreases associated with adverse events

6.2.18.6UCB

The costs and outcomes associated with adverse events were not included within the UCB model as it was assumed that all biologic therapies had similar safety profiles.

UCB comment on the robustness of Cochrane collaboration review of the adverse events of biologics regarding the adverse events of certolizumab pegol.²⁷⁹ This comment is marked academic-in-confidence.

6.2.19 Mortality Associated with RA

The assumptions regarding the effect of RA (and HAQ score) on mortality is detailed for each submission.

In summary there is no consensus of the most appropriate approach although four submissions assume that the relative risk of mortality per HAQ score can be determined from a paper by Wolfe et al.²⁸⁰

These data (as will be detailed in the methodology used by the Assessment Group) are dated and have been superseded, furthermore these data do not indicate whether the mortality risk is reversible following treatment which reduces a patient's HAQ.

Two submissions have assumed standardised mortality rate for patients with RA that is assumed independent of HAQ. Pfizer have commented that the impact of mortality on cost-effectiveness ratios have been shown to be marginal due to discounting.

6.2.19.1 AbbVie

The submitted model includes general population mortality rates based on UK life tables. However, mortality rates are assumed to be affected by HAQ score. The effect of HAQ on mortality was expressed as a hazard ratio of 1.33 per unit increase in HAQ score for both males and females taken from Wolfe et al.²⁸⁰ Sensitivity analysis varied the hazard ratio using values 1.00 and 1.88.

To implement this general population mortality risks (2009) were derived by fitting a Gompertz function to the data from gender specific UK life tables. The Gompertz function describes the exponential increase in mortality rates with increasing age in the absence of high rates of age-independent mortality.

$$S_t = e^{\left[-\frac{(e^{\gamma}-1)e^{\lambda}}{\gamma}\right]}$$

Table 133: The assumed Gompertz fit to standard mortality data within the AbbVie model

	Mean	SE	Correlation
Females			
λ	-10.688847	0.05353145	-0.92256954
γ	0.0951409	0.00077774	
Males			
λ	-9.6568365	0.05960999	-0.92256954
γ	0.08567803	0.00086605	

SE = standard error

The effect of HAQ on mortality was expressed as a hazard ratio of 1.33 per unit increase in HAQ score for males and females.¹⁸ Two major assumptions are made:

- 1. The hazard ratio was assumed to be linear in the HAQ.
- 2. A change in the HAQ has an immediate effect on the expected mortality (i.e., not only the baseline HAQ).

AbbVie present illustrative curves for mortality dependent on HAQ scores, which are reproduced in Figures 82 and 83.

Figure 82: An illustrative mortality survival curve presented by AbbVie for males

Figure 83: An illustrative mortality survival curve presented by AbbVie for females

The Assessment Group comments that no goodness of fit values for the Gompertz model compared with the life table data were presented.

6.2.19.2 BMS

The expected age at which a patient dies is based on age, gender and HAQ score and is recalculated every time the HAQ score changes. Once the age of the patient exceeds their assigned 'age at death', the patient dies. The age at death is calculated using conditional probabilities as follows replicating the methodology used by Barton et al.¹⁷³

Let *a* and *b* be the gender-specific survival probabilities for ages *x* and *y* respectively, for a member of the general population. The probability *p* that a patient of age *x* will survive to the age *y* is $p = \frac{b}{a}$.

However, it is assumed that there is an increased risk of death for patients with RA, modelled as a HAQ mortality ratio of 1.33 per unit HAQ.²⁸⁰ Therefore the probability *p* that a patient of age *x* will survive to the age *y* is $p = (\frac{b}{a})^{1.33 \times HAQ}$. This can be rearranged to give $b = a \times p^{\frac{1}{1.33 \times HAQ}}$.

The model looks up the survival probability for the current age of the patient for a, and uses a random number between 0 and 1 for p. The age at death is then calculated by looking up the age with the corresponding survival probability closest to b.

6.2.19.3 MSD

National life tables for the UK²⁸¹ were used to obtain age dependent mortality rates. Furthermore, the proportion of males and females recruited in the infliximab trials were used to estimate a weighted average mortality risk by sex. The mortality rates taken from national life tables were annual rates. They were adjusted to the model cycle length rate using the following equation:

$$r = -[\ln(1-P)]/t$$

The cycle rates were transformed into transition probabilities using the following equation:

$$p = 1 - \exp\{-rt\}$$

A standardised mortality ratio of 1.65 is used in the model although not referenced in the report. On examination of the Excel spreadsheet indicates that this comes from Chenhata et al 2001 and is not HAQ dependent.

6.2.19.4 Pfizer

Pfizer identify a number of economic evaluations that have assumed either a general risk of mortality associated with RA which is independent of disease severity measures^{176,185,187,195,230,282,283} or have

expressed mortality as dependent on functional status (typically as expressed by HAQ).^{166,173,186,191,224,229,284,285}

The Pfizer model adopts the former approach, assuming an age-gender specific standardised mortality ratio (SMR) from Brennan et al, 2007¹⁷⁶, who report age and gender specific standardised mortality ratios for a UK population.

This approach avoids the implicit assumption that mortality rates would differ between treatment sequences, but Pfizer report that evidence suggests that this approach may be conservative.^{286,287}

However Pfizer also note that assumptions on mortality have little impact on the cost-effectiveness ratios due to discounting citing both NICE TA130¹⁹⁹, Vera-Llonch et al, 2008.¹⁹⁵

Pfizer comment that the original data used to estimate the function relating HAQ to mortality is now nearly 20 years old and from a non-UK population.²⁸⁰ Therefore, the standardised mortality ratios used by Brennan et al, 2007¹⁷⁶ were applied to life-tables for England and Wales.²⁸¹ These values are replicated in Table 134.

 Table 134:
 The assumed standardised mortality ratios assumed by Pfizer

Age (years)	Male	Female
0 - 24	2.0	2.0
25 - 64	1.6	1.8
65 - 101	1.3	1.5

6.2.19.5 Roche

The probability of death used within the Roche model is based on an adjusted life table provided by the Office of National Statistics [Office of National Statistics 2010]. An RA risk multiplier related to each simulated individual's HAQ score is applied at each cycle based on work by Wolfe and colleagues [Wolfe 1994²⁸⁰], who studied the relationship between HAQ score and early mortality. Wolfe et al concluded that a relative risk of 1.33 (CI 1.099 – 1.61) was associated with each HAQ score point increase. The formula for converting this finding into an adjusted mortality risk (1.33HAQ) was derived from Barton et al. [Barton 2004¹⁷³].

6.2.19.6UCB

The probability of all-cause mortality was derived from age- and gender-specific mortality rates for the general population from the Government Actuary Department, adjusted by HAQ-DI score. The base case estimate of relative risk of death of 1.330 per HAQ-DI unit (95% CI 1.099 to 1.610) was taken from a 35-year cohort study of 3,501 RA patients in Canada.²⁸⁰ The starting mortality rate in

cycle 1 was adjusted to the age and gender distribution of the model population and further adjustment was made in each model cycle to represent the increased risk of death as patients became older.

Examination of the UCB model suggests that an exponential distribution is fitted to the life table data, and then a relative risk is applied. The exponential fits performed by the Assessment Group are shown in Figure 84 for females and Figure 85 for males. It is seen that the R^2 value is in excess of 0.99

Figure 84: The general mortality rate for females assumed by UCB, with an exponential fit to these data points

Figure 85: The general mortality rate for males assumed by UCB, with an exponential fit to these data points

6.2.20 Cost-effectiveness results within the manufacturers' submission

This section details the cost-effectiveness results reported by the manufacturers within their base cases for each of the analyses undertaken. Typically a large number of sensitivity analyses and descriptive features, such as cost-effectiveness acceptability curves, (CEACs) cost-effectiveness planes, and scatterplots are presented by the manufacturers. The Assessment Group has selected reported the key information for brevity reasons although has endeavored to report the salient conclusions.

Within the section the following terminology has been used to aid understanding; Analyses 1 to 6 represent the decision problems within the NICE scope.

Analysis 1: Population 2 in combination with MTX Analysis 2: Population 3 in combination with MTX Analysis 3: Population 1 in combination with MTX Analysis 4: Population 2 monotherapy Analysis 5: Population 3 monotherapy Analysis 6: Population 1 monotherapy Analysis 7: General RA Population who can receive MTX Analysis 8: MTX intolerant or contraindicated RA population

Table 135 provides a summary of each manufacturer's interpretation of the cost-effectiveness analyses for their product. Where a manufacturer did not undertake an analysis the cell is blank, otherwise the Assessment's Group conclusion of the manufacturers' interpretation of the cost-effectiveness is shown. Three manufacturers (AbbVie, BMS and MSD) have stated that the bDMARDs have similar cost-effectiveness ratios and should be analysed jointly; Pfizer and UCB make preferential statements about their interventions, whilst Roche have conducted an analysis that consists only of adding tocilizumab as a monotherapy as first-line before a non-NICE recommended sequence. There are few clear patterns exhibited in Table 157 except that all manufacturers believe their product in cost-effective in Analysis 1, and all bar UCB believe their interventions are cost-effective in Analysis 2. It is commented that the Analysis 1 undertaken by UCB omitted a comparison against a cDMARD only strategy. Given that the remaining manufacturers often commented that the ICERs between population 2 and population 3 were similar, it is possible that UCB would have estimated bDMARDs not to be cost-effective in population 3 were the correct comparison to be made.

These results will be affected by the consideration (or not) of patient access schemes, which are in place for abatacept i.v.; abatacept s.c.; certolizumab pegol; golimumab; and tocilizumab. AbbVie do not consider current patient access schemes. None of MSD, Pfizer and UCB includes patient access

schemes for tocilizumab or abatacept as these are commercial-in-confidence. BMS and Roche use patient access schemes for all relevant drugs in their analyses.

Data have been reproduced from a manufacturer's submission. In some cases it was not possible to align the abbreviations used with those used by the Assessment Group.

Table 135: A summary of each manufacturer's interpretation of the cost-effectiveness analyses for their product assuming a cost per QALY threshold of £30,000

				Manufa	cturer				
Analysis	Decision Problem	Scope	AbbVie (ADA)	BMS (ABT i.v.; ABT s.c.)	MSD (GOL)	MSD (IFX)	Pfizer (ETN)	Roche (TCZ)	UCB (CTZ)
1	Population 2 in combination with MTX	~	CE (Group)		CE (Group)	CE (Group)	Most CE		Most CE
2	Population 3 in combination with MTX	~	CE (Group)				CE (Sole)		Not CE
3	Population 1 in combination with MTX	~	Not CE				Not CE		
4	Population 2 monotherapy	~	Not CE				Most CE		Most CE
5	Population 3 monotherapy	~	Not CE						Not CE
6	Population 1 monotherapy	>	Not CE						
7	General RA Population who can tolerate MTX Δ			CE (Group)	CE (Group)	CE (Group)			
8	MTX intolerant or contraindicated RA population †							CE(Sole)	

Shaded cells indicate the intervention is not licensed in this population; blank cells indicate an analyses was not conducted

ADA = adalimumab; ABT = abatacept; GOL = golimumab; IFX = infliximab; ETN = etanercept; TCZ = Tocilizumab; CTZ = certolizumab pegol; MTX = MTX. iv = intravenous; s.c. = subcutaneous

 $^{\Delta}$ In essence, analyses 1 and 2 combined † In essence, analyses 4 and 5 combined.

CE (Group) denotes the manufacturer is stating that the bDMARDs have similar incremental cost-effective ratios and that all are cost-effective compared with cDMARDs alone CE (sole) denotes the manufacturer did not consider other bDMARDs within the analyses

Most CE denotes the manufacturer is stating that their intervention is the most cost-effective bDMARD and that it is cost-effective compared with cDMARDs alone Not CE denotes the manufacturer does not claim the intervention is cost-effective compared with cDMARDs.

6.2.20.1 AbbVie

Within the AbbVie submission the Assessment Group notes that abatacept s.c. has not been included, that the responder criterion is ACR50 and that the patient access schemes in place for some interventions have not been included.

Despite performing probabilistic sensitivity analyses (PSA) AbbVie present deterministic results in the base case tables. The sequence numbers shown in the Abbvie results are aligned with those reported in Section 6.2.2.2.

The incremental cost-effectiveness analyses are shown in Table 136 for Analysis 1 and Table 137 for Analysis 2. CEACs from the probabilistic analyses are provided in Figure 86 for Analyses 1 and Figure 87 for Analyses 2.

		Tot	tal	Incremental		ICER	
Sequence	Technology	Costs	QALYs	Costs	QALYSs	Versus	Incremental
						DMARDs	
1	cDMARDs	£36,636	1.747				
8	TCZ + MTX	£94,128	4.433	£57,492	2.686	£21,405	Ext
							Dominated
4	IFX + MTX	£97,366	4.981	£60,731	3.234	£18,781	Dominated
7	ABT + MTX	£116,143	5.036	£79,508	3.289	£24,172	Dominated
6	GOL + MTX	£95,754	5.107	£59,118	3.360	£17,594	Dominated
2	ADA + MTX	£94,618	5.230	£57,983	3.483	£16,650	Ext
							Dominated
5	CTZ + MTX	£97,091	5.288	£60,455	3.541	£17,071	Dominated
3	ETN+MTX	£96,785	5.377	£60,149	3.630	£16,571	£16,571

 Table 136:
 Incremental cost-effectiveness ratios for Analysis 1 as reported by AbbVie

Figure 86: Cost Effectiveness Acceptability Curves for Analysis 1 provided by AbbVie

 Table 137:
 Incremental cost-effectiveness ratios for Analysis 2 as reported by AbbVie

		Tot	tal	Incremental		ICER	
Sequence	Technology	Costs	QALYs	Costs	QALYSs	Versus	Incremental
						DMARDs	
1	cDMARDs	£36,521	3.510				
8	TCZ + MTX	£99,402	6.128	£62,882	2.619	£24,014	Ext
							Dominated
4	IFX + MTX	£103,092	6.680	£66,571	3.170	£21,000	Dominated
7	ABT + MTX	£123,455	6.735	£86,935	3.226	£26,952	Dominated
6	GOL + MTX	£101,605	6.799	£65,084	3.290	£19,784	Dominated
2	ADA + MTX	£100,495	6.914	£63,974	3.404	£18,792	Ext
							Dominated
5	CTZ + MTX	£103,093	6.974	£66,572	3.464	£19,217	Dominated
3	ETN + MTX	£103,015	7.061	£66,494	3.552	£18,721	£18,721

Figure 87: Cost Effectiveness Acceptability Curves for Analysis 2 provided by AbbVie

The incremental cost-effectiveness analyses for Analysis 3 are shown in Table 138 with the CEACs from the probabilistic analyses provided in Figure 88.

		Total		Incremental		ICER	
Sequence	Technology	Costs QALYs		Costs	QALYSs	Versus	Incremental
						DMARDs	
1	MTX	£27,076	5.104				
6	MTX + HCQ	£64,908	7.162	£37,832	2.058	£18,381	£18,381
5	GOL + MTX	£107,556	7.539	£80,479	2.436	£33,044	Dominated
3	ETN + MTX	£107,172	7.709	£80,096	2.605	£30,742	Dominated
4	IFX + MTX	£113,598	7.721	£86,522	2.618	£33,055	Dominated
2	ADA + MTX	£107,097	7.765	£80,021	2.661	£30,071	£69,971

 Table 138:
 Incremental cost-effectiveness ratios for Analysis 3 as reported by AbbVie

Figure 88: Cost Effectiveness Acceptability Curves for Analysis 3 provided by AbbVie

The incremental cost-effectiveness analyses are shown in Table 139 for Analysis 4 and Table 140 for Analysis 5. CEACs from the probabilistic analyses are provided in Figure 73 for Analyses 4 and Figure 74 for Analyses 5.

		To	otal	Incremental		ICER	
Sequence	Technology	Costs	QALYs	Costs	QALYSs	Versus	Incremental
						DMARDs	
1	cDMARDs	£29,905	2.686				
2	ADA	£51,019	3.278	£21,114	0.592	£35,641	Ext
							Dominated
5	TCZ	£75,098	3.573	£45,193	0.887	£50,972	Dominated
4	CTZ	£57,245	3.579	£27,341	0.893	£30,609	Dominated
3	ETN	£56,556	3.594	£26,651	0.908	£29,338	£29,338

 Table 139:
 Incremental cost-effectiveness ratios for Analysis 4 as reported by AbbVie

Figure 89: Cost Effectiveness Acceptability Curves for Analysis 4 provided by AbbVie

 Table 140:
 Incremental cost-effectiveness ratios for Analysis 5 as reported by AbbVie

		To	Total Incremental		mental	ICER	
Sequence	Technology	Costs	QALYs	Costs	QALYSs	Versus DMARDs	Incremental
1	cDMARDs	£30,113	4.319				
2	ADA	£53,107	4.907	£22,994	0.588	£39,083	Ext Dominated
5	TCZ	£79,158	5.197	£49,045	0.878	£55,844	Dominated
4	CTZ	£59,905	5.200	£29,792	0.882	£33,791	Dominated
3	ETN	£59,272	5.222	£29,159	0.903	£32,276	£32,276

Figure 74: Cost Effectiveness Acceptability Curves for Analysis 5 provided by AbbVie

The incremental cost-effectiveness analyses for Analysis 6 are shown in Table 140 with the CEACs from the probabilistic analyses provided in Figure 90.

		•					
		То	tal	Incremental		ICER	
Sequence	Technology	Costs	QALYs	Costs	QALYSs	Versus	Incremental
						DMARDs	
1	cDMARDs	£29,629	5.122				
2	ADA	£60,778	5.156	£31,149	0.034	£918,015	Dominated
3	ETN	£63,859	5.293	£34,230	0.170	£201,097	Dominated
4	SSZ+HCQ	£41,703	5.774	£12,074	0.651	£18,540	£18,540
	(followed						
	by ADA)						

Table 141:	Incremental cost-effectiveness	ratios for Anal	lysis 6 as rep	orted by AbbVie

Figure 90: Cost Effectiveness Acceptability Curves for Analysis 6 provided by AbbVie

AbbVie's interpretation of their cost-effectiveness results

AbbVie state that "the main results from the cost-utility model are:

- In the MTX-experienced patient population with severe disease activity (DAS28 > 5.1), adalimumab in combination with MTX is considered cost-effective, with a lifetime incremental cost per quality-adjusted life year (QALY) gained with respect to conventional DMARDs of £16,650. This is very similar to the estimated cost per QALY of etanercept (£16,571) and certolizumab (£17,071), both taken in combination with MTX.
- In the MTX-experienced patient population with moderate disease activity (3.2 < DAS28 ≤ 5.1), adalimumab in combination with MTX is considered cost-effective, with a lifetime incremental cost per quality-adjusted life year (QALY) gained with respect to conventional DMARDs of £18,792. This is very similar to the estimated cost per QALY of etanercept (£18,721) certolizumab (£19,217) and golimumab (£19,784), all taken in combination with MTX."</p>

Abbvie conclude that their "submission demonstrates that adalimumab in combination with MTX represents a clinical and cost-effective option for the treatment of RA patients with moderate and severe disease activity, for the NHS in the UK."

It is apparent that AbbVie therefore implicitly believe that adalimumab does not represent a costeffective first-line treatment in those patients who are MTX naïve nor when used as a monotherapy.

6.2.20.2 BMS

The submission by BMS only evaluated the use of bDMARDs in combination with MTX. The submission did not distinguish between patients with severe and moderate to severe RA, but evaluated these groups together. This did not meet the requirements of the scope and have been denoted as Analysis 7.

BMS present the disaggregated incremental costs and QALYs for the deterministic scenario, but not for the probabilistic values where only the ICER (and confidence interval around the ICER is provided. The Assessment Group note that the ICERs are lower for the probabilistic analyses than for the deterministic analyses.

The probabilistic ICERs detailed by BMS are shown in Table 141. These data are marked commercial-in-confidence. Figure 91 shows the CEAC generated by BMS

	ICER v DMARDs		
		95% CI Lower	95% CI Upper
	Mean	Bound	Bound
ABT i.v. + MTX			
ABT s.c. + MTX			
ADA + MTX			
ETN + MTX			
IFX + MTX			
TCZ + MTX			
GOL + MTX			
CTZ + MTX			

Table 141:The probabilistic ICERs for Analysis 7 provided by BMS

DMARDs: disease-modifying anti-rheumatic drugs; ICER; incremental cost-effectiveness ratio; IV: intravenous; QALYs: quality-adjusted life years; SC: subcutaneous.

Figure 91: Cost Effectiveness Acceptability Curves for Analysis 7 provided by BMS

BMS's interpretation of their cost-effectiveness results

BMS conclude that "the results demonstrate that all of the biologics have similar ICERs when compared to DMARDs. The ICERs remain similar in scenario analyses (except when PASs are not considered). This, coupled with the overlap in the probabilistic sensitivity analysis demonstrates considerable uncertainty as to which treatment is the most cost-effective option."

6.2.20.3 MSD

The two submissions (one for golimumab and one for infliximab) from MSD will be detailed individually in terms of the cost-effectiveness results. It is commented that for both submissions only Analysis 1 and Analysis 7 was undertaken. Analysis 7 does not meet the NICE scope as it combines RA patients with moderate to severe and severe disease.

The Assessment Group note that MSD makes not comment on the discrepant absolute QALY values in the submission (in the region of 8 for the golimumab submission and in the region of 6 for the infliximab report)

Golimumab

The Incremental analysis for Analysis 1 within the golimumab submission is reproduced in Table 142. Note that an additional column has been added to correctly calculate the incremental analysis. The CEAC for Analysis 1 is shown in Figure 92 The incremental analysis for Analysis 7 within the golimumab submission is reproduced in Table 143. Note that an additional column has been added to correctly calculate the incremental analysis. The CEAC for Analysis 7 is shown in Figure 93.

Infliximab

The Incremental analysis for Analysis 1 within the infliximab submission is reproduced in Table 144. Note that an additional column has been added to correctly calculate the incremental analysis. The CEAC for Analysis 1 is shown in Figure 94

The incremental analysis for Analysis 7 within the infliximab submission is reproduced in Table 145. Note that an additional column has been added to correctly calculate the incremental analysis. The CEAC for Analysis 7 is shown in Figure 95.

Table 142:	Incremental Cost-Effectiveness Results (DMARD Experienced Severe RA Patient Population Subgroup) provided by MSD in the
	golimumab submission

Technologies	Total costs (£)	Total QALYs	Incremental costs (£)	Incremental QALYs	ICER (£) versus Baseline (MTX)	MSD's Incremental analysis	Assessment Group's Incremental analysis
MTX	£56,036	6.425	-	-	-	-	-
GOL + MTX	£89,270	8.007	£33,234	1.582	£21,013	N/A	£21,013

 Table 143:
 Incremental Cost-Effectiveness Results (DMARD Experienced RA Patient Population) provided by MSD in the golimumab submission

Technologies	Total costs	Total	Incremental	Incremental	ICER (£) versus	MSD's	Assessment Group's
	(£)	QALYs	costs (£)	QALYs	Baseline (MTX)	Incremental	Incremental analysis
						analysis	
MTX	£56,382	6.706	-	-	-	-	-
IFX + MTX	£88,326	8.207	£31,944	1.501	£21,278	£21,278	Ext Dominated
ETN + MTX	£91,025	8.068	£2,699	-0.139	£25,429	Dominated	Dominated
GOL + MTX	£92,130	8.307	£1,105	0.238	£22,331	£4,631	Ext Dominated
ADA + MTX	£93,892	8.512	£1,762	0.205	£20,769	£8,589	Ext Dominated
CTZ + MTX	£97,469	8.890	£3,577	0.377	£18,817	£9,476	£18,817
TCZ + MTX	£100,702	8.495	£3,233	-0.395	£24,774	Dominated	Dominated
ABT i.v. + MTX	£105,102	8.100	£4,400	-0.395	£34,953	Dominated	Dominated
ABT s.c. + MTX	£118,036	8.100	£12,934	0.000	£44,232	Dominated	Dominated

Table 144:Incremental Cost-Effectiveness Results (DMARD Experienced Severe RA Patient Population Subgroup) provided by MSD in the
infliximab submission

Technologies	Total costs (£)	Total QALYs	Incremental costs (£)	Incremental QALYs	ICER (£) versus Baseline (MTX)	MSD's Incremental analysis	Assessment Group's Incremental analysis
MTX	£58,181	4.504	-	-	-	-	-
IFX + MTX	£84,007	5.539	£25,827	1.034	£24,968	N/A	£24,968

 Table 145:
 Incremental Cost-Effectiveness Results (DMARD Experienced RA Patient Population) provided by MSD in the infliximab submission

Technologies	Total costs (£)	Total QALYs	Incremental costs (£)	Incremental QALYsICER (£) versus Baseline (MTX)		Incremental analysis	Assessment Group's Incremental
							analysis
MTX	£57,376	4.791			-	-	-
IFX + MTX	£83,887	5.845	£26,511	1.054	£25,144	£25,144	Ext Dominated
ETN + MTX	£84,947	5.678	£1,059	-0.167	£31,065	Dominated	Dominated
GOL + MTX	£87,027	5.909	£2,080	0.231	£26,512	£9,010	Ext Dominated
ADA + MTX	£88,750	6.117	£1,723	0.207	£23,663	£8,305	Ext Dominated
CTZ + MTX	£93,696	6.519	£4,946	0.403	£21,011	£12,281	£21,011
TCZ + MTX	£94,777	6.065	£1,080	-0.454	£29,339	Dominated	Dominated
ABT i.v. + MTX	£97,346	5.710	£2,570	-0.355	£43,455	Dominated	Dominated
ABT s.c. + MTX	£108,181	5.710	£10,834	0.000	£55,234	Dominated	Dominated

Figure 92: Cost-Effectiveness Acceptability Curve for Analysis 1 within the MSD golimumab submission

Figure 93: Cost-Effectiveness Acceptability Curve for Analysis 1 within the MSD infliximab submission

MSD's interpretation of the cost-effectiveness results in both their golimumab and infliximab submissions

MSD state "These results indicate that golimumab / infliximab is a cost-effective treatment option for patients with moderate to severe RA who have had an inadequate response to conventional DMARDs. Due to differences in trial populations and design, using ICERs to 'rank' technologies should be approached with caution and we believe that the indirect comparison results indicate a class effect as no significant differences were identified between technologies. A casing [sic] point for this would be the placebo arm dropout in the certolizumab trials which would have acted to inflate the efficacy results for this technology."

MSD additionally state that "Compared to other published studies in literature our DMARD experienced results indicate similar ICERs for TNF α inhibitors compared to palliation. Our model derives many assumptions from the BRAM and thus the ICERs are in a similar range of those approved in recent NICE appraisals.

It can be seen that the ICER for golimumab / infliximab in the severe only subgroup (DAS > 5.1) is similar to the ICER derived for the moderate-severe population and as such golimumab / infliximab can be considered cost-effective in both populations and should not be limited only to the treatment of patients with severe disease."

6.2.20.4 Pfizer

Pfizer sent an addendum to the Assessment Group after detecting minor errors within their mathematical model. These errors only affected scenarios where patients were ineligible for rituximab plus MTX which are not summarised in this section.

Pfizer undertook Analyses 1 to 4. The results from these analyses are reproduced in Tables 146 to 149, with the CEACs reproduced in Figures 94 to 95.

			vs cDM	IARD	vs next le	ess costly	Incremental analysis
Strategy	Costs	QALYs	Inc costs	Inc QALYs	Inc costs	Inc QALYs	ICER
cDMARDs	£111,612	2.638					
IFX + MTX	£130,090	3.240	£18,478	0.602	£18,478	0.602	Extendedly dominated
ADA + MTX	£133,121	3.395	£21,509	0.756	£3,031	0.154	Extendedly dominated
CTZ + MTX	£135,304	3.768	£23,692	1.130	£2,183	0.374	Extendedly dominated
GOL + MTX	£136,452	3.470	£24,840	0.832	£1,148	-0.298	Dominated
ETN + MTX	£140,686	4.055	£29,074	1.417	£4,233	0.585	£20,520
ABT i.v. + MTX	£151,963	3.513	£40,351	0.875	£11,277	-0.542	Dominated
TCZ + MTX	£153,442	3.704	£41,830	1.066	£1,479	0.191	Dominated
ABT s.c. + MTX	£162,064	3.530	£50,452	0.891	£8,622	-0.174	Dominated

 Table 146:
 Severe DMARD-IR combination therapy incremental analysis presented by Pfizer

Figure 94: Cost-Effectiveness Acceptability Curve for Analysis 1 within the Pfizer submission

			vs cDMARD		vs next le		
Strategy	Costs	QALYs	Inc costs	Inc QALYs	Inc costs	Inc QALYs	ICER
cDMARD	£128,305	8.493					
ETN +							
MTX	£159,730	9.764	£31,425	1.271	£31,425	1.271	£24,727

Table 147:Moderate to Severe population combination therapy incremental analysis
presented by Pfizer

Abbreviations: cDMARD, conventional disease modifying antirheumatic drug; ETN, etanercept; ICER, incremental cost-effectiveness ratio; Inc, incremental; QALY, quality adjusted life year.

Figure 95: Cost-Effectiveness Acceptability Curve for Analysis 2 within the Pfizer submission

			vs comb cDMARD		vs next le		
Strategy	Costs	QALYs	Inc costs	Inc QALYs	Inc costs	Inc QALYs	ICER
cDMARD†	£108,488	4.754					
cDMARD	£112,462	4.615	£3,974	-0.139	£3,974	-0.139	Dominated
ETN + MTX	£150,095	5.965	£41,607	1.210	£37,633	1.350	£34,373

Table 148:Severe Naïve population combination therapy incremental analysis presented by
Pfizer

† Combination cDMARD

Stratogy	Costa			ADA	vs next less	Incremental analysis	
Strategy	COSIS	QALIS	Inc costs	Inc QALYs	Inc costs	Inc QALYs	ICER
cDMARD	£79,837	1.570					
ADA	£95,474	2.083	£15,637	0.513	£15,637	0.513	Dominated
ETN	£98,143	2.265	£18,306	0.695	£2,669	0.182	£26,335
							Extendedly
TCZ2	£115,782	2.642	£35,945	1.071	£17,639	0.376	dominated
TCZ1	£122,013	2.963	£42,176	1.393	£6,231	0.321	£34,227

 Table 149:
 Severe DMARD-IR monotherapy incremental analysis presented by Pfizer

Note in TCZ1 ETN was used as the next biologic; this was ADA in TCZ2

Pfizer's interpretation of their cost-effectiveness results.

Pfizer state that "the primary analysis demonstrated that, based on current NICE sequential guidance and comparisons made within the analysis, a strategy in which ETN is provided after the failure of two conventional DMARDs is the most cost-effective treatment strategy at a cost-effectiveness threshold of £30,000 per QALY in the Severe DMARD-IR combination therapy, Severe DMARD-IR monotherapy and Moderate to Severe populations. The results in a Severe-DMARD-IR population appear to be consistent with previously economic evaluations conducted from a UK perspective identified in the economic SR, when limited or no HAQ progression has been assumed for bDMARDs.

In the Severe Naïve population, the ETN strategy had an ICER of £34,373 versus combination DMARD strategy. This result appears to be different from a previous economic evaluation conducted from a UK perspective, which suggested ETN+MTX may be cost effective at a £30,000 threshold when no HAQ progression is assumed for ETN+MTX.¹²³ Difference in the economic evaluations results are likely to be partially explained by difference in discount rates used, as if the alternative discount rates used in Chen et al, 2006^{123} are implemented, then ETN+MTX does becomes a cost effective strategy at £30,000."

Pfizer report that the secondary analyses which were not shown in this summary that used strategies with alternative 2^{nd} line therapies and additional comparator strategies were "unable to change the conclusions of the primary analyses. The exception was the inclusion of an alternative 2^{nd} line therapy in the Severe DMARD-IR combination therapy population; in this analysis ETN became the optimal strategy at a cost-effectiveness threshold of £20,000 per QALY".

6.2.20.5 Roche

The Roche submission evaluated a sub-population not defined in the scope as an MTX intolerant or contraindicated RA population, which was in essence Analyses 4 and 5 analysed jointly. This was denoted Analysis 8.

Roche's base case evaluated only adding tocilizumab as the first-line treatment to an existing sequence. The Assessment Group comment that the existing sequence is not recommended by NICE as three bDMARDs were assumed, and also that sequences of treatment should have been evaluated. For these reasons the results presented by Roche should be treated with caution.

The probabilistic results are shown in Table 150. The CEAC in Figure 98

				ICER
	Standard	TCZ	Increment	(£per
	of Care	strategy	al Results	QALY)
Total QALYs	8.477	9.328	0.8503	
Total Cost	£123,390	£135,736	£12,346	£14,520

 Table 150:
 The probabilistic sensitivity results supplied by Roche for Analysis 8

Roche's interpretation of their cost-effectiveness evidence

Roche state that "the cost-effectiveness analysis results suggest that the use of first line tocilizumab for DMARD-IR rheumatoid arthritis patients who are intolerant or unsuited to MTX represents a cost-effective use of resources within the NHS. Overall, the results are robust to changes in cost and clinical parameters within the economic model, and moreover the ICERs remain cost-effective across a range of alternative methods of comparison (comparing sequences, comparing individual biologics with one another, comparing biologics to palliation alone)."

6.2.20.6 UCB

UCB presented analyses for the populations in the scope for which certolizumab pegol was licensed. These are Analyses 1, 2, 4 and 5. The Assessment Group comment that this analyses omits a fundamental comparison which is that of bDMARD vs cDMARDS. It is unclear whether the model submitted by UCB would estimate whether bDMARDs are cost-effective given that the remaining submissions comment that the ICER for population 2 is generally similar to that for population 3, and that UCB estimate that certolizumab is not cost-effective in population 3.

The base case results for Analysis 1 are given in Table 151, with the CEAC reproduced in Figure 99.

Therapy	Mean costs	Difference in costs (CZP vs. treatment)	Mean QALYs	Difference in QALYs (CZP vs. treatment)	ICER (CZP vs. treatment)	Incremental values	Probability of cost- effectiveness at WTP of £20,000/QALY (%)
Combinat	tion therapi	ies					
GOL + MTX	£126,900	£929	7.092	0.193	£4,822	Optimal at WTP threshold <£4,822	0%
CTZ + MTX	£127,829	-	7.284	-	-	Optimal at WTP threshold >£4,822	100%
ADA + MTX	£128,267	-£437	7.175	0.109	Certolizumab pegol dominates	Certolizumab pegol dominates	0%
IFX + MTX	£128,542	-£713	7.024	0.260	Certolizumab pegol dominates	Certolizumab pegol dominates	0%
ETN + MTX	£128,623	-£793	7.184	0.100	Certolizumab pegol dominates	Certolizumab pegol dominates	0%
TCZ + MTX	£139,532	-£11,703	7.106	0.179	Certolizumab pegol dominates	Certolizumab pegol dominates	0%
ABT + MTX	£143,982	-£16,152	7.008	0.276	Certolizumab pegol dominates	Certolizumab pegol dominates	0%

Table 151:Base case results for combination treatments (severe disease activity population)
provided by UCB

Figure 99: Base case cost-effectiveness acceptability curve for Analysis 1 produced by UCB

The results for Analyses 2 and 5 were combined in Table 152. No CEACs for these analyses were provided.

Table 152:	Base case results for combination treatments (moderate disease activity
	population) provided by UCB

Therapy	Mean costs	Difference in costs (CZP vs. placebo)	Mean QALYs	Difference in QALYs (CZP vs. placebo)	ICER (CZP vs. placebo)	Probability of cost-effectiveness at WTP of £20,000/QALY					
Combination cDMARDs therapies: Analysis 2											
Placebo + cDMARD	£90,241	-	8.760	-	-	100%					
CZP + cDMARD	£120,217	£29,976	9.387	0.627	£47,821	0%					
Combination MTX therapies: Analysis 5											
Placebo + MTX	£89,801	-	8.726	-	-	100%					
CZP + MTX	£116,603	£26,802	9.270	0.544	£49,226	0%					

UCB's base case results for Analysis 4 are provided in Table 153, with the CEAC shown in Figure 99.

Therapy	Mean costs	Difference in costs (CZP vs. treatment)	Mean QALYs	Difference in QALYs (CZP vs. treatment)	ICER (CZP vs. treatment)	Incremental values	Probability of cost- effectiveness at WTP of £20,000/QALY					
Monotherapies												
ADA	£121,595	£3,019	6.846	0.315	£9,587	Optimal at WTP threshold <£9,587	0%					
CTZ	£124,614	-	7.161	-	-	Optimal at WTP threshold >£9,587 and <£962,778	100%					
ETN	£127,185	-£2,571	7.163	-0.003	£962,778 ETN vs. CZP	Optimal at WTP threshold >£962,778	0%					
TCZ	£138,971	-£14,357	7.086	0.075	Certolizumab pegol dominates	Extended dominance by certolizumab pegol and adalimumab	0%					

 Table 153:
 Base case results for monotherapy treatments (severe disease activity population) provided by UCB

Figure 100: Base case cost-effectiveness acceptability curve for Analysis 4 produced by UCB

UCB's Interpretation of their cost-effectiveness evidence

UCB state that "the base case analysis of the severe disease activity population indicated that certolizumab pegol has the highest probability of being cost-effective of all the combination therapies and monotherapies considered, at all willingness-to-pay thresholds between £10,000 and £100,000 per QALY. At £20,000 per QALY, CZP in combination with MTX or as monotherapy is the most cost-effective treatment with a probability of 100%."

6.2.21 Budget Impact

This section details the budget impact analyses undertaken by the manufacturers. No comment will be made on the BMS, MSD or Roche submissions as these did not include budget impacts analyses. For brevity, only summary figures for the base case will be provided rather than the methods used in the calculations. In summary, each submission that the expenditure on RA interventions would likely increase due to the increased population that would be eligible if a positive recommendation was issued for the moderate to severe RA population

6.2.21.1AbbVie

Table 177 reproduces the budget impact estimated by AbbVie assuming adalimumab was used for all eligible patients. The initial year is inflated due to treating all incident cases.
Table 154:The incremental budget impact for adalimumab when used for eligible RA
patients with moderate and severe disease activity over the next 5 years in
England and Wales as estimated by AbbVie

	2013	2014	2015	2016	2017
Incremental annual budget impact for RA patients with moderate and severe disease activity	£258,556,867	£149,487,523	£153,870,726	£158,282,136	£162,723,747

6.2.21.2 Pfizer

Pfizer's summarised results of the number of patients requiring treatment each year is reproduced in Table 155.

	2014	2015	2016
Prevalence	58,050	58,526	58,993
Incidence	1,714	1,729	1,742
Total	59,764	$60,254^{\dagger}$	60,735

Table 155: The Number of patients requiring treatment each year as estimated by Pfizer

†rounded

6.2.21.3 UCB

UCB state that "It was estimated that the current use of the recommended biological therapy for the severe disease activity population would result in a budget impact of £225 million in 2013, rising to £234 million in 2017. A sensitivity analysis assuming an increased CZP use compared to the base case led to budgetary savings of £2.6 million over 5 years."

6.3 Independent economic assessment

Description of the Assessment Group's model

None of the models submitted by the manufacturers replicated the clinical reality within England and Wales to the satisfaction of the Assessment Group. Primarily this is because the majority of models assumed that the efficacy of the intervention was based on improvements in ACR, whereas NICE guidance has defined stopping rules where an intervention is stopped unless a DAS28 reduction of 1.2 points²⁷ is achieved. The criterion of achieving a 1.2 point reduction in DAS is associated with a good or moderate EULAR response.

Furthermore clinicians in the UK predominantly measure EULAR, rather than ACR responses; the use of EULAR is recommended by the BSR and British Health Professionals in Rheumatology (BHPR), who consider the EULAR response to be an evidence-based and validated measure of response to treatment.²⁸⁸

For these reasons the Assessment Group constructed a model where the assessment of treatment response was based upon EULAR response at six months. This also alleviates the need for assumptions to be made by decision makers regarding the proportion of patients who remain on treatment following each category of ACR response.

Two of the submissions, those by BMS²⁸⁴ and UCB²²⁹, did attempt to model reductions in DAS28, however neither was considered fully appropriate. The model by BMS did not assess all of the questions within the decision problem, had minimal information on the NMA performed and additionally was written in Simul8 (a discrete event simulation software which is not included in the list of current NICE recommended packages and thus this platform could not be used by the AG). The model by UCB was a Markov cohort model that treated all patients as homogenous and would not have the flexibility desired for employing patient level covariates to represent the heterogeneity of patient outcomes.

The description of the Assessment Group's model is conducted using the same heading as employed when describing the manufacturers' models, bar the cost-effectiveness results and cost implications headings that form separate sections of this report. Where appropriate reasons why the Assessment Group has taken a different approach to the manufacturers will be provided.

The Assessment Group was granted access to data provided by the BSRBR and also from the Early Rheumatoid Arthritis Study (ERAS) and the United States National Data Bank for Rheumatic Diseases (NDB) which were used to assess key model parameters and correlations. Specific systematic reviews were undertaken for specific parameters and when these produced relevant information the papers identified are discussed. Contact was also made with key researchers in the field to identify pertinent and / or ongoing research with preliminary findings in the public domain.

6.3.1 The decision problem addressed

The Assessment Group has undertaken evaluations of all the sub-populations defined in the scope which equate to the defined Analyses 1 to Analyses 6. The Assessment Group deviated from the scope for Population 1: this was deemed necessary as the defined populations were not exhaustive and did not specify into which population a patient who had received c-DMARDs but not MTX would fall. On clinical advice such patients were assumed to be MTX naïve. The decision problem addressed by the Assessment Group matches that undertaken by AbbVie and UCB (for the populations where certolizumab pegol is licensed.

6.3.2 The strategies modelled

This Assessment Group model considers strategies of sequencing treatments but acknowledges that due to the scope NICE can only make recommendations on the first-line use of bDMARDs. Therefore this report will assume that NICE guidance after the first biologic treatment is routinely followed. This means that rituximab with MTX will be used after failure of the first bDMARD should a patient be able to take MTX and following this a patient receives tocilizumab and MTX if not previously received.

For simplicity, it was assumed that it would be known whether a patient required monotherapy at the time of the first bDMARD initiation based on their experience to cDMARDs and also that any patient who could tolerate MTX could also receive rituximab. This would not be correct when analysing Population 1, adults with severe active RA not previously treated with cDMARDs, but is likely to be of limited impact as: (i) it would only be apparent if bDMARDs were recommended in advance of intensive cDMARDs, and (ii) the effect would be dampened as each treatment sequence would have to replace rituximab with a bDMARD that is licenced for use in monotherapy and any impact would be relatively equal across all strategies.

Although the Assessment Group model can incorporate sequences of up to seven treatments, for simplicity it was decided that modelling large number of cDMARDs would not be overly informative. The rationale for this is that there is insufficient data on the effectiveness of cDMARDs after either bDMARDs or multiple cDMARDs. For this reason, once a patient had received intensive cDMARD therapy and / or the allotted bDMARDs within the sequence, patients were assumed to have one

further cDMARD (typically MTX, but an alternative cDMARD if MTX was not suitable) before moving to 'non-biologic therapy', which was a term defined to encompass a selection of treatments that clinicians may feel was appropriate for individual patients. It was assumed that non-biologic therapy would be associated with no initial EULAR response, unlike MTX where the results from the NMA indicated that MTX had a significant EULAR response.

This description is in line with the data on HAQ progression that was presented by Norton et al.^{289,290} Given that this assumption applies to all strategies the contraction of a cDMARD sequence to nonbiologic therapy is unlikely to influence the results and should allow an easier interpretation of the results.

For populations 2 and 3, it was assumed that all patients would have previously received intensive cDMARD therapy prior to the first bDMARD and thus this intervention was not explicitly modelled.

It is acknowledged that these represent simplified pathways and that for individuals there may be alternative strategies, but the Assessment Group and their clinical advisors feel that these are fairly representative and these are also relatively in line with the typical strategies presented by the manufacturers.

Table 156 provides the broad strategies that were deemed appropriate by the Assessment Group for consideration in patients who could receive MTX.

	Strategy
Population 1	$MTX \rightarrow intensive cDMARDs \rightarrow non-biologic therapy$
	$MTX \rightarrow intensive \ cDMARDs \rightarrow bDMARD^{\dagger} + MTX \rightarrow RTX + MTX \rightarrow$
	TCZ+MTX \rightarrow MTX \rightarrow non-biologic therapy
	$MTX \rightarrow intensive cDMARDs \rightarrow TCZ+MTX \rightarrow RTX + MTX \rightarrow MTX \rightarrow$
	non-biologic therapy
	$bDMARD^{\Delta} + MTX \rightarrow RTX + MTX \rightarrow TCZ + MTX \rightarrow MTX \rightarrow Intensive$
	$cDMARDs \rightarrow non-biologic therapy$
Population 2 and 3	$MTX \rightarrow non-biologic therapy$
	$bDMARD^{\dagger}_{\dagger} + MTX \rightarrow RTX + MTX \rightarrow TCZ + MTX \rightarrow MTX \rightarrow non-biologic$
	therapy
	$TCZ+MTX \rightarrow RTX + MTX \rightarrow MTX \rightarrow non-biologic therapy$

Table 156: Broad strategies considered possible for patients who could receive MTX

cDMARDs = conventional disease-modifying anti-rheumatic drugs; bDMARDs = biological disease-modifying anti-rheumatic drugs; MTX = MTX

 $^{\scriptscriptstyle \Delta}$ excluding abatacept, certolizum ab and tocilizum ab

† excluding tocilizumab

Table 157 provides the broad strategies that were deemed appropriate by the Assessment Group for consideration in patients who could not receive MTX.

	Strategy
Population 1	Intensive cDMARDs \rightarrow cDMARD \rightarrow non-biologic therapy
	Intensive cDMARDs \rightarrow bDMARD \rightarrow bDMARD† \rightarrow cDMARD \rightarrow non-
	biologic therapy
	$bDMARD^{\Delta} \rightarrow bDMARD^{\dagger} \rightarrow Intensive cDMARDs \rightarrow cDMARD \rightarrow non-$
	biologic therapy
Population 2 and 3	$cDMARDs \rightarrow non-biologic therapy$
	$bDMARD \rightarrow bDMARD^{\dagger} \rightarrow cDMARD \rightarrow non-biologic therapy$

 Table 157:
 Broad strategies considered possible for patients who could not receive MTX

cDMARDs = conventional disease-modifying anti-rheumatic drugs excluding MTX; bDMARDs = biological disease-modifying anti-

rheumatic drugs (limited to adalimumab, certolizumab pegol, etanercept and tocilizumab); MTX = MTX

 $^{\Delta}$ excluding abatacept, certolizumab and tocilizumab

† excluding tocilizumab

The broad strategies were distilled into the following strategies which were evaluated (Tables 158 to 161). The Assessment Group believes that these provide representative results. These strategies are not significantly different to those of the manufacturers bar the exclusion of named cDMARDs at the end of the sequence. Given the large uncertainty in the efficacy of the cDMARDs in post-bDMARD or post-Intensive cDMARDs the inclusion of specific interventions may be introducing spurious accuracy.

For Population 1 the analyses are slightly more complicated as there are three broad strategies rather than two for Populations 2 and 3, as there is the comparison of: no use of bDMARDs; use of bDMARDs after intensive cDMARDs; and the use of bDMARDs immediately. In order to ease interpretation of results the analyses have been conducted assuming that etanercept is generalisable in terms of costs and QALYs to all other bDMARDs. This assumption is given some support by the results for Populations 2 and 3 presented in 6.3.22.

	First-line	Second-line	Third-line	Fourth-line	Fifth-line
	treatment	treatment	treatment	treatment	treatment
Strategy 1	MTX	NBT			
Strategy 2	ABT i.v.+	RTX +	TCZ +	MTX	NBT
	MTX	MTX	MTX		
Strategy 3	ABT s.c.+	RTX +	TCZ +	MTX	NBT
	MTX	MTX	MTX		
Strategy 4	ADA +	RTX +	TCZ +	MTX	NBT
	MTX	MTX	MTX		
Strategy 5	CTZ +	RTX +	TCZ +	MTX	NBT
	MTX	MTX	MTX		
Strategy 6	ETN +	RTX +	TCZ +	MTX	NBT
	MTX	MTX	MTX		
Strategy 7	GOL +	RTX +	TCZ +	MTX	NBT
	MTX	MTX	MTX		
Strategy 8	IFX + MTX	RTX +	TCZ +	MTX	NBT
		MTX	MTX		
Strategy 9	TCZ +	RTX +	MTX	NBT	
	MTX	MTX			

Table 158: The strategies evaluated for Populations 2 and 3 for those who can receive MTX.

ABT iv - abatacept i.v.; ABT s.c. – abatacept s.c.; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; NBT – non-biologic therapy; RTX – rituximab; TCZ - tocilizumab

	Table	159:	The	strategies	evaluated	for]	Popula	ations 2	2 and 3	3 for	those	who	cannot	receive	MTX.
--	-------	------	-----	------------	-----------	-------	--------	----------	---------	-------	-------	-----	--------	---------	------

	First-line treatment	Second-line treatment	Third-line treatment	Fourth-line treatment	Fifth-line treatment
Strategy 1	SSZ	NBT			
Strategy 2	ADA	ETN	SSZ	NBT	
Strategy 3	CTZ	ETN	SSZ	NBT	
Strategy 4	ETN	ADA	SSZ	NBT	
Strategy 5	TCZ	ETN	SSZ	NBT	

ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; NBT – non-biologic therapy; SSZ – sulfasalazine; TCZ - tocilizumab

	First-line	Second-	Third-	Fourth-	Fifth-line	Sixth-line	Seventh-
	treatment	line	line	line	treatment	treatment	line
		treatment	treatment	treatment			treatment
Strategy	MTX	Int	NBT				
1		cDMARDS					
Strategy	MTX	Int	ETN +	RTX +	TCZ +	MTX	NBT
2		cDMARDS	MTX	MTX	MTX		
Strategy	ETN +	RTX +	TCZ +	MTX	Int	NBT	
3	MTX	MTX	MTX		cDMARDS		

Table 160: The strategies evaluated for Population 1 for those who can receive MTX.

ETN – etanercept; Int cDMARDS – Intensive cDMARDs; NBT – non-biologic therapy; RTX – rituximab; TCZ - tocilizumab

Table 161:	The strategies	evaluated for	Population	1 for those who	cannot receive MTX.

	First-line	Second-	Third-	Fourth-	Fifth-line	Sixth-line
	treatment	line	line	line	treatment	treatment
		treatment	treatmen	treatment		
			t			
Strategy 1	SSZ	NBT				
Strategy 2	SSZ	ETN	ADA	NBT		
Strategy 3	ETN	ADA	NBT			

ADA – adalimumab; ETN – etanercept; NBT – non-biologic therapy; RTX – rituximab

6.3.4 Model Structure / Time Cycle

A simplified schematic of the Assessment Group's model is shown in Figure 101. The model is individual-patient based, written in Microsoft Excel and uses a discrete event simulation approach. Therefore a time cycle was not employed. The model allows only legitimate HAQ scores (the 25 points defined in the 0 to 3 range) with time to a change in HAQ score being a competing risk. The advantage of using discrete HAQ scores means that if some outputs (such as costs, utility or risk of mortality) are assumed related by HAQ there is no need to be continually updating the output as a HAQ score is assumed to linearly progress between legitimate HAQ points.

Figure 101: Conceptual simplified schematic of the modelling process.

The Assessment Group model differs substantially to that of the manufacturers as it is EULAR based and uses large databases for population of key parameters such as the initial HAQ changes conditional on EULAR response, and HAQ trajectory based on EULAR response.

6.3.5 Time Horizon

The Assessment Group model employs a lifetime patient horizon but assumes that no patient will live beyond 101 years. This is similar to the approaches undertaken in the manufacturer's submission.

6.3.6 Perspective

The Assessment Group model employs a direct NHS and personal social services perspective which is in line with that adopted by the manufacturers.

6.3.7 Discounting

The Assessment Group model used discount rates of 3.5% per annum for both costs and benefits as recommended within both the 2013 NICE methods guide²⁹¹ and the 2008 methods guide.²¹⁴ A sensitivity analyses were undertaken assuming values of 6.0% for costs and 1.5% for benefits.

6.3.8 Population characteristics

The Assessment Group samples patients who are MTX-experienced from the BSRBR which allows correlation to be maintained between the following characteristics: age; gender; disease duration; DAS; previous DMARDs; HAQ and weight. Individual patients were resampled until the patient met the criteria for the population being analysed. This approach significantly increased the running times for those patients with a DAS score between 3.2 and 5.1 as these represented a minority of patients in the BSRBR and required considerable resampling.

Having sampled the patient's characteristics the HAQ score is set at a legitimate value. As an example, suppose that a non-legitimate HAQ of 1.600 was simulated. Sampling the probabilities of the bordering legitimate HAQ scores in inverse relation to their distance from 1.6 (20% chance of being 1.5 and 80% chance of being 1.625) would retain the mean value but allow legitimate HAQ scores. Thus in this example we would simulate 80% of patients having a HAQ score of 1.625 with the remaining patients having a HAQ of 1.5 rather than 100% having a HAQ of 1.600.

The Assessment Group populated patients' characteristics based on the BSRBR whereas a number of manufacturers have used the patient characteristics from their pivotal trials to populate their mathematical models. The advantage of the Assessment Group approach is that it is a much larger dataset (7250 patients), it is representative of people treated in England and Wales and the correlation structure between parameters is maintained. A disadvantage is that the dataset for moderate to severe RA patients is much smaller approximately 500 patients, although this is not small relative to the numbers of patients within the RCTs.

For patients who are MTX-naïve it was deemed that the BSRBR database was not an appropriate data source as this would contain a very small number of such patients. Both AbbVie and Pfizer presented population characteristics for MTX-naïve patients with a DAS score greater than 5.1 Of the two estimates, that of Pfizer based on the COMET trial ⁸¹ was deemed more appropriate as the disease duration was of 1 year compared with 11.28 years reported by AbbVie citing Breedveld ¹⁰⁹which was thought to be a long period without having experienced MTX. The estimate from Pfizer had a greater HAQ at baseline (1.70 compared with 1.38) and were on average younger (a mean age of 51.4 years compared with 60)

6.3.9 Costs of the interventions

These costs are similar to those used by the manufacturers however there are two comments worth noting: i) that the Assessment Group takes all patient access schemes into consideration whereas the majority of manufacturers do not and ii) that a number of manufacturers have assumed a fixed weight per person that can underestimate the costs of weight-based interventions. The Intensive cDMARDs strategy was costed as triple cDMARD + prednisolone therapy. This is consistent with the intensive cDMARD therapy provided in the TICORA study.²⁹² The treatment included methotrexate (20mg weekly), hydroxychloroquine (6.5mg/kg daily), sulfasalazine (3g daily) and prednisolone (oral, 7.5mg daily). The total treatment cost in the response period is £3.365.32, and a regular monthly treatment cost of £491.34.

An additional treatment option is listed in Tables 160 and 161 that are not interventions within the NICE scope: rituximab plus MTX.

The costs of other drugs used within the sequence (rituximab and the costs of cDMARDs) are provided in Table 162.

Treatment	Dose regimen	Cost per cheapest dose ¹	Cost of first 6 months ²	Subsequent annual treatment
				cost ²
RTX	2000mg every 9 months	£3,492.60 (2000 mg)	£3,492.60	$\pounds4,656.80^3$
HCQ	6.5mg/kg per day (max. 400mg per day)	£0.17 (400mg)	£31.35 ⁴	£62.70 ⁴
MTX	7.5mg per week escalated by 2.5mg per week up to 20mg per week	£0.80 (20mg)	£19.32	£41.57
Prednisolone	7.5mg per day	£1.07 (7.5mg)	£196.25	£392.50
SSZ	500mg per day escalated by 500mg per week up to 3000 mg per day	£0.79 (3000mg)	£131.38	£290.17
Intensive combination DMARD therapy ⁵	Hydroxycholoroquine + MTX + prednisolone + SSZ (doses as per monotherapy treatments)	NA	£378.31	£786.94
Palliative Care/Rescue Therapy	N/A ⁵	Assumed £60 per month ⁶	£360	£720

Table 162:The costs of cDMARDs and rituximab

¹ Note that dose can be daily or weekly (see Dose regimen). ² No administration or monitoring costs included. ³ Rituximab is administered at discrete 9 month periods. ⁴Using BSRBR average weight of 73kg for illustration. ⁵Intensive combination DMARD therapy is assumed to be the individual regimens for Hydroxycholoroquine, Methotrexate, Prednisolone and Sulfasalazine combined.. ⁶An approximation of monthly 'post biologic' cDMARD therapy (Leflunomide, gold, cyclosporine etc.) NA = not applicable

6.3.10 Costs of administration and monitoring

The administration costs of infusions were taken from TA247²¹⁵ in which the final appraisal determination (FAD) stated that 'the manufacturer's revised estimate of £154 was acceptable'. This estimate (of 60 minutes infusion time was also applied to abatacept and infliximab) in the absence of a robust relationship between costs and infusion times. This assumption may be favourable to infliximab and unfavourable to abatacept as the recommended infusion times are at least 2 hours, and 30 minutes respectively. The FAD for TA247 did not comment on the assumption that 10% of subcutaneous injections would be performed by district nurses and the Assessment Group has assumed that these were also thought acceptable. This resulted in an average administration cost per subcutaneous injection of £2.61. Neither of administration of costs in the current economic climate. The value used by the Assessment Group is in broad agreement with the majority of manufacturers.

The assumed monitoring costs are provided in Table 163. These are assumed equal for MTX and bDMARDs.

Table 163:	The	monitoring	costs	assumed
-------------------	-----	------------	-------	---------

Monitoring component	FBC ¹ £2 ⁵	ESR ² £3 ⁵	BCP ³ £3 ⁵	CXR ⁴ £33 ⁵	Urinalysi s £0.09 ⁶	Hospital outpatient attendance £128 ⁶	Total Cost
MTX monitoring – before treatment initiation	1	1	1	1	0	1	£170
MTX monitoring – first 6	10	0	10	0	0	10	£1,700
months of treatment							
Monthly monitoring cost	1	0	1	0	0	1	£134

¹Full Blood Count, ²Erythrocyte sedimentation rate, ³Biochecmical profile, ⁴Chest X-ray, ⁵NHS Reference Costs 2012, ⁶ Malottki et al²²² MTX - methotrexate

6.3.11 Comparative treatment efficacy (Network Meta-Analysis)

The NMA undertaken by the Assessment Group has been detailed in Section 5.3. For information graphical depiction of the estimated proportions of EULAR response are provided in Figures 102 to 104 for EULAR and in Figures 105 to 107 for ACR mapped to EULAR. It is stressed that these figures do not reflect the considerable uncertainty in the values and reflect mean estimates only.

Figure 103: EULAR mean EULAR responses (main analyses plus RCTs with a small level of bDMARD use)

The Assessment Group model reflects current NICE guidance, and UK practice by simulating patient response in terms of EULAR categories (none, moderate, good). However, the evidence on clinical effectiveness does not universally report EULAR responses, with ACR categories widely used. In order to inform the evidence synthesis and to be able to make use of the entirety of the evidence base in the most informed and efficient manner, we sought evidence of the relationship between these response categories using individual patient level data.

The Veterans Affairs Rheumatoid Arthritis (VARA) registry provided such estimates to the Assessment Group as academic-in-confidence. VARA is a multi-centre, US database of veterans over the age of 19yrs. (Table 164)

Analyses were undertaken i) using both version of EULAR response (CRP based and ESR based) and ii) for all patients and just those with DA28>5.1 at baseline. There was great similarity between the CRP and ESR based measures. Table 164 reports ESR based values which were used in the economic model since it is this measure that was reported most regularly in the relevant RCTs.

Table 164:	The relationship between EULAR responses and ACR responses in the
	VARA database

	Less	ACR20	ACR50	ACR70	total
EULAR ESR, all patients					
EULAR None	755	4	2	0	759
Mod	136	27	2	2	163
Good	57	26	10	2	83
EULAR ESR, severe acti					
EULAR None	72	2	0	0	74
Mod	33	19	0	0	52
Good	3	9	5	1	12

By assuming that the relationships shown in Table 164 were correct then it was possible to use data taken from the network meta-analysis of ACR by mapping this onto EULAR data and subsequently using the same procedures as for the Assessment Group model.

The following assumptions have been made regarding the efficacy of rituximab based on work by Malottki et al.²²² Table 46 in Malottki et al reports that in terms of ACR20, ACR50, ACR70 and withdrawal for any reason that the indirect comparison of rituximab versus abatacept either favoured rituximab, albeit with wide confidence intervals or there was no difference. Given these data the efficacy of rituximab was assumed equal to iv abatacept i.v..

Figure 104: Estimated mean EULAR response mapped from ACR trials (main analyses)

Figure 105: Estimated mean EULAR response mapped from ACR trials (main analyses plus RCTs with a small level of bDMARD use)

Figure 106 Estimated mean EULAR response mapped from ACR trials (main analyses plus RCTs with a small level of bDMARD use and also allowing a trial with low MTX-background use)

Figure 107: Estimated mean EULAR response mapped from ACR trials (main analyses plus RCTs with low MTX-background use)

Figure 108: Estimated mean EULAR response mapped from ACR trials in cDMARDnaïve patients

Figure 109: Estimated mean EULAR response mapped from ACR trials in cDMARDnaïve patients including RCTs with a proportion of cDMARD experienced patients

There are no marked differences between the results produced by the Assessment Group and the combined evidence presented by the manufacturers.

6.3.12 Responder criteria

The Assessment Group model is based on EULAR response category (Good / Moderate / None) in order to reflect current NICE guidance on biologic therapies in RA and to align

more closely to UK clinical practice in terms of the assessment of response to therapies. The estimated probability of each EULAR response has been taken from the NMAs conducted by the Assessment Group. This allowed analyses to be conducted purely on EULAR data or estimated based on ACR responses in order to encompass a wider evidence base. This differs from the majority of submissions which assumed that ACR responses would be used to determine whether patients were responders or not i.e. there is an implicit stopping rule associated with ACR and its relationship to EULAR criteria that underpins these models, though this is not explicitly stated.

6.3.13 HAQ/EQ-5D changes in relation to response levels

For each simulated individual the model allocates a change in HAQ from baseline, dependent on the individual's EULAR response. We considered different sources for these values, including the option of allocating different values for those on biologic therapies compared to those on cDMARDs.

In the base case we used values modelled from the BSRBR. We assumed zero change for non-responders, a HAQ reduction of 0.317 (se 0.048) for moderate responders and 0.672 (se 0.112) for Good responders. These values were obtained from modelling data from the BSRBR and equate to predictions for a person with the characteristics equivalent to the mean of the overall sample. Full details of the approach are provided in 6.3.14 "HAQ trajectory following initial response" because the method estimates both 6 month and subsequent HAQ changes in a single statistical approach.

We applied these values to all therapies, including bDMARDs and cDMARDs.

bDMARDS

For patients with the mean characteristics of the actual sample of EULAR moderate responders within the BSRBR, the statistical model predicts a change of 2.08 to 1.79 (a change of 0.29). The mean change in the raw data for this group is 2.08 to 1.75 (a change of 0.33). For patients with the mean characteristics of the actual sample of EULAR good responders the statistical model predicts a change of 1.81 to 1.27 (a change of 0.54). The mean change in the raw data for this group is 1.81 to 1.26 (a change of 0.55).

The statistical model that estimates HAQ change at 6 months and beyond, conditional on EULAR response category, is designed to do so at the individual patient level. However, since the ScHARR model is not a true patient level model in the sense that many of the functions in fact are programmed to estimate the average course of a patient, and because

using this statistical model at the patient level substantially increased computational run time, we instead used the mean 6 month HAQ improvement for all patients. This was calculated by setting all characteristics at their mean values and assuming that the model error and mean random effect were both set to zero.

The statistical model estimating initial response is calculated at the individual patient level; however as the data for cDMARDs was only at the aggregate level, aggregate data for bDMARDs was used. Without this adaptation the results would be unfavourable to bDMARDs as individual patients could be predicted to have a HAQ increase despite a Good EULAR response, and when this is combined with the non-linear mapping of HAQ to utility such patients would have a disproportionate weight when calculating the average QALYs. *cDMARDS*

In the base case model the same values were applied for cDMARDs as for bDMARDs.

In addition, the mean HAQ improvement for patients on cDMARDs according to their EULAR response between baseline and 6 months was calculated from the ERAS dataset. These data are shown in Table 165 for all patients between baseline and 6 months later.

 Table 165:
 Mean HAQ improvement by EULAR response category for those on cDMARDs

	HAQ					
EULAR response baseline>6month visits						
	mean	se	Z	р	lcl	ucl
None	-0.050	0.025	-2.03	0.043	-0.098	-0.002
Moderate	-0.509	0.035	-14.67	0.000	-0.577	-0.441
Good	-0.650	0.043	-15.10	0.000	-0.735	-0.566

Se = standard error

lcl = lower 95% confidence interval; ucl = lower 95% confidence interval

It is seen that the average HAQ improvement for both moderate and good EULAR responses were markedly larger than that for no EULAR response and are relatively close to each other. Given the degree of uncertainty surrounding these mean values, it was possible in some instances the HAQ improvement for those with a moderate EULAR response was greater than those with a good EULAR response.

The use of the modelled data for the entire BSRBR cohort for all treatments and for both those with moderate and severe active disease has the advantage of avoiding this potential anomaly, it reduces the running time of the model, and it provided results that closely aligned to those observed in the BSRBR and ERAS datasets. For EULAR moderate responders the value we used (0.32) is close to that observed for moderate responders in the BSRBR (0.33). This is a smaller improvement in HAQ than observed it the ERAS dataset (0.51). For EULAR good responders the value used (0.67) was closer to the ERAS values (0.65) and significantly higher than the values seen for good responders in the BSRBR (0.55). The choice of values therefore is likely to be favourable to the cost effectiveness of bDMARDs in the base case

The methods used by the Assessment Group differ from those used by the majority of the manufacturers which assume that the relationship between HAQ and ACR response observed within their key trials is applicable to all interventions. These assumptions use a relatively small sample size and may be subject to variability as observed in the two MSD submissions where the assumed HAQ changes per ACR level are markedly different. Additionally the patients recruited to RCTs may not be representative of those patients who will be treated: this could influence the relation between the absolute change in HAQ and HAQ at baseline.

6.3.14 HAQ trajectory following initial response

This section has been divided into two subsections: one relating to bDMARDs and one relating to cDMARDs.

In addition to the values assumed by the Assessment Group in our base case, sensitivity analyses were run using values considered within previous NICE technology appraisals. These assumed that the HAQ trajectory on biologics is flat, 0.045 per annum whilst on cDMARDs and 0.06 per annum whilst on 'palliative care' (which equated to non-biologic therapy in the Assessment Group model) the HAQ trajectory increased by 0.06 per annum.

bDMARDS

In order to estimate the trajectory of HAQ the BSRBR database was used. The BSRBR database measures HAQ at 6 month intervals for all registered patients for a maximum of three years. The evolution of HAQ whilst a patient remains on a biologic therapy was estimated as a function of a patient's baseline characteristics and 6-month EULAR response category.

The patient data was restricted to those patients who had a full set of baseline characteristics including HAQ and at least two other recorded measurements of HAQ whilst on a biologic

therapy. The only bDMARDs for which there were sufficient follow up time were deemed to be etanercept, infliximab and adalimumab.

There are 10,186 such patients in the dataset of which 2417 are EULAR good responders, 5492 are EULAR moderate responders and 2277 are EULAR non-responders (of whom a quarter of these had treatment longer than four years' duration). Figure 93 shows the average HAQ in the sample by EULAR response. It is seen that HAQ decreases in the first six months after starting on a biologic therapy (with the level of decrease greater as the level of EULAR response increases) and levels off towards the end of the three years' observation period. For good responders there is a degree of loss of initial 6 month HAQ improvement in subsequent periods. It is important to note that there is imbalance between the three groups of responders. For example, it can be seen that "good" EULAR responders have a lower baseline HAQ than "moderate" or non-responders.

Figure 110: Mean HAQ by EULAR response category for those receiving bDMARDs

Statistical analyses have been undertaken for those patients who have a good or moderate EULAR response. No formal analysis was conducted for those patients who had no EULAR response as they are assumed to have treatment stopped after six months in accordance with NICE guidance within the cost-effectiveness analyses.

An "Autoregressive Latent Trajectory (ALT) model" (Bollen & Curran 2004²⁹³) was fitted separately for moderate and good responders. The model uses baseline characteristics, including baseline HAQ, to estimate both initial HAQ response (6 months) and the longer term progression of HAQ in a single statistical model. The model incorporates a random

intercept and a random slope from a growth model which captures the fixed and random effects of the latent growth trajectories over time. It also includes an autoregressive structure representing any time specific influences between the repeated measures of HAQ over time. The model can be written as follows:

$$y_{it} = \eta_{0i} + \eta_{1i}x_t + \rho_t y_{it-1} + \varepsilon_{it} \qquad t = 1, \dots, 6$$
$$y_{i0} = \gamma_0 + w'_i \gamma_1 + \varepsilon_{i0}$$
$$\eta_{0i} = \alpha_0 + w'_i \beta_0 + u_{0i}$$
$$\eta_{1i} = \alpha_1 + w'_i \beta_1 + u_{1i}$$

where y_{it} denotes HAQ for patient *i* at time *t* for t = 1, ..., 6 (where t = 1 corresponds to 6 months after starting biologic, t = 2 corresponds to 12 months after, etc.); η_{0i} and η_{1i} are a random intercept and a random slope respectively; w'_i is a time invariant, individual specific vector of baseline covariates; x_t are the time scores of a nonlinear trend where, for identification purposes, we set the first one to zero ($x_1 = 0$) and the last one, thirty months later, to 3 ($x_6 = 3$) and freely estimate the remaining time scores ($x_2, ..., x_5$). If a linear trend can appropriately describe the data the estimated time scores should follow the sequence 0.6, 1.2, 1.8, 2.4 for successive periods t = 2, ..., 5. The ε_{it} are mean zero normal disturbances with time varying variances equal to $\sigma_{\varepsilon t}^2$, they are independent over time and uncorrelated with the u_i 's. The u_i 's are mean zero, normally distributed, time invariant individual random terms with a full covariance matrix and potentially correlated with ε_{i0} . The parameters $\gamma_0, \alpha_0, \alpha_1$ and the vectors of parameters $\gamma_1, \beta_0, \beta_1$ are fixed over time whereas ρ_t is a time varying parameter.

HAQ at baseline is treated as predetermined. Baseline covariates, w'_i , include: age; gender; disease duration (in months); DAS28 score; and number of previous DMARDS. The continuous baseline covariates are centred on their overall sample means (see Table 166). In addition the covariate age is divided by 10 in the model to avoid convergence problems due to scaling differences. This is for ease of interpretation of the estimated parameters but does not change the model in any way.

	All sample	Moderate	Good responders
		responders	
Covariate	Sample mean	Sample mean	Sample mean
	(n = 10186)	(n = 5492)	(n = 2417)
Age (years)	56.096	56.854	53.815
Female (%)	0.763	0.781	0.700
Disease duration	159.444	160.188	155.544
(months)			
DAS score	6.551	6.763	6.281
Number of previous	3.898	3.937	3.645
DMARDS			

 Table 166:
 Sample means of baseline covariates

We estimate the model using maximum likelihood with robust standard errors (sandwich estimators) to guard against non-normality. Initially a joint model for the three groups (good EULAR response; moderate EULAR response and no EULAR response) was estimated to try to maximise informative data. However, it was found that no restrictions across groups could be imposed and thus the final models had to be estimated conditional on EULAR response to therapy at 6 months. Table 167 shows the estimated parameters of the models for moderate and good responders.

		Moderate		Good	
	<i>x</i> ₂	0.159	(0.397)	1.649	(1.531)
	x ₃	1.634***	(0.314)	2.515***	(4.395)
	x,	2.732***	(0.351)	3.260***	(12.639)
	x =	3.249***	(0.415)	2.810***	(6.998)
Random	Intercept				(
intercept					
(η_{0i})		1.365***	0.05	1.233***	0.112
	(Age - mean age)/10	0.088***	0.008	0.147***	0.014
	Female	0.161***	0.021	0.145***	0.035
	Disease duration				
	(months) – mean				
	disease duration	0.006***	0.001	0.013***	0.002
	DAS score – mean				
	DAS score	0.097***	0.010	0.091***	0.021
-	Number of previous				
	DMARDS – mean				
	number of previous				
	DMARDs	0.044***	0.005	0.106***	0.013
Random	Intercept				
slope (η_{1i})	*	0.043	0.03	-0.091**	0.042
	(Age – mean age)/10	0.009***	0.003	-0.009*	0.005
	Female	0.009*	0.006	0.003	0.008
	Disease duration				
	(months) – mean				
	disease duration	0.000	0.000	-0.001***	0.000
	DAS score – mean				
	DAS score	0.003	0.003	-0.011*	0.006
	Number of previous				
	DMARDS – mean				
	number of previous				
	DMARDs	0.004**	0.002	-0.007*	0.004
HAQ at	Intercept				
baseline		1.915***	0.015	1.797***	0.023
	(Age - mean age)/10	0.052***	0.006	0.069***	0.010
	Female	0.155***	0.017	0.139***	0.027
	Disease duration				
	(months) – mean	0.004/5/5/	0.001		0.001
	disease duration	0.004***	0.001	0.006***	0.001
	DAS score – mean	0 170***	0.007	0 1 5 0 4 4 4	0.012
	DAS score	0.179***	0.007	0.158***	0.013
	Number of previous				
	DMARDS – mean				
	DMARD _a	0.022***	0.004	0.076***	0.000
	DIVIANDS	0.055	0.004	0.070	0.008
	ρ_1	0.117***	0.025	0.00/	0.058
	ρ_2	0.117***	0.034	0.129**	0.052
	ρ_3	0.069***	0.021	0.182***	0.046
	$ ho_4$	0.040	0.033	0.246***	0.055
	ρ_5	0.019	0.047	0.216***	0.041
	ρ_{6}	0.026	0.040	0.225***	0.052

 Table 167:
 Estimated parameters and standard errors in brackets

		Moderate		Good		
Cov	HAQ0 - η_{0i}	0.171***	0.008	0.241***	0.022	
	HAQ0 - η_{1i}	0.005	0.004	-0.018**	0.008	
	η_{0i} - η_{1i}	0.005	0.006	-0.039**	0.019	
	$Var(\eta_{0i})$	0.259	0.017	0.431	0.067	
	$Var(\eta_{1i})$	0.004	0.001	0.009	0.005	
var	Eps0	0.245***	0.006	0.335***	0.010	
	Eps1	0.069***	0.008	0.039	0.041	
	Eps2	0.050***	0.003	0.074***	0.011	
	Eps3	0.058***	0.005	0.073***	0.007	
	Eps4	0.044***	0.004	0.072***	0.010	
	Eps5	0.047***	0.007	0.060***	0.008	
	Eps6	0.053***	0.005	0.065*	0.010	
*** P<0.01; ** P<0.05; *P<0.1						

The ALT model fits better than both the autoregressive model and the growth model on their own. Restrictions are tested using the Satorra-Bentler²⁹⁴ scaled difference chi-square test.

As discussed above, the model provided estimates very close to the observed data in terms of 6 month HAQ changes. The cost effectiveness model used estimates of the 6 month HAQ change for a patient with mean characteristics of the overall sample, baseline HAQ of 2.03, with all error terms set to zero and conditional on EULAR response category. This resulted in estimates of 0.317 (se 0.048) for moderate responders and 0.672 (se 0.112) for Good responders.

cDMARDs

The cost effectiveness model simulates, for each patient, the progression of HAQ for the period that patient remains on non-biologic DMARDs. This could be a) for patients on the cDMARD (comparator) element of the simulation model or b) for patients on the bDMARD strategy at the point when they withdraw from the biologic therapy.

Previously, Norton *et al.* estimated²⁸⁹ HAQ progression in patients not receiving bDMARDs using data from patients recruited to the ERAS inception cohort study. This is a large, UK based cohort which has long term follow up. In the Norton et al. study, observations relate to patients recruited between 1986 and 1998 (n=1460), followed for up to 10 years. A growth mixture model approach was taken to the analysis if the data. In the published paper, four classes were identified. Full details of the statistical methods are provided in the Norton et al. paper, including details of the process for selecting the optimal number of latent classes. These findings have since been corroborated in the NOAR dataset with follow up to 15 years and the ERAN dataset.²⁹⁰ Whilst the concern in the cost effectiveness analysis is to estimate the expected change in HAQ over time, not with the latent classes per se, the latent class

analysis provides a more flexible and appropriate method to modelling HAQ change over time. It allows the incorporation of patient characteristics as predictors of HAQ progression in a more appropriate manner. Importantly, it also provides a reflection of how the rate of HAQ progression changes over time and places no restriction on this being a simple linear progression. This is likely to be a more appropriate reflection of a chronic disease, the use of different treatments (including drugs and surgical interventions) at different points in the care pathway which influence that progression and the nature of the HAQ scale itself. The use of a simple annual progression rate for all patients at all time points does none of these things.

A modified analysis based on the published Norton *et al* study was performed so that additional patient descriptors, including those used to define patients within the cost effectiveness model, were used as covariates within the statistical model. Importantly, these were used as explanatory variables for group membership. In this way, the expected HAQ at any point for a patient with a given set of baseline characteristics can be estimated. The model is formally :

$$y_{itc}^{*} = \eta_{0ic} + \eta_{1ic}x_{t} + \eta_{2ic}x_{t}^{2} + \eta_{3ic}x_{t}^{3} + \varepsilon_{it} \qquad t = 0, 0.5, 1, 2, ..., 15$$
$$y_{itc} = \begin{cases} y_{itc}^{*} if y_{itc}^{*} > 0\\ 0 if y_{itc}^{*} \le 0 \end{cases}$$

Where c is the class and the probabilities of class membership are estimated using a multinomial logit model:

$$\Pr(C_{it} = c | z_{it}) = \frac{e^{z_{it}\mu c}}{\sum_{s=1}^{4} e^{z_{it}\mu s}}$$

Where z contains a series of factors as covariates within the model that were originally considered in separate analyses in Norton et al. ²⁹⁵ plus additional factors relevant to our decision model. Specifically, the model used for the analysis in this report includes: Age at disease onset, Gender, deprivation level, disease duration, rheumatoid factor positive at baseline, fulfilment of ACR criteria for RA at baseline, baseline DAS, failed two DMARDS, DAS response achieved at 6 months.

The four classes used in the assessment are shown in Figure 111. Probabilities in this case relate to the ERAS study population as whole. For the cost-effectiveness populations covariate adjustment was used to estimate relevant class probabilities..

Figure 111: The classes of patients on cDMARDs used in the Assessment Group model

The plots show that there are clearly identifiable separate groups in terms of HAQ progression. Three classes exhibit a J-shaped curve and the fourth shows a general worsening over time. In all cases, the rate of worsening over time decreases. This is contrary to the typical assumptions of DMARD worsening incorporated into cost effectiveness models which are assumed to be linear. The use of the growth model also avoids the prediction that large proportions of patients progress to the worst HAQ state (3) before death. This is contrary to the pattern seen in the ERAS, ERAN and NOAR observational datasets both in and beyond. For example, in the US NDB just 1% of observations exceed a HAQ of 2.5 (cite Hernandez et al MDM in press).²⁹⁶ Whilst there may be reasons why observational datasets like this do not fully represent patients with such extreme levels of functional disability (e.g. that self-completed surveys are not returned) it is unlikely that these are substantially biased.

There are limitations with this approach: ERAS is an inception cohort with follow-up of patients up to 15 years and we therefore cannot be sure what happens beyond that time. Covariates refer to baseline characteristics in the ERAS dataset and, whilst many of these are set, this baseline does not match all the uses of the data in the cost effectiveness analysis. It should be noted however that many of the limitations that are pertinent to the ERAS analysis are similarly applicable, often to a greater degree, in the studies that underpin the mean HAQ progression rates that are typically used in cost effectiveness analyses of drug therapies in RA.

To implement the results of the statistical model in the cost effectiveness analysis, a number of choices were made:

- Rather than use the model predictions for absolute HAQ values, we used the model to predict change in HAQ. This ensured consistency with the baseline sampled HAQ value, the degree of improvement modelled at 6 months based on the EULAR response seen in clinical trials and the simulated HAQ scores for patients treated with biologic DMARDs.
- ii) The output provided to us (from the software package MPlus) reports parameter estimates to 3 decimal places. This is not sufficient and results in some very large fluctuations in the predicted HAQ particularly at times exceeding 10 years from the start of treatment (this is because there is a cubic term in the model that requires a much greater degree of precision). Instead we used the values for each class reported in Figure 95 above. The model for this analysis only differs from that underpinning Figure 95 in that there are more variables entering as explanatory variables for class membership. The trajectories within the 4 classes are unaffected.
- iii) Not all explanatory variables that appear in the statistical model are relevant to the way that the cost effectiveness model defines individuals: deprivation level, rheumatoid factor positive at baseline, fulfilment of ACR criteria for RA. We therefore set deprivation level and RF factor positive at the means for the ERAS cohort (0.49 and 0.73 respectively). We set ACR criteria of RA to 1.
- iv) The HAQ trajectory for the ERAS cohort includes the initial period where patients with early RA start on cDMARDs and, in many cases, experience improvement in their disease. Since this period is modelled separately in the ScHARR model we incorporated values from year two onwards only, since this is the point where initial treatment benefits appear to have been lost for all latent classes.
- v) Where extrapolation was used beyond the period for which data were available i.e. beyond year 15, we assumed zero HAQ progression since this is the rate of progression predicted by the statistical model, for all classes. This also ensures that the cost effectiveness model did not simulate counter intuitive results, whereby HAQ improves for patients on cDMARDs but not for patients on bDMARDs. Additionally it should be noted that it is at these long extrapolations beyond 10 years where there is evidence that the model may under-predict HAQ worsening, even within the period covered by the data. In ERAS there appears to be continued worsening of HAQ in the observed data, though NOAR does not exhibit this characteristic.

vi) For those patients simulated to follow bDMARD therapy who then return to cDMARDs after the sequence of biologic drugs has been exhausted, we again take each class from year two of the modelled data. Patient covariates are taken from the current position in the model rather than their baseline characteristics.

Overall, for patients population simulated in the cost effectiveness model for Group 2 (those that have failed 2 previous DMARDs, and have active disease), there is a lower probability of being in the lowest Class 1 (13% vs 22% in the overall ERAS cohort), a higher probability of class 2 (36% vs 33%), and class 3 (38% vs 29%) and a lower probability of being in class 4 (12% vs 16%). Thus, the cohort of patients simulated within the cost effectiveness analysis are concentrated more in the latent classes that exhibit rapid HAQ progression than in the overall ERAS cohort.

The methods used by the Assessment Group differ from those used by the manufacturers which typically assume within their base cases that HAQ progression on bDMARDs is zero, and that HAQ progression on cDMARDs is at the rate of 0.045 per annum.

As seen in Figure 94 the assumption that there is no HAQ progression whilst on bDMARDs appears, in the short term, to be supported by the 3 year follow-up data from the BSRBR. However the assumed progression on cDMARDs is not compatible with that seen in Figure 95, and lacks face validity since this leads to predictions that most patients reach the ceiling value of HAQ prior to death.

It should also be noted that the use of an annual worsening in HAQ of 0.045 entirely lacks any empirical support. Chen et al. is the source of this value, who state:

"In the base case, the following assumptions were made concerning HAQ increases over time. It was assumed that patients remaining on TNF inhibitors experience a worsening (increase) in HAQ equivalent to the general population. Based on the study by Krishnan and colleagues, this was set a progression of 0.03 per year... It was assumed that TNF inhibitors halve the general worsening in HAQ, so that patients on palliation have a progression rate of 0.06 per year..... For conventional DMARDs, an intermediate progression rate of 0.045 per year was assumed These assumptions were varied in sensitivity analysis." (Chen et al, 2006, p.100)

Calculating an accurate HAQ progression can be challenging as: historical data on past trends may only be a weak predictor of future trajectories; and there are no data on patients who are inadequately treated. In addition, HAQ alone may not encompass all utility impacts of RA that can be caused by flares.

The Assessment Group identified three papers that provided detail on HAQ trajectory whilst patients were receiving cDMARDs.^{236,297,298} The search was not systematic and it is possible that papers were not identified. Key elements of these trials have been tabulated (Table 168). It is also not known whether the use of current cDMARDs would be associated with a lower HAQ trajectory.

Publication	Number	cDMARDs	Mean	Average HAQ
	of		follow-up	progression per
	patients		(years)	annum
	analysed			
Plant et al ²⁹⁷	421	HCQ, sodium	5	0.08
		aurothiomalate,		(from years 1 to 5)
		auranofin and		
		penicillamine		
Symmons et	466	Intensive cDMARD	3	0.06
al ²⁹⁸		treatment		
Munro et	440	Intramuscular GLD	5	0.05
al^{236}				(from years 2 to 5)

Table 168: Identified evidence on HAQ progressions whilst on cDMARDs.

The clinical advisors within the Assessment Group stated that observational studies of RA populations generally show a HAQ progression substantially below 0.05 per year, but caution that these often cover the spectrum of RA patients and would contain patients who would not have received bDMARDs. This point is highlighted in Williams et al.²⁹⁹

In order to provide an insight into the impact of assumed HAQ trajectory whilst on cDMARDs the Assessment Group have undertaken scenario analyses using the values of 0.045 for cDMARDs and 0.06 for palliative care in addition to using the models derived from the ERAS database.

There appears to be little long-term evidence to support the value used by the manufacturers; in contrast the values used by the Assessment group have come from a large, prospective, observational database that has been corroborated in a separate database. Assuming a linear HAQ progression does not take into account the impact of surgery which may halt HAQ progression, the costs of which are currently assumed to be incurred without benefit.

6.3.15 Time to discontinuation on treatment

The duration of treatment on the first biologic for adult RA patients was estimated using the BSRBR database which records the dates on which therapies are initiated and ended. Separate analyses were undertaken for those patients obtaining good and moderate EULAR responses at 6 months. Patients classed as non-responders at 6 months are assumed to be withdrawn from therapy in the AG model (as in current NICE guidance which requires an improvement in DAS28 of at least 1.2 at this time point for treatment to be maintained). This allows patients that have been withdrawn prior to 6 months to be included in the analysis, though there is a risk that their response category recorded at 6 months is in fact related to having switched to some other therapy.

A range of parametric survival models (Weibull, exponential, Gompertz, loglogistic, lognormal, gamma and Weibull frailty models) were considered. The best fitting model, in terms of both Akaike information criterion (AIC) and the Bayesian Information criteria (BIC) was that based on the gamma distribution. The following covariates were included: age; gender; disease duration at baseline; DAS score; number of previous DMARDs; and HAQ at baseline. We included all covariates, even if insignificant, but considered alternative specifications (such as squared and log terms) in order to identify our preferred model, guided by AIC/BIC.

Establishing separate covariates for the individual biologic therapies within this appraisal was considered. Since golimumab, abatacept, tocilizumab and certolizumab pegol comprised less than 1% of the observations, and had follow-up durations of much shorter duration, these were excluded leaving only infliximab, etanercept and adalimumab. Whilst the duration of treatment for those on etanercept and adalimumab was significantly shorter than for infliximab, this is likely to be due to the times at which therapies became available in the UK. Due to this potential confounding and the lack of data for a number of treatments, separate terms for individual therapies in the cost effectiveness analysis were not adopted.

Two plots comparing the duration on treatment estimated by the models to those observed in the BSRBR database are shown in Figure 112. These are divided into those patients with moderate or good EULAR response, and are constrained to only those patients who would be eligible for biologics under current NICE guidance. Patients who met the NICE criteria were the overwhelming majority and comprised 7250 of the 7743 patients (94%).

Figure 112: Plots of the estimated data from the statistical models compared with the observed data

Given the paucity of data on bDMARDs used before cDMARDs an assumption was required regarding the duration on treatment if bDMARDs were used before cDMARDs. It was assumed that the duration would be unaffected by whether or not cDMARDs were used prior to bDMARDs.

There were also little data on the duration of response for patients receiving cDMARDs. Based on the assumption that cDMARDs are not likely to be more toxic than biologics used in combination with a cDMARD, it was assumed that the survival duration for each EULAR response category for bDMARDs would be applicable for cDMARDs.

It was assumed that patients would not switch to a subsequent treatment within six months of initiating a treatment, this assumes that any adverse event would be monitored before changing treatment at six months.

The method used by the Assessment Group differs from those of the manufacturers but it is commented that there was diversity in the methods used by the manufacturers with no clear consensus reached. One flaw in the approach taken by manufacturers is that the discontinuation rates had frequently not been conditional on EULAR response and thus the average time on treatment would be decreased by those patients without a response who typically stay on treatment for one year, despite the current NICE stopping criteria.

In summary the Assessment Group does not believe any of the methods assumed by the manufacturers represents a significantly better method than that used by the Assessment Group and there is a reason to believe that the approach taken by the Assessment Group is the preferred method.

6.3.16 Rebound post-treatment

The change in a patient's HAQ when treatment has failed to be efficacious or is stopped due to an adverse event is not known with certainty. The Assessment Group has assumed that following cessation of treatment the initial HAQ-improvement experienced on treatment initiation would be lost. The resultant HAQ would be assumed for the subsequent six months when the next treatment in the sequence is trialled.

This is similar to assumptions made within the manufacturers' models

6.3.17 Assumed NHS costs per HAQ band

A brief review of the recent literature regarding the costs associated with active RA and in particular HAQ score identified few data that were not identified collectively within the manufacturers' submissions. The only information of note was a poster by Bansback et al.³⁰⁰ which using Canadian data concluded that 'the study finds no signal after three years that biologic therapies in patients with RA have led to overall cost offsets from related treatment costs'. Possible explanations that were proffered were: falling resource utilization in general, potentially due to more aggressive use of cDMARDs, have given a false impression that biologics are causally associated with resource utilization; that cost offsets occur beyond three years; and that the model is mis-specified and estimates remain biased.

Whilst these results are noted the Assessment Group believe it is plausible that there could be an increase in hospitalisation costs as HAQ increases. Having reviewed the hospital costs within the manufacturers' submissions the AG decided to use that reported by Abbvie for the base case, which were amongst the lowest of those presented and were relatively flat until the patient had severe HAQ scores (defined as HAQ scores of 2.125 and greater). These values were derived from data taken from the NOAR database on impatient days and joint replacements^{257,301} and were multiplied by NHS reference costs. The values assumed in the Assessment Group base case are depicted in Figure 113.

Figure 113: The assumed relationship between annual hospitalisation costs and HAQ score in the AG model

6.3.18 Utility related to HAQ

The NICE Methods guide states that mapping is an acceptable method for estimating EQ-5D from clinical outcome measures in the absence of direct evidence, but that the statistical properties of the model "should be fully described, its choice justified, and it should be adequately demonstrated how well the function fits the data." (page 39-40)²¹⁹. UCB (certolizumab pegol) provided data on the changes in EQ-5D in the initial six-month period but these were marked academic-in-confidence.

Hernandez et al., (2013a,³⁰² 2013b²⁹⁶) report the results of fitting a bespoke mixture model to data from patients with RA from a US observational database comprising in excess of 100,000 observations. Full details of the dataset, the statistical model and its performance (in comparative and absolute terms) are provided in the manuscripts.

The set of models reported include HAQ, HAQ², pain, age, age² and gender as explanatory variables. These were included because models performed substantially better when they are included. Most previous analyses have excluded pain. However, a substantially better estimate of EQ-5D is obtained by the inclusion of pain alongside HAQ than via HAQ alone. This is to be expected since the domains covered by the HAQ instrument are very similar to the domains of usual activities, mobility and self-care in the EQ-5D. The dimension of "pain" attracts the highest weights in the EQ-5D UK scoring regression. The fact that pain enters as a separate covariate in the Hernandez model is because HAQ and pain are not perfectly correlated. It is therefore important to include pain as an explanatory variable in estimating EQ-5D.
This does not mean that the cost effectiveness model need to be both HAQ and pain based, or that separate HAQ and pain treatment effects need to be estimated for therapies. There are alternative methods by which the relationship between HAQ and pain can be incorporated in to the cost effectiveness model without the requirement for additional complexity, rather than reverting to poorer methods of explaining EQ-5D.

The Assessment Group use a two-step process for estimating EQ-5D values from HAQ values: the first step simulates the expected pain score associated with HAQ; the second step estimates EQ-5D based on both HAQ value and pain score.

Step 1: Simulating the expected pain score associated with HAQ.

The estimation of EQ-5D utility scores is substantially more accurate when based on HAQ and pain than on HAQ alone as detailed in Hernandez Alava et al.²⁷² and Hernandez Alava et al.²⁷² In order to incorporate the published statistical models that estimate this relationship, pain is independently predicted from the simulated HAQ score for each patient within the model. Whilst this assumes that all treatments affect pain proportionate to their effect on HAQ score this is also the assumption implicit in all models that exclude pain.

HAQ and pain are not related in a simple linear fashion as shown in data from the NDB and data from ERAS (Figure 114) which incorporate 100,398 observations for the NDB and 13,357 from ERAS.

Figure 114: The relationship between HAQ score and pain value

Data from the NDB are used to populate the mathematical model, with the mean pain score (and its variance) being estimated for each feasible HAQ score.

Step 2: Estimating EQ-5D based on both HAQ value and pain scores.

It is well recognised that simple linear regression models are inappropriate for estimating EQ-5D values as a function of clinical outcomes. This is because the assumption of conditional normality does not hold for an outcomes measure that is limited above by full health (1), at the worst health state (-0.594) and which is typically bi- or tri-modal within this range. This theoretical assertion is supported by empirical findings across a broad range of disease areas³⁰³ and within rheumatoid arthritis from two separate large datasets that span the full spectrum of disease^{304,305}. Linear models lead to biased estimates of EQ-5D. They estimate higher EQ-5D scores for patients in severe health states, and lower EQ-5D scores for those patients in less severe health states. The net effect is an undervaluation of the cost effectiveness of effective therapies. This has been shown to be of a substantial magnitude in RA with ICERs varying by up to 20%³⁰⁵.

In this report an alternative method is undertaken, based on mixture models which use an underlying distribution that is bespoke to the EQ-5D UK instrument. This has been reported in Hernandez Alava et al. ³⁰⁵ The model was estimated using data from the US NDB. A total of 103,867 observations were included in the total dataset from 16,011 patients. The size of the dataset dwarfs that which is typical of most "mapping" studies and provides a good exemplar in which to test competing methods because patients spanned the full range of HAQ, pain and EQ-5D values.

The preferred model comprised four components, each of which includes HAQ and HAQ², pain, age and age² as explanatory variables. HAQ, pain and pain² enter the model as predictors of component membership. The model fits substantially better than linear regression or response mapping approaches, does not generate non feasible values or suffer from systematic bias in the estimates. Full coefficient values are reported in the associated publications. We used the full covariance matrix to incorporate parameter uncertainty into the cost effectiveness model when running probabilistic sensitivity analyses. These data can be obtained online:

:(<u>http://rheumatology.oxfordjournals.org/content/suppl/2013/01/20/kes400.DC1</u> - accessed July 2013³⁰⁶)

The Assessment Group believe that their method is more appropriate than those used by the manufacturers. All of the studies used in the base case manufacturer submissions are based on linear regression models with insufficient information on which to judge the appropriateness

of the statistical models being used and with far fewer patients than used to derive the relationship between HAQ, pain and utility used by the Assessment Group.

The Assessment Group report that there are further studies that could have been used to inform the manufacturers' submissions that report on the relationship between health utilities, HAQ and other covariates. These are briefly summarised.

- Hawthorne et al (2000) used UK EQ-5D data from 139 patients with RA recruited in Australia in a linear regression with HAQ as the only covariate³⁰⁷
- Lindgren et al (2009) used Swedish registry data from 1787 patients and used the UK EQ-5D tariff to estimate EQ-5D as a function of HAQ, DAS and age²⁸²
- Marra et al (2007) ¹⁸⁸ report UK tariff EQ-5D as a function of HAQ and age (n=317) from a sample of Canadian patients with RA
- Kobelt et al (1999, 2002) reports mean EQ-5D scores by HAQ category using Swedish registry data (n=116) in the former paper and a combination of Swedish and UK patients in the latter (n=210). For illustrative purposes only, we fitted simple linear models to these reported mean values.

Compared to these studies, the models used as the base case for the entire set of manufacturer submissions (Hurst,²³³ Malottki,²²² Duccournau ²⁶² and Bansback²⁷¹) have a greater assumed impact on utility than the remaining studies particularly where HAQ exceeds 2 which is the case for a sizeable proportion of cDMARD treated patients given the assumptions used in many of the costs effectiveness models regarding HAQ progression over time whilst on cDMARDs. (Figure 115).

Figure 115: A comparison of published relationships between utility and HAQ

In a sensitivity analysis the equation mapping HAQ to utility described in Malottki et al. was used. Additionally, using the relationship between HAQ and pain taken from the ERAS study (personal communication) rather than that from the NDB was evaluated.

6.3.19 The assumed costs and disutilities associated with adverse events.

The Assessment Group took a simplistic view regarding adverse events.

It was assumed that only serious infections would carry a significant cost and disutility burden and limited the adverse events within the model to serious infections alone. A review of the adverse effects of biologics¹⁶⁰ indicated that serious infections were observed in 35 per 1000 patients (95% CI: 27 to 46) Singh et al reported the rate of serious infections in people on cDMARDs to be 26 per 1000 patients (no CI reported), implying that an additional 9 per 1000 patients would sustain a serious infection when using a bDMARD. It was assumed that the rate of serious infection was independent of the bDMARDS used. The Assessment Group accepted arguments presented as Academic-in-confidence by UCB (the manufacturer of certolizumab pegol) that there were different exposure durations between certolizumab pegol and placebo in the certolizumab pegol RCTs and that the increased risk of serious infections reported by Singh for certolizumab pegol should be treated with caution.

The costs (£1479 per episode) and undiscounted QALY loss associated with serious infections (a loss in utility of 0.156 for 28 days) were both taken from the Pfizer submission.²⁰⁴ Costs and QALY losses (assumed to be 0.012 per episode). Based on the assumed increased rate of serious infection it was assumed that a bDMARD strategy would incur an additional £13.31 and a QALY loss of 0.0001 per typical patient treated. These values were increased 100-fold in sensitivity analyses to assess the impact of events that may be too infrequent to be observed in RCTs, but may become apparent when large numbers of patients are treated.

The majority of submissions excluded adverse events from the model, although Pfizer included both costs and disutility in a sensitivity analysis and Abbvie included costs alone within the base case.

6.3.20 Mortality Associated with RA

The link between RA and early mortality has been long documented with a seminal paper being that of Wolfe et al.³⁰⁸ published in 1994. A meta-analysis by Naz and Symmons⁵ incorporating 15 studies involving greater than 300 subjects and published between 1993 and 2006 indicated a range in the standardised mortality ratio (SMR) of between 1.01 and 2.70. Dadoun et al.⁶ undertook a meta-analysis of studies reporting mortality rates in RA and reported a meta-SMR of 1.47 (95% CI: 1.19;1.83) from eight studies although the level of heterogeneity was high with an I² statistic of 93.47.

However, little data have been published on the relationship between change in HAQ and change in expected mortality, which is the key relationship that is required if there is to be proof that an increase in HAQ score is associated with an increase in mortality. Following a literature review, a paper by Michaud et al.,³⁰⁹ published in 2012 was identified that aimed to establish the relationship between change in HAQ and mortality. Their conclusions were that 'changes in the PCS [SF36 physical component summary score] and HAQ did not contribute substantially to predictive value over and above the baseline values of these variables''. As such the AG assumed that only the baseline HAQ score was important for predicting mortality and the hazard ratios (HR) detailed in Table 169 were applied. It is noted that as initial HAQ increases then the HRs also increases. It was assumed that these HRs were independent of time.

Initial HAQ	Hazard Ratio (95% Confidence
category	Interval)
0.000	1(1-1) referent
0.125 - 0.375	1.4 (1.1 – 1.8)
0.500 - 0.875	1.5 (1.2 – 1.9)
1.000 - 1.375	1.8 (1.4 – 2.2)
1.500 - 1.875	2.7 (2.2 – 3.5)
2.000 - 2.375	4.0 (3.1 – 5.2)
2.500 - 3.000	5.5 (3.9 - 7.7)

 Table 169:
 Hazard ratio for mortality associated with HAQ category

The confidence intervals for each HAQ category overlap with the neighbouring category. In order to preserve monotonicity for the HRs, quantile matching was assumed when drawing the HR for each category for each probabilistic sensitivity analysis iteration. The patient was assumed to die midway through their final year.

The Assessment Group method straddles those of the manufacturers in that it applies a fixed hazard ratio for mortality but selects this hazard ratio based on the initial HAQ category of the patient, with those with a worse HAQ dying sooner on average. This contrasts with the methods used of applying a non-HAQ related hazard ratio, and allowing mortality to be determined by current HAQ score. The Assessment Group comment that the data source used to determine their method is much more recent than those used by the manufacturers.

6.3.21 Calculation of the appropriate number of patients to run when generating results

Analyses were undertaken to assess the number of patients required to be simulated in order that stable results were produced. The strategies compared were strategies 1 and 6 in Table 181 which started with MTX, and etanercept and MTX respectively. It was demonstrated (see Figure 116) that beyond 10,000 simulated patients the change in cost per QALY was small, being less than £500 from a base of approximately £62,000. Therefore 10,000 patients were simulated for all analyses involving patients with severe RA who could receive MTX. It is commented that the cost per QALY between active interventions are likely to require greater numbers of patients for stability, but running greater numbers of patients was not possible within the time constraints of the project.

Figure 116:Evaluating the number of patients required in analyses involvingpatients with severe RA who could receive MTX

For patients with moderate disease the computational time per patient was much greater as the numbers of patients within the BSRBR database with moderate disease was small meaning that large number of simulated patients were discarded. As such, only 2000 patients were simulated and it is unclear whether a stable cost per QALY had been reached (Figure 117): the potential error however was not deemed to be excessive and appeared to be between £1000 and £2000 on the cost per QALY value.

Figure 117:Evaluating the number of patients required in analyses involvingpatients with moderate RA who could receive MTX

The large computational time required meant that the simulated patient numbers were reduced further in the PSA. For severe patients 100 Monte Carlo samples of 1000 patients was conducted for the severe group and 100 Monte Carlo samples of 100 patients for the moderate group. Whilst there are fewer patients simulated the expectation of the results are likely to be robust as O'Hagan et al³¹⁰ proved that the most efficient method of generating the expectation of cost-effectiveness would be to generate only one patient per PSA iteration. The greater numbers used in our PSA was to facilitate the generation of CEACs.

Figure 118: Discounted cost per QALY of a bDMARD strategy compared with a non-bDMARD strategy in a cDMARD naïve population.

For patients with moderate RA the computational time required was significantly greater as patients were resampled until the DAS criterion of between 3.1 and 5.2 was met. This led to the results for this group to be taken from 1000 patients. For both the moderate and the severe RA populations the computational time required for a deterministic analysis was approaching 1 hour. For the probabilistic analyses the number of simulated patients was reduced by 90%, (i.e. 1000 for severe patients and 100 for moderate patients) and 100 probabilistic samples were evaluated.

6.3.22 Results

A summary of the analyses undertaken is provided in Table 170. These are all 24 combinations of factors shown excluding those combining EULAR response in MTX-naïve patients as the only data available was for an intervention (golimumab) unlicensed in this population. Each analysis had further sensitivity analyses conducted assessing the: impact of using a different RCT evidence base; a different mapping of HAQ to utility; an increase in the effects of serious adverse events; and a different assumed relationship between HAQ and pain.

Population	Treatment provided	Response Measure	HAQ trajectory on cDMARDs
Population 3 (severe MTX- experienced)	In combination with MTX	EULAR	Taken from the ERAS database
Population 2 (moderate to severe MTX-experienced)	As monotherapy	ACR (then mapped to EULAR)	Using previous NICE appraisal values
Population 1			

Table 170: Combinations of factors analysed in the cost-effectiveness analyses

(severe MTX-naïve)

Due to the number of results presented the Assessment Group decided that a summary table, providing indicative results would aid the reader. As will be seen there is little difference in the estimated cost-effectiveness of the bDMARDs, with the exception of tocilizumab which differs as it cannot be used after rituximab if it was used as the first bDMARD. As such, the median ICERs for all bDMARDs in Populations 2 and 3 are presented in Tables 171 to 172. The median was selected as a method of detailing the cost effectiveness of an average bDMARD. The ICERs for Population 1 are provided in Tables 173 and 174. No results are presented for a model based on EULAR data for Population 1 as there was only one RCT identified which did not include intensive cDMARDs which are recommended treatment. The results provided use ACR transformed to EULAR data, but as is seen this approach produced similar cost per QALY results to the models which used EULAR data in Populations 2 and 3.

Fully incremental results follow the summary tables. However, these may be misleading when between bDMARD comparisons are made as the ICERs compared with the cDMARD alone strategy are relatively similar, and there is considerable uncertainty in efficacy data. Interventions labelled as dominated may only be slightly more expensive and marginally less effective than a comparator. This cannot be seen in the results as due to the commercial in confidence patient access schemes both discounted costs and discounted QALYs are marked commercial in confidence.

						I	Base Case +				
	Response	Assumed		RCTs with	RCTs with	Trials with	Malottki	Discount	Impact of	Relationsh	PSA
	Measure	HAQ		small %ge	small %ge	inadequate	mapping	rates (6%	AEs	ip between	
		Progression		of	of	MTX	of HAQ to	costs, 1.5%	assumed	HAQ and	
				bDMARD	bDMARD	history	utility	QALYs)	to be	pain taken	
				prior use,	prior use				100-fold	from	
				adequate	(irrespectiv				higher	ERAS	
				MTX-	e of MTX-						
				history	history)						
Population 2	EULAR	ERAS	£61,200	£61,400	No data	No data	£49,700	£39,500	£62,200	£73,700	£61,700
(severe		Linear	£37,900	£36,300	No data	No data	£32,400	£22,300	£38,300	£46,300	£37,600
MIX -	ACR	ERAS	£62,200	£62,200	£62,600	£68,900	£49,700	£39,500	£62,200	£73,700	£62,700
experienced)		Linear	£35,500	£35,100	£35,700	£36,400	£30,900	£21,400	£35,600	£43,700	£35,900
Population 3	EULAR	ERAS	£75,000	£74,200	No data	No data	£53,400	£46,600	£78,100	£87,300	£76,800
(moderate		Linear	£37,500	£36,600	No data	No data	£31,300	£21,800	£39,300	£48,300	£35,800
MTX-	ACR	ERAS	£77,100	£77,500	£77,300	£79,200	£53,900	£48,300	£79,800	£89,300	£79,000
experienced)		Linear	£38,000	£36,700	£38,000	£39,200	£30,000	£21,800	£39,100	£46,700	£38,400
All numbers re	ounded to the r	nearest £100.									

Table 171:Summarised results: Median ICERs for all bDMARD strategies compared with the MTX alone strategy. Populations 2 and 3 who
can receive MTX

Table 172:	Summary of median ICERs for all bDMARDs compared with an SSZ alone strategy. Populations 2 and 3 who are treated with
	monotherapy

			Base Case -	ŀ							
	Response	Assumed		RCTs with	RCTs with	Trials with	Malottki	Discount	Impact of	Relationsh	PSA
	Measure	HAQ		small %ge	small %ge	inadequate	mapping	rates (6%	AEs	ip between	
		Progression		of	of	MTX	of HAQ to	costs, 1.5%	assumed	HAQ and	
				bDMARD	bDMARD	history	utility	QALYs)	to be	pain taken	
				prior use,	prior use				100-fold	from	
				adequate	(irrespectiv				higher	ERAS	
				MTX-	e of MTX-						
				history	history)						
Population 2	EULAR	ERAS	£87,600	£89,000	No data	No data	£71,600	£58,200	£89,100	£107,000	£88,400
(severe		Linear	£39,600	£38,000	No data	No data	£34,800	£24,800	£40,200	£49,200	£39,100
	ACR	ERAS	£94,800	£93,900	£99,600	£94,700	£79,000	£64,700	£97,200	£117,400	£90,000
experienced)		Linear	£38,500	£37,300	£37,200	£37,200	£34,100	£23,600	£39,300	£47,800	£38,800
Population 3	EULAR	ERAS	£104,800	£108,100	No data	No data	£74,400	£65,100	£108,700	£121,900	£105,400
(moderate		Linear	£41,400	£39,300	No data	No data	£32,800	£23,900	£41,600	£49,700	£41,700
MTX-	ACR	ERAS	£106,400	£107,900	£110,500	£107,900	£77,200	£70,000	£105,900	£120,300	£108,200
experienced)		Linear	£38,800	£38,500	£38,000	£37,200	£31,100	£23,800	£40,500	£47,100	£39,600
All numbers ro	ounded to the r	nearest £100.									

Table 173:Summarised results: Median ICERs for all bDMARD strategies compared with the MTX alone strategy. Population 1 who can
receive MTX

				Base Case +						
	Response Measure	Assumed HAQ Progression		RCTs with small %ge of MTX prior use ,	Malottki mapping of HAQ to utility	Discount rates (6% costs, 1.5% QALYs)	Impact of AEs assumed to be 100- fold higher	Relationship between HAQ and pain taken	PSA	
Population 1 (severe MTX – naïve)	ACR mapped to	ERAS	£308,700	£571,700	£214,800	£185,000	£326,100	£344,800	£295,700	
	EULAR	Linear	£296,300	£432,800	£216,400	£192,900	£323,600	£344,700	£296,700	
All numbers roun	ded to the ne	arest £100.								

						Base Case +			
	Response	Assumed		RCTs with	Malottki	Discount	Impact of	Relationship	PSA
	Measure	HAQ		small % ge of	mapping of	rates (6%	AEs assumed	between	
		Progression		MTX prior use,	HAQ to	costs, 1.5%	to be 100-	HAQ and	
				_	utility	QALYs)	fold higher	pain taken	
							_	from ERAS	
Population 1	ACR	ERAS	£414,700	£140,418	£340,500	£295,400	£382,000	£438,700	£404,500
(severe MTX	mapped								
– naïve)	to								
	EULAR	Linear	£378,000	£139,800	£357,700	£291,200	£375,300	£460,000	£408,800
All numbers rou	unded to the	nearest £100.							

Table 174: Summary of median ICERs for all bDMARDs compared with a SSZ alone strategy. Population 1 who are treated with monotherapy

6.3.22.1 EULAR response measure: ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population

Table 175:Deterministic base case results using EULAR data directly – ERAS
cDMARD HAQ progression and a severe, MTX-experienced, RA
population

First Intervention in the strategy	Discounted Costs	Discounted C QALYs co w		oared MTX egy	Incremental CPQ
MTX			-		-
TCZ + MTX			£	61,239	Ext Dominated
ABT i.v. +					
MTX			£	58,969	£ 58,969
IFX + MTX			£	59,530	Dominated
ADA + MTX			£	62,948	Ext Dominated
CTZ + MTX			£	61,084	Ext Dominated
GOL + MTX			£	62,664	Dominated
ETN + MTX			£	61,497	£ 84,246

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

It is seen that the ICERs of all the bDMARDs compared with the MTX strategy are in the region of $\pounds 58,000$ to $\pounds 63,000$

Table 176:Deterministic results having included RCTs with a small proportion of
previous bDMARD use (with adequate prior MTX exposure) using
EULAR data directly – ERAS cDMARD HAQ progression and a severe,
MTX-experienced, RA population.

First Intervention in the strategy	Discounted Costs	Discounted QALYs	CPQ comp with I strate	ared MTX egy	Incremental CPQ
MTX			-		-
TCZ + MTX			£	61,445	Ext Dominated
ABT i.v. +					
MTX			£	58,562	£ 58,562
IFX + MTX			£	59,229	Dominated
ADA + MTX			£	62,589	Ext Dominated
GOL + MTX			£	62,388	Ext Dominated
CTZ + MTX			£	59,736	£ 70,771
ETN + MTX			£	61,475	£ 339,813

Table 177:Deterministic results having used the mapping of HAQ to utility from
Malottki et al rather than Hernandez et al using EULAR data directly –
ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA
population

First Intervention in the strategy	Discounted Costs	Inted Costs Discounted QALYs		pared MTX tegy	Incremental CPQ
MTX			-		-
TCZ + MTX			£	49,269	Ext Dominated
ABT i.v. +					
MTX			£	48,396	£ 48,396
IFX + MTX			£	48,735	Dominated
ADA + MTX			£	51,354	Ext Dominated
CTZ + MTX			£	49,838	Ext Dominated
GOL + MTX			£	50,923	Ext Dominated
ETN + MTX			£	49,694	£ 59,913

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

Table 178:Deterministic results having used discount rates of 6% per annum for
costs and 1.5% per annum for QALYs and using EULAR data directly –
ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA
population

First Intervention in the strategy	Discounted Costs Discounted QALYs		CPQ comp with strate	ared MTX egy	Incremental CPQ
MTX			-		-
TCZ + MTX			£	41,113	Ext Dominated
ABT i.v. +					
MTX			£	37,344	£ 37,344
IFX + MTX			£	38,100	Dominated
CTZ + MTX			£	39,047	Ext Dominated
ADA + MTX			£	40,480	Dominated
GOL + MTX			£	40,189	Dominated
ETN + MTX			£	39,470	£ 58,472

Table 179:Deterministic results assuming 100-fold increased impact of adverse
events and using EULAR data directly – ERAS cDMARD HAQ
progression and a severe, MTX-experienced, RA population

First Intervention in the strategy	Discounted Costs	Discounted CPQ QALYs compared with MTX strategy		pared MTX egy	Incremental CPQ	
MTX				-		-
TCZ + MTX				£	62,162	Ext Dominated
ABT i.v. +						
MTX				£	59,359	£ 59,359
IFX + MTX				£	60,483	Dominated
CTZ + MTX				£	61,837	Ext Dominated
ADA + MTX				£	64,100	Dominated
GOL + MTX				£	63,753	Dominated
ETN + MTX				£	62,317	£ 89,104

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

Table 180:Deterministic results having used the relationship between HAQ and
pain derived from ERAS – ERAS cDMARD HAQ progression and a
severe, MTX-experienced, RA population

First Intervention in the strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX strategy	Incremental CPQ	
MTX			-	-	
TCZ + MTX			£ 73,712	Ext Dominated	
ABT i.v. +					
MTX			£ 71,365	£ 71,365	
IFX + MTX			£ 72,162	Ext Dominated	
ADA + MTX			£ 76,139	Ext Dominated	
CTZ + MTX			£ 73,652	Ext Dominated	
GOL + MTX			£ 75,449	Ext Dominated	
ETN + MTX			£ 74,253	£ 99,003	

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

Table 181:Probabilistic base case results using EULAR data directly – ERAS
cDMARD HAQ progression and a severe, MTX-experienced, RA
population

First Intervention in the strategy	Discounted Costs	Discounted QALYs	I CPQ compared with MTX strategy		Incremental CPQ
MTX			-		-
TCZ + MTX			£	61,711	Ext Dominated
ABT i.v. +					
MTX			£	59,446	£ 59,446
IFX + MTX			£	60,255	Dominated

CTZ + MTX			£	61,590	Ext	Dominated
ADA + MTX			£	63,561	Dor	ninated
GOL + MTX			£	63,087	Ext	Dominated
ETN + MTX			£	62,253	£	87,840

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

Figure 119: The CEAC when using EULAR data directly – ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population.

It is seen that at a willingness to pay of £30,000 that MTX strategy has a very high probability of being optimal.

6.3.22.2 EULAR response measure: Linear cDMARD HAQ progression and a severe, MTX-experienced, RA population

Table 182:Deterministic base case results using EULAR data directly – Linear
cDMARD HAQ progression and a severe, MTX-experienced, RA
population

First Intervention	Discounted Costs	Discounted QALYs	CPQ compared		Incren CPQ	nental
in the strategy			with strat	MTX egy		
MTX			-		-	
TCZ + MTX			£	35,872	Ext D	ominated
ABT i.v. +						
MTX			£	35,794	£	34,247
IFX + MTX			£	36,176	Domin	nated
ADA + MTX			£	38,463	Ext D	ominated
CTZ + MTX			£	37,867	Ext Dominated	
GOL + MTX			£	38,689	Ext Dominated	
ETN + MTX			£	39,068	£	83,446

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab

CPQ - cost per QALY gained. Ext - extendedly

It is seen that the ICERs of all the bDMARDs compared with the MTX strategy are in the region of \pounds 35,000 to \pounds 40,000

Table 183:Deterministic results having included RCTs with a small proportion of
previous bDMARD use (with adequate prior MTX exposure) using
EULAR data directly – Linear cDMARD HAQ progression and a severe,
MTX-experienced, RA population

First Intervention in the strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX strategy		Incremental CPQ
MTX			-		-
TCZ + MTX			£	33,795	£ 33,795
ABT i.v. +					
MTX			£ 33,896		£ 35,682
IFX + MTX			£	34,473	Dominated
					Ext
ADA + MTX			£	36,589	Dominated
					Ext
GOL + MTX			£ 36,800 Do		Dominated
CTZ + MTX			£ 36,292		£ 69,464
ETN + MTX			£	37,377	£ 616,967

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

Table 184:Deterministic results having used the mapping of HAQ to utility from
Malottki et al rather than Hernandez et al using EULAR data directly –
Linear cDMARD HAQ progression and a severe, MTX-experienced, RA
population

First	Discounted Costs	Discounted	CPQ		Incremental
Intervention in		QALYs	compar	red	CPQ
the strategy			with M	TX	
			strateg	у	
MTX			-		-
					Ext
TCZ + MTX			£	30,635	Dominated
ABT i.v. +					
MTX			£	30,412	£ 30,412
IFX + MTX			£	31,067	Dominated
					Ext
ADA + MTX			£	33,066	Dominated
					Ext
CTZ + MTX			£	32,382	Dominated
GOL + MTX			£ 33,160		Dominated
ETN + MTX			£	33,193	£ 67,129

Table 185:Deterministic results having used discount rates of 6% per annum for
costs and 1.5% per annum for QALYs and using EULAR data directly –
Linear cDMARD HAQ progression and a severe, MTX-experienced, RA
population

First	Discounted Costs	Discounted	CPQ		Incremental	
Intervention in		QALYs	comp	ared	CPQ	
the strategy			with	MTX		
			strate	gy		
MTX			-		-	
					Ext	
TCZ + MTX			£	22,212	Dominated	
ABT i.v. +						
MTX			£	21,057	£ 21,057	
IFX + MTX			£	21,470	Dominated	
					Ext	
CTZ + MTX			£	22,479	Dominated	
ADA + MTX			£	22,998	Dominated	
GOL + MTX			£	23,178	Dominated	
ETN + MTX			£	23,476	£ 32,884	

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

Table 186:Deterministic results assuming 100-fold increased impact of adverse
events and using EULAR data directly – Linear cDMARD HAQ
progression and a severe, MTX-experienced, RA population

First	Discounted Costs	Discounted	CPQ		Increme	ntal
Intervention in		QALYs	compa	compared		
the strategy			with N	I TX		
			strateg	<u>sy</u>		
MTX			-		-	
					Ext	
TCZ + MTX			£	35,890	Domina	ted
ABT i.v. +						
MTX			£	35,421	£	35,421
IFX + MTX			£	36,303	Domina	ated
					Ext	
ADA + MTX			£	38,543	Domina	ted
					Ext	
CTZ + MTX			£	37,866	Dominated	
					Ext	
GOL + MTX			£	38,608	Domina	ted
ETN + MTX			£	39,067	£	87,843

Table 187:Deterministic results having used the relationship between HAQ and
pain derived from ERAS – Linear cDMARD HAQ progression and a
severe, MTX-experienced, RA population

First	Discounted Costs	Discounted	CPQ	Incremental
Intervention in		QALYs	compared	CPQ
the strategy			with MTX	
			strategy	
MTX			-	-
				Ext
TCZ + MTX			£ 44,112	Dominated
ABT i.v. +				
MTX			£ 43,866	£ 43,866
IFX + MTX			£ 44,533	Dominated
				Ext
ADA + MTX			£ 47,199	Dominated
				Ext
CTZ + MTX			£ 46,305	Dominated
				Ext
GOL + MTX			£ 47,439	Dominated
ETN + MTX			£ 47,830	£ 99,048

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

Table 188: Probabilistic base case results using EULAR data directly – Linear cDMARD HAQ progression and a severe, MTX-experienced, RA

population

	-	-		-
First	Discounted Costs	Discounted	CPQ	Incremental
Intervention in		QALYs	compared	CPQ
the strategy			with MTX	
25			strategy	
MTX			-	-
				Ext
TCZ + MTX			£ 38,152	Dominated
ABT i.v. +				
MTX			£ 34,843	£ 34,843
IFX + MTX			£ 35,425	Dominated
				Ext
CTZ + MTX			£ 36,644	Dominated
ADA + MTX		£ 37,583		Dominated
				Ext
GOL + MTX		£ 37,779		Dominated
ETN + MTX			£ 38,355	£ 86,917

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

Figure 120: The CEAC using EULAR data directly and assuming linear CDMARD HAQ progression

The CEAC shows only the probability of being optimal and inferences regarding relative cost-effectiveness shown be made with caution. It is seen however that at a willingness to pay of £30,000 per QALY the MTX strategy has the highest probability of being optimal.

6.3.22.3 ACR response measure: ERAS cDMARD HAQ progression and a severe, MTXexperienced, RA population

First	Discounted Costs	Discounted	CPO		Incremental
Intervention in		QALYs	compa	ared	CPQ
the strategy			with N	ЛТХ	
			strateg	gy	
MTX			-		-
					Ext
TCZ + MTX			£	62,298	Dominated
ABT i.v. +					Ext
MTX			£ 58,424		Dominated
IFX + MTX			£	58,159	£ 58,159
CTZ + MTX			£	60,773	Dominated
ABT s.c. +					
MTX			£	62,330	Dominated
					Ext
GOL + MTX			£ 62,040		Dominated
ADA + MTX			£	62,556	Dominated
ETN + MTX			£	63,776	£ 316,699

Table 189:Deterministic base case results using ACR data mapped to EULAR data- ERAS cDMARD HAQ progression and a severe, MTX-experienced,
RA population

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

It is seen that the ICERs of all the bDMARDs compared with the MTX strategy are in the region of £58,000 to £64,000

Table 190:Deterministic results having included RCTs with a small proportion of
previous bDMARD use (with adequate prior MTX exposure) using ACR
data mapped to EULAR data – ERAS cDMARD HAQ progression and a
severe, MTX-experienced, RA population

First	Discounted Costs	Discounted	CPQ		Incren	nental
Intervention in		QALYs	comp	ared	CPQ	
the strategy			with	MTX		
			strate	gy		
MTX			-		-	
					Ext	
TCZ + MTX			£	62,201	Domin	nated
ABT i.v. +						
MTX			£	57,816	£	57,816
IFX + MTX			£ 58,765		Domi	nated
ABT s.c. +					Ext	
MTX			£	62,262	Domin	nated
					Ext	
ADA + MTX			£	62,514	Domin	nated
					Ext	
GOL + MTX			£ 62,300 Dominate		nated	
CTZ + MTX			£	61,342	£ 152,191	
ETN + MTX			£	63,934	Domi	nated

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

Table 191:Deterministic results having included RCTs with a small proportion of
previous bDMARD use (irrespective of prior MTX exposure) using ACR
data mapped to EULAR data – ERAS cDMARD HAQ progression and a
severe, MTX-experienced, RA population

First	Discounted Costs	Discounted	CPQ		Increm	ental
Intervention in		QALYS	compa	ared	CPQ	
the strategy			with N	MTX		
			strateg	gy		
MTX			-		-	
					Ext	
TCZ + MTX			£	62,710	Domin	ated
ABT i.v. +						
MTX			£	58,537	£	58,537
					Ext	
IFX + MTX			£	59,314	Domin	ated
ABT s.c. +					Ext	
MTX			£	62,579	Domin	ated
					Ext	
ADA + MTX			£	62,801	Domin	ated
					Ext	
GOL + MTX			£	62,668	Domin	ated
CTZ + MTX			£	61,742	£	126,876
ETN + MTX			£	64,128	Domi	nated

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

Table 192:Deterministic results having included RCTs with potentially low prior
MTX exposure using ACR data mapped to EULAR data – ERAS
cDMARD HAQ progression and a severe, MTX-experienced, RA
population

First	Discounted Costs	Discounted	CPQ		Incre	mental
Intervention in		QALYs	comp	ared	CPQ	
the strategy			with	MTX		
			strate	gy		
MTX			-		-	
					Ext	
TCZ + MTX			£	75,539	Dom	inated
ABT i.v. +						
MTX			£	64,432	£	64,432
					Ext	
IFX + MTX			£	65,162	Dom	inated
					Ext	
CTZ + MTX			£	67,401	Dom	inated
ABT s.c. +					Ext	
MTX			£	68,783	Dom	inated
					Ext	
GOL + MTX			£	69,092	Dom	inated
ADA + MTX			£	69,353	£	329,469
ETN + MTX			£	70,276	Dom	ninated

Table 193:Deterministic results having used the mapping of HAQ to utility from
Malottki et al rather than Hernandez et al using ACR data mapped to
EULAR data – ERAS cDMARD HAQ progression and a severe, MTX-
experienced, RA population

First	Discounted Costs	Discounted	CF	PQ	Incremental
Intervention in		QALYs	co	mpared	CPQ
the strategy			wi	th MTX	
			str	ategy	
MTX			-		-
					Ext
TCZ + MTX			£	51,711	Dominated
ABT i.v. +					Ext
MTX			£	47,341	Dominated
IFX + MTX			£	48,005	£ 48,005
CTZ + MTX			£	49,405	Dominated
ABT s.c. +					Ext
MTX			£	50,588	Dominated
ADA + MTX			£	51,194	Dominated
GOL + MTX			£	50,519	£ 171,768
ETN + MTX			£	52,055	£ 329,038

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab

CPQ – cost per QALY gained. Ext - extendedly

Table 194:Deterministic results having used discount rates of 6% per annum for
costs and 1.5% per annum for QALYs and using ACR data mapped to
EULAR data – ERAS cDMARD HAQ progression and a severe, MTX-
experienced, RA population

First	Discounted Costs	Discounted	CPQ		Incremental
Intervention in		QALYs	compa	ared	CPQ
the strategy			with N	ATX	
			strateg	gy	
MTX			-		-
					Ext
TCZ + MTX			£	41,538	Dominated
ABT i.v. +					Ext
MTX			£	37,311	Dominated
IFX + MTX			£	37,744	£ 37,744
CTZ + MTX			£	39,044	Dominated
ABT s.c. +					Ext
MTX			£	40,474	Dominated
					Ext
GOL + MTX			£	40,334	Dominated
ADA + MTX			£	40,528	Dominated
ETN + MTX			£	41,389	£ 173,103

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab

CPQ - cost per QALY gained. Ext - extendedly

Table 195:Deterministic results assuming 100-fold increased impact of adverse
events and using ACR data mapped to EULAR data – ERAS cDMARD
HAQ progression and a severe, MTX-experienced, RA population

First	Discounted Costs	Discounted	CPQ	CPQ		nental
Intervention in		QALYs	comp	ared	CPQ	
the strategy			with I	MTX		
			strate	gy		
MTX			-		-	
					Ext	
TCZ + MTX			£	63,398	Domi	nated
ABT i.v. +					Ext	
MTX			£	59,065	Domi	nated
IFX + MTX			£	59,482	£	59,482
CTZ + MTX			£	62,013	Dom	inated
ABT s.c. +						
MTX			£	63,647	Dom	inated
					Ext	
ADA + MTX			£	63,504	Domi	nated
GOL + MTX			£	63,666	Dom	inated
ETN + MTX			£	65,267	£	376,247

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

Table 196:Deterministic results having used the relationship between HAQ and
pain derived from ERAS – ERAS cDMARD HAQ progression and a
severe, MTX-experienced, RA population

First	Discounted Costs	Discounted	CPQ		Incremental
Intervention in		QALYs	compa	ared	CPQ
the strategy			with N	ATX	
			strateg	gy	
MTX			-		-
					Ext
TCZ + MTX			£	74,240	Dominated
ABT i.v. +					Ext
MTX			£	69,108	Dominated
IFX + MTX			£	69,780	£ 69,780
CTZ + MTX			£	72,568	Dominated
ABT s.c. +					Ext
MTX			£	74,061	Dominated
					Ext
ADA + MTX			£	74,839	Dominated
					Ext
GOL + MTX			£	74,300	Dominated
ETN + MTX			£	76,180	£ 279,192

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab

CPQ – cost per QALY gained. Ext - extendedly

Table 197:Probabilistic base case results using ACR data mapped to EULAR data –
ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA
population

First	Discounted Costs	Discounted	CPQ	Incremental
Intervention in		QALYs	compared	CPQ
the strategy			with MTX	
			strategy	
MTX			-	-
				Ext
TCZ + MTX			£ 62,624	Dominated
ABT i.v. +				
MTX			£ 58,511	£ 58,511
				Ext
IFX + MTX			£ 59,227	Dominated
CTZ + MTX			£ 61,271	Dominated
ABT s.c. +				Ext
MTX			£ 62,732	Dominated
ADA + MTX			£ 63,214	Dominated
				Ext
GOL + MTX			£ 62,981	Dominated
$\overline{\text{ETN} + \text{MTX}}$			£ 64,254	£ 223,038

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

Figure 121: The CEAC when using ACR data mapped to EULAR data – ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population

It is seen that at a willingness to pay of £30,000 that MTX strategy has a very high probability of being optimal.

6.3.22.4 ACR response measure: Linear HAQ progression and a severe, MTX-experienced, RA population

Table 198:Deterministic base case results using ACR data mapped to EULAR data
– Linear cDMARD HAQ progression and a severe, MTX-experienced,
RA population

First	Discounted Costs	Discounted	CPQ		Incremental	
Intervention in		QALYs	comp	ared	CPQ	
the strategy			with l	MTX		
			strate	gy		
MTX			-		-	
TCZ + MTX			£	33,099	£	33,099
ABT i.v. +						
MTX			£	33,660	£	38,771
					Ext	
IFX + MTX			£	34,348	Domi	nated
CTZ + MTX			£	35,518	Domi	nated
ABT s.c. +					Ext	
MTX			£	36,794	Domi	nated
ADA + MTX			£	36,878	Domi	inated
					Ext	
GOL + MTX			£	36,701	Domi	nated
$\overline{\text{ETN} + \text{MTX}}$			£	38,078	£	213,466

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

It is seen that the ICERs of all the bDMARDs compared with the MTX strategy are in the region of $\pounds 33,000$ to $\pounds 39,000$

Table 199:Deterministic results having included RCTs with a small proportion of
previous bDMARD use (with adequate prior MTX exposure) using ACR
data mapped to EULAR data – Linear cDMARD HAQ progression and
a severe, MTX-experienced, RA population

First Intervention in	Discounted Costs	Discounted QALYs	CPQ compared	Incremental CPQ
the strategy			with MTX	
			strategy	
MTX			-	-
TCZ + MTX			£ 31,190	£ 31,190
ABT i.v. +				
MTX			£ 32,511	£ 43,343
IFX + MTX			£ 32,570	£ 82,908
ADA + MTX			£ 35,233	Dominated
ABT s.c. +				Ext
MTX			£ 35,142	Dominated
				Ext
GOL + MTX			£ 35,470	Dominated
CTZ + MTX			£ 35,107	£ 132,855
ETN + MTX			£ 36,633	Dominated

Table 200:Deterministic results having included RCTs with a small proportion of
previous bDMARD use (irrespective of prior MTX exposure) using ACR data mapped
to EULAR data – Linear cDMARD HAQ progression and a severe, MTX-experienced,
RA population

It population					
First	Discounted Costs	Discounted	CPQ		Incremental
Intervention in		QALYs	compar	ed	CPQ
the strategy		-	with M	TX	
			strategy	y	
MTX			-		-
TCZ + MTX			£	31,647	£ 31,647
ABT i.v. +					
MTX			£	32,806	£ 42,791
IFX + MTX			£	33,283	£ 91,638
ABT s.c. +					
MTX			£	35,721	Dominated
					Ext
ADA + MTX			£	35,859	Dominated
					Ext
GOL + MTX			£ 35,977		Dominated
CTZ + MTX			£ 35,736		£ 150,620
$\overline{\text{ETN} + \text{MTX}}$			£	37,174	Dominated

ABT iv – abatacept intravenous; ABT sc – abatacept subcutaneous; ADA – adalimumab; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

Table 201:Deterministic results having included RCTs with potentially low prior
MTX exposure using ACR data mapped to EULAR data – Linear
cDMARD HAQ progression and a severe, MTX-experienced, RA
population

First	Discounted Costs	Discounted	CPQ	CPQ		mental
Intervention in		QALYs	compa	ared	CPQ	
the strategy			with N	ЛТХ		
			strateg	gy		
MTX			-		-	
TCZ + MTX			£	34,228	£	34,228
ABT i.v. +						
MTX			£	34,493	£	36,870
IFX + MTX			£	34,870	£	258,927
CTZ + MTX			£	36,362	Dom	inated
ABT s.c. +					Ext	
MTX			£	37,610	Dom	inated
					Ext	
ADA + MTX			£	37,938	Dom	inated
GOL + MTX			£	37,693	£	261,545
ETN + MTX			£	38,550	Dom	inated

ABT iv – abatacept intravenous; ABT sc – abatacept subcutaneous; ADA – adalimumab; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

Table 202: Deterministic results having used the mapping of HAQ to utility from Malottki et al rather than Hernandez et al using ACR data mapped to EULAR data - Linear cDMARD HAQ progression and a severe, MTXexperienced, RA population

First	Discounted Costs	Discounted	CPQ		Incremental
Intervention in		QALYs	compa	red	CPQ
the strategy			with M	ITX	
			strateg	у	
MTX			-		-
TCZ + MTX			£	29,087	£ 29,087
ABT i.v. +					
MTX			£	29,472	£ 32,461
IFX + MTX			£	29,940	Dominated
CTZ + MTX			£	30,948	Dominated
					Ext
GOL + MTX			£	31,900	Dominated
ABT s.c. +					Ext
MTX			£	31,970	Dominated
ADA + MTX			£ 32,190		Dominated
ETN + MTX			£	33,104	£ 176,415

ABT i.v. - abatacept intravenous; ADA - adalimumab; CTZ - certolizumab pegol; ETN - etanercept; GOL - golimumab; IFX - infliximab; MTX - methotrexate; TCZ - tocilizumab

CPQ - cost per QALY gained. Ext - extendedly

Table 203: Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and using ACR data mapped to EULAR data - Linear cDMARD HAQ progression and a severe, MTXexperienced, RA population

First	Discounted Costs	Discoun	ited	CPQ		Incren	nental
Intervention in		QALYs		compared		CPQ	
the strategy				with I	MTX		
				strate	gy		
MTX				-		-	
						Ext	
TCZ + MTX				£	20,847	Domir	nated
ABT i.v. +							
MTX				£	20,379	£	20,379
						Ext	
IFX + MTX				£	20,739	Domir	nated
CTZ + MTX				£	21,424	Domi	nated
ABT s.c. +						Ext	
MTX				£	22,309	Domir	nated
ADA + MTX				£	22,486	Domi	nated
GOL + MTX				£	22,485	Domi	nated
ETN + MTX				£	23,184	£	199,830

ABT i.v. - abatacept intravenous; ADA - adalimumab; CTZ - certolizumab pegol; ETN - etanercept; GOL - golimumab; IFX - infliximab; MTX - methotrexate; TCZ - tocilizumab

CPQ - cost per QALY gained. Ext - extendedly

Table 204:Deterministic results assuming 100-fold increased impact of adverse
events and using ACR data mapped to EULAR data – Linear cDMARD
HAQ progression and a severe, MTX-experienced, RA population

First	Discounted Costs	Discounted	CPQ		Increme	ental
Intervention in		QALYs	compared		CPQ	
the strategy			with N	ATX		
			strateg	gy		
MTX			-		-	
TCZ + MTX			£	33,139	£	33,139
ABT i.v. +						
MTX			£	33,923	£	40,436
IFX + MTX			£	34,236	Domin	ated
CTZ + MTX			£	35,603	Domin	ated
ABT s.c. +					Ext	
MTX			£	36,703	Domina	ited
ADA + MTX			£	36,861	Domin	ated
					Ext	
GOL + MTX			£	36,819	Domina	ited
ETN + MTX			£	38,160	£ 1	80,120

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

Table 205:Deterministic results having used the relationship between HAQ and
pain derived from ERAS – Linear cDMARD HAQ progression and a
severe, MTX-experienced, RA population

First Intervention in the strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX strategy		Incremental CPQ
MTX			-		-
TCZ + MTX			£	41,248	£ 41,248
ABT i.v. +					
MTX			£	41,523	£ 43,865
					Ext
IFX + MTX			£	41,926	Dominated
CTZ + MTX			£	43,663	Dominated
ABT s.c. +					Ext
MTX			£	45,232	Dominated
ADA + MTX			£	45,383	Dominated
					Ext
GOL + MTX			£	45,326	Dominated
$\overline{\text{ETN} + \text{MTX}}$			£	46,770	£ 142,639

Table 206:Probabilistic base case results using ACR data mapped to EULAR data –
Linear cDMARD HAQ progression and a severe, MTX-experienced, RA
population

First	Discounted Costs	Discounted	CPQ	Incremental
Intervention in		QALYs	compared	CPQ
the strategy			with MTX	
			strategy	
MTX			-	-
TCZ + MTX			£ 33,537	£ 33,537
ABT i.v. +				
MTX			£ 34,047	£ 38,505
IFX + MTX			£ 34,504	£ 148,650
CTZ + MTX			£ 35,803	Dominated
ABT s.c. +				Ext
MTX			£ 36,957	Dominated
ADA + MTX			£ 37,163	Dominated
				Ext
GOL + MTX			£ 37,139	Dominated
ETN + MTX			£ 38,328	£ 244,601

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

Figure 122: The CEAC using ACR data mapped to EULAR data and assuming linear CDMARD HAQ progression

The CEAC shows only the probability of being optimal and inferences regarding relative cost-effectiveness shown be made with caution. It is seen however that at a willingness to pay of $\pm 30,000$ per QALY the MTX strategy has a relatively high probabilities of being optimal.

6.3.22.5 EULAR response measure: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population

Table 207:Deterministic base case results using EULAR data directly – ERAS
cDMARD HAQ progression and a moderate, MTX-experienced, RA
population

First Intervention in the strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX strategy		Incremental CPQ
MTX			-		-
					Ext
TCZ + MTX			£	75,040	Dominated
ABT i.v. +					Ext
MTX			£	72,794	Dominated
IFX + MTX			£	72,238	£ 72,238
					Ext
CTZ + MTX			£	74,579	Dominated
					Ext
ADA + MTX			£	76,333	Dominated
GOL + MTX			£	76,181	Dominated
ETN + MTX			£	75,791	£ 112,689

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

It is seen that the ICERs of all the bDMARDs compared with the MTX strategy are in the region of \pounds 72,000 to \pounds 77,000

Table 208:Deterministic results having included RCTs with a small proportion of
previous bDMARD use (with adequate prior MTX exposure) using
EULAR data directly – ERAS cDMARD HAQ progression and a
moderate, MTX-experienced, RA population

First Intervention in the strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX strategy	Incremental CPQ
MTX			-	-
				Ext
TCZ + MTX			£ 74,235	Dominated
ABT i.v. +				
MTX			£ 70,701	£ 70,701
IFX + MTX			£ 73,590	Dominated
				Ext
ADA + MTX			£ 76,096	Dominated
				Ext
GOL + MTX			£ 76,406	Dominated
CTZ + MTX			£ 73,108	£ 98,163
ETN + MTX			£ 74,687	£ 588,664

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab

CPQ - cost per QALY gained. Ext - extendedly

Table 209:Deterministic results having used the mapping of HAQ to utility from
Malottki et al rather than Hernandez et al using EULAR data directly –
ERAS cDMARD HAQ progression and a moderate, MTX-experienced,
RA population

First	Discounted Costs	Discounted	CPQ	Incremental
Intervention in		QALYS	compared	CPQ
the strategy			with MTX	
			strategy	
MTX			-	-
				Ext
TCZ + MTX			£ 53,165	Dominated
ABT i.v. +				
MTX			£ 51,369	£ 51,369
IFX + MTX			£ 52,105	Dominated
				Ext
CTZ + MTX			£ 53,430	Dominated
ADA + MTX			£ 54,520	Dominated
GOL + MTX			£ 54,690	Dominated
ETN + MTX			£ 53,779	£ 78,032

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

Table 210:Deterministic results having used discount rates of 6% per annum for
costs and 1.5% per annum for QALYs and using EULAR data directly –
ERAS cDMARD HAQ progression and a moderate, MTX-experienced,
RA population

First	Discounted Costs	Discounted	CPQ	Incremental
Intervention in		QALYs	compared	CPQ
the strategy			with MTX	
			strategy	
MTX			-	-
				Ext
TCZ + MTX			£ 48,291	Dominated
ABT i.v. +				
MTX			£ 43,702	£ 43,702
IFX + MTX			£ 44,585	Dominated
				Ext
CTZ + MTX			£ 45,592	Dominated
ADA + MTX			£ 47,974	Dominated
				Ext
GOL + MTX			£ 46,635	Dominated
ETN + MTX			£ 46,875	£ 86,278

Table 211:Deterministic results assuming 100-fold increased impact of adverse
events and using EULAR data directly – ERAS cDMARD HAQ
progression and a moderate, MTX-experienced, RA population

First Intervention in the strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX strategy		Incremental CPQ
MTX			-		-
					Ext
TCZ + MTX			£	78,116	Dominated
ABT i.v. +					
MTX			£	72,576	£ 72,576
IFX + MTX			£	73,932	Dominated
					Ext
CTZ + MTX			£	77,592	Dominated
ADA + MTX			£	78,784	Dominated
GOL + MTX			£	79,742	Dominated
ETN + MTX			£	78,318	£ 139,807

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

Table 212:	Deterministic results having used the relationship between HAQ and
	pain derived from ERAS – ERAS cDMARD HAQ progression and a
	moderate, MTX-experienced, RA population

First	Discounted Costs	Discounted	CPQ		Incremental
Intervention in		QALYs	compa	ared	CPQ
the strategy			with N	//TX	
			strated	TV	
			strateg	5 y	
MTX			-		-
					Ext
TCZ + MTX			£	87,301	Dominated
IFX + MTX			£	84,049	£ 84,049
ABT i.v. +					Ext
MTX			£	82,199	Dominated
ADA + MTX			£	89,514	Dominated
					Ext
CTZ + MTX			£	86,644	Dominated
					Ext
GOL + MTX			£	87,675	Dominated
ETN + MTX			£	87,384	£ 113,972
Table 213:	Probabilistic base case results using EULAR data directly – ERAS				
------------	--				
	cDMARD HAQ progression and a moderate, MTX-experienced, RA				
	population				

First Intervention in	Discounted Costs	Discounted QALYs	CPQ compared		Incremental CPQ	
the strategy			with M	TX		
			strategy	у		
MTX			-		-	
					Ext	
TCZ + MTX			£	77,034	Dominated	
ABT i.v. +						
MTX			£	73,300	£ 73,300	
IFX + MTX			£	74,724	Dominated	
					Ext	
CTZ + MTX			£	76,590	Dominated	
ADA + MTX			£	78,114	Dominated	
					Ext	
GOL + MTX			£	77,875	Dominated	
ETN + MTX			£	76,758	£ 106,392	

Figure 123: The CEAC when using EULAR data directly – ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population

It is seen that at a willingness to pay of $\pm 30,000$ that MTX strategy has a very high probability of being optimal.

6.3.22.6 EULAR response measure: Linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population

Table 214:Deterministic base case results using EULAR data directly – Linear
cDMARD HAQ progression and a moderate, MTX-experienced, RA
population

First Intervention in the strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX		Incremental CPQ	
			strateg	gy		
MTX			-		-	
					Ext	
TCZ + MTX			£	37,769	Dominated	
ABT i.v. +						
MTX			£	36,815	£ 36,815	
					Ext	
IFX + MTX			£	37,270	Dominated	
					Ext	
ADA + MTX			£	39,702	Dominated	
					Ext	
CTZ + MTX			£	39,468	Dominated	
					Ext	
GOL + MTX			£	40,379	Dominated	
ETN + MTX			£	41,265	£ 110,772	

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

It is seen that the ICERs of all the bDMARDs compared with the MTX strategy are in the region of $\pounds 36,000$ to $\pounds 42,000$

Table 215:Deterministic results having included RCTs with a small proportion of
previous bDMARD use (with adequate prior MTX exposure) using
EULAR data directly – Linear cDMARD HAQ progression and a
moderate, MTX-experienced, RA population

First	Discounted Costs	Discounted	CPQ	Incremental	
Intervention in		QALYs	compared	CPQ	
the strategy			with MTX		
			strategy		
MTX			-	-	
				Ext	
TCZ + MTX			£ 39,018	Dominated	
ABT i.v. +					
MTX			£ 39,012	£ 39,012	
IFX + MTX			£ 39,767	Dominated	
				Ext	
ADA + MTX			£ 41,515	Dominated	
				Ext	
GOL + MTX			£ 42,197	Dominated	
CTZ + MTX		£ 42,137		£ 71,973	
ETN + MTX		£ 43,054		Dominated	

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept;

GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

Table 216:Deterministic results having used the mapping of HAQ to utility from
Malottki et al rather than Hernandez et al using EULAR data directly –
Linear cDMARD HAQ progression and a moderate, MTX-experienced,
RA population

First	Discounted Costs	Discounted	СРО	Incremental		
Intervention in		QALYs	compared	CPQ		
the strategy			with MTX	-		
			strategy			
MTX			-	-		
				Ext		
TCZ + MTX			£ 30,439	Dominated		
ABT i.v. +						
MTX			£ 29,571	£ 29,571		
IFX + MTX			£ 29,942	Dominated		
				Ext		
ADA + MTX			£ 32,260	Dominated		
				Ext		
CTZ + MTX			£ 31,257	Dominated		
GOL + MTX			£ 32,137	Dominated		
ETN + MTX			£ 32,313	£ 64,372		

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab

CPQ – cost per QALY gained. Ext - extendedly

Table 217:Deterministic results having used discount rates of 6% per annum for
costs and 1.5% per annum for QALYs and using EULAR data directly –
Linear cDMARD HAQ progression and a moderate, MTX-experienced,
RA population

First	Discounted Costs	Discounted		CPQ		Incremental	
Intervention in		QALYs		comp	ared	CPQ	
the strategy				with	MTX		
				strate	gy		
MTX				-		-	
ABT i.v. +							
MTX				£	20,043	£	20,043
TCZ + MTX				£	21,297	Dominated	
						Ext	
IFX + MTX				£	20,370	Domin	ated
ADA + MTX				£	21,972	Domir	nated
						Ext	
CTZ + MTX				£	21,758	Dominated	
						Ext	
GOL + MTX				£	22,216	Dominated	
ETN + MTX				£	22,936	£	80,582

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

Table 218: Deterministic results assuming 100-fold increased impact of adverse events and using EULAR data directly - Linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population

					1	
First	Discounted Costs	Discounted	CPQ		Incremen	tal
Intervention in		QALYs	comp	ared	CPQ	
the strategy		-	with	MTX	_	
			strate	gy		
MTX			-	~	-	
					Ext	
TCZ + MTX			£	36,912	Dominate	ed
ABT i.v. +						
MTX			£	36,224	£ 3	36,224
IFX + MTX			£	37,115	Dominat	ed
					Ext	
ADA + MTX			£	39,254	Dominate	ed
					Ext	
CTZ + MTX			£	39,587	Dominate	ed
					Ext	
GOL + MTX			£	40,239	Dominated	
ETN + MTX			£	41,128	£ 12	5,849

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab

CPQ - cost per QALY gained. Ext - extendedly

Table 219: Deterministic results having used the relationship between HAQ and pain derived from ERAS - Linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population

First	Discounted Costs	Discounted	CPQ		Incremental		
Intervention in		QALYs	compa	ared	CPQ		
the strategy		-	with N	ЛТХ	-		
			strateg	gy			
MTX			-		-		
					Ext		
TCZ + MTX			£	46,453	Dominated		
ABT i.v. +							
MTX			£	45,674	£ 45,674		
IFX + MTX			£	45,886	Dominated		
					Ext		
CTZ + MTX			£	48,343	Dominated		
ADA + MTX			£	49,405	Dominated		
					Ext		
GOL + MTX			£	49,113	Dominated		
ETN + MTX			£	50,252	£ 115,803		

ABT i.v. - abatacept intravenous; ADA - adalimumab; CTZ - certolizumab pegol; ETN - etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab CPQ - cost per QALY gained. Ext - extendedly

Table 220:	Probabilistic base case results using EULAR data directly – Linear
	cDMARD HAQ progression and a moderate, MTX-experienced, RA
	population

First Intervention in the strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX	Incremental CPQ	
the strategy			strategy		
MTX			-	-	
				Ext	
TCZ + MTX			£ 77,034	Dominated	
ABT i.v. +					
MTX			£ 73,300	£ 73,300	
IFX + MTX			£ 74,724	Dominated	
				Ext	
CTZ + MTX			£ 76,590	Dominated	
ADA + MTX			£ 78,114	Dominated	
				Ext	
GOL + MTX			£ 77,875	Dominated	
ETN + MTX			£ 76,758	£ 106,392	

Figure 124: The CEAC using EULAR data directly and assuming linear CDMARD HAQ progression and a moderate, MTX-experienced, RA population

The CEAC shows only the probability of being optimal and inferences regarding relative cost-effectiveness shown be made with caution. It is seen that at a willingness to pay of £30,000 per QALY that the MTX strategy has the highest probability of being optimal.

6.3.22.7 ACR response measure: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population

Table 221:Deterministic base case results using EULAR data directly – ERAS
cDMARD HAQ progression and a moderate, MTX-experienced, RA
population

First	Discounted Costs	Discounted	CPQ		Incremental	
Intervention in		QALYs	compa	red	CPQ	
the strategy			with M	1TX		
			strateg	y		
MTX			-		-	
					Ext	
TCZ + MTX			£	77,166	Dominated	
ABT i.v. +						
MTX			£	72,114	£ 72,114	
IFX + MTX			£	73,319	Dominated	
CTZ + MTX			£	75,973	Dominated	
ADA + MTX			£	77,519	Dominated	
					Ext	
GOL + MTX			£	77,187	Dominated	
ABT s.c. +					Ext	
MTX			£	77,006	Dominated	
ETN + MTX			£	78,966	£ 255,294	

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

It is seen that the ICERs of all the bDMARDs compared with the MTX strategy are in the region of $\pounds72,000$ to $\pounds79,000$

Table 222:Deterministic results having included RCTs with a small
proportion of previous bDMARD use (with adequate prior MTX
exposure) using ACR data mapped to EULAR data – ERAS
cDMARD HAQ progression and a moderate, MTX-experienced,
RA population.

First Intervention in the strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX strategy		Incr CP(remental Q
MTX			-		-	
					Ext	t
TCZ + MTX			£	77,392	Dor	ninated
ABT i.v. +						
MTX			£	70,758	£	70,758
IFX + MTX			£	74,620	Do	minated
ADA + MTX			£	77,827	Do	minated
ABT s.c. +					Ext	t
MTX			£	76,912	Dominated	
GOL + MTX			£	77,880	Dominated	
CTZ + MTX			£	77,579	£ 297,510	
ETN + MTX			£	80,238	£	1,061,060

Table 223:Deterministic results having included RCTs with a small proportion of
previous bDMARD use (irrespective of prior MTX exposure) using ACR
data mapped to EULAR data – ERAS cDMARD HAQ progression and a
moderate, MTX-experienced, RA population.

First Intervention	Discounted Costs	Discounted QALYs	CPQ compared	Incremental CPQ
in the strategy			with MTX	
			strategy	
MTX			-	-
			£	Ext
TCZ + MTX			77,276	Dominated
ABT i.v. +			£	£
MTX			69,551	36,252
			£	
IFX + MTX			72,249	Dominated
ABT s.c. +			£	
MTX			77,260	Dominated
			£	
ADA + MTX			77,739	Dominated
			£	
GOL + MTX			78,387	Dominated
			£	£
CTZ + MTX			76,382	250,337
			£	
ETN + MTX			79,746	Dominated

Table 224:Deterministic results having included RCTs with potentially low prior
MTX exposure using ACR data mapped to EULAR data – ERAS
cDMARD HAQ progression and a moderate, MTX-experienced, RA
population.

First	Discounted Costs	Discounted	CPQ	Incremental
Intervention		QALYs	compared	CPQ
in the strategy		-	with MTX	
			strategy	
MTX			-	-
			£	Ext
TCZ + MTX			80,836	Dominated
ABT i.v. +			£	Ext
MTX			74,146	Dominated
			£	
IFX + MTX			73,326	£ 73,326
			£	
CTZ + MTX			77,189	Dominated
ABT s.c. +			£	
MTX			79,450	Dominated
			£	Ext
ADA + MTX			78,860	Dominated
			£	
GOL + MTX			79,987	£ 1,613,900
			£	
ETN + MTX			81,151	Dominated

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

Table 225:Deterministic results having used the mapping of HAQ to utility from
Malottki et al rather than Hernandez et al using ACR data mapped to
EULAR data – ERAS cDMARD HAQ progression and a moderate,
MTX-experienced, RA population

First	Discounted Costs	Discounted	CPQ		Incremental
Intervention in		QALYs	compar	red	CPQ
the strategy			with M	TX	
			strateg	у	
MTX			-		-
					Ext
TCZ + MTX			£	53,515	Dominated
ABT i.v. +					Ext
MTX			£	51,131	Dominated
IFX + MTX			£	50,912	£ 50,912
CTZ + MTX			£	53,138	Dominated
ABT s.c. +					
MTX			£	54,496	Dominated
ADA + MTX			£	55,425	Dominated
					Ext
GOL + MTX			£	54,371	Dominated
ETN + MTX			£	56,005	£ 308,973

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

Table 226:Deterministic results having used discount rates of 6% per annum for
costs and 1.5% per annum for QALYs and using ACR data mapped to
EULAR data – ERAS cDMARD HAQ progression and a moderate,
MTX-experienced, RA population

First	Discounted Costs	Discounted	CPQ		Incremental	
Intervention in		QALYs	compa	red	CPQ	
the strategy			with N	1TX		
			strateg	y		
MTX			-		-	
					Ext	
TCZ + MTX			£	50,460	Dominated	
ABT i.v. +						
MTX			£	44,687	£ 44,687	
IFX + MTX			£	44,835	£ 54,849	
CTZ + MTX			£	47,092	Dominated	
					Ext	
GOL + MTX			£	48,011	Dominated	
ABT s.c. +						
MTX			£	48,616	Dominated	
ADA + MTX			£	48,762	Dominated	
ETN + MTX			£	50,119	£ 590,362	

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab

Table 227:Deterministic results assuming 100-fold increased impact of adverse
events and using ACR data mapped to EULAR data – ERAS cDMARD
HAQ progression and a moderate, MTX-experienced, RA population

First	Discounted Costs	Discounted	CPQ		Incre	emental
Intervention in		QALYs	comp	ared	CPQ	2
the strategy			with I	MTX		
			strate	gy		
MTX			-		-	
					Ext	
TCZ + MTX			£	81,234	Dom	ninated
ABT i.v. +						
MTX			£	75,040	£	75,040
					Ext	
IFX + MTX			£	75,766	Dom	ninated
CTZ + MTX			£	79,580	Dor	ninated
ABT s.c. +						
MTX			£	79,732	£	250,967
GOL + MTX			£	79,953	Dor	ninated
ADA + MTX			£	81,003	Dominated	
ETN + MTX			£	82,573	£	290,140

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab

CPQ - cost per QALY gained. Ext - extendedly

Table 228:Deterministic results having used the relationship between HAQ and
pain derived from ERAS – ERAS cDMARD HAQ progression and a
moderate, MTX-experienced, RA population

First Intervention in the strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX		Incre CPQ	emental
MTX			-	gy	-	
					Ext	
TCZ + MTX			£	87,621	Dom	ninated
ABT i.v. +						
MTX			£	83,946	£	83,946
IFX + MTX			£	85,990	Dor	ninated
CTZ + MTX			£	88,675	Dor	ninated
					Ext	
ADA + MTX			£	90,009	Dom	ninated
GOL + MTX			£	90,097	£	305,111
ABT s.c. +						
MTX			£	91,089	Dominated	
ETN + MTX			£	93,806	£	353,786

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

Probabilistic results using ACR data mapped to EULAR data and assuming ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population.

	RA population				
First	Discounted Costs	Discounted	CPQ		Incremental
Intervention in		QALYs	com	pared	CPQ
the strategy			with	MTX	
			strat	egy	
MTX			-		-
					Ext
TCZ + MTX			£	79,144	Dominated
ABT i.v. +					
MTX			£	73,988	£ 73,988
IFX + MTX			£	74,214	£ 147,352
CTZ + MTX			£	78,130	Dominated
					Ext
ADA + MTX			£	79,287	Dominated
ABT s.c. +					Ext
MTX			£	78,902	Dominated
GOL + MTX			£	79,107	£ 268,120
ETN + MTX			£	81,137	£ 363,128

Table 229:Probabilistic base case results using ACR data mapped to EULAR data –
ERAS cDMARD HAQ progression and a moderate, MTX-experienced,
RA population

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab

CPQ - cost per QALY gained. Ext - extendedly

Figure 125: The CEAC when using ACR data mapped to EULAR data – ERAS cDMARD HAQ progression and a moderate, MTXexperienced, RA population

It is seen that at a willingness to pay of $\pm 30,000$ that MTX strategy has a very high probability of being optimal.

6.3.22.8 ACR response measure: Linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population

Table 230:Deterministic base case results using ACR data mapped to
EULAR data – Linear cDMARD HAQ progression and a
moderate, MTX-experienced, RA population

First Intervention in the strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX		Increa CPQ	mental
MTV			strates	<u>sy</u>		
			-		-	
TCZ + MTX			£	36,576	£	36,576
IFX + MTX			£	36,916	£	39,965
ABT i.v. +						
MTX			£	37,372	Dom	inated
CTZ + MTX			£	38,039	Dominated	
					Ext	
GOL + MTX			£	39,847	Domi	nated
ABT s.c. +					Ext	
MTX			£	40,035	Domi	nated
ADA + MTX			£	39,785	£	264,074
ETN + MTX			£	40,893	Dom	inated

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

It is seen that the ICERs of all the bDMARDs compared with the MTX strategy are in the region of $\pounds 36,000$ to $\pounds 41,000$

Table 231:Deterministic results having included RCTs with a small
proportion of previous bDMARD use (with adequate prior MTX
exposure) using ACR data mapped to EULAR data – Linear
cDMARD HAQ progression and a moderate, MTX-experienced,
RA population

First	Discounted Costs	Discounted	CPQ	Incremental	
Intervention in		QALYs	compared	CPQ	
the strategy			with MTX		
			strategy		
MTX			-	-	
TCZ + MTX			£ 33,337	£ 33,337	
ABT i.v. +				Ext	
MTX			£ 34,568	Dominated	
IFX + MTX			£ 34,413	£ 43,931	
ADA + MTX			£ 36,691	Dominated	
ABT s.c. +					
MTX			£ 37,177	Dominated	
				Ext	
CTZ + MTX			£ 37,111	Dominated	
$\overline{GOL} + MTX$			£ 37,387	£ 275,630	
ETN + MTX			£ 39,123	Dominated	

Table 232:Deterministic results having included RCTs with a small
proportion of previous bDMARD use (irrespective of prior MTX
exposure) using ACR data mapped to EULAR data – Linear
cDMARD HAQ progression and a moderate, MTX-experienced,
RA population

First	Discounted Costs	Discounted	CPQ	Incremental
Intervention		QALYs	compared	CPQ
in the strategy			with MTX	-
			strategy	
MTX			-	-
			£	Ext
TCZ + MTX			39,495	Dominated
ABT i.v. +			£	
MTX			34,536	£ 17,203
			£	
IFX + MTX			37,952	Dominated
ABT s.c. +			£	Ext
MTX			37,623	Dominated
			£	Ext
ADA + MTX			37,909	Dominated
			£	
GOL + MTX			41,375	Dominated
			£	
CTZ + MTX			37,765	£ 129,483
			£	
ETN + MTX			42,666	Dominated

Table 233:Deterministic results having included RCTs with potentially low
prior MTX exposure using ACR data mapped to EULAR data –
Linear cDMARD HAQ progression and a moderate, MTX-
experienced, RA population

First	Discounted Costs	Discounted	CPQ	Incremental
Intervention		QALYs	compared	CPQ
in the strategy			with MTX	
			strategy	
MTX			-	-
			£	Ext
TCZ + MTX			40,094	Dominated
ABT i.v. +			£	£
MTX			35,589	35,589
			£	
IFX + MTX			39,245	Dominated
			£	
CTZ + MTX			37,348	Dominated
ADA + MTX			£	£

		38,788	807,662
ABT s.c. +		£	
MTX		39,151	Dominated
		£	
GOL + MTX		42,274	Dominated
		£	
ETN + MTX		42,085	Dominated

Table 234:Deterministic results having used the mapping of HAQ to utility
from Malottki et al rather than Hernandez et al using ACR data
mapped to EULAR data – Linear cDMARD HAQ progression and
a moderate, MTX-experienced, RA population

First Intervention in the strategy	Discounted Costs	Discounted QALYs	CPQ comp with strate	pared MTX egy	Incremental CPQ
MTX			-	0,	-
					Ext
TCZ + MTX			£	32,540	Dominated
ABT i.v. +					
MTX			£	27,857	£ 27,857
IFX + MTX			£	28,284	£ 112,265
CTZ + MTX			£	28,972	Dominated
ABT s.c. +					
MTX			£	30,258	Dominated
GOL + MTX			£	29,952	£ 216,351
ADA + MTX			£	30,289	Dominated
ETN + MTX			£	31,287	£ 6,775,191

Table 235:Deterministic results having used discount rates of 6% per annum
for costs and 1.5% per annum for QALYs and using ACR data
mapped to EULAR data – Linear cDMARD HAQ progression and
a moderate, MTX-experienced, RA population

First	Discounted Costs	Discounted	CPQ		Increm	nental
Intervention in		QALYs	comp	ared	CPQ	
the strategy			with I	MTX		
			strate	gy		
MTX			-		-	
					Ext	
TCZ + MTX			£	20,467	Domin	nated
ABT i.v. +						
MTX			£	20,373	£	20,373
IFX + MTX			£	21,397	£	144,174
CTZ + MTX			£	21,831	Domi	nated
ABT s.c. +						
MTX			£	22,822	Domi	nated
ADA + MTX			£	22,899	Domi	nated
					Ext	
GOL + MTX			£	23,129	Domin	nated
ETN + MTX			£	23,524	£	264,012

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab

Table 236:Deterministic results assuming 100-fold increased impact of
adverse events and using ACR data mapped to EULAR data –
Linear cDMARD HAQ progression and a moderate, MTX-
experienced, RA population

First Intervention in the strategy	Discounted Costs	Discounted QALYs	CPQ comp with strate	pared MTX egy	Incremental CPQ
MTX			-		-
					Ext
TCZ + MTX			£	38,589	Dominated
ABT i.v. +					
MTX			£	34,339	£ 34,339
IFX + MTX			£	35,366	£ 153,812
CTZ + MTX			£	35,983	Dominated
GOL + MTX			£	37,069	Dominated
ADA + MTX			£	37,360	Dominated
ABT s.c. +					Ext
MTX			£	37,359	Dominated
ETN + MTX			£	38,510	£ 239,256

Table 237:Deterministic results having used the relationship between HAQ
and pain derived from ERAS – Linear cDMARD HAQ
progression and a moderate, MTX-experienced, RA population

First	Discounted Costs	Discounted	CPQ		Incremental
Intervention in		QALYs	compa	ared	CPQ
the strategy			with N	MTX	
			strateg	gy	
MTX			-		-
					Ext
TCZ + MTX			£	48,514	Dominated
ABT i.v. +					
MTX			£	42,655	£ 42,655
IFX + MTX			£	43,444	£ 198,638
CTZ + MTX			£	45,289	Dominated
ADA + MTX			£	46,863	Dominated
					Ext
GOL + MTX			£	46,719	Dominated
ABT s.c. +					Ext
MTX			£	47,094	Dominated
ETN + MTX			£	48,243	£ 387,730

ABT i.v. – abatacept intravenous; ADA – adalimumab; CTZ – certolizumab pegol; ETN – etanercept; GOL – golimumab; IFX – infliximab; MTX – methotrexate; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

Probabilistic results using ACR data mapped to EULAR data and assuming linear cDMARD HAQ progression

Table 238:Probabilistic base case results using ACR data mapped to EULARdata – Linear cDMARD HAQ progression and a moderate, MTX-experienced,RA population

_ in population	•				
First	Discounted Costs	Discounted	CPQ		Incremental
Intervention in		QALYs	com	pared	CPQ
the strategy			with	MTX	
			strate	egy	
MTX			-		-
					Ext
TCZ + MTX			£	40,241	Dominated
ABT i.v. +					
MTX			£	35,088	£ 35,088
IFX + MTX			£	35,318	£ 70,967
CTZ + MTX			£	36,970	Dominated
ABT s.c. +					Ext
MTX			£	38,183	Dominated
					Ext
GOL + MTX			£	38,412	Dominated
					Ext
ADA + MTX			£	38,369	Dominated
ETN + MTX			£	39,754	£ 340,953

The CEAC shows only the probability of being optimal and inferences regarding relative cost-effectiveness shown be made with caution. It is seen however given a willingness to pay of £30,000 per QALY that the MTX strategy has a high likelihood of being optimal.

6.3.22.9 EULAR response measure: ERAS cDMARD HAQ progression and a severe, MTXexperienced, RA population treated with monotherapy

Table 239:Deterministic base case results using EULAR data directly – ERAS
cDMARD HAQ progression and a severe, MTX-experienced, RA
population treated with monotherapy

First Intervention in the strategy	Discounted Costs	Discounted OALYs		CPQ compared with MTX		Incremental CPQ
		C *		strategy		
SSZ				-		-
ADA				£	87,647	Ext Dominated
ETN				£	88,626	Ext Dominated
TCZ				£	80,879	£ 80,879

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

It is seen that the ICERs of all the bDMARDs compared with the MTX strategy are in the region of $\pounds 80,000$ to $\pounds 88,000$

Table 240:Deterministic results having included RCTs with a small proportion of
previous bDMARD use (with adequate prior MTX exposure) using
EULAR data directly – ERAS cDMARD HAQ progression and a severe,
MTX-experienced, RA population treated with monotherapy

First Intervention in the strategy	Discounted Costs	Discounte QALYs	Discounted CPQ compared QALYs with MTX strategy		Incremental CPQ	
SSZ				-		-
ADA				£	88,976	Ext Dominated
ETN				£	89,957	Ext Dominated
TCZ				£	81,430	£ 81,430

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab

CPQ – cost per QALY gained. Ext - extendedly

Table 241:Deterministic results having included RCTs with a small proportion of
previous bDMARD use (irrespective of prior MTX exposure) using
EULAR data directly – ERAS cDMARD HAQ progression and a severe,
MTX-experienced, RA population treated with monotherapy

First Intervention in the strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX strategy	Incremental CPQ
SSZ			-	-
				Ext
ADA			£ 89,888	Dominated
				Ext
ETN			£ 89,828	Dominated
TCZ			£ 88,131	£ 88,131

ADA-adalimumab; ETN-etanercept; SSZ-sulfasalazine; TCZ-tocilizumab

Table 242: Deterministic results having used the mapping of HAQ to utility from Malottki et al rather than Hernandez et al using EULAR data directly -ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First	Discounted Costs	Discounted	CPQ	Incremental
Intervention in		QALYs	compared	CPQ
the strategy			with MTX	
			strategy	
SSZ			-	-
				Ext
ADA			£ 71,552	Dominated
				Ext
ETN			£ 71,783	Dominated
TCZ			£ 64,918	£ 64,918

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab

CPQ - cost per QALY gained. Ext - extendedly

Table 243: Deterministic results having used discount rates of 6% per annum for costs and 1.5% per annum for QALYs and using EULAR data directly -ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

	population incated with	monomer ap,	3			
First	Discounted Costs	Discounted		CPQ	compared	Incremental
Intervention in		QALYs		with	MTX	CPQ
the strategy				strat	egy	
SSZ				-		-
						Ext
ADA				£	58,230	Dominated
						Ext
ETN				£	58,693	Dominated
TCZ				£	53,348	£ 53,348

ADA - adalimumab; ETN - etanercept; SSZ - sulfasalazine; TCZ - tocilizumab

CPQ - cost per QALY gained. Ext - extendedly

Table 244: Deterministic results assuming 100-fold increased impact of adverse events and using EULAR data directly - ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First	Discounted Costs	Discounted	1	CPQ compared		Incremental
Intervention in		QALYs		with I	MTX	CPQ
the strategy				strate	gy	
SSZ				-		-
						Ext
ADA				£	89,188	Dominated
						Ext
ETN				£	89,126	Dominated
TCZ				£	81,062	£ 81,062

ADA - adalimumab; ETN - etanercept; SSZ - sulfasalazine; TCZ - tocilizumab

Table 245:Deterministic results having used the relationship between HAQ and
pain derived from ERAS – ERAS cDMARD HAQ progression and a
severe. MTX-experienced. RA population treated with monotherapy

severe, with monotherapy							
First	Discounted Costs	Discountee	d	CPQ	compared	Incremental	
Intervention in		QALYs		with	MTX	CPQ	
the strategy				strate	egy		
SSZ				-		-	
						Ext	
ADA				£	107,025	Dominated	
						Ext	
ETN				£	107,130	Dominated	
TCZ				£	97,603	£ 97,603	

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

Table 246:Probabilistic base case results using EULAR data directly – ERAS
cDMARD HAQ progression and a severe, MTX-experienced, RA
population treated with monotherapy

First	Discounted Costs	Discounted		CPQ		Incr	emental	
Intervention in		QALYs		QALYs compared		pared	CPC	2
the strategy				with MTX				
			strategy		egy			
SSZ				-		-		
ADA				£	88,374	Ext	Dominated	
ETN				£	89,278	Ext	Dominated	
TCZ				£	80,728	£	80,728	

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

Figure 127: The CEAC when using EULAR data directly – ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

It is seen that at a willingness to pay of \pounds 30,000 that MTX strategy has a very high probability of being optimal.

6.3.22.10 EULAR response measure: Linear cDMARD HAQ progression and a severe, MTXexperienced, RA population treated with monotherapy

Table 247:Deterministic base case results using EULAR data directly – LINEAR
cDMARD HAQ progression and a severe, MTX-experienced, RA
population treated with monotherapy

First	Discounted Costs	Discounted		CPQ compared		Incremental				
Intervention in		QALYs		QALYs		QALYs		with I	MTX	CPQ
the strategy			strateg		gy					
SSZ				-		-				
ADA				£	39,171	£ 39,171				
ETN				£	39,637	Dominated				
TCZ				£	39,654	£ 43,846				

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

It is seen that the ICERs of all the bDMARDs compared with the MTX strategy are in the region of $\pounds 39,000$ to $\pounds 40,000$

Table 248:Deterministic results having included RCTs with a small proportion of
previous bDMARD use (with adequate prior MTX exposure) using
EULAR data directly – LINEAR cDMARD HAQ progression and a
severe, MTX-experienced, RA population treated with monotherapy

First	Discounted Costs	Discounted		CPQ compared		Inci	remental
Intervention in		QALYs		QALYs with MTX		CPO	2
the strategy				strate	gy		
SSZ				-		I	
ADA				£	37,799	£	37,799
ETN				£	37,975	Do	minated
TCZ				£	38,558	£	44,689

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab

CPQ - cost per QALY gained. Ext - extendedly

Table 249:Deterministic results having used the mapping of HAQ to utility from
Malottki et al rather than Hernandez et al using EULAR data directly –
LINEAR cDMARD HAQ progression and a severe, MTX-experienced,
RA population treated with monotherapy

The population of careed with monotherapy							
First	Discounted Costs	Discounted	CPQ compared	Incremental			
Intervention in		QALYs	with MTX	CPQ			
the strategy			strategy				
SSZ			-	-			
				Ext			
ADA			£ 34,836	Dominated			
				Ext			
ETN			£ 34,997	Dominated			
TCZ			£ 34,565	£ 34,565			

ADA - adalimumab; ETN - etanercept; SSZ - sulfasalazine; TCZ - tocilizumab

Table 250:Deterministic results having used discount rates of 6% per annum for
costs and 1.5% per annum for QALYs and using EULAR data directly –
LINEAR cDMARD HAQ progression and a severe, MTX-experienced,
RA population treated with monotherapy

First	Discounted Costs	Discounted	CPQ	Incremental
Intervention in		QALYs	compared	CPQ
the strategy		with MTX		
			strategy	
SSZ			-	-
ADA			£ 24,632	£ 24,632
ETN			£ 24,789	Dominated
TCZ			£ 24,770	£ 26,079

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab

CPQ - cost per QALY gained. Ext - extendedly

Table 251:	Deterministic results assuming 100-fold increased impact of adverse
	events and using EULAR data directly - LINEAR cDMARD HAQ
	progression and a severe, MTX-experienced, RA population treated with
	monotherapy

First	Discounted Costs	Discounted	CPQ	Incremental
Intervention		QALYs	compared	CPQ
in the			with MTX	
strategy			strategy	
SSZ			-	-
			£	
ADA			40,074	£ 40,074
			£	Ext
ETN			40,207	Dominated
			£	
TCZ			40,337	£ 42,432

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

Table 252:Deterministic results having used the relationship between HAQ and
pain derived from LINEAR – LINEAR cDMARD HAQ progression and
a severe, MTX-experienced, RA population treated with monotherapy

First Intervention in	Discounted Costs	Discounted OAL Ys	CPQ compared with MTX	Incremental CPO
the strategy		strategy		erę
SSZ			-	-
				Ext
ADA			£ 49,152	Dominated
				Ext
ETN			£ 49,716	Dominated
TCZ			£ 49,145	£ 49,145

ADA - adalimumab; ETN - etanercept; SSZ - sulfasalazine; TCZ - tocilizumab

Table 253:Probabilistic base case results using EULAR data directly – LINEAR
cDMARD HAQ progression and a severe, MTX-experienced, RA
population treated with monotherapy

First	Discounted Costs	Discounted		scounted CPQ		Inc	remental
Intervention		QALYs		compared		CP	Q
in the strategy		-		with MTX			
				strat	egy		
SSZ				-		-	
ADA				£	38,806	£	38,806
ETN				£	39,132	Doi	minated
TCZ				£	39,115	£	41,651

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

Figure 128: The CEAC when using EULAR data directly – LINEAR cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

It is seen that at a willingness to pay of \pounds 30,000 that MTX strategy has a very high probability of being optimal.

6.3.22.11 ACR response measure: ERAS cDMARD HAQ progression and a severe, MTXexperienced, RA population treated with monotherapy

Table 254:Deterministic base case results mapping EULAR data from ACR data –
ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA
population treated with monotherapy

First Intervention in	Discounted Costs	Discour QALYs	ited	CPQ compared with MTX		Incremental CPQ
the strategy				strate	gy	
SSZ				-		-
						Ext
ADA				£	86,661	Dominated
						Ext
ETN				£	86,589	Dominated
TCZ				£	85,830	£ 85,830

ADA - adalimumab; ETN - etanercept; SSZ - sulfasalazine; TCZ - tocilizumab

CPQ – cost per QALY gained. Ext - extendedly

It is seen that the ICERs of all the bDMARDs compared with the MTX strategy are in the region of $\pounds 63,000$ to $\pounds 66,000$

Table 255:Deterministic results having included RCTs with a small proportion of
previous bDMARD use (with adequate prior MTX exposure) mapping
EULAR data from ACR data – ERAS cDMARD HAQ progression and a
severe, MTX-experienced, RA population treated with monotherapy

First	Discounted Costs	Discount	ted	CPQ compared		Incremental
Intervention in		QALYs		with	MTX	CPQ
the strategy				strate	gy	
SSZ				-		-
						Ext
ETN				£	85,887	Dominated
						Ext
ADA				£ 86,971		Dominated
TCZ				£	84,823	£ 84,823

ADA - adalimumab; ETN - etanercept; SSZ - sulfasalazine; TCZ - tocilizumab

Table 256:Deterministic results having included RCTs with a small proportion of
previous bDMARD use (irrespective of prior MTX exposure) mapping
EULAR data from ACR data – ERAS cDMARD HAQ progression and a
severe, MTX-experienced, RA population treated with monotherapy

First Intervention in the strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX strategy	Incremental CPQ
SSZ			-	-
				Ext
ADA			£ 89,888	Dominated
				Ext
ETN			£ 89,828	Dominated
TCZ			£ 88,131	£ 88,131

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab

CPQ - cost per QALY gained. Ext - extendedly

Table 257:Deterministic results having included RCTs with potentially low prior
MTX exposure using ACR data mapped to EULAR data – ERAS
cDMARD HAQ progression and a severe, MTX-experienced, RA
population treated with monotherapy

First	Discounted Costs	Discounted	CPQ		Incremental
Intervention in		QALYs	compar	ed	CPQ
the strategy		-	with M'	ΤХ	-
			strategy	7	
SSZ					
					Ext
ADA			£	87,812	Dominated
					Ext
ETN			£	85,915	Dominated
TCZ			£	85,863	£ 85,863

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab

Table 258:Deterministic results having used the mapping of HAQ to utility from
Malottki et al rather than Hernandez et al mapping EULAR data from
ACR data – ERAS cDMARD HAQ progression and a severe, MTX-
experienced, RA population treated with monotherapy

First	Discounted Costs	Discounted	CPQ	Incremental
Intervention in		QALYs	compared	CPQ
the strategy			with MTX	
			strategy	
SSZ			-	-
				Ext
ADA			£ 72,042	Dominated
				Ext
ETN			£ 71,883	Dominated
TCZ			£ 71,376	£ 71,376

ADA - adalimumab; ETN - etanercept; SSZ - sulfasalazine; TCZ - tocilizumab

CPQ – cost per QALY gained. Ext - extendedly

Table 259:Deterministic results having used discount rates of 6% per annum for
costs and 1.5% per annum for QALYs and mapping EULAR data from
ACR data – ERAS cDMARD HAQ progression and a severe, MTX-
experienced, RA population treated with monotherapy

First	Discounted Costs	Discoun	ted	CPQ		Incremental
Intervention in		QALYs		comp	ared with	CPQ
the strategy				MTX	strategy	
SSZ				-		-
						Ext
ADA				£	58,080	Dominated
						Ext
ETN				£	58,013	Dominated
TCZ				£	56,427	£ 56,427

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

Table 260:Deterministic results assuming 100-fold increased impact of adverse
events and mapping EULAR data from ACR data – ERAS cDMARD
HAQ progression and a severe, MTX-experienced, RA population
treated with monotherapy

First	Discounted Costs	Discounted	CPQ	Incremental
Intervention		QALYs	compared	CPQ
in the			with MTX	
strategy			strategy	
SSZ			-	-
			£	Ext
ADA			89,517	Dominated
			£	Ext
ETN			88,489	Dominated
			£	
TCZ			88,353	£ 88,353

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

Table 261:Deterministic results having used the relationship between HAQ and
pain derived from ERAS – ERAS cDMARD HAQ progression and a
severe, MTX-experienced, RA population treated with monotherapy

First Intervention in the strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX strategy	Incremental CPQ
SSZ			-	-
				Ext
ADA			£ 107,574	Dominated
				Ext
ETN			£ 106,272	Dominated
TCZ			£ 105,458	£ 105,458

ADA-adalimumab; ETN-etanercept; SSZ-sulfasalazine; TCZ-tocilizumab

CPQ - cost per QALY gained. Ext - extendedly

Table 262:Probabilistic base case results mapping EULAR data from ACR data –
ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA
population treated with monotherapy

First	Discounted Costs	Discounted	CPQ	Incremental
Intervention in		QALYs	compared	CPQ
the strategy			with MTX	
			strategy	
SSZ			-	-
ETN			£ 90,048	Ext Dominated
ADA			£ 90,591	Dominated
TCZ			£ 88,714	£ 88,714

ADA-adalimumab; ETN-etanercept; SSZ-sulfasalazine; TCZ-tocilizumab

Figure 129: The CEAC when mapping EULAR data from ACR data – ERAS cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

It is seen that at a willingness to pay of \pounds 30,000 that MTX strategy has a very high probability of being optimal.

6.3.22.12 ACR response measure: Linear cDMARD HAQ progression and a severe, MTXexperienced, RA population treated with monotherapy

Table 263:Deterministic base case results mapping EULAR data from ACR data –
Linear cDMARD HAQ progression and a severe, MTX-experienced, RA
population treated with monotherapy

First Intervention in the strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX strategy	Incremental CPQ
~~~			strategy	
SSZ			-	-
ADA			£ 38,501	£ 38,501
ETN			£ 38,547	£ 49,828
TCZ			£ 40,049	£ 70,054

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

It is seen that the ICERs of all the bDMARDs compared with the MTX strategy are in the region of  $\pounds 33,000$  to  $\pounds 37,000$ 

### Table 264:Deterministic results having included RCTs with a small proportion of<br/>previous bDMARD use (with adequate prior MTX exposure) mapping<br/>EULAR data from ACR data – Linear cDMARD HAQ progression and<br/>a severe, MTX-experienced, RA population treated with monotherapy

First Intervention in the strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX strategy	Incremental CPQ
SSZ			-	-
				Ext
ETN			£ 37,261	Dominated
ADA			£ 37,343	£ 37,261
TCZ			£ 38,835	£ 66,329

ADA-adalimumab; ETN-etanercept; SSZ-sulfasalazine; TCZ-tocilizumab

CPQ - cost per QALY gained. Ext - extendedly

### Table 265:Deterministic results having included RCTs with a small proportion of<br/>previous bDMARD use (irrespective of prior MTX exposure) mapping<br/>EULAR data from ACR data – Linear cDMARD HAQ progression and<br/>a severe, MTX-experienced, RA population treated with monotherapy

First Intervention in the strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX strategy	Incremental CPQ
SSZ				
				Ext
ADA			£ 37,185	Dominated
ETN			£ 37,087	£ 37,087
TCZ			£ 38,562	£ 67,396

ADA – adalimumab; ETN – etanercept; SSZ = sulfasalazine; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

## Table 266:Deterministic results having included RCTs with potentially low prior<br/>MTX exposure using ACR data mapped to EULAR data – Linear<br/>cDMARD HAQ progression and a severe, MTX-experienced, RA<br/>population treated with monotherapy

First	Discounted Costs	Discounted		CPQ	)	Incremental
Intervention in		QALYs		com	pared	CPQ
the strategy				with MTX		
				strat	egy	
SSZ						
ETN				£	36,796	£ 36,796
ADA				£	37,204	Dominated
TCZ				£	38,432	£ 59,568

ADA – adalimumab; ETN – etanercept; SSZ = sulfasalazine; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

### Table 267:Deterministic results having used the mapping of HAQ to utility from<br/>Malottki et al rather than Hernandez et al mapping EULAR data from<br/>ACR data – Linear cDMARD HAQ progression and a severe, MTX-<br/>experienced, RA population treated with monotherapy

First	Discounted Costs	Discounted	CPQ	Incremental
Intervention in		QALYs	compared	CPQ
the strategy			with MTX	
			strategy	
SSZ			-	-
ADA			£ 34,042	£ 34,042
ETN			£ 34,055	£ 49,928
TCZ			£ 35,280	£ 55,140

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

### Table 268:Deterministic results having used discount rates of 6% per annum for<br/>costs and 1.5% per annum for QALYs and mapping EULAR data from<br/>ACR data – Linear cDMARD HAQ progression and a severe, MTX-<br/>experienced, RA population treated with monotherapy

First Intervention in the strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX strategy	Incremental CPQ
SSZ			-	-
				Ext
ADA			£ 23,591	Dominated
ETN			£ 23,537	£ 23,537
TCZ			£ 24,343	£ 39,745

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

### Table 269:Deterministic results assuming 100-fold increased impact of adverse<br/>events and mapping EULAR data from ACR data – Linear cDMARD<br/>HAQ progression and a severe, MTX-experienced, RA population<br/>treated with monotherapy

First Intervention in the strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX strategy	Incremental CPQ
997			strategy	
SSZ			-	-
ADA			£ 39,173	£ 39,173
ETN			£ 39,257	£ 59,684
TCZ			£ 40,674	£ 65,518

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

#### Table 270:Deterministic results having used the relationship between HAQ and<br/>pain derived from ERAS – Linear cDMARD HAQ progression and a<br/>severe, MTX-experienced, RA population treated with monotherapy

First	Discounted Costs	Discounted		CPQ		Inci	remental
Intervention in		QALYs		compared		CPO	2
the strategy				with MTX			
				strate	gy		
SSZ				-		-	
ADA				£	47,732	£	47,732
ETN				£	47,801	£	73,402
TCZ				£	49,552	£	78,345

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

#### Table 271:Probabilistic base case results mapping EULAR data from ACR data –<br/>Linear cDMARD HAQ progression and a severe, MTX-experienced, RA<br/>population treated with monotherapy

First Intervention in the strategy	Discounted Costs	Discounted C QALYs cc w st		CPQ compared with MTX strategy		emental )
SSZ			-	01	-	
ETN			£	38,765	£	38,765
ADA			£	38,766	Dor	ninated
TCZ			£	40,229	£	70,551

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

#### Figure 130: The CEAC when mapping EULAR data from ACR data – Linear cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy



It is seen that at a willingness to pay of £30,000 that both the MTX strategy and the tocilizumab strategy have reasonably high probabilities of being optimal.

6.3.22.13 EULAR response measure: ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy

### Table 272:Deterministic base case results using EULAR data directly – ERAS<br/>cDMARD HAQ progression and a moderate, MTX-experienced, RA<br/>population treated with monotherapy

First	Discounted Costs	Discounted	CPQ	Incremental
Intervention		QALYs	compared	CPQ
in the			with MTX	
strategy			strategy	
SSZ			-	-
			£	Ext
ADA			107,323	Dominated
			£	Ext
ETN			104,790	Dominated
			£	
TCZ			97,798	£ 97,798

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

It is seen that the ICERs of all the bDMARDs compared with the MTX strategy are in the region of  $\pounds 97,000$  to  $\pounds 108,000$ 

Table 273:Deterministic results having included RCTs with a small proportion of<br/>previous bDMARD use (with adequate prior MTX exposure) using<br/>EULAR data directly – ERAS cDMARD HAQ progression and a<br/>moderate, MTX-experienced, RA population treated with monotherapy

First	Discounted Costs	Discounted	CPQ	Incremental
Intervention in		QALYs	compared with	CPQ
the strategy			MTX strategy	
SSZ			-	-
				Ext
ADA			£ 108,103	Dominated
				Ext
ETN			£ 111,490	Dominated
TCZ			£ 101,703	£ 101,703

ADA - adalimumab; ETN - etanercept; SSZ - sulfasalazine; TCZ - tocilizumab

CPQ - cost per QALY gained. Ext - extendedly

Table 274:Deterministic results having used the mapping of HAQ to utility from<br/>Malottki et al rather than Hernandez et al using EULAR data directly –<br/>ERAS cDMARD HAQ progression and a moderate, MTX-experienced,<br/>RA population treated with monotherapy

First	Discounted Costs	Discounted	CPQ	Incremental
Intervention		QALYs	compared	CPQ
in the			with MTX	
strategy			strategy	
SSZ			-	-
			£	Ext
ADA			74,414	Dominated
			£	Ext
ETN			74,766	Dominated
			£	
TCZ			67,301	£ 67,301

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

Table 275:Deterministic results having used discount rates of 6% per annum for<br/>costs and 1.5% per annum for QALYs and using EULAR data directly –<br/>ERAS cDMARD HAQ progression and a moderate, MTX-experienced,<br/>RA population treated with monotherapy

First Intervention in the strategy	Discounted Costs Discounted QALYs		Discounted QALYs		Discounted QALYs		Discounted QALYs		compared MTX egy	Incremental CPQ
SSZ				-		-				
						Ext				
ADA				£	66,326	Dominated				
						Ext				
ETN				£	65,147	Dominated				
TCZ				£	60,837	£ 60,837				

ADA - adalimumab; ETN - etanercept; SSZ - sulfasalazine; TCZ - tocilizumab

#### Table 276:Deterministic results assuming 100-fold increased impact of adverseevents and using EULAR data directly – ERAS cDMARD HAQ progression and amoderate, MTX-experienced, RA population treated with monotherapy

/			1			10	
First	Discounted Costs	5	Discour	ited	CPQ	compared	Incremental
Intervention in			QALYs		with	MTX	CPQ
the strategy					strategy		
SSZ					-		-
							Ext
ADA					£	108,695	Dominated
							Ext
ETN					£	111,322	Dominated
TCZ					£	104,166	£ 104,166

ADA - adalimumab; ETN - etanercept; SSZ - sulfasalazine; TCZ - tocilizumab

CPQ - cost per QALY gained. Ext - extendedly

#### Table 277:Deterministic results having used the relationship between HAQ and<br/>pain derived from ERAS – ERAS cDMARD HAQ progression and a<br/>moderate, MTX-experienced, RA population treated with monotherapy

First	Discounted Costs	Discounted		CPQ		Incremental	
Intervention in		QALYs		compared		CPQ	
the strategy				with		MTX	
				strategy			
SSZ				-		-	
ADA				£	123,455	Ext Dominated	
ETN				£	121,855	Ext Dominated	
TCZ				£	111,478	£ 111,478	

ADA - adalimumab; ETN - etanercept; SSZ - sulfasalazine; TCZ - tocilizumab

CPQ - cost per QALY gained. Ext - extendedly

#### Table 278:Probabilistic base case results using EULAR data directly – ERAS<br/>cDMARD HAQ progression and a moderate, MTX-experienced, RA<br/>population treated with monotherapy

First Intervention in the strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX strategy	Incremental CPQ
SSZ			-	-
				Ext
ADA			£ 105,434	Dominated
				Ext
ETN			£ 106,589	Dominated
TCZ			£ 99,735	£ 99,735

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly
## Figure 131: The CEAC when using EULAR data directly – ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy



It is seen that at a willingness to pay of  $\pounds$ 30,000 that MTX strategy has a very high probability of being optimal.

6.3.22.14 EULAR response measure: Linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy

Table 279:Deterministic base case results using EULAR data directly – LINEAR<br/>cDMARD HAQ progression and a severe, MTX-experienced, RA<br/>population treated with monotherapy

First	Discounted Costs	Discounted		CPQ		Incremental
Intervention in		QALYs		compared		CPQ
the strategy		-		with MTX		
				strategy		
SSZ				-		-
ADA				£	41,190	£ 41,190
						Ext
ETN				£	41,385	Dominated
TCZ				£	42,465	£ 54,415

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

It is seen that the ICERs of all the bDMARDs compared with the MTX strategy are in the region of £41,000 to £43,000

Table280:Deterministic results having included RCTs with a small proportion of<br/>previous bDMARD use (with adequate prior MTX exposure) using<br/>EULAR data directly – LINEAR cDMARD HAQ progression and a<br/>severe, MTX-experienced, RA population treated with monotherapy

First	Discounted Costs	Discounted	CPQ	Incremental
Intervention in		QALYs	compared	CPQ
the strategy			with MTX	
			strategy	
SSZ			-	-
ADA			£ 38,937	£ 38,937
ETN			£ 39,300	Ext

			Dominated
TCZ		£ 41,020	£ 61,560

ADA-adalimumab; ETN-etanercept; SSZ-sulfasalazine; TCZ-tocilizumab

CPQ - cost per QALY gained. Ext - extendedly

Table 281:Deterministic results having used the mapping of HAQ to utility from<br/>Malottki et al rather than Hernandez et al using EULAR data directly –<br/>LINEAR cDMARD HAQ progression and a severe, MTX-experienced,<br/>RA population treated with monotherapy

First	Discounted Costs	Discounted	CPQ		Incremental
Intervention in		QALYs	compa	ared	CPQ
the strategy			with MTX		
			strategy		
SSZ			-		-
					Ext
ADA			£	32,767	Dominated
					Ext
ETN			£	32,872	Dominated
TCZ			£	32,465	£ 29,207

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab

CPQ - cost per QALY gained. Ext - extendedly

## Table 282:Deterministic results having used discount rates of 6% per annum for<br/>costs and 1.5% per annum for QALYs and using EULAR data directly –<br/>LINEAR cDMARD HAQ progression and a severe, MTX-experienced,<br/>RA population treated with monotherapy

First	Discounted Costs	Discounted	CPQ	Incremental
Intervention in		QALYs	compared	CPQ
the strategy			with MTX	
			strategy	
SSZ			-	-
ADA			£ 23,671	£ 23,671
				Ext
ETN			£ 23,869	Dominated
TCZ			£ 24,469	£ 32,344

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

## Table 283: Deterministic results assuming 100-fold increased impact of adverse events and using EULAR data directly – LINEAR cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First	Discounted Costs	Discoun	ted	CPQ		Incr	remental
Intervention in		QALYs		compared		CPO	2
the strategy				with MTX			
				strate	gy		
SSZ				-		-	
ADA				£	41,580	£	41,580
						Ext	ţ
ETN				£	41,621	Dor	ninated
TCZ				£	43,376	£	60,121

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

### Table 284:Deterministic results having used the relationship between HAQ andpain derived from LINEAR – LINEAR cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy

First	Discounted Costs	Discounted	CPQ	Incremental
Intervention in		QALYs	compared	CPQ
the strategy			with MTX	
			strategy	
SSZ			-	-
ADA			£ 48,834	£ 48,834
				Ext
ETN			£ 49,661	Dominated
TCZ			£ 50,440	£ 65,894

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

### Table 285:Probabilistic base case results using EULAR data directly – LINEAR<br/>cDMARD HAQ progression and a severe, MTX-experienced, RA<br/>population treated with monotherapy

First	Discounted Costs	Discounted	CPQ	Incremental
Intervention in		QALYs	compared	CPQ
the strategy			with MTX	
			strategy	
SSZ			-	-
ADA			£ 41,263	£ 41,263
				Ext
ETN			£ 41,683	Dominated
TCZ			£ 43,062	£ 62,038

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

### Figure 132 The CEAC when using EULAR data directly – LINEAR cDMARD HAQ progression and a severe, MTX-experienced, RA population treated with monotherapy



It is seen that at a willingness to pay of  $\pounds$ 30,000 that MTX strategy has a high probability of being optimal.

6.3.22.15 ACR response measure: ERAS cDMARD HAQ progression and a moderate, MTXexperienced, RA population treated with monotherapy

### Table 286:Deterministic base case results mapping EULAR data from ACR data –<br/>ERAS cDMARD HAQ progression and a moderate, MTX-experienced,<br/>RA population treated with monotherapy

First Intervention in the strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX strategy	Incremental CPQ
SSZ			-	-
				Ext
ADA			£ 106,375	Dominated
				Ext
ETN			£ 108,024	Dominated
TCZ			£ 105,702	£ 105,702

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

It is seen that the ICERs of all the bDMARDs compared with the MTX strategy are in the region of  $\pounds 105,000$  to  $\pounds 109,000$ 

## Table 287:Deterministic results having included RCTs with a small proportion of<br/>previous bDMARD use (with adequate prior MTX exposure) mapping<br/>EULAR data from ACR data – ERAS cDMARD HAQ progression and a<br/>moderate, MTX-experienced, RA population treated with monotherapy

First	Discounted Costs	Discounted	CPQ		Incremental
Intervention in		QALYs	comp	pared	CPQ
the strategy			with MTX		
			strate	egy	
SSZ			-		-
					Ext
ADA			£	109,593	Dominated
ETN			£	105,829	£ 105,829
TCZ			£	107,930	£ 132,674

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab

## Table 288:Deterministic results having included RCTs with a small proportion of<br/>previous bDMARD use (irrespective of prior MTX exposure) mapping<br/>EULAR data from ACR data – ERAS cDMARD HAQ progression and a<br/>moderate, MTX-experienced, RA population treated with monotherapy

First	Discounted Costs	Discounted	CPQ	Incremental
Intervention in		QALYs	compared	CPQ
the strategy			with MTX	
			strategy	
SSZ				
				Ext
ADA			£ 105,368	Dominated
				Ext
ETN			£ 106,458	Dominated
TCZ			£ 103,773	£ 103,773

ADA – adalimumab; ETN – etanercept; SSZ = sulfasalazine; TCZ – tocilizumab

## Table 289:Deterministic results having included RCTs with potentially low prior<br/>MTX exposure using ACR data mapped to EULAR data – ERAS<br/>cDMARD HAQ progression and a moderate, MTX-experienced, RA<br/>population treated with monotherapy

First	Discounted Costs	Discounted	CPQ	Incremental
Intervention in		QALYs	compared	CPQ
the strategy			with MTX	
			strategy	
SSZ				
				Ext
ADA			£ 111,610	Dominated
				Ext
ETN			£ 110,472	Dominated
TCZ			£ 110,380	£ 110,380

ADA – adalimumab; ETN – etanercept; SSZ = sulfasalazine; TCZ – tocilizumab

CPQ – cost per QALY gained. Ext - extendedly

## Table 290:Deterministic results having used the mapping of HAQ to utility from<br/>Malottki et al rather than Hernandez et al mapping EULAR data from<br/>ACR data – ERAS cDMARD HAQ progression and a moderate, MTX-<br/>experienced, RA population treated with monotherapy

First	Discounted Costs	Discounted	CPQ	Incremental
Intervention in		QALYs	compared	CPQ
the strategy			with MTX	
			strategy	
SSZ			-	-
				Ext
ADA			£ 79,218	Dominated
ETN			£ 76,190	£ 76,190
TCZ			£ 77,156	£ 89,021

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

CIQ - cost per QAL I gamed. Ext - extendediy

## Table 291:Deterministic results having used discount rates of 6% per annum for<br/>costs and 1.5% per annum for QALYs and mapping EULAR data from<br/>ACR data – ERAS cDMARD HAQ progression and a moderate, MTX-<br/>experienced, RA population treated with monotherapy

First	Discounted Costs	Discounted	CPQ	Incremental
Intervention in		QALIS	compared	CPQ
the strategy			With MIX	
			strategy	
SSZ			-	-
ADA			£ 69,833	£ 69,833
				Ext
ETN			£ 72,100	Dominated
TCZ			£ 70,026	£ 72,345

ADA - adalimumab; ETN - etanercept; SSZ - sulfasalazine; TCZ - tocilizumab

## Table 292:Deterministic results assuming 100-fold increased impact of adverse<br/>events and mapping EULAR data from ACR data – ERAS cDMARD<br/>HAQ progression and a moderate, MTX-experienced, RA population<br/>treated with monotherapy

First	Discounted Costs	Discounted		CPQ		Incremental
Intervention in		QALYs		compared		CPQ
the strategy				with MTX		
				strategy		
SSZ				-		-
ADA				£	105,114	£ 105,114
						Ext
ETN				£	107,053	Dominated
TCZ				£	105,886	£ 115,183

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab

CPQ - cost per QALY gained. Ext - extendedly

### Table 293:Deterministic results having used the relationship between HAQ and<br/>pain derived from ERAS – ERAS cDMARD HAQ progression and a<br/>moderate, MTX-experienced, RA population treated with monotherapy

First Intervention in the strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX strategy	Incremental CPQ
SSZ			-	-
				Ext
ADA			£ 120,413	Dominated
ETN			£ 120,040	£ 120,040
TCZ			£ 120,285	£ 122,603

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

### Table 294:Probabilistic base case results mapping EULAR data from ACR data –<br/>ERAS cDMARD HAQ progression and a moderate, MTX-experienced,<br/>RA population treated with monotherapy

First Intervention in the strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX strategy	Incremental CPQ
SSZ			-	-
				Ext
ADA			£ 109,543	Dominated
				Ext
ETN			£ 108,232	Dominated
TCZ			£ 107,372	£ 107,372

ADA - adalimumab; ETN - etanercept; SSZ - sulfasalazine; TCZ - tocilizumab

#### Figure 133: The CEAC when mapping EULAR data from ACR data – ERAS cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy



It is seen that at a willingness to pay of  $\pm 30,000$  that MTX strategy has a very high probability of being optimal.

6.3.22.16 ACR response measure: Linear cDMARD HAQ progression and a moderate, MTXexperienced, RA population treated with monotherapy

### Table 295:Deterministic base case results mapping EULAR data from ACR data –<br/>Linear cDMARD HAQ progression and a moderate, MTX-experienced,<br/>RA population treated with monotherapy

First	Discounted Costs	Discounted	CPQ	Incremental
Intervention in		QALYs	compared	CPQ
the strategy			with MTX	
			strategy	
SSZ			-	-
				Ext
ADA			£ 38,751	Dominated
ETN			£ 38,469	£ 38,469
TCZ			£ 40,644	£ 94,949

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

It is seen that the ICERs of all the bDMARDs compared with the MTX strategy are in the region of  $\pounds 38,000$  to  $\pounds 41,000$ 

# Table 296:Deterministic results having included RCTs with a small proportion of<br/>previous bDMARD use (with adequate prior MTX exposure) mapping<br/>EULAR data from ACR data – Linear cDMARD HAQ progression and<br/>a moderate, MTX-experienced, RA population treated with<br/>monotherapy

First Intervention in the strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX strategy	Incremental CPQ
SSZ			-	-
				Ext
ADA			£ 38,956	Dominated
ETN			£ 38,547	£ 38,547
TCZ			£ 41,321	£ 107,580

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab

CPQ - cost per QALY gained. Ext - extendedly

# Table 297:Deterministic results having included RCTs with a small proportion of<br/>previous bDMARD use (irrespective of prior MTX exposure) mapping<br/>EULAR data from ACR data – Linear cDMARD HAQ progression and<br/>a moderate, MTX-experienced, RA population treated with<br/>monotherapy

First	Discounted Costs	Discounted	CPQ	Incremental
Intervention in		QALYs	compared	CPQ
the strategy			with MTX	
			strategy	
SSZ				
ADA			£ 38,264	£ 38,264
				Ext
ETN			£ 38,545	5 Dominated
TCZ			£ 40,304	£ 76,254

ADA – adalimumab; ETN – etanercept; SSZ = sulfasalazine; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

## Table 298:Deterministic results having included RCTs with potentially low prior<br/>MTX exposure using ACR data mapped to EULAR data – ERAS<br/>cDMARD HAQ progression and a moderate, MTX-experienced, RA<br/>population treated with monotherapy

First	Discounted Costs	Discount	ed	CPQ		Inc	remental
Intervention in		QALYs		compared		CP	Q
the strategy				with MTX			
				strategy			
SSZ							
ADA				£	37,025	£	37,025
ETN				£	37,217	£	50,652
TCZ				£	40,508	£	85,586

ADA – adalimumab; ETN – etanercept; SSZ = sulfasalazine; TCZ – tocilizumab

## Table 299:Deterministic results having used the mapping of HAQ to utility from<br/>Malottki et al rather than Hernandez et al mapping EULAR data from<br/>ACR data – Linear cDMARD HAQ progression and a moderate, MTX-<br/>experienced, RA population treated with monotherapy

First	Discounted Costs	Discounted		CPQ		Inc	remental
Intervention in		QALYs		compared		CP	Q
the strategy		-		with MTX			
				strategy			
SSZ				-		-	
ADA				£	30,914	£	30,914
ETN				£	31,053	£	49,620
TCZ				£	32,431	£	56,717

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

## Table 300:Deterministic results having used discount rates of 6% per annum for<br/>costs and 1.5% per annum for QALYs and mapping EULAR data from<br/>ACR data – Linear cDMARD HAQ progression and a moderate, MTX-<br/>experienced, RA population treated with monotherapy

First Intervention in the strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX strategy	Incremental CPQ
SSZ			-	-
				Ext
ADA			£ 23,654	Dominated
ETN			£ 23,766	£ 23,766
TCZ			£ 24,878	£ 47,829

ADA - adalimumab; ETN - etanercept; SSZ - sulfasalazine; TCZ - tocilizumab

CPQ - cost per QALY gained. Ext - extendedly

## Table 301:Deterministic results assuming 100-fold increased impact of adverse<br/>events and mapping EULAR data from ACR data – Linear cDMARD<br/>HAQ progression and a moderate, MTX-experienced, RA population<br/>treated with monotherapy

First	Discounted Costs	Discounted	CPQ	Incremental
Intervention in		QALYs	compared	CPQ
the strategy			with MTX	
			strategy	
SSZ			-	-
ADA			£ 39,857	£ 39,857
ETN			£ 40,477	Dominated
TCZ			£ 42,660	£ 147,373

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

## Table 302:Deterministic results having used the relationship between HAQ and<br/>pain derived from ERAS – Linear cDMARD HAQ progression and a<br/>moderate, MTX-experienced, RA population treated with monotherapy

First	Discounted Costs	Discounted	CPQ	Incremental
Intervention in		QALYs	compared	CPQ
the strategy			with MTX	
			strategy	
SSZ			-	-
ADA			£ 46,973	£ 46,973
ETN			£ 47,107	Dominated
TCZ			£ 49,606	£ 95,878

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

## Table 303:Probabilistic base case results mapping EULAR data from ACR data –<br/>Linear cDMARD HAQ progression and a moderate, MTX-experienced,<br/>RA population treated with monotherapy

First Intervention in the strategy	Discounted Costs	Discour QALYs	ited	CPQ compa with N	ared MTX	Incre CPQ	emental
SSZ				-	⊃J	-	
ADA				£	39,460	£	39,460
ETN				£	39,550	£	59,914
TCZ				£	41,843	£	84,981

ADA – adalimumab; ETN – etanercept; SSZ – sulfasalazine; TCZ – tocilizumab CPQ – cost per QALY gained. Ext - extendedly

#### Figure 134: The CEAC when mapping EULAR data from ACR data – Linear cDMARD HAQ progression and a moderate, MTX-experienced, RA population treated with monotherapy



It is seen that at a willingness to pay of  $\pm 30,000$  that MTX strategy has the highest probability of being optimal.

6.3.22.17 Response measure ACR: ERAS cDMARD HAQ progression and a severe, MTX-naïve, RA population

### Table 304:Deterministic base case results mapping EULAR data from ACR data –<br/>ERAS cDMARD HAQ progression and a severe, MTX-naive, RA<br/>population

Strategy	Discounted Costs	Discounted	CPQ compared	Incremental
		QALYs	with MTX / Int	CPQ
			cDMARDs /	
			NBT strategy	
MTX / Int				
cDMARDs /				
NBT				
MTX / Int				
cDMARDs /				
bDMARDs			£ 82,834	£ 82,834
bDMARDs			£ 141,907	£ 308,708

CPQ – cost per QALY gained.

## Table 305:Deterministic base case results mapping EULAR data from ACR data –<br/>ERAS cDMARD HAQ progression including RCTs with some patients<br/>with prior cDMARD experience and a severe, MTX-naive, RA<br/>population

Strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX / Int cDMARDs / NBT strategy	Incremental CPQ
MTX / Int				
cDMARDs /				
NBT				
MTX / Int				
cDMARDs /				£
bDMARDs			£ 83,676	83,676
bDMARDs			£ 110,981	£ 571,709

## Table 306:Deterministic results having used the mapping of HAQ to utility from<br/>Malottki et al rather than Hernandez et al mapping EULAR data from<br/>ACR data – ERAS cDMARD HAQ progression and a severe, MTX-<br/>naive, RA population treated

Strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX / Int cDMARDs / NBT strategy	Incremental CPQ
MTX / Int				
cDMARDs / NBT				
MTX / Int				
cDMARDs /				
bDMARDs			£ 62,062	£ 62,062
bDMARDs			£ 103,604	£ 214,812
CPQ – cost per QAL	Y gained.			

## Table 307:Deterministic results having used discount rates of 6% per annum for<br/>costs and 1.5% per annum for QALYs and mapping EULAR data from<br/>ACR data – ERAS cDMARD HAQ progression and a severe, MTX-<br/>naive, RA population treated

Strategy	Discounted Costs	Discounted	CPQ compared	Incremental
		QALYs	with MTX / Int	CPQ
			cDMARDs /	
			NBT strategy	
MTX / Int				
cDMARDs /				
NBT				
MTX / Int				
cDMARDs /				
bDMARDs			£ 44,454	£ 44,454
bDMARDs			£ 82,128	£ 185,001

CPQ – cost per QALY gained.

## Table 308:Deterministic results assuming 100-fold increased impact of adverse<br/>events and mapping EULAR data from ACR data – ERAS cDMARD<br/>HAQ progression and a severe, MTX-naive, RA

Strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX / Int cDMARDs / NBT strategy	Incremental CPQ
MTX / Int cDMARDs /				
NBT				
MTX / Int				
cDMARDs /				
bDMARDs			£ 86,015	£ 86,015
bDMARDs			£ 147,725	£ 326,073

## Table 309:Deterministic results having used the relationship between HAQ and<br/>pain derived from ERAS – ERAS cDMARD HAQ progression and a<br/>severe, MTX-naive, RA population

Strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX / Int cDMARDs / NBT strategy	Incremental CPQ
MTX / Int				
cDMARDs / NBT				
MTX / Int				
cDMARDs /				
bDMARDs			£ 96,224	£ 96,224
bDMARDs			£ 162,998	£ 344,829

CPQ – cost per QALY gained.

### Table 310:Probabilistic base case results mapping EULAR data from ACR data –<br/>ERAS cDMARD HAQ progression and a severe, MTX-naive, RA<br/>population

Strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX / Int cDMARDs / NBT strategy		Incr CP	remental Q
MTX / Int						
cDMARDs / NBT						
MTX / Int						
cDMARDs /						
bDMARDs			£	84,805	£	84,805
bDMARDs			£	142,353	£ 2	295,732

CPQ – cost per QALY gained.

#### Figure 135: The CEAC when mapping EULAR data from ACR data – ERAS cDMARD HAQ progression and a severe, MTX-naive, RA population treated



It is seen that at a willingness to pay of  $\pm 30,000$  that MTX / NBT strategy has a very high probability of being optimal.

6.3.22.18 Response measure ACR: Linear cDMARD HAQ progression and a severe, MTXnaïve, RA population

### Table 311:Deterministic base case results mapping EULAR data from ACR data –<br/>Linear cDMARD HAQ progression and a severe, MTX-naive, RA<br/>population

Strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX / Int cDMARDs / NBT strategy	Incremental CPQ
MTX / Int				
cDMARDs /				
NBT				
MTX / Int				
cDMARDs /				
bDMARDs			£ 100,045	£ 100,045
bDMARDs			£ 159,538	£ 296,337

CPQ – cost per QALY gained.

## Table 312:Deterministic base case results mapping EULAR data from ACR<br/>data – ERAS cDMARD HAQ progression including RCTs with<br/>some patients with prior cDMARD experience and a severe, MTX-<br/>naive, RA population treated with monotherapy

Strategy	Discounted Costs	Discounted	CPQ compared	Incremental
		QALYs	with MTX / Int	CPQ
			cDMARDs / NBT	
			strategy	
MTX / Int				
cDMARDs /				
NBT				
MTX / Int				
cDMARDs /				£
bDMARDs			£ 85,912	85,912
bDMARDs			£ 111,918	£ 432,804

## Table 313:Deterministic results having used the mapping of HAQ to utility from<br/>Malottki et al rather than Hernandez et al mapping EULAR data from<br/>ACR data – Linear cDMARD HAQ progression and a severe, MTX-<br/>naive, RA population

Strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX / Int cDMARDs / NBT strategy	Incremental CPQ
MTX / Int cDMARDs / NBT				
MTX / Int cDMARDs / bDMARDs			£ 71,737	£ 71,737
bDMARDs			£ 114,550	£ 216,423

CPQ – cost per QALY gained.

## Table 314:Deterministic results having used discount rates of 6% per annum for<br/>costs and 1.5% per annum for QALYs and mapping EULAR data from<br/>ACR data – Linear cDMARD HAQ progression and a severe, MTX-<br/>naive, RA population

Strategy	Discounted Costs	Discounted	CPQ compared	Incremental
		QALYs	with MTX / Int	CPQ
			cDMARDs / NBT	
			strategy	
MTX / Int				
cDMARDs /				
NBT				
MTX / Int				
cDMARDs /				
bDMARDs			£ 49,573	£ 49,573
bDMARDs			£ 89,384	£ 192.895

CPQ – cost per QALY gained.

### Table 315:Deterministic results assuming 100-fold increased impact of adverse<br/>events and mapping EULAR data from ACR data – Linear cDMARD<br/>HAQ progression and a severe, MTX-naive, RA population

Strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX / Int cDMARDs / NBT strategy	Incremental CPQ
MTX / Int cDMARDs /				
NBT				
MTX / Int				
cDMARDs /				
bDMARDs			£ 101,918	£ 101,918
bDMARDs			£ 165,829	£ 323,612

### Table 316:Deterministic results having used the relationship between HAQ and<br/>pain derived from ERAS – Linear cDMARD HAQ progression and a severe, MTX-<br/>naive, RA population

/ I I				7
Strategy	Discounted Costs	Discounted	CPQ compared	Incremental
		QALYs	with MTX / Int	CPQ
			cDMARDs / NBT	
			strategy	
MTX / Int				
cDMARDs /				
NBT				
MTX / Int				
cDMARDs /				
bDMARDs			£ 113,334	£ 113,334
bDMARDs			£ 182,241	£ 344,658

CPQ - cost per QALY gained.

## Table 317:Probabilistic base case results mapping EULAR data from ACR data –<br/>Linear cDMARD HAQ progression and a severe, MTX-naive, RA<br/>population

Strategy	Discounted Costs	Discounted	CPQ compared	Incremental
		QALYs	with MTX / Int	CPQ
			cDMARDs / NBT	
			strategy	
MTX / Int				
cDMARDs /				
NBT				
MTX / Int				
cDMARDs /				
bDMARDs			£ 97,824	£ 97,824
bDMARDs			£ 157,036	£ 296,741

CPQ – cost per QALY gained.

#### Figure 136:The CEAC when mapping EULAR data from ACR data – LINEAR<br/>cDMARD HAQ progression and a severe, MTX-naive, RA population



It is seen that at a willingness to pay of  $\pm 30,000$  that MTX / NBT strategy has a very high probability of being optimal.

6.3.22.19 Response measure ACR: ERAS cDMARD HAQ progression and a severe, MTX-naïve, RA population treated with monotherapy

## Table 318:Deterministic base case results mapping EULAR data from ACR data –<br/>ERAS cDMARD HAQ progression and a severe, MTX-naive, RA<br/>population treated with monotherapy

Strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX strategy	Incremental CPQ
MTX / Int cDMARDs /				
NBT				
MTX / Int				
cDMARDs /				
bDMARDs			£ 92,685	£ 92,685
bDMARDs			£ 131,317	£ 414,703

CPQ – cost per QALY gained.

## Table 319:Deterministic base case results mapping EULAR data from ACR data –<br/>ERAS cDMARD HAQ progression and a severe, MTX-naive, RA<br/>population treated with monotherapy including RCTs with a small<br/>percentage of prior cDMARD experience

Strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX strategy	Incremental CPQ
MTX / Int cDMARDs /				
NBT				
MTX / Int				
cDMARDs /				£
bDMARDs			£ 92,572	92,572
bDMARDs			£ 97,484	£ 140,418

CPQ – cost per QALY gained.

Table 320:Deterministic results having used the mapping of HAQ to utility from<br/>Malottki et al rather than Hernandez et al mapping EULAR data<br/>from ACR data – ERAS cDMARD HAQ progression and a severe,<br/>MTX-naive, RA population treated with monotherapy

Strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX strategy	Incremental CPQ
MTX / Int				
cDMARDs /				
NBT				
MTX / Int				
cDMARDs /				
bDMARDs			£ 67,333	£ 67,333
bDMARDs			£ 95,636	£ 340,542

Table 321:Deterministic results having used discount rates of 6% per annum for<br/>costs and 1.5% per annum for QALYs and mapping EULAR data from<br/>ACR data – ERAS cDMARD HAQ progression and a severe, MTX-<br/>naive, RA population treated with monotherapy

Strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX strategy	Incremental CPQ
MTX / Int cDMARDs / NBT				
MTX / Int cDMARDs / bDMARDs			£ 54,306	£ 54,306
bDMARDs			£ 81,470	£ 295,440

CPQ – cost per QALY gained.

Table 322:Deterministic results assuming 100-fold increased impact of adverse<br/>events and mapping EULAR data from ACR data – Linear cDMARD<br/>HAQ progression and a severe, MTX-naive, RA population treated with<br/>monotherapy

Strategy	Discounted Costs	Discounted	CPQ compared	Incremental
		QALYs	with MTX	CPQ
			strategy	
MTX / Int				
cDMARDs /				
NBT				
MTX / Int				
cDMARDs /				
bDMARDs			£ 93,348	£ 93,348
bDMARDs			£ 129,839	£ 382,032

CPQ – cost per QALY gained.

Table 323:Deterministic results having used the relationship between HAQ and<br/>pain derived from ERAS – ERAS cDMARD HAQ progression and a<br/>severe, MTX-naive, RA population treated with monotherapy

Strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX strategy	Incremental CPQ
MTX / Int				
cDMARDs /				
NBT				
MTX / Int				
cDMARDs /				
bDMARDs			£ 106,654	£ 106,654
bDMARDs			£ 150,182	£ 438,685

## Table 324:Probabilistic base case results mapping EULAR data from ACR data –<br/>ERAS cDMARD HAQ progression and a severe, MTX-naive, RA<br/>population treated with monotherapy

Strategy	Discounted Costs	Discounted	CPQ compared	Incremental
		QALYs	with MTX	CPQ
			strategy	
MTX / Int				
cDMARDs /				
NBT				
MTX / Int				
cDMARDs /				
bDMARDs			£ 93,162	£ 93,162
bDMARDs			£ 131,015	£ 404,484

CPQ - cost per QALY gained.

#### Figure 137: The CEAC when mapping EULAR data from ACR data – ERAS cDMARD HAQ progression and a severe, MTX-naive, RA population treated with monotherapy



6.3.22.20 Response measure ACR: Linear cDMARD HAQ progression and a severe, MTX-naïve, RA population treated with monotherapy

### Table 325:Deterministic base case results mapping EULAR data from ACR data –<br/>Linear cDMARD HAQ progression and a severe, MTX-naive, RA<br/>population treated with monotherapy

Strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX strategy	Incremental CPQ
MTX / Int				
cDMARDs /				
NBT				
MTX / Int				
cDMARDs /				
bDMARDs			£ 72,775	£ 72,775
bDMARDs			£ 105,862	£ 377,965

## Table 326:Deterministic base case results mapping EULAR data from ACR data –<br/>Linear cDMARD HAQ progression and a severe, MTX-naive, RA<br/>population treated with monotherapy including RCTs with a small<br/>percentage of prior cDMARD experience

Strategy	Discounted Costs	Discounted QALYs	CPQ compared with MTX strategy	Incremental CPQ
MTX / Int				
cDMARDs /				
NBT				
				£
bDMARDs			£ 70,555	70,555
MTX / Int				
cDMARDs /				
bDMARDs			£ 76,369	£ 139,792

CPQ – cost per QALY gained.

Table 327:Deterministic results having used the mapping of HAQ to utility from<br/>Malottki et al rather than Hernandez et al mapping EULAR data from<br/>ACR data – Linear cDMARD HAQ progression and a severe, MTX-<br/>naive, RA population treated with monotherapy

Strategy	Discounted Costs	Discounted	CPQ compared	Incremental
		QALYs	with MTX	CPQ
			strategy	
MTX / Int				
cDMARDs /				
NBT				
MTX / Int				
cDMARDs /				
bDMARDs			£ 56,536	£ 56,536
bDMARDs			£ 82,941	£ 357,734

CPQ – cost per QALY gained.

Table 328:Deterministic results having used discount rates of 6% per annum for<br/>costs and 1.5% per annum for QALYs and mapping EULAR data from<br/>ACR data – Linear cDMARD HAQ progression and a severe, MTX-<br/>naive, RA population treated with monotherapy

Strategy	Discounted Costs	Discounted	CPQ compared	Incremental
		QALYs	with MTX	CPQ
			strategy	
MTX / Int				
cDMARDs /				
NBT				
MTX / Int				
cDMARDs /				
bDMARDs			£ 39,685	£ 39,685
bDMARDs			£ 61,913	£ 291,235

### Table 329:Deterministic results assuming 100-fold increased impact of adverseevents and mapping EULAR data from ACR data – Linear cDMARD HAQ progressionand a severe, MTX-naive, RA population treated with monotherapy

/				
Strategy	Discounted Costs	Discounted	CPQ compared	Incremental
		QALYs	with MTX	CPQ
			strategy	
MTX / Int				
cDMARDs /				
NBT				
MTX / Int				
cDMARDs /				
bDMARDs			£ 72,782	£ 72,782
bDMARDs			£ 105.007	£ 375.268

CPQ – cost per QALY gained.

### Table 330:Deterministic results having used the relationship between HAQ and<br/>pain derived from ERAS – Linear cDMARD HAQ progression and a<br/>severe, MTX-naive, RA population treated with monotherapy

severe, with harve, the population decaded with monometupy				
Strategy	Discounted Costs	Discounted	CPQ compared	Incremental
		QALYs	with MTX	CPQ
			strategy	
MTX / Int				
cDMARDs /				
NBT				
MTX / Int				
cDMARDs /				
bDMARDs			£ 84,244	£ 84,244
bDMARDs			£ 123,961	£ 460,002

CPQ – cost per QALY gained.

### Table 331:Probabilistic base case results mapping EULAR data from ACR data –<br/>Linear cDMARD HAQ progression and a severe, MTX-naive, RA<br/>nonulation treated with monotherapy

population freated with monotherapy					
Strategy	Discounted Costs	Discounted	CPQ compared	Incremental	
		QALYs	with MTX	CPQ	
			strategy		
MTX / Int					
cDMARDs /					
NBT					
MTX / Int					
cDMARDs /					
bDMARDs			£ 71,592	£ 71,592	
bDMARDs			£ 104,847	£ 408,830	

#### Figure 138: The CEAC when mapping EULAR data from ACR data – Linear cDMARD HAQ progression and a severe, MTX-naive, RA population



#### **6.4 Interpretation of the results**

#### 6.4.1 MTX-experienced RA patients

It is seen that the results are particularly sensitive to the assumptions made regarding the progression of HAQ whilst on cDMARDs.

The base case analyses undertaken by the Assessment Group estimates the HAQ progression whilst on cDMARDs to be that produced by a statistical analysis of the ERAS database, which contains a large number of patients diagnosed with RA with a 15-year follow up. This results in ICERs for the bDMARDs typically greater than £60,000 per QALY when compared with a cDMARD alone option for patients with severe disease who can receive MTX. This value rises to £70,000 per QALY when patients with moderate disease are included. In contrast the manufacturers typically used a linear HAQ progression that has been used in

previous NICE appraisals; when the Assessment Group used the same assumptions the ICERs were typically in the region of  $\pounds$ 30,000 -  $\pounds$ 40,000 per QALY for both patients with severe or moderate disease.

The most appropriate HAQ progression to assume is discussed in Section 6.3.14. The Assessment Group believes that the two analyses are likely to provide indications of the bounds on the ICERs however that the progression calculated from ERAS data is likely to be more plausible, although may underestimate HAQ progression as it may contain patients who would not receive bDMARDs.

Altering the discount rate to that used in the initial appraisals of bDMARDs (6% per annum for costs and 1.5% per annum for QALYs) noticeably reduces the ICERs; using the

relationship between HAQ and pain from a different data source noticeable increases the ICERs. The ICERs for severe RA patients were typically lower than for moderate RA patients, although the difference was smaller when a linear HAQ progression was used.

The results between EULAR only data, and EULAR mapped from ACR were reasonably similar, which is reassuring given the wider evidence base reporting ACR data.

The ICERs for those patients who receive monotherapy are higher than for those who can be treated with MTX, increasing to approximately £85,000 per QALY using the ERAS HAQ progression and to £40,000 when using the linear HAQ progression. For patients with moderate disease the value rises to £100,000 when using the ERAS HAQ progression. The Assessment Group believe that the increased cost per QALY in those people treated with monotherapy compared with those who can receive MTX is primarily due to the increased expenditure when rituximab cannot be provided, and a more expensive bDMARD (of similar efficacy) is used instead.

#### 6.4.2 MTX-naïve RA patients

The ICERs associated with treating with bDMARDs prior to MTX is very high. The base case ICERs is approximately £300,000 per QALY.

#### 6.4.3 Discussion

#### 6.4.3.1 Summary of Key results

Whilst there was uncertainty in, and overlap between, the effects of treatment on ACR for interventions for patients in Population 1, infliximab + MTX was associated with the biggest increase in response rate and this was likely to be the most effective intervention. Other interventions were less effective and appeared to fall into three groups; Intensive cDMARDs and adalimumab + MTX; etanercept, golimumab + MTX and step-up combination cDMARDs; adalimumab and cDMARDs.

Whilst there was uncertainty in, and overlap between the effects of treatment on EULAR for interventions in Population 2 and 3 in the main trials, etanercept + MTX and tocilizumab + MTX were associated with the biggest increase in response rate. Other interventions were less effective and appeared to fall into two groups: tocilizumab, golimumab + MTX, adalimumab + MTX, abatacept i.v. + MTX and grouped biologics; etanercept, infliximab + MTX, adalimumab and intensive cDMARDs. The inclusion of the additional studies in which patients received prior biologics resulted in broadly the same groupings, although

certolizumab pegol + MTX was associated with an even bigger response than etanercept + MTX and tocilizumab + MTX.

Whilst there was uncertainty in, and overlap between the effects of treatment on ACR for interventions in Population 2 and 3 in the main trials, etanercept + MTX, tocilizumab and tocilizumab + MTX were associated with the biggest increase in response rate. Other interventions were less effective and appeared to fall into two groups: etanercept, golimumab + MTX, abatacept s.c. + MTX, adalimumab + MTX, infliximab + MTX and abatacept i.v. + MTX; certolizumab pegol + MTX, intensive cDMARDs and adalimumab. The inclusion of the additional studies in which patients received prior biologics suggested that certolizumab pegol + MTX and etanercept + MTX resulted in the highest response rates. Other interventions appeared to give rise to broadly similar and slightly smaller response rates except for intensive cDMARDs and adalimumab which are associated with even smaller response rates.

As described in Section 6.2.3 the Assessment Group believes the ICERs for bDMARDs used in MTX-experienced patients with severe RA is credibly greater than £50,000 per QALY when compared to a cDMARD alone strategy. These values are marginally higher for moderate RA patients, higher for patients who cannot receive MTX, but greatly higher (£400,000 per QALY) when bDMARDs were used before cDMARDs.

These estimates are considerably lower if a different assumption, used in previous NICE appraisals were adopted ( $\pounds$ 30,000 -  $\pounds$ 35,000 for Populations 2 and 3 and  $\pounds$ 100,000 for Population 1). It is possible that the ICERs lie between these estimates but the Assessment Group believe that a 'true' value would be closer to the Assessment Group base case results.

The analyses have assumed that the discontinuation rule specified by NICE has been strictly adhered to; data from the BSRBR shows that this is not the case. If such non-adherence continues the ICERs will be considerably higher than those presented. Analysis of the impact has not been undertaken due to the possibility of back-calculation of commercial-in-confidence discounts offered through patient access schemes.

#### 6.4.3.2 Generalisability of results

There is no reason to believe that the results detailed in this report are not generalisable to the English and Welsh populations.

#### 6.4.3.3 Strengths and limitations of analysis

A strength of this report is that a systematic review of RCTs for bDMARDs in bDMARDnaïve patients has been conducted. The primary outcome measures are EULAR or ACR response at six-months and a formal NMA has been conducted to assess relative effectiveness. Different analyses have been undertaken to assess the impact of including RCTs with a small proportion on patients with prior bDMARD use, and/or including RCTs when patients may have not had adequate prior MTX treatment.

A major strength of the analyses presented is that the Assessment Group has constructed a EULAR-based model that is much more appropriate to practice in England and Wales than previous ACR-based models. Estimates of ICERs for both EULAR data only, and when mapping ACR data to EULAR data indicate that the conclusions were not altered by restricting the selection of RCTs to only those that reported EULAR data.

An additional strength is that large observational databases were used to generate data on parameters such as HAQ change conditional on EULAR response and HAQ progression whilst on cDMARDs. This is preferable to data taken from relatively small RCTs of limited follow-up.

The model has known limitations. The plausible reduced efficacy of treatments when used subsequent to other treatments has not been formally incorporated. It is expected that this omission will favour bDMARDs. Additionally the effects of non-adherence to NICE guidelines (as shown in the BSRBR) have not formally been incorporated; it is expected that were this included then the ICERs for bDMARDs compared with cDMARDs would increase and disfavour bDMARDs.

Lost productivity has not been included in the model, which may favour bDMARDs if it were included. However, an estimation of any lost productivity gains associated with technologies not funded due to the purchase of bDMARDs would be required to produce a definitive conclusion on the effect on the ICER.

#### 7. ASSESSMENT OF FACTORS RELEVANT TO THE NHS AND OTHER PARTIES

Beyond potential impact on expenditure there is unlikely to be any major implications for the NHS as the interventions are largely subcutaneous and self-administered. Given the results presented in this report, it is unclear whether there will be an enlargement, a reduction, or no change in the expenditure on bDMARDs for patients with RA.

#### 8. **DISCUSSION**

#### 8.1 Statement of principle findings

Whilst there was uncertainty in, and overlap between, the effects of treatment on ACR for interventions for patients in Population 1, infliximab + MTX was associated with the biggest increase in response rate and this was likely to be the most effective intervention. Other interventions were less effective and appeared to fall into three groups; Intensive cDMARDs and adalimumab + MTX; etanercept, golimumab + MTX and step-up combination cDMARDs; adalimumab and cDMARDs.

Whilst there was uncertainty in, and overlap between the effects of treatment on EULAR for interventions in Population 2 and 3 in the main trials, etanercept + MTX and tocilizumab + MTX were associated with the biggest increase in response rate. Other interventions were less effective and appeared to fall into two groups: tocilizumab, golimumab + MTX, adalimumab + MTX, abatacept i.v. + MTX and grouped biologics; etanercept, infliximab + MTX, adalimumab and intensive cDMARDs. The inclusion of the additional studies in which patients received prior biologics resulted in broadly the same groupings, although certolizumab pegol + MTX was associated with an even bigger response than etanercept + MTX and tocilizumab + MTX.

Whilst there was uncertainty in, and overlap between the effects of treatment on ACR for interventions in Population 2 and 3 in the main trials, etanercept + MTX, tocilizumab and tocilizumab + MTX were associated with the biggest increase in response rate. Other interventions were less effective and appeared to fall into two groups: etanercept, golimumab + MTX, abatacept s.c. + MTX, adalimumab + MTX, infliximab + MTX and abatacept i.v. + MTX; certolizumab pegol + MTX, intensive cDMARDs and adalimumab. The inclusion of the additional studies in which patients received prior biologics suggested that certolizumab pegol + MTX and etanercept + MTX resulted in the highest response rates. Other interventions appeared to give rise to broadly similar and slightly smaller response rates except for intensive cDMARDs and adalimumab which are associated with even smaller response rates.

The Assessment Group believes the ICERs for bDMARDs used in MTX-experienced patients with severe RA is credibly greater than £50,000 per QALY when compared to a cDMARD alone strategy. These values are marginally higher for moderate RA patients, higher for patients who cannot receive MTX, but greatly higher (in excess of £100,000 per QALY) when bDMARDs were used before cDMARDs.

These estimates are considerable lower if a different assumption, used in previous NICE appraisals were adopted. It is possible that the ICERs lie between these estimates but the Assessment Group believe that a 'true' value would be closer to the Assessment Group base case results.

The analyses have assumed that the discontinuation rule specified by NICE has been strictly adhered to; data from the BSRBR shows that this is not the case. If such non-adherence continues the ICERs will be considerably higher than those presented. Analysis of the impact has not been undertaken due to the possibility of back-calculation of commercial-in-confidence discounts offered through patient access schemes.

#### 8.2 Strengths and limitations of the assessment

A strength of this report is that a systematic review of RCTs for bDMARDs in bDMARD-naïve patients has been conducted. The primary outcome measures are EULAR or ACR response at sixmonths and a formal NMA has been conducted to assess relative efficacy. Different analyses have been undertaken to assess the impact of including RCTs with a small proportion on patients with prior bDMARD use, and/or including RCTs when patients may have not had adequate prior MTX treatment.

A major strength of the analyses presented is that the Assessment Group has constructed a EULARbased model that is much more appropriate to practice in England and Wales than previous ACRbased models. Estimates of ICERs for both EULAR data only, and when mapping ACR data to EULAR data indicate that the conclusions were not altered by restricting the selection of RCTs to only those that reported EULAR data.

An additional strength is that large observational databases were used to generate data on parameters such as HAQ change conditional on EULAR response and HAQ progression whilst on cDMARDs. This is preferable to data taken from relatively small RCTs of limited follow-up.

The model has known limitations. The plausible reduced efficacy of treatments when used subsequent to other treatments has not been formally incorporated. It is expected that this omission will favour bDMARDs. Additionally the effects of non-adherence to NICE guidelines (as shown in the BSRBR) have not formally been incorporated; it is expected that were this included then the ICERs for bDMARDs compared with cDMARDs would increase and disfavour bDMARDs.

Lost productivity has not been included in the model, which may favour bDMARDs if it were included.

#### **8.3 Uncertainties**

The key uncertainty relating to the cost-effectiveness results is related to the HAQ progression whilst on cDMARDs. This has been shown to have a large influence on the results. The relationship between HAQ and pain can also greatly influence the ICER, as is currently uncertain with two large observational databases providing different estimated relationships.

#### 9. CONCLUSIONS

#### 9.1 Implications for service provision

The implications for service provision are unclear and would be dependent on the final guidance issued by NICE. The majority of interventions are administered subcutaneously by the patient or family member, although it is possible that requirements for infusions or for district nurse time are affected conditional on the final guidance

#### 9.2 Suggested research priorities

In order to provide a more accurate estimate of the cost-effectiveness of bDMARDs the following research priorities are suggested by the Assessment Group. These aim to establish:

The evaluation of the long term HAQ trajectory whilst on cDMARDs The relationship between HAQ and utility The relationship between HAQ and hospital costs consumed The relationship between HAQ and pain The relative efficacy of bDMARDs assessed through head to head RCTs, although it is acknowledged that this is unlikely to occur due to the large scale, costly, RCTs that would be required. The relative efficacy of bDMARDs when used after a previous bDMARD and / or rituximab compared with bDMARD naïve The relative efficacy of cDMARDs when used after a bDMARD and / or rituximab compared with bDMARD naïve

Whether bDMARDs could be stopped once a patient has achieved a stated target (e.g. remission).

#### **10. REFERENCES**

- 1. Scott D.L., Steer S. The course of established rheumatoid arthritis. *Best Practice & Research Clinical Rheumatology* 2007; 21(5):943-967.
- 2. Pincus T., Fuchs H.A., Callahan L.F., Nance E.P., Jr., Kaye J.J. Early radiographic joint space narrowing and erosion and later malalignment in rheumatoid arthritis: a longitudinal analysis. *Journal of Rheumatology* 1998; 25(4):636-640.
- 3. Drossaers-Bakker K.W., Kroon H.M., Zwinderman A.H., Breedveld F.C., Hazes J.M. Radiographic damage of large joints in long-term rheumatoid arthritis and its relation to function. *Rheumatology (Oxford, England)* 2000; 39(9):998-1003.
- 4. Allaire S., Wolfe F., Niu J., LaValley M.P., Zhang B., Reisine S. Current risk factors for work disability associated with rheumatoid arthritis: recent data from a US national cohort. *Arthritis & Rheumatism* 2009; 61(3):321-328.
- 5. Naz S.M., Symmons D.P. Mortality in established rheumatoid arthritis. [Review] [55 refs]. *Best Practice & Research in Clinical Rheumatology* 2007; 21(5):871-883.
- 6. Dadoun S., Zeboulon-Ktorza N., Combescure C., Elhai M., Rozenberg S., Gossec L. et al. Mortality in rheumatoid arthritis over the last fifty years: Systematic review and metaanalysis. *Joint Bone Spine* 2013; 80(1):29-33.
- 7. Meune C., Touze E., Trinquart L., Allanore Y. Trends in cardiovascular mortality in patients with rheumatoid arthritis over 50 years: a systematic review and meta-analysis of cohort studies. *Rheumatology* 2009; 48(10):1309-1313.
- 8. Arnett F.C., Edworthy S.M., Bloch D.A., McShane D.J., Fries J.F., Cooper N.S. et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. *Arthritis & Rheumatism* 1988; 31(3):315-324.
- 9. Combe B., Landewe R., Lukas C., Bolosiu H.D., Breedveld F., Dougados M. et al. EULAR recommendations for the management of early arthritis: report of a task force of the European Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). *Ann Rheum Dis* 2007; 66(1):34-45.
- 10. Aletaha D., Neogi T., Silman A.J., Funovits J., Felson D.T., Bingham C.O., III et al. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. *Ann Rheum Dis* 2010; 69(9):1580-1588.
- 11. Felson D.T., Anderson J.J., Boers M., Bombardier C., Furst D., Goldsmith C. et al. American College of Rheumatology preliminary definition of improvement in rheumatoid arthritis. *Arthritis and Rheumatism* 1995; 38(6):June.
- 12. van Gestel A.M., Prevoo M.L., van 't Hof M.A., van Rijswijk M.H., van de Putte L.B., van Riel P.L. Development and validation of the European League Against Rheumatism response criteria for rheumatoid arthritis. Comparison with the preliminary American College of Rheumatology and the World Health Organization/International League Against Rheumatism Criteria. *Arthritis & Rheumatism* 1996; 39(1):34-40.
- 13. Felson D.T. Assessing the efficacy and safety of rheumatic disease treatments: obstacles and proposed solutions. *Arthritis & Rheumatism* 2003; 48(7):1781-1787.

- 14. Prevoo M., Van't Hof M., Kuper H., Van Leeuwen M., Van De Putte L., Van Riel P. "Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis". *Arthritis and Rheumatism* 1995; 38(1):44-48.
- 15. van Gestel A.M., Anderson J.J., van Riel P.L., Boers M., Haagsma C.J., Rich B. et al. ACR and EULAR improvement criteria have comparable validity in rheumatoid arthritis trials. American College of Rheumatology European League of Associations for Rheumatology. *Journal of Rheumatology* 1999; 26(3):705-711.
- 16. Bruce B., Fries J.F. The Health Assessment Questionnaire (HAQ). *Clin Exp Rheumatol* 2005; 23(5 Suppl 39):S14-S18.
- 17. Symmons D., Turner G., Webb R., Asten P., Barrett E.M., Lunt M. et al. The prevalence of rheumatoid arthritis in the United Kingdom: new estimates for a new century. *Rheumatology* 2002; 41(7):793-800.
- 18. Symmons D.P., Barrett E.M., Bankhead C.R., Scott D.G., Silman A.J. The incidence of rheumatoid arthritis in the United Kingdom: results from the Norfolk Arthritis Register. *Br J Rheumatol* 1994; 33(8):735-739.
- 19. Alamanos Y., Drosos A.A. Epidemiology of adult rheumatoid arthritis. *Autoimmunity Reviews* 2005; 4(3):130-136.
- 20. National Collaborating Centre for Chronic Conditions (UK). Rheumatoid Arthritis: National Clinical Guideline for Management and Treatment in Adults. *Royal College of Physicians* (*UK*) 2009.
- 21. Lugmani R., Hennell S., Estrach C., Birrell F., Bosworth A., Davenport G. et al. British Society for Rheumatology and British Health Professionals in Rheumatology Guideline for the Management of Rheumatoid Arthritis (The first 2 years). *Rheumatology* 2006; 45(9):1167-1169.
- 22. National Institute for Health and Clinical Excellence. Adalimumab, etanercept, infliximab, rituximab and abatacept for the treatment of rheumatoid arthritis after the failure of a TNF inhibitor. 2010. TA195 http://www.nice.org.uk/guidance/ta195
- 23. National Institute for Health and Clinical Excellence. Certolizumab pegol for the treatment of rheumatoid arthritis. 2010. TA186 http://www.nice.org.uk/guidance/TA186
- 24. National Institute for Health and Clinical Excellence. Golimumab for the treatment of rheumatoid arthritis after the failure of previous disease-modifying anti-rheumatic drugs. 2011; TA225. http://www.nice.org.uk/guidance/TA225
- 25. National Institute for Health and Clinical Excellence. Rheumatoid arthritis (methotrexatenaïve) - golimumab (terminated appraisal): guidance. 2011; TA224. http://www.nice.org.uk/guidance/TA224
- 26. National Institute for Health and Clinical Excellence. Tocilizumab for the treatment of rheumatoid arthritis. 2010. TA198 http://www.nice.org.uk/guidance/ta198
- 27. National Institute for Health and Clinical Excellence. Adalimumab, etanercept and infliximab for the treatment of rheumatoid arthritis. 2007. TA130 http://www.nice.org.uk/guidance/TA130

- 28. National Institute for Health and Clinical Excellence. Abatacept for treating rheumatoid arthritis after the failure of conventional disease-modifying anti-rheumatic drugs (rapid review of technology appraisal guidance 234). 2013; TA280. http://www.nice.org.uk/guidance/TA280
- 29. School of Health & Related Research T.U.o.S. NICE Protocol Adalimumab, etanercept, infliximab, certolizumab pegol, golimumab, tocilizumab and abatacept for the treatment of rheumatoid arthritis not previously treated with disease modifying anti-rheumatic drugs and after the failure of conventional disease-modifying anti-rheumatic drugs only (review of technology appraisal guidance 130, 186, 224, 234 and a part review of technology appraisal guidance 225 and 247). 2012.
- 30. Association of the British Pharmaceutical Society. British National Formulary. *The BMJ Group and Pharmaceutical Press* 2012.
- 31. Haynes R.B., McKibbon K.A., Nancy L.W., Stephen D.W., Stephen R.W. Optimal search strategies for retrieving scientifically strong studies of treatment from Medline: analytical survey. *BMJ* 2005; 330.
- 32. Victor M.M., Nancy L.W., Douglas M., Haynes R.B. Optimal search strategies for retrieving systematic reviews from Medline: analytical survey. *BMJ* 2005; 330.
- 33. Wong S.S., Wilczynski N.L., Haynes R.B. Optimal CINAHL search strategies for identifying therapy studies and review articles. *J Nurs Scholarsh* 2006; 38(2):194-199.
- 34. Wilczynski N.L., Haynes R.B. EMBASE search strategies achieved high sensitivity and specificity for retrieving methodologically sound systematic reviews. *J Clin Epidemiol* 2007; 60(1):29-33.
- 35. Wong S.S., Wilczynski N.L., Haynes R.B. Developing optimal search strategies for detecting clinically sound treatment studies in EMBASE. *J Med Libr Assoc* 2006; 94(1):41-47.
- 36. Lefebvre C., Manheimer E., Glanville J. Chapter 6: Searching for studies. 2011; Version 5.1.0.
- 37. Golder S., Mcintosh H.M., Duffy S., Glanville J. Developing efficient search strategies to identify reports of adverse effects in MEDLINE and EMBASE. *Health Information and Libraries Journal* 2006; 23(1):3-12.
- 38. Information Services C.A.f.D.a.T.i.H. Grey matters : a practical search tool for evidencebased medicine. 2013.
- 39. National Institute for Health and Clinical Excellence. Adalimumab, etanercept, infliximab, certolizumab pegol, golimumab, abatacept and tocilizumab for the treatment of rheumatoid arthritis (review of TA guidance 130, 186, 224, 234 and part review of TA guidance 225 and 247) Final scope. 2012.
- 40. Summary of Product Characteristics Cimzia (certolizumab). 2013. http://www.medicines.org.uk/emc/medicine/22323/SPC/Cimzia+200+mg+solution+for+injec tion/ (Accessed 5/7/13)
- 41. Summary of Product Characteristics Enbrel (etanercept). 2012. http://www.medicines.org.uk/emc/searchresults.aspx?term=Enbrel&searchtype=QuickSearch (Accessed 5/7/13)

- 42. Summary of Product Characteristics HUMIRA (adalimumab). 2013. http://www.medicines.org.uk/emc/medicine/21201/SPC/Humira+Pre-filled+Pen%2c+Pre-filled+Syringe+and+Vial/ (Accessed 5/7/13)
- 43. Summary of Product Characteristics Orencia[®] (abatacept). 2012. <u>http://www.medicines.org.uk/emc/medicine/27216/SPC/ORENCIA+125+mg+solution+for+i</u>njection+(pre-filled+syringe)/ (Accessed 5/7/13)
- 44. Summary of Product Characteristics Remicade (infliximab). 2013. http://www.medicines.org.uk/emc/medicine/3236/SPC/Remicade+100mg+powder+for+conce ntrate+for+solution+for+infusion/ (Accessed 5/7/13)
- 45. Summary of Product Characteristics Simponi (golimumab). 2013. http://www.medicines.org.uk/emc/medicine/23766/SPC/Simponi+50+mg+solution+for+injec tion/ (Accessed 5/7/13)
- 46. Summary of Product Characteristics. RoActemra (tocilizumab). 2013. http://www.medicines.org.uk/emc/medicine/22311/SPC/RoActemra+20mg+ml+Concentrate+ for+Solution+for+Infusion/ (Accessed 5/7/13)
- 47. Engauge (v4.1). 2011. http://sourceforge.net/projects/digitizer/files/Engauge%20Digitizer/digitizer-4.1/
- 48. Systematic Reviews: CRD's guidance for undertaking systematic reviews in health care. 2009.
- 49. Higgins-Julian P.T., Green S. The Cochrane Handbook for Systematic Reviews of Interventions. 2013; Version 5.1.0.
- 50. Karsh J., Keystone E.C., Haraoui B., Thorne J.C., Pope J.E., Bykerk V.P. et al. Canadian Recommendations for Clinical Trials of Pharmacologic Interventions in Rheumatoid Arthritis: Inclusion Criteria and Study Design. *Journal of Rheumatology* 2011; 38(10):2095-2104.
- 51. Thorlund K., Druyts E., Avina-Zubieta J.A., Wu P., Mills E.J. Why the findings of published multiple treatment comparison meta-analyses of biologic treatments for rheumatoid arthritis are different: an overview of recurrent methodological shortcomings. *Ann Rheum Dis* 2012.
- 52. Dias S., Welton N., Sutton A., Ades A. NICE DSU Technical Support Document 2: A Generalised Linear Modelling Framework for Pairwise and Network Meta-Analysis of Randomised Controlled Trials. 2011.
- 53. Lunn D., Thomas A., Best N., Spiegelhalter D. WinBUGS -- a Bayesian modelling framework: concepts, structure, and extensibility. *Statistics and Computing* 2000; 10:325-27.
- 54. Moreland L.W., O'Dell J.R., Paulus H.E., Curtis J.R., Bathon J.M., Clair E.W. et al. A randomized comparative effectiveness study of oral triple therapy versus etanercept plus methotrexate in early aggressive rheumatoid arthritis: The treatment of early aggressive rheumatoid arthritis trial. *Arthritis and Rheumatism* 2012; 64(9):2824-2835.
- 55. Klareskog L., van der Heijde D., de Jager J.P., Gough A., Kalden J., Malaise M. et al. Therapeutic effect of the combination of etanercept and methotrexate compared with each treatment alone in patients with rheumatoid arthritis: Double-blind randomised controlled trial. *Lancet* 2004; 363(9410):675-681.

- 56. Abe T., Takeuchi T., Miyasaka N., Hashimoto H., Kondo H., Ichikawa Y. et al. A multicenter, double-blind, randomized, placebo controlled trial of infliximab combined with low dose methotrexate in Japanese patients with rheumatoid arthritis. *Journal of Rheumatology* 2006; 33(1):37-44.
- 57. Dougados M., Kissel K., Sheeran T., Tak P.P., Conaghan P.G., Mola E.M. et al. Adding tocilizumab or switching to tocilizumab monotherapy in methotrexate inadequate responders: 24-week symptomatic and structural results of a 2-year randomised controlled strategy trial in rheumatoid arthritis (ACT-RAY). Ann Rheum Dis 2013; 72(1):43-50.
- 58. Gabay C., Emery P., van V.R., Dikranian A., Alten R., Pavelka K. et al. Tocilizumab monotherapy versus adalimumab monotherapy for treatment of rheumatoid arthritis (ADACTA): a randomised, double-blind, controlled phase 4 trial. *Lancet* 2013; 381(9877):1541-1550.
- 59. vanRiel P.L., Taggart A.J., Sany J., Gaubitz M., Nab H.W., Pedersen R. et al. Efficacy and safety of combination etanercept and methotrexate versus etanercept alone in patients with rheumatoid arthritis with an inadequate response to methotrexate: the ADORE study. *Annals of the Rheumatic Diseases* 2006; 65:1478-1483.
- 60. Van Riel P.L.C.M., Freundlich B., MacPeek D., Pedersen R., Foehl J.R., Singh A. Patientreported health outcomes in a trial of etanercept monotherapy versus combination therapy with etanercept and methotrexate for rheumatoid arthritis: the ADORE trial. *Annals of the Rheumatic Diseases* 2008; 67(8):1104-1110.
- 61. Russell A.S., Wallenstein G.V., Li T., Martin M.C., MacLean R., Blaisdell B. et al. Abatacept improves both the physical and mental health of patients with rheumatoid arthritis who have inadequate response to methotrexate treatment. *Annals of the Rheumatic Diseases* 2007; 66(2):189-194.
- 62. Kremer J.M., Genant H.K., Moreland L.W., Russell A.S., Emery P., Abud-Mendoza C. et al. Effects of abatacept in patients with methotrexate-resistant active rheumatoid arthritis: A randomized trial. *Annals of Internal Medicine* 2006; 144(12):865-876.
- 63. Kremer J., Russell A.S., Westhovens R., Teng J., Rosenblatt L., Emery P. Sustained and clinically meaningful improvements in both day-and night-time aspects of HRQoL are observed with abatacept treatment in patients with rheumatoid arthritis (RA) and previous inadequate response to MTX: 5-Year data from the AIM trial. *Arthritis and Rheumatism* 2010; 62:1836.
- 64. Kremer J.M., Genant H.K., Moreland L.W., Russell A.S., Emery P., Abud-Mendoza C. et al. Results of a two-year followup study of patients with rheumatoid arthritis who received a combination of abatacept and methotrexate. *Arthritis and Rheumatism* 2008; 58(4):953-963.
- 65. Kremer J.M., Russell A.S., Emery P., Abud-Mendoza C., Szechinski J., Westhovens R. et al. Long-term safety, efficacy and inhibition of radiographic progression with abatacept treatment in patients with rheumatoid arthritis and an inadequate response to methotrexate: 3-Year results from the AIM trial. *Annals of the Rheumatic Diseases* 2011; 70(10):1826-1830.
- 66. Fleischmann R., Schiff M.H., Weinblatt M.E., Maldonado M.A., Massarotti E.M., Yazici Y. Effects of subcutaneous abatacept or adalimumab on remission and associated changes in physical function and radiographic outcomes: One year results from the ample (abatacept versus adalimumab comparison in biologic-naive ra subjects with background methotrexate) trial. *Arthritis and Rheumatism* 2012; 64:S577.
- 67. Kim H.-Y., Hsu P.-N., Barba M., Sulaiman W., Robertson D., Vlahos B. et al. Randomized comparison of etanercept with usual therapy in an Asian population with active rheumatoid arthritis: The APPEAL trial. *International Journal of Rheumatic Diseases* 2012; 15(2):188-196.
- 68. Bae S.C., Gun S.C., Mok C.C., Khandker R., Nab H.W., Koenig A.S. et al. Improved health outcomes with Etanercept versus usual DMARD therapy in an Asian population with established rheumatoid arthritis. *BMC Musculoskeletal Disorders* 2013; 14:13.
- 69. Weinblatt M.E., Keystone E.C., Furst D.E., Moreland L.W., Weisman M.H., Birbara C.A. et al. Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: The ARMADA trial. *Arthritis and Rheumatism* 2003; 48(1):35-45.
- Weinblatt M.E., Keystone E.C., Furst D.E., Kavanaugh A.F., Chartash E.K., Segurado O.G. Long term efficacy and safety of adalimumab plus methotrexate in patients with rheumatoid arthritis: ARMADA 4 year extended study. *Annals of the Rheumatic Diseases* 2006; 65(6):753-759.
- 71. St.Clair E.W., Van Der Heijde D.M.F.M., Smolen J.S., Maini R.N., Bathon J.M., Emery P. et al. Combination of infliximab and methotrexate therapy for early rheumatoid arthritis: A randomized, controlled trial. *Arthritis and Rheumatism* 2004; 50(11):3432-3443.
- 72. Conaghan P., Durez P., Alten R.E., Burmester G.R., Tak P.P., Klareskog L. et al. Impact of intravenous abatacept on synovitis, osteitis and structural damage in patients with rheumatoid arthritis and an inadequate response to methotrexate: the ASSET randomised controlled trial. *Annals of the Rheumatic Diseases* 2013;-8.
- 73. Weinblatt M., Combe B., Covucci A., Aranda R., Becker J.C., Keystone E. Safety of the selective costimulation modulator abatacept in rheumatoid arthritis patients receiving background biologic and nonbiologic disease-modifying antirheumatic drugs: A one-year randomized, placebo-controlled study. *Arthritis and Rheumatism* 2006; 54(9):2807-2816.
- 74. Schiff M., Keiserman M., Codding C., Songcharoen S., Berman A., Nayiager S. et al. Efficacy and safety of abatacept or infliximab vs placebo in ATTEST: A phase III, multicentre, randomised, double-blind, placebo-controlled study in patients with rheumatoid arthritis and an inadequate response to methotrexate. *Annals of the Rheumatic Diseases* 2008; 67(8):1096-1103.
- 75. Maini R., St Clair E.W., Breedveld F., Furst D., Kalden J., Weisman M. et al. Infliximab (chimeric anti-tumour necrosis factor alpha monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: A randomised phase III trial. *Lancet* 1999; 354(9194):1932-1939.
- 76. van Vollenhoven R.F., Kinnman N., Vincent E., Wax S., Bathon J. Atacicept in patients with rheumatoid arthritis and an inadequate response to methotrexate: Results of a phase II, randomized, placebo-controlled trial. *Arthritis and Rheumatism* 2011; 63(7):1782-1792.
- 77. Bejarano V., Quinn M., Conaghan P.G., Reece R., Keenan A.-M., Walker D. et al. Effect of the early use of the anti-tumor necrosis factor adalimumab on the prevention of job loss in patients with early rheumatoid arthritis. *Arthritis Care and Research* 2008; 59(10):1467-1474.
- 78. Goekoop-Ruiterman Y.P., de Vries-Bouwstra J.K., Allaart C.F., van Z.D., Kerstens P.J., Hazes J.M. et al. Clinical and radiographic outcomes of four different treatment strategies in

patients with early rheumatoid arthritis (the BeSt study): A randomized, controlled trial. *Arthritis & Rheumatism* 2008; 58(2:Suppl):Suppl-35.

- 79. Smolen J., Emery P., Ferraccioli G. Efficacy and safety of certolizumab pegol after incomplete response to DMARDS in RA patients with low moderate disease activity: Results from certain, a phase IIIb study. *Annals of the Rheumatic Diseases* 2011; 70(Suppl 3):259.
- 80. Miyasaka N. Clinical investigation in highly disease-affected rheumatoid arthritis patients in Japan with adalimumab applying standard and general evaluation: The CHANGE study. *Modern Rheumatology* 2008; 18(3):252-262.
- Emery P., Breedveld F.C., Hall S., Durez P., Chang D.J., Robertson D. et al. Comparison of methotrexate monotherapy with a combination of methotrexate and etanercept in active, early, moderate to severe rheumatoid arthritis (COMET): a randomised, double-blind, parallel treatment trial. *The Lancet* 2008; 372(9636):375-382.
- 82. Emery P., Breedveld F., van der Heijde D., Ferraccioli G., Dougados M., Robertson D. et al. Two-year clinical and radiographic results with combination etanercept-methotrexate therapy versus monotherapy in early rheumatoid arthritis: A two-year, double-blind, randomized study. *Arthritis and Rheumatism* 2010; 62(3):674-682.
- 83. Kekow J., Moots R.J., Emery P., Durez P., Koenig A., Singh A. et al. Patient-reported outcomes improve with etanercept plus methotrexate in active early rheumatoid arthritis and the improvement is strongly associated with remission: the COMET trial.[Erratum appears in Ann Rheum Dis. 2011 Aug;70(8):1519]. *Annals of the Rheumatic Diseases* 2010; 69(1):222-225.
- 84. Keystone E.C., Kavanaugh A.F., Sharp J.T., Tannenbaum H., Hua Y., Teoh L.S. et al. Radiographic, Clinical, and Functional Outcomes of Treatment with Adalimumab (a Human Anti-Tumor Necrosis Factor Monoclonal Antibody) in Patients with Active Rheumatoid Arthritis Receiving Concomitant Methotrexate Therapy: A Randomized, Placebo-Controlled, 52-Week Trial. *Arthritis and Rheumatism* 2004; 50(5):1400-1411.
- 85. deFilippis. Improving outcomes in tumour necrosis factor a treatment: comparison of the efficacy of the tumour necrosis factor a blocking agents etanercept and infliximab in patients with active rheumatoid arthritis. *Panminerva Medica* 2006; 48:129-135.
- 86. Durez P., Nzeusseu T.A., Lauwerys B.R., Manicourt D.H., Verschueren P., Westhovens R. et al. A randomised comparative study of the short term clinical and biological effects of intravenous pulse methylprednisolone and infliximab in patients with active rheumatoid arthritis despite methotrexate treatment. *Annals of the Rheumatic Diseases* 2004; 63(9):1069-1074.
- 87. Bathon J.M., Martin R.W., Fleischmann R.M., Tesser J.R., Schiff M.H., Keystone E.C. et al. A comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. *New England Journal of Medicine* 2000; 343(22):1586-1593.
- 88. Combe B., Codreanu C., Fiocco U., Gaubitz M., Geusens P.P., Kvien T.K. et al. Etanercept and sulfasalazine, alone and combined, in patients with active rheumatoid arthritis despite receiving sulfasalazine: A double-blind comparison. *Annals of the Rheumatic Diseases* 2006; 65(10):1357-1362.
- 89. Combe B., Codreanu C., Fiocco U., Gaubitz M., Geusens P.P., Kvien T.K. et al. Efficacy, safety and patient-reported outcomes of combination etanercept and sulfasalazine versus

etanercept alone in patients with rheumatoid arthritis: a double-blind randomised 2-year study. *Annals of the Rheumatic Diseases* 2009; 68(7):1146-1152.

- 90. Emery P., Fleischmann R.M., Moreland L.W., Hsia E.C., Strusberg I., Durez P. et al. Golimumab, a human anti-tumor necrosis factor alpha monoclonal antibody, injected subcutaneously every four weeks in methotrexate-naive patients with active rheumatoid arthritis: Twenty-four-week results of a phase III, multicenter, randomized, double-blind, placebo-controlled study of golimumab before methotrexate as first-line therapy for early-onset rheumatoid arthritis. *Arthritis and Rheumatism* 2009; 60(8):2272-2283.
- 91. Tanaka Y., Harigai M., Takeuchi T., Yamanaka H., Ishiguro N., Yamamoto K. et al. Golimumab in combination with methotrexate in Japanese patients with active rheumatoid arthritis: Results of the GO-FORTH study. *Annals of the Rheumatic Diseases* 2012; 71(6):817-824.
- 92. Keystone E., Genovese M.C., Klareskog L., Hsia E.C., Hall S., Miranda P.C. et al. Golimumab in patients with active rheumatoid arthritis despite methotrexate therapy: 52-week results of the GO-FORWARD study. *Annals of the Rheumatic Diseases* 2010; 69(6):1129-1135.
- 93. Soubrier M., Puechal X., Sibilia J., Mariette X., Meyer O., Combe B. et al. Evaluation of two strategies (initial methotrexate monotherapy vs its combination with adalimumab) in management of early active rheumatoid arthritis: data from the GUEPARD trial. *Rheumatology (Oxford, England)* 2009; 48(11):1429-1434.
- 94. Detert J., Bastian H., Listing J., Weis A., Wassenberg S., Liebhaber A. et al. Induction therapy with adalimumab plus methotrexate for 24 weeks followed by methotrexate monotherapy up to week 48 versus methotrexate therapy alone for DMARD-naive patients with early rheumatoid arthritis: HIT HARD, an investigator-initiated study. *Annals of the Rheumatic Diseases* 2013; 72(6):844-850.
- 95. Nam J.L., Villeneuve E., Conaghan P.G., Hensor E., Keen H.I., Amarasena R. et al. A preliminary report of remission induction with two therapeutic strategies with infliximab or high dose intravenous steroids for the treatment of rheumatoid arthritis. *Arthritis and Rheumatism* 2011; 63(10 SUPPL. 1).
- 96. Keystone E.C., Wang M.M., Layton M., Hollis S., McInnes I.B., Study Team. Clinical evaluation of the efficacy of the P2X7 purinergic receptor antagonist AZD9056 on the signs and symptoms of rheumatoid arthritis in patients with active disease despite treatment with methotrexate or sulphasalazine.[Erratum appears in Ann Rheum Dis. 2012 Dec;71(12):2064]. *Annals of the Rheumatic Diseases* 2012; 71(10):1630-1635.
- 97. Kameda H., Ueki Y., Saito K., Nagaoka S., Hidaka T., Atsumi T. et al. Etanercept (ETN) with methotrexate (MTX) is better than ETN monotherapy in patients with active rheumatoid arthritis despite MTX therapy: A randomized trial. *Modern Rheumatology* 2010; 20(6):531-538.
- 98. Kay J., Matteson E.L., Dasgupta B., Nash P., Durez P., Hall S. et al. Golimumab in patients with active rheumatoid arthritis despite treatment with methotrexate: A randomized, doubleblind, placebo-controlled, dose-ranging study. *Arthritis and Rheumatism* 2008; 58(4):964-975.
- 99. Kim H.-Y., Lee S.-K., Song Y.W., Yoo D.-H., Koh E.-M., Yoo B. et al. A randomized, double-blind, placebo-controlled, phase III study of the human anti-tumor necrosis factor

antibody adalimumab administered as subcutaneous injections in Korean rheumatoid arthritis patients treated with methotrexate. *APLAR Journal of Rheumatology* 2007; 10(1):9-16.

- 100. Kume K., Amano K., Yamada S., Hatta K., Ohta H., Kuwaba N. Tocilizumab monotherapy reduces arterial stiffness as effectively as etanercept or adalimumab monotherapy in rheumatoid arthritis: An open-label randomized controlled trial. *Journal of Rheumatology* 2011; 38(10):2169-2171.
- 101. Lan J.-L., Chou S.-J., Chen D.-Y., Chen Y.-H., Hsieh T.-Y., Young J. A comparative study of etanercept plus methotrexate and methotrexate alone in Taiwanese patients with active rheumatoid arthritis: A 12-week, double-blind, randomized, placebo-controlled study. *Journal of the Formosan Medical Association* 2004; 103(8):618-623.
- 102. Machado. Combination Etanercept and Methotrexate Therapy Provides Better Outcomes Than Standard DMARD and Methotrexate Therapy inRheumatoid Arthritis: Results From a Study in the Latin America Region. 2012.
- 103. Mcinnes I., Lee J.S., Wu W., Giles J.T., Bathon J.M., Salmon J.E. et al. MEASURE: A translational, randomized, placebo (PBO)-controlled study to evaluate the effects of tocilizumab (TCZ) on parameters of lipids and inflammation. *Ann Rheum Dis* 2011; 70(Suppl 3):73.
- Moreland L.W., Schiff M.H., Baumgartner S.W., Tindall E.A., Fleischmann R.M., Bulpitt K.J. et al. Etanercept therapy in rheumatoid arthritis: A randomized, controlled trial. *Annals of Internal Medicine* 1999; 130(6):478-486.
- 105. Mathias S.D., Colwell H.H., Miller D.P., Moreland L.W., Buatti M., Wanke L. Health-related quality of life and functional status of patients with rheumatoid arthritis randomly assigned to receive etanercept or placebo. *Clinical Therapeutics* 2000; 22(1):128-139.
- 106. Nishimoto N., Yoshizaki K., Miyasaka N., Yamamoto K., Kawai S., Takeuchi T. et al. Treatment of rheumatoid arthritis with humanized anti-interleukin-6 receptor antibody: a multicenter, double-blind, placebo-controlled trial. *Arthritis & Rheumatism* 2004; 50(6):1761-1769.
- 107. Hørslev-Petersen. Adalimumab added to a treat-to-target strategy with methotrexate and intraarticular triamcinolone in early rheumatoid arthritis increased remission rates, function and quality of life. The OPERA Study: an investigator-initiated, randomised, double-blind, parallel-group, placebo-controlled trial. *Ann Rheum Dis* 2013;0:1-8 Doi:10 1136/Annrheumdis-2012-202735 2013.
- 108. Kavanaugh A., Fleischmann R.M., Emery P., Kupper H., Redden L., Guerette B. et al. Clinical, functional and radiographic consequences of achieving stable low disease activity and remission with adalimumab plus methotrexate or methotrexate alone in early rheumatoid arthritis: 26-week results from the randomised, controlled OPTIMA study. *Annals of the Rheumatic Diseases* 2013; 72(1):64-71.
- 109. Breedveld F.C., Weisman M.H., Kavanaugh A.F., Cohen S.B., Pavelka K., van V.R. et al. The PREMIER study: A multicenter, randomized, double-blind clinical trial of combination therapy with adalimumab plus methotrexate versus methotrexate alone or adalimumab alone in patients with early, aggressive rheumatoid arthritis who had not had previous methotrexate treatment. *Arthritis and Rheumatism* 2006; 54(1):26-37.
- 110. Quinn M.A., Conaghan P.G., O'Connor P.J., Karim Z., Greenstein A., Brown A. et al. Very early treatment with infliximab in addition to methotrexate in early, poor-prognosis

rheumatoid arthritis reduces magnetic resonance imaging evidence of synovitis and damage, with sustained benefit after infliximab withdrawal: Results from a twelve-month randomized, double-blind, placebo-controlled trial. *Arthritis and Rheumatism* 2005; 52(1):27-35.

- 111. O'Dell J., Mikuls T., Taylor T., et al. Rheumatoid arthritis comparison of active therapies in methotrexate suboptimal responders: validation of the strategy of conventional disease modifying anti-rheumatic drugs before biologicals. *Arthritis & Rheumatism* 2012; 64(Suppl 10):1297.
- 112. O'Dell J.R., Mikuls T.R., Taylor T.H., Ahluwalia V., Brophy M., Warren S.R. et al. Therapies for active rheumatoid arthritis after methotrexate failure. *N Engl J Med* 2013; 369(4):307-318.
- 113. Weinblatt M.E., Fleischmann R., van V.R., Emery P., Huizinga T.W.J., Goldermann R. et al. Certolizumab pegol in patients with active rheumatoid arthritis aligned with nice guidance for anti-tnf therapy: Post-HOC analyses of the realistic phase IIIB randomized controlled study. *Rheumatology (United Kingdom)* 2012; 51:iii125-iii126.
- 114. Jobanputra P., Maggs F., Deeming A., Carruthers D., Rankin E., Jordan A.C. et al. A randomised efficacy and discontinuation study of etanercept versus adalimumab (RED SEA) for rheumatoid arthritis: a pragmatic, unblinded, non-inferiority study of first TNF inhibitor use: outcomes over 2 years. *Bmj Open* 2012; 2(6).
- 115. Nishimoto N., Hashimoto J., Miyasaka N., Yamamoto K., Kawai S., Takeuchi T. et al. Study of active controlled monotherapy used for rheumatoid arthritis, an IL-6 inhibitor (SAMURAI): Evidence of clinical and radiographic benefit from an x ray reader-blinded randomised controlled trial of tocilizumab. *Annals of the Rheumatic Diseases* 2007; 66(9):1162-1167.
- 116. Nishimoto N., Miyasaka N., Yamamoto K., Kawai S., Takeuchi T., Azuma J. et al. Study of active controlled tocilizumab monotherapy for rheumatoid arthritis patients with an inadequate response to methotrexate (SATORI): Significant reduction in disease activity and serum vascular endothelial growth factor by IL-6 receptor inhibition therapy. *Modern Rheumatology* 2009; 19(1):12-19.
- 117. Furst D.E., Schiff M.H., Fleischmann R.M., Strand V., Birbara C.A., Compagnone D. et al. Adalimumab, a Fully Human Anti-Tumor Necrosis Factor-alpha Monoclonal Antibody, and Concomitant Standard Antirheumatic Therapy for the Treatment of Rheumatoid Arthritis: Results of STAR (Safety Trial of Adalimumab in Rheumatoid Arthritis). *Journal of Rheumatology* 2003; 30(12):2563-2571.
- 118. Westhovens R., Yocum D., Han J., Berman A., Strusberg I., Geusens P. et al. The safety of infliximab, combined with background treatments, among patients with rheumatoid arthritis and various comorbidities: A large, randomized, placebo-controlled trial. *Arthritis and Rheumatism* 2006; 54(4):1075-1086.
- 119. van Vollenhoven R.F., Ernestam S., Geborek P., Petersson I.F., Coster L., Waltbrand E. et al. Addition of infliximab compared with addition of sulfasalazine and hydroxychloroquine to methotrexate in patients with early rheumatoid arthritis (Swefot trial): 1-year results of a randomised trial. *The Lancet* 2009; 374(9688):459-466.
- 120. Scott D.L., Ibrahim F., Farewell V., O'Keeffe A.G., Ma M., Walker D. et al. Randomised controlled trial of tumour-necrosis-factor inhibitors against combination intensive therapy with conventional disease modifying anti-rheumatic drugs in established rheumatoid arthritis: the TACIT trial. *Health Technology Assessment* 2013.

- 121. Genovese M.C., McKay J.D., Nasonov E.L., Mysler E.F., da Silva N.A., Alecock E. et al. Interleukin-6 receptor inhibition with tocilizumab reduces disease activity in rheumatoid arthritis with inadequate response to disease-modifying antirheumatic drugs: The tocilizumab in combination with traditional disease-modifying antirheumatic drug therapy study. *Arthritis and Rheumatism* 2008; 58(10):2968-2980.
- 122. Van De Putte L.B.A., Atkins C., Malaise M., Sany J., Russell A.S., Van Riel P.L.C.M. et al. Efficacy and safety of adalimumab as monotherapy in patients with rheumatoid arthritis for whom previous disease modifying antirheumatic drug treatment has failed. *Annals of the Rheumatic Diseases* 2004; 63(5):508-516.
- 123. Chen Y.F., Jobanputra P., Barton P., Jowett S., Bryan S., Clark W. et al. A systematic review of the effectiveness of adalimumab, etanercept and infliximab for the treatment of rheumatoid arthritis in adults and an economic evaluation of their cost-effectiveness. *Health Technology Assessment (Winchester, England)* 2006; 10(42):iii-iiv.
- 124. Weinblatt M.E., Kremer J.M., Bankhurst A.D., Bulpitt K.J., Fleischmann R.M., Fox R.I. et al. A trial of etanercept, a recombinant tumor necrosis factor receptor:Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. *New England Journal of Medicine* 1999; 340(4):253-259.
- 125. Kremer J.M., Weinblatt M.E., Bankhurst A.D., Bulpitt K.J., Fleischmann R.M., Jackson C.G. et al. Etanercept added to background methotrexate therapy in patients with rheumatoid arthritis: continued observations. *Arthritis & Rheumatism* 2003; 48(6):1493-1499.
- 126. Wong M., Oakley S.P., Young L., Jiang B.Y., Wierzbicki A., Panayi G. et al. Infliximab improves vascular stiffness in patients with rheumatoid arthritis. *Annals of the Rheumatic Diseases* 2009; 68(8):1277-1284.
- 127. Zhang F.-C., Hou Y., Huang F., Wu D.-H., Bao C.-D., Ni L.-Q. et al. Infliximab versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: A preliminary study from China. *APLAR Journal of Rheumatology* 2006; 9(2):127-130.
- 128. Kremer J.M., Cohen S., Wilkinson B.E., Connell C.A., French J.L., Gomez-Reino J. et al. A phase IIb dose-ranging study of the oral JAK inhibitor tofacitinib (CP-690,550) versus placebo in combination with background methotrexate in patients with active rheumatoid arthritis and an inadequate response to methotrexate alone. *Arthritis & Rheumatism* 2012; 64(4):970-981.
- 129. van der Heijde D., Tanaka Y., Fleischmann R., Keystone E., Kremer J., Zerbini C. et al. Tofacitinib (CP-690,550) in patients with rheumatoid arthritis receiving methotrexate: Twelve-month data from a twenty-fourmonth phase III randomized radiographic study. *Arthritis and Rheumatism* 2013; 65(3):559-570.
- 130. Genovese M.C., Covarrubias A., Leon G., Mysler E., Keiserman M., Valente R. et al. Subcutaneous abatacept versus intravenous abatacept: A phase IIIb noninferiority study in patients with an inadequate response to methotrexate. *Arthritis and Rheumatism* 2011; 63(10):2854-2864.
- 131. Jones G., Sebba A., Gu J., Lowenstein M.B., Calvo A., Gomez-Reino J.J. et al. Comparison of tocilizumab monotherapy versus methotrexate monotherapy in patients with moderate to severe rheumatoid arthritis: The AMBITION study. *Annals of the Rheumatic Diseases* 2010; 69(1):88-96.

- 132. Jones G. The AMBITION trial: tocilizumab monotherapy for rheumatoid arthritis. *Expert Review of Clinical Immunology* 2010; 6(2):189-195.
- 133. Yamamoto K., Takeuchi T., Yamanaka H., Ishiguro N., Tanaka Y., Eguchi K. et al. Efficacy and safety of certolizumab pegol plus methotrexate in Japanese rheumatoid arthritis patients with an inadequate response to methotrexate. *Arthritis and Rheumatism Conference: Annual Scientific Meeting of the American College of Rheumatology and Association of Rheumatology Health Professionals 2011 Chicago, IL United States Conference Start:* 20111104 Conference End: 20111109 Conference Pu 2011; 63(10 SUPPL.#1):October.
- 134. Kremer J.M., Blanco R., Brzosko M., Burgos-Vargas R., Halland A.-M., Vernon E. et al. Tocilizumab inhibits structural joint damage in rheumatoid arthritis patients with inadequate responses to methotrexate: Results from the double-blind treatment phase of a randomized placebo-controlled trial of tocilizumab safety and prevention of structural joint damage at one year. *Arthritis and Rheumatism* 2011; 63(3):609-621.
- 135. Kremer J.M., Dougados M., Emery P., Durez P., Sibilia J., Shergy W. et al. Treatment of rheumatoid arthritis with the selective costimulation modulator abatacept: Twelve-month results of a phase IIb, double-blind, randomized, placebo-controlled trial. *Arthritis and Rheumatism* 2005; 52(8):2263-2271.
- 136. Smolen J.S., Beaulieu A., Rubbert-Roth A., Ramos-Remus C., Rovensky J., Alecock E. et al. Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study): a double-blind, placebo-controlled, randomised trial. *Lancet* 2008; 371(9617):987-997.
- 137. van Vollenhoven R.F., Fleischmann R., Cohen S., Lee E.B., Meijide J.A.G., Wagner S. et al. Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. *New England Journal of Medicine* 2012; 367(6):508-519.
- 138. Kang Y., Park W., Park Y., Choe J., Bae S.-C. Efficacy and safety of certolizumab pegol (CZP) with concomitant methotrexate (MTX) in Korean rheumatoid arthritis (RA) patients (pts) with an inadequate response to mtx. *Annals of the Rheumatic Diseases* 2012; 71:666.
- 139. Keystone E., van der Heijde D., Mason J., Landewe R., van V.R., Combe B. et al. Certolizumab pegol plus methotrexate is significantly more effective than placebo plus methotrexate in active rheumatoid arthritis: Findings of a fifty-two-week, phase III, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. *Arthritis and Rheumatism* 2008; 58(11):3319-3329.
- 140. Smolen J., Landewe R.B., Mease P., Brzezicki J., Mason D., Luijtens K. et al. Efficacy and safety of certolizumab pegol plus methotrexate in active rheumatoid arthritis: The RAPID 2 study. A randomised controlled trial. *Annals of the Rheumatic Diseases* 2009; 68(6):797-804.
- 141. Bathon J.M., Genovese M.C. The Early Rheumatoid Arthritis (ERA) Trial comparing the efficacy and safety of etanercept and methotrexate. *Clinical and Experimental Rheumatology* 2003; 21(5 SUPPL. 31):S195-S197.
- 142. Durez P., Malghem J., Toukap A.N., Depresseux G., Lauwerys B.R., Westhovens R. et al. Treatment of early rheumatoid arthritis: A randomized magnetic resonance imaging study comparing the effects of methotrexate alone, methotrexate in combination with infliximab, and methotrexate in combination with intravenous pulse methylprednisolone. *Arthritis and Rheumatism* 2007; 56(12):3919-3927.

- 143. De F.L., Caliri A., Anghelone S., Scibilia G., Lo G.R., Bagnato G. Improving outcomes in tumour necrosis factor alpha treatment: Comparison of the efficacy of the tumour necrosis factor alpha blocking agents etanercept and infliximab in patients with active rheumatoid arthritis. *Panminerva Medica* 2006; 48(2):129-135.
- 144. Kameda H., Kanbe K., Sato E., Ueki Y., Saito K., Nagaoka S. et al. Continuation of methotrexate resulted in better clinical and radiographic outcomes than discontinuation upon starting etanercept in patients with rheumatoid arthritis: 52-Week results from the JESMR study. *Journal of Rheumatology* 2011; 38(8):1585-1592.
- 145. Smolen J., Fleischmann R., Guerette B. Adalimumab plus methotrexate vs. Methotrexate monotherapy for early rheumatoid arthritis: 26-week results (first phase) from the 78-week optima study. *Annals of the Rheumatic Diseases* 2010; 69:102.
- 146. Fleischmann R., Emery P. Long-term efficacy and safety of golimumab, a human anti-tnf alpha monoclonal antibody, in methotrexate-naïve rheumatoid arthritis patients: Results from the go-before study. *Annals of the Rheumatic Diseases* 2010; 69:681.
- 147. Weinblatt M.E., Schiff M., Valente R., van der Heijde D., Citera G., Zhao C. et al. Head-tohead comparison of subcutaneous abatacept versus adalimumab for rheumatoid arthritis. *Arthritis & Rheumatism* 2013; 65(1):28-38.
- 148. AstraZeneca. A Randomised, Double-Blind (with Open Comparator Etanercept Limb), Placebo-Controlled, Phase IIb, Multicentre Study to Evaluate the Efficacy of 4 Doses of AZD9056 Administered for 6 Months on the Signs and Symptoms of Rheumatoid Arthritis in Patients with Active Disease Receiving Background Methotrexate or Sulphasalazine. 2009;(Clinical Study Report Synopsis Drug Substance AZD9056 hydrochloride Study Code D1520C00001 Edition Number 1 Date 14 October 2009).
- 149. Lipsky P.E., Van Der Heijde D.M.F.M., St.Clair E.W., Furst D.E., Breedveld F.C., Kalden J.R. et al. Infliximab and methotrexate in the treatment of rheumatoid arthritis. *New England Journal of Medicine* 2000; 343(22):1594-1602.
- 150. van Vollenhoven R.F., Geborek P., Forslind K., Albertsson K., Ernestam S., Petersson I.F. et al. Conventional combination treatment versus biological treatment in methotrexate-refractory early rheumatoid arthritis: 2 Year follow-up of the randomised, non-blinded, parallel-group Swefot trial. *The Lancet* 2012; 379(9827):1712-1720.
- 151. O'Dell J.R., Mikuls T.R., Taylor T.H., Ahluwalia V., Brophy M., Warren S.R. et al. Therapies for active rheumatoid arthritis after methotrexate failure. *N Engl J Med* 2013; 369(4):307-318.
- 152. van der Kooij S.M., de Vries-Bouwstra J.K., Goekoop-Ruiterman Y.P., Ewals J.A., Han K.H., Hazes J.M. et al. Patient-reported outcomes in a randomized trial comparing four different treatment strategies in recent-onset rheumatoid arthritis. *Arthritis & Rheumatism* 2009; 61(1):4-12.
- 153. Boini S., Guillemin F. Radiographic scoring methods as outcome measures in rheumatoid arthritis: properties and advantages. [Review] [51 refs]. *Annals of the Rheumatic Diseases* 2001; 60(9):817-827.
- 154. Multiple Technology Appraisal (MTA). ID537. Certolizumab pegol for the treatment of rheumatoid arthritis that has previously been treated with conventional disease-modifying anti-rheumatic drugs. UCB Submission. 2013.

- 155. Tocilizumab (RoActemra) for the treatment of rheumatoid arthritis. Roche MTA Submission. 2013.
- 156. Graudal N., Jurgens G. Similar effects of disease-modifying antirheumatic drugs, glucocorticoids, and biologic agents on radiographic progression in rheumatoid arthritis: meta-analysis of 70 randomized placebo-controlled or drug-controlled studies, including 112 comparisons. *Arthritis & Rheumatism* 2010; 62(10):2852-2863.
- 157. Singh J.A., Beg S., Lopez-Olivo M.A. Tocilizumab for rheumatoid arthritis. *Cochrane Database of Systematic Reviews* 2010.
- 158. Singh J.A., Noorbaloochi S., Singh G. Golimumab for rheumatoid arthritis. [Review] [50 refs]. *Cochrane Database of Systematic Reviews (1):CD008341, 2010* 2010;(1):CD008341.
- 159. Ruiz G., V, Jobanputra P., Burls A., Cabello J.B., Galvez Munoz J.G., Saiz Cuenca E.S. et al. Certolizumab pegol (CDP870) for rheumatoid arthritis in adults. [Review]. *Cochrane Database of Systematic Reviews* (2):CD007649, 2011 2011;(2):CD007649.
- 160. Singh J.A., Wells G.A., Christensen R., Tanjong G.E., Maxwell L., Macdonald J.K. et al. Adverse effects of biologics: a network meta-analysis and Cochrane overview. *Cochrane Database of Systematic Reviews* (2):CD008794, 2011 2011;(2):CD008794.
- 161. Blumenauer B., Judd M., Wells G., Burls A., Cranney A., Hochberg M. et al. Infliximab for the treatment of rheumatoid arthritis. [Review] [21 refs]. *Cochrane Database of Systematic Reviews* (3):CD003785, 2002 2002;(3):CD003785.
- 162. Navarro-Sarabia F., Ariza-Ariza R., Hernandez-Cruz B., Villanueva I. Adalimumab for treating rheumatoid arthritis. [Review] [27 refs]. *Cochrane Database of Systematic Reviews* (3):CD005113, 2005 2005;(3):CD005113.
- 163. Blumenauer B., Judd M., Cranney A., Burls A., Coyle D., Hochberg M. et al. Etanercept for the treatment of rheumatoid arthritis. [Review] [18 refs]. *Cochrane Database of Systematic Reviews* (4):CD004525, 2003 2003;(4):CD004525.
- Singh J.A., Christensen R., Wells G.A., Suarez-Almazor M.E., Buchbinder R., Lopez-Olivo M.A. et al. Biologics for rheumatoid arthritis: an overview of Cochrane reviews. [Review] [90 refs]. *Cochrane Database of Systematic Reviews (4):CD007848, 2009 2009*;(4):CD007848.
- 165. Connock M., Tubeuf S., Malottki K., Uthman A., Round J., Bayliss S. et al. Certolizumab pegol (CIMZIA (R)) for the treatment of rheumatoid arthritis. *Health Technology Assessment* 2010; 14:1-10.
- 166. Malottki K., Barton P., Tsourapas A., Uthman A.O., Liu Z., Routh K. et al. Adalimumab, etanercept, infiximab, rituximab and abatacept for the treatment of rheumatoid arthritis after the failure of a tumour necrosis factor inhibitor: A systematic review and economic evaluation. *Health Technology Assessment* 2011; 15(14).
- 167. Jobanputra P., Barton P., Bryan S., Burls A. The effectiveness of infliximab and etanercept for the treatment of rheumatoid arthritis: a systematic review and economic evaluation. [Review] [261 refs]. *Health Technology Assessment (Winchester, England)* 2002; 6(21):1-110.
- 168. Zink A., Strangfeld A., Schneider M., Herzer P., Hierse F., Stoyanova-Scholz M. et al. Effectiveness of tumor necrosis factor inhibitors in rheumatoid arthritis in an observational

cohort study: comparison of patients according to their eligibility for major randomized clinical trials. *Arthritis & Rheumatism* 2006; 54(11):3399-3407.

- 169. Pincus T., Sokka T. Should contemporary rheumatoid arthritis clinical trials be more like standard patient care and vice versa? *Annals of the Rheumatic Diseases* 2004; 63:32-39.
- 170. Drummond M.F., Sculpher M.J., Torrance G.W. Methods for the Economic Evaluation of Health Care Programmes. 2005;379.
- 171. Bansback N.J., Brennan A., Ghatnekar O. Cost effectiveness of adalimumab in the treatment of patients with moderate to severe rheumatoid arthritis in Sweden. *Annals of the Rheumatic Diseases* 2005; 64(7):995-1002.
- 172. Barbieri M., Wong J.B., Drummond M. The cost effectiveness of infliximab for severe treatment-resistant rheumatoid arthritis in the UK. *Pharmacoeconomics* 2005; 23(6):2005.
- 173. Barton P., Jobanputra P., Wilson J., Bryan S., Burls A. The use of modelling to evaluate new drugs for patients with a chronic condition: the case of antibodies against tumour necrosis factor in rheumatoid arthritis. *Health Technology Assessment (Winchester, England)* 2004; 8(11):iii-91.
- 174. Benucci M., Gobbi F.L., Sabadini L., Saviola G., Baiardi P., Manfredi M. The Economic Burden of Biological Therapy in Rheumatoid Arthritis in Clinical Practice: Cost-Effectiveness Analysis of Sub-Cutaneous Anti-Tnf Alpha Treatment in Italian Patients. *International Journal of Immunopathology and Pharmacology* 2009; 22(4):1147-1152.
- 175. Brennan A., Bansback N., Reynolds A., Conway P. Modelling the cost-effectiveness of etanercept in adults with rheumatoid arthritis in the UK. *Rheumatology* 2004; 43(1):62-72.
- 176. Brennan A., Bansback N., Nixon R., Madan J., Harrison M., Watson K. et al. Modelling the cost effectiveness of TNF-alpha antagonists in the management of rheumatoid arthritis: Results from the British Society for Rheumatology Biologics Registry. *Rheumatology* 2007; 46(8):1345-1354.
- 177. Chiou C.-F., Choi J., Reyes C.M. Cost-effectiveness analysis of biological treatments for rheumatoid arthritis. *Expert Review of Pharmacoeconomics and Outcomes Research* 2004; 4(3):307-315.
- 178. Choi H.K., Seeger J.D., Kuntz K.M. A cost effectiveness analysis of treatment options for methotrexate-naive rheumatoid arthritis. *Journal of Rheumatology* 2002; 29(6):1156-1165.
- 179. Coyle D., Judd M., Blumenauer B., Cranney A., Maetzel A., Tugwell P. et al. Infliximab and etanercept in patients with rheumatoid arthritis: a systematic review and economic evaluation. 2006.
- Davies A., Cifaldi M.A., Segurado O.G., Weisman M.H. Cost-Effectiveness of Sequential Therapy with Tumor Necrosis Factor Antagonists in Early Rheumatoid Arthritis. *Journal of Rheumatology* 2009; 36(1):16-26.
- 181. Diamantopoulos A., Benucci M., Capri S., Berger W., Wintfeld N., Giuliani G. et al. Economic evaluation of tocilizumab combination in the treatment of moderate-to-severe rheumatoid arthritis in Italy. *Journal of Medical Economics* 2012; 15(3):576-585.
- 182. Finckh A., Bansback N., Marra C.A., Anis A.H., Michaud K., Lubin S. et al. Treatment of Very Early Rheumatoid Arthritis With Symptomatic Therapy, Disease-Modifying

Antirheumatic Drugs, or Biologic Agents A Cost-Effectiveness Analysis. *Annals of Internal Medicine* 2009; 151(9):612-W198.

- 183. Kobelt G., Jonsson L., Young A., Eberhardt K. The cost-effectiveness of infliximab (Remicade) in the treatment of rheumatoid arthritis in Sweden and the United Kingdom based on the ATTRACT study. *Rheumatology* 2003; 42(2):01.
- 184. Kobelt G., Eberhardt K., Geborek P. TNF inhibitors in the treatment of rheumatoid arthritis in clinical practice: costs and outcomes in a follow up study of patients with RA treated with etanercept or infliximab in southern Sweden. *Annals of the Rheumatic Diseases* 2004; 63(1):4-10.
- 185. Kobelt G., Lindgren P., Singh A., Klareskog L. Cost effectiveness of etanercept (Enbrel) in combination with methotrexate in the treatment of active rheumatoid arthritis based on the TEMPO trial. *Annals of the Rheumatic Diseases* 2005; 64(8):1174-1179.
- 186. Kobelt G., Lekander I., Lang A., Raffeiner B., Botsios C., Geborek P. Cost-effectiveness of etanercept treatment in early active rheumatoid arthritis followed by dose adjustment. *International Journal of Technology Assessment in Health Care* 2011; 27(3):193-200.
- 187. Lekander I., Borgstrom F., Svarvar P., Ljung T., Carli C., van Vollenhoven R.F. Costeffectiveness of real-world infliximab use in patients with rheumatoid arthritis in Sweden. *International Journal of Technology Assessment in Health Care* 2010; 26(1):54-61.
- 188. Marra C.A., Marion S.A., Guh D.P., Najafzadeh M., Wolfe F., Esdaile J.M. et al. Not all "quality-adjusted life years" are equal. *Journal of Clinical Epidemiology* 2007; 60(6):616-624.
- 189. Nuijten M.J.C., Engelfriet P., Duijn K., Bruijn G., Wierz D., Koopmanschap M. A cost-cost study comparing etanercept with infliximab in rheumatoid arthritis. *Pharmacoeconomics* 2001; 19(10):1051-1064.
- 190. Rubio-Terres C., Dominguez-Gil A. Pharmacoeconomic analysis of the treatment of rheumatoid arthritis with Leflunomide in comparison with the combination of Infliximab and Methotrexate. *Journal of Medical Economics* 2001; 4(19-34):2001.
- 191. Soini E.J., Hallinen T.A., Puolakka K., Vihervaara V., Kauppi M.J. Cost-effectiveness of adalimumab, etanercept, and tocilizumab as first-line treatments for moderate-to-severe rheumatoid arthritis. *Journal of Medical Economics* 2012; 15(2):340-351.
- 192. Spalding J.R., Hay J. Cost effectiveness of tumour necrosis factor-alpha inhibitors as first-line agents in rheumatoid arthritis. *Pharmacoeconomics* 2006; 24(12):1221-1232.
- 193. Tanno M., Nakamura I., Ito K., Tanaka H., Ohta H., Kobayashi M. et al. Modeling and costeffectiveness analysis of etanercept in adults with rheumatoid arthritis in Japan: A preliminary analysis. *Modern Rheumatology* 2006; 16(2):77-84.
- 194. van den Hout W.B., Goekoop-Ruiterman Y.P., Allaart C.F., de Vries-Bouwstra J.K., Hazes J.M., Kerstens P.J. et al. Cost-utility analysis of treatment strategies in patients with recent-onset rheumatoid arthritis. *Arthritis & Rheumatism* 2009; 61(3):291-299.
- 195. Vera-Llonch M., Massarotti E., Wolfe F., Shadick N., Westhovens R., Sofrygin O. et al. Costeffectiveness of abatacept in patients with moderately to severely active rheumatoid arthritis and inadequate response to methotrexate. *Rheumatology* 2008; 47(4):535-541.

- 196. Wailoo A.J., Bansback N., Brennan A., Michaud K., Nixon R.M., Wolfe F. Biologic drugs for rheumatoid arthritis in the Medicare program: a cost-effectiveness analysis. *Arthritis and Rheumatism* 2008; 58(4):Apr.
- 197. Welsing P.M.J., Severens J.L., Hartman M., Van Riel P.L.C.M., Laan R.F.J.M. Modeling the 5-year cost effectiveness of treatment strategies including tumor necrosis factor-blocking agents and leflunomide for treating rheumatoid arthritis in the Netherlands. *Arthritis & Rheumatism-Arthritis Care & Research* 2004; 51(6):964-973.
- 198. Wong J.B., Singh G., Kavanaugh A. Estimating the cost-effectiveness of 54 weeks of infliximab for rheumatoid arthritis. *American Journal of Medicine* 2002; 113(5):400-408.
- 199. Adalimumab, etanercept and infliximab for the treatment of rheumatoid arthritis Includes a review of technology appraisal guidance 36. (TA130). 2007.
- 200. Adalimumab, etanercept, infliximab, certolizumab, golimumab, abatacept, and tocilizumab for the treatment of rheumatoid arthritis (review of TA guidance 130, 186, 224, 234, and part review of TA guidance 225 and 247) [ID537]. Manufacturer submission of evidence: Infliximab (Remicade[®]). 2013.
- 201. Adalimumab, etanercept, infliximab, certolizumab, golimumab, abatacept, and tocilizumab for the treatment of rheumatoid arthritis (review of TA guidance 130, 186, 224, 234, and part review of TA guidance 225 and 247) [ID537]. Manufacturer submission of evidence: Golimumab (Simponi[®]). 2013.
- 202. Adalimumab, etanercept, infliximab, certolizumab pegol, golimumab, tocilizumab and abatacept for the treatment of rheumatoid arthritis not previously treated with disease-modifying anti-rheumatic drugs and after the failure of conventional disease-modifying anti-rheumatic drugs only. Submission by AbbVie. 2013.
- 203. Adalimumab, etanercept, infliximab, certolizumab pegol, golimumab, tocilizumab and abatacept for the treatment of rheumatoid arthritis not previously treated with disease-modifying anti-rheumatic drugs and after the failure of conventional disease-modifying anti-rheumatic drugs only (Review of Technology Appraisal guidance 130, 186, 224, 234 and a part review of Technology Appraisal guidance 225 and 247). BMS submission of evidence to NICE. 2013.
- 204. Etanercept for the treatment of rheumatoid arthritis. (Review of TA guidance 130, 186, 224, 234 and part review of TA guidance 225 and 247). Multiple Technology Appraisal (MTA). Pfizer submission. 2013.
- 205. Drummond M., Jefferson T. Guidelines for authors and peer reviewers of economic submissions to the BMJ. *BMJ* 1996; 313:275-283.
- 206. Eddy D. Methods of technology assessment. Section entitled Technology assessment: the role of mathematical modeling . 1985;(Assessing medical technologies):144-154.
- Gabriel S., et al. Omeract 6 economics working group report: a proposal for a reference case for economic evaluation in rheumatoid arthritis. *Journal of Rheumatology* 2003; 30(4):886-890.
- 208. Maetzel A., Tugwell P., Boers M., Guillemin F., Coyle D., Drummond M. et al. Economic evaluation of programs or interventions in the management of rheumatoid arthritis: Defining a consensus-based reference case. *Journal of Rheumatology* 2003; 30(4):891-896.

- 209. Hyrich K., Symmons D., Watson K., Silman A., BSRBR Control Centre Consortium, British Society for Rheumatology Biologics Register. Baseline comorbidity levels in biologic and standard DMARD treated patients with rheumatoid arthritis: results from a national patient register. *Annals of the Rheumatic Diseases* 2006; 65(7):895-898.
- 210. Burmester G.R., Mariette X., Montecucco C., Monteagudo-Saez I., Malaise M., Tzioufas A.G. et al. Adalimumab alone and in combination with disease-modifying antirheumatic drugs for the treatment of rheumatoid arthritis in clinical practice: the Research in Active Rheumatoid Arthritis (ReAct) trial. *Annals of the Rheumatic Diseases* 2007; 66(6):732-739.
- 211. Keystone E.C., Genovese M.C., Klareskog L., Hsia E.C., Hall S.T., Miranda P.C. et al. Golimumab, a human antibody to tumour necrosis factor {alpha} given by monthly subcutaneous injections, in active rheumatoid arthritis despite methotrexate therapy: the GO-FORWARD Study.[Erratum appears in Ann Rheum Dis. 2011 Jan;70(1):238]. *Annals of the Rheumatic Diseases* 2009; 68(6):789-796.
- 212. Smolen J.S., Nash P., Durez P., Hall S., Ilivanova E., Irazoque-Palazuelos F. et al. Maintenance, reduction, or withdrawal of etanercept after treatment with etanercept and methotrexate in patients with moderate rheumatoid arthritis (PRESERVE): a randomised controlled trial. *Lancet* 2013; 381(9870):918-929.
- 213. Fleischmann R., Vencovsky J., van Vollenhoven R.F., Borenstein D., Box J., Coteur G. et al. Efficacy and safety of certolizumab pegol monotherapy every 4 weeks in patients with rheumatoid arthritis failing previous disease-modifying antirheumatic therapy: The FAST4WARD study. *Annals of the Rheumatic Diseases* 2009; 68(6):805-811.
- 214. National Institute for Health and Clinical Excellence. Guide to the methods of technology appraisal 2008. *NICE Methods Guide* 2008.
- 215. National Institute for Health and Clinical Excellence. Tocilizumab for the treatment of rheumatoid arthritis (rapid review of technology appraisal guidance 198). 2012; TA247.
- 216. NHS. National Schedule of Reference Costs Year: 2010-11 NHS Trusts and PCTS Combined HRG Data. 2013.
- 217. National Institute for Clinical Excellence. Costing template for infliximab for the treatment of adults with psoriasis (Guidance TA134). 2008.
- 218. Bradford Teaching Hospitals N.T. Shared care guidelines and monitoring protocols for rheumatology patients on disease modifying drugs (including biologic therapies). 2010.
- 219. National Institute for Clinical Excellence. Costing Template: Tuberculosis: clinical diagnosis and management of tuberculosis and measures for its prevention and control; Clinical Guideline 33. 2013.
- 220. Curtis L. Unit costs of health and social care. 2011.
- 221. Chakravarty K., McDonald H., Pullar T., et al. BSR/BHPR guideline for disease-modifying anti-rheumatic drug (DMARD) therapy in consultation with the British Association of Dermatologists. *Rheumatology (Oxford)* 2008; 47(6):924-925.
- 222. Malottki K., Barton P., Tsourapas A., Uthman A.O., Liu Z., Routh K. et al. Adalimumab, etanercept, infliximab, rituximab and abatacept for the treatment of rheumatoid arthritis after the failure of a tumour necrosis factor inhibitor: a systematic review and economic evaluation. *Health Technology Assessment (Winchester, England)* 2011; 15(14):1-278.

- 223. Department of Health. NHS Trusts and PCTs combined reference cost schedules 2010-11. 2012.
- 224. Roche. RoActemra® (tocilizumab) NICE STA submission. Manufacturer's submission TA198. 2009.
- 225. Curtis L. Unit costs of health and social care 2012. PSSRU. University of Kent; Canterbury 2012.
- 226. Curtis L. Unit costs of health and social care 2010. PSSRU University of Kent; Canterbury 2010.
- 227. Harland D., Gibbons C., Diamantopoulos A., Pang H., Huertas D., Dejonckheere F. Tocilizumab in patients where methotrexate is considered inappropriate a cost-utility model for the united kingdom. 2012.
- 228. Gabay C., Emery P., van Vollenhoven R., etal. Tocilizumab (TCZ) Monotherapy is Superior to Adalimumab (ADA) Monotherapy in Reducing Disease Activity in Patients with Rheumatoid Arthrits (RA): 24-Week Data from the Phase 4 ADACTA Trial. *Ann Rheum Dis* 2012; 71(Suppl3):152.
- 229. UCB. Certolizumab pegol (CIMZIA®) for the treatment of Rheumatoid Arthritis. Manufacturer's submission for TA186. 2009.
- Schering-Plough Ltd. Golimumab for the Treatment of Rheumatoid Arthritis after Failure of Previous Disease-Modifying Antirheumatic Drugs. Manufacturer's submission to NICE. 2010.
- 231. Strand V., Burmester G.R., Ogale S., Devenport J., John A., Emery P. Improvements in health-related quality of life after treatment with tocilizumab in patients with rheumatoid arthritis refractory to tumour necrosis factor inhibitors: Results from the 24-week randomized controlled radiate study. *Rheumatology (United Kingdom)* 2012; 51(10):1860-1869.
- 232. Smolen J.S., Kay J., Doyle M.K., Landewe R., Matteson E.L., Wollenhaupt J. et al. Golimumab in patients with active rheumatoid arthritis after treatment with tumour necrosis factor alpha inhibitors (GO-AFTER study): a multicentre, randomised, double-blind, placebo-controlled, phase III trial. *The Lancet* 2009; 374(9685):210-221.
- 233. Hurst N.P., Kind P., Ruta D., Hunter M., Stubbings A. Measuring health-related quality of life in rheumatoid arthritis: validity, responsiveness and reliability of EuroQol (EQ-5D). *British Journal of Rheumatology* 1997; 36(5):551-559.
- 234. Tanaka Y., Harigai M., Takeuchi T., Yamanaka H., Ishiguro N., Yamamoto K. et al. Golimumab in combination with methotrexate in Japanese patients with active rheumatoid arthritis: results of the GO-FORTH study. *Annals of the Rheumatic Diseases* 2012; 71(6):817-824.
- 235. van der Heijde D., Landewe R., van V.R., Fatenejad S., Klareskog L. Level of radiographic damage and radiographic progression are determinants of physical function: a longitudinal analysis of the TEMPO trial. *Annals of the Rheumatic Diseases* 2008; 67(9):1267-1270.
- 236. Munro R., Hampson R., McEntegart A., Thompson E., Modhok R., Capell H. Improved functional outcome in patients with early RA treated with intramuscular gold: results of a five year prospective study. *Ann Rheum Dis* 1998; 57:88-93.

- 237. Scott D.L., Pugner K., Kaarela K., Doyle D.V., Woolf A., Holmes J. et al. The links between joint damage and disability in rheumatoid arthritis. *Rheumatology* 2000; 39(2):122-132.
- 238. Dougados M., Kissel K., Sheeran T., et al. Adding tocilizumab or switching to tocilizumab monotherapy in methotrexate inadequate responders: 24-week symptomatic and structural results of a 2 year randomized controlled strategy trial in rheumatoid arthritis (ACT-RAY). 5 May 2012 [ePub ahead of print]. *Ann Rheum Dis* 2012.
- 239. Edwards C.J., Arden N.K., Fisher D., Saperia J.C., Reading I., van Staa T.P. et al. The changing use of disease-modifying anti-rheumatic drugs in individuals with rheumatoid arthritis from the United Kingdom General Practice Research Database. *Rheumatology* 2005; 44(11):1394-1398.
- 240. Hoyle M., Henley W. Improved curve fits to summary survival data: application to economic evaluation of health technologies. *BMC Med Res Methodol* 2011; 11:139.
- 241. Tierney J., Stewart L., Ghersi D., Burdett S., Sydes M. Practical methods for incorporating summary time-to-event data into meta-analysis. *Trials* 2007; 8.
- 242. Conditions NCCfC. National Clinical Guideline for Rheumatoid Arthritis. 2008.
- 243. Soliman M.M., Ashcroft D.M., Watson K.D., Lunt M., Symmons D.P.M., Hyrich K.L. Impact of concomitant use of DMARDs on the persistence with anti-TNF therapies in patients with rheumatoid arthritis: results from the British Society for Rheumatology Biologics Register. *Annals of the Rheumatic Diseases* 2011; 70(4):583-589.
- 244. Hetland M.L., Christensen I.J., Tarp U., Dreyer L., Hansen A., Hansen I.T. et al. Direct comparison of treatment responses, remission rates, and drug adherence in patients with rheumatoid arthritis treated with adalimumab, etanercept, or infliximab: results from eight years of surveillance of clinical practice in the nationwide Danish DANBIO registry. *Arthritis & Rheumatism* 2010; 62(1):22-32.
- 245. Du Pan S.M., Dehler S., Ciurea A., Ziswiler H.R., Gabay C., Finckh A. Comparison of Drug Retention Rates and Causes of Drug Discontinuation Between Anti-Tumor Necrosis Factor Agents in Rheumatoid Arthritis. *Arthritis & Rheumatism-Arthritis Care & Research* 2009; 61(5):560-568.
- 246. Keystone E.C., Cohen S.B., Emery P., Kremer J.M., Dougados M., Loveless J.E. et al. Multiple Courses of Rituximab Produce Sustained Clinical and Radiographic Efficacy and Safety in Patients with Rheumatoid Arthritis and an Inadequate Response to 1 or More Tumor Necrosis Factor Inhibitors: 5-Year Data from the REFLEX Study. *Journal of Rheumatology* 2012; 39(12):2238-2246.
- 247. Smolen J.S., Kay J., Landewe R.B.M., Matteson E.L., Gaylis N., Wollenhaupt J. et al. Golimumab in patients with active rheumatoid arthritis who have previous experience with tumour necrosis factor inhibitors: Results of a long-term extension of the randomised, doubleblind, placebo-controlled GO-AFTER study through week 160. *Annals of the Rheumatic Diseases* 2012; 71(10):1671-1679.
- 248. Emery P., Keystone E., Tony H.P., Cantagrel A., van V.R., Sanchez A. et al. IL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-tumour necrosis factor biologicals: Results from a 24-week multicentre randomised placebo-controlled trial. *Annals of the Rheumatic Diseases* 2008; 67(11):1516-1523.

- 249. Keystone E., Kavanaugh A., Sharp J., Tannenbaum H., Hua Y., Teoh L. et al. Radiographic, clinical, and functional outcomes of treatment with adalimumab (a human anti-tumor necrosis factor monoclonal antibody) in patients with active rheumatoid arthritis receiving concomitant methotrexate therapy: a randomized, placebo-controlled, 52-week trial. *Arthritis & Rheumatism* 2004; 50(5):1400-1411.
- 250. Akaike H. A new look at the statistical model identification. *IEEE Transactions on Automatic Control* 1974; 19(716):732.
- 251. Hetland M.L., Christensen I.J., Tarp U., Dreyer L., Hansen A., Hansen I.T. et al. Direct Comparison of Treatment Responses, Remission Rates, and Drug Adherence in Patients With Rheumatoid Arthritis Treated With Adalimumab, Etanercept, or Infliximab Results From Eight Years of Surveillance of Clinical Practice in the Nationwide Danish DANBIO Registry. *Arthritis and Rheumatism* 2010; 62(1):22-32.
- 252. Hjardem E., Ostergaard M., Podenphant J., Tarp U., Andersen L.S., Bing J. et al. Do rheumatoid arthritis patients in clinical practice benefit from switching from infliximab to a second tumor necrosis factor alpha inhibitor? *Annals of the Rheumatic Diseases* 2007; 66(9):1184-1189.
- 253. Mitchell M. Engauge Digitizer Digitizing software. 2013. http://digitizer.sourceforge.net/
- 254. Guyot P., Ades A., Ouwens M., Welton N. Enhanced secondary analysis of survival data: reconstructing the data from published Kaplan-Meier survival curves. *BMC Med Res Methodol* 2012; 12(9).
- 255. Trueman D., Livings C., Mildred M. PRM81 Methods of Obtaining Evidence From Published Survival Data for Use in Decision Analytic Models. *Value in Health* 2012; 15(7):A475.
- 256. Anderson J., et al. Factors predicting response to treatment in rheumatoid arthritis: the importance of disease duration. *ARTHRITIS RHEUM* 2000; 43(1):22-29.
- 257. Wiles N.J., Symmons D. Resource use within the Norfolk Arthritis Register (NOAR) Cohort during the first five years of disease. 2005; Report for Roche.
- 258. National Schedule of Reference Costs Year : 2010-11 NHS Trusts and PCTs combined HRG Data. 2013.
- 259. Kobelt G., Jonsson L., Lindgren P., Young A., Eberhardt K. Modeling the progression of rheumatoid arthritis: a two-country model to estimate costs and consequences of rheumatoid arthritis. *Arthritis and Rheumatism* 2002; 46(9):2310-2319.
- 260. Kobelt G., Eberhardt K., Jonsson L., Jonsson B. Economic consequences of the progression of rheumatoid arthritis in Sweden. *Arthritis & Rheumatism* 1999; 42(2):347-356.
- 261. Kobelt G., Lindgren P., Lindroth Y., Jacobson L., Eberhardt K. Modelling the effect of function and disease activity on costs and quality of life in rheumatoid arthritis. *Rheumatology* 2005; 44(9):1169-1175.
- 262. Duccournau P., Keilhorn A., Wintfield N. Comparison of linear and non-linear utility mapping between HAQ and EQ-5D using pooled data from the tolicizumab trials OPTION and LITHE. 2009; Poster 258.
- 263. Dolan P. Modeling Valuations for EuroQol Health States. 35, 1095-1108. *Medical Care* 1997; 35:1095-1108.

- 264. Russell A.S., Conner-Spady B., Mintz A., Maksymowych W.P. The responsiveness of generic health status measures as assessed in patients with rheumatoid arthritis receiving infliximab. *Journal of Rheumatology* 2003; 30(5):941-947.
- 265. Wolfe F., Hawley D. Measurement of the quality of life in rheumatic disorders using the EuroQol. *BR J RHEUMATOL* 1997; 36(7):786-793.
- 266. Conner-Spady B., Suarez-Almazor M.E. Variation in the estimation of quality-adjusted lifeyears by different preference-based instruments. *Med Care* 2003; 41:791-801.
- 267. Marra C., Woolcott J., Kopec J., Shojania K., Offer R., Brazier J. A comparison of generic, indirect utility measures (the HUI2, HUI3, SF-6D, and the EQ5D) and disease specific instruments (the RAQoL and the HAQ) in rheumatoid arthritis. *Soc Sci Med* 2005; 60:1571-1582.
- 268. Boggs R., Sengupta N., Ashraf T. Estimating health utility from a physical function assessment in rheumatoid arthritis (RA) patients treated with adalimumab. *Value in Health* 2002; 5(6):452.
- 269. National Institute for Clinical Excellence. Guide to the methods of technology appraisals. 2008.
- 270. National Institute for Health and Care Excellence. Guide to the methods of technology appraisals. 2013.
- 271. Bansback N., Marra C., Tsuchiya A., Anis A., Guh D., Hammond T. et al. Using the health assessment questionnaire to estimate preference-based single indices in patients with rheumatoid arthritis. *Arthritis & Rheumatism-Arthritis Care & Research* 2007; 57(6):963-971.
- 272. Hernandez Alava M., Wailoo A.J., Ara R. Tails from the Peak District: adjusted limited dependent variable mixture models of EQ-5D questionnaire health state utility values. *Value in Health* 2012; 15(3):550-561.
- 273. Kremer J.M., Blanco R., Brzosko M., Burgos-Vargas R., Halland A.M., Vernon E. et al. Tocilizumab Inhibits Structural Joint Damage in Rheumatoid Arthritis Patients With Inadequate Responses to Methotrexate Results From the Double-Blind Treatment Phase of a Randomized Placebo-Controlled Trial of Tocilizumab Safety and Prevention of Structural Joint Damage at One Year. *Arthritis and Rheumatism* 2011; 63(3):609-621.
- 274. Bansback N., Young A., Brennan A., et al. A prognostic model for functional outcome in early rheumatoid arthritis. *Journal of Rheumatology* 2006; 33:1503-1510.
- 275. Galloway J.B., Hyrich K.L., Mercer L.K., Dixon W.G., Fu B., Ustianowski A.P. et al. Anti-TNF therapy is associated with an increased risk of serious infections in patients with rheumatoid arthritis especially in the first 6 months of treatment: Updated results from the British Society for Rheumatology Biologics Register with special emphasis on risks in the elderly. *Rheumatology* 2011; 50(1):124-131.
- 276. Singh J.A., Wells G.A., Christensen R., Ghogomu E.T., Maxwell L., Macdonald J.K. et al. Adverse effects of biologics: a network meta-analysis and Cochrane overview. *Cochrane Database of Systematic Reviews* 2011;(2).

- 277. Oppong R., Kaambwa B., Nuttall J., Hood K., Smith R., Coast J. The impact of using different tariffs to value EQ-5D health state descriptions: an example from a study of acute cough/lower respiratory tract infections in seven countries. *Eur J Health Econ* 2011.
- 278. Dixon W., Symmons D., Lunt M., Watson K., Hyrich K., Silman A. Serious infection following anti-tumor necrosis factor alpha therapy in patients with rheumatoid arthritis: lessons from interpreting data from observational studies. *Arthritis and Rheumatism* 2007; 56(9):2896-2904.
- 279. Singh J.A., Wells G.A., Christensen R., Tanjong G.E., Maxwell L., Macdonald J.K. et al. Adverse effects of biologics: a network meta-analysis and Cochrane overview. *Cochrane Database of Systematic Reviews* (2):CD008794, 2012 2012;(2):CD008794.
- 280. Wolfe F., Mitchell D., Sibley J., Fries J., Bloch D., Williams C. et al. The mortality of rheumatoid arthritis. *Arthritis and Rheumatism* 1994; 37(4):481-494.
- 281. Office of National Statistics. Interim life tables: 2008-2010. http://www.ons.gov.uk/ons/taxonomy/index.html?nscl=Interim+Life+Tables 2010.
- 282. Lindgren P., Geborek P., Kobelt G. Modeling the cost-effectiveness of treatment of rheumatoid arthritis with rituximab using registry data from Southern Sweden. *International Journal of Technology Assessment in Health Care* 2009; 25(2):181-189.
- 283. Merkesdal S., Kirchhoff T., Wolka D., Ladinek G., Kielhorn A., Rubbert-Roth A. Costeffectiveness analysis of rituximab treatment in patients in Germany with rheumatoid arthritis after etanercept-failure. *European Journal of Health Economics* 2010; 11(1):95-104.
- 284. BMS. Abatacept for the treatment of rheumatoid arthritis after the failure of conventional disease-modifying anti-rheumatic drugs. Manufacturer's submission to NICE. 2010.
- 285. Wu B., Wilson A., Wang F.F., Wang S.L., Wallace D.J., Weisman M.H. et al. Cost Effectiveness of Different Treatment Strategies in the Treatment of Patients with Moderate to Severe Rheumatoid Arthritis in China. *PLoS ONE* 2012; 7(10):e47373.
- 286. Pincus T., Furer V., Keystone E., Yazici Y., Bergman M.J., Luijtens K. RAPID3 (Routine Assessment of Patient Index Data 3) severity categories and response criteria: Similar results to DAS28 (Disease Activity Score) and CDAI (Clinical Disease Activity Index) in the RAPID 1 (Rheumatoid Arthritis Prevention of Structural Damage) clinical trial of certolizumab pegol. *Arthritis Care & Research* 2011; 63(8):1142-1149.
- 287. Yelin E., Trupin L., Wong B., Rush S. The impact of functional status and change in functional status on mortality over 18 years among persons with rheumatoid arthritis. *Journal of Rheumatology* 2002; 29(9):1851-1857.
- 288. Deighton C., Hyrich K., Ding T., Ledingham J., Lunt M., Kiely P. et al. BSR and BHPR rheumatoid arthritis guidelines on eligibility criteria for the first biological therapy. *Rheumatology* 2010; 49:1197-1199.
- 289. Norton S., Sacker A., Dixey D., Done J., Williams P., Young A. Trajectories of functional limitation in early rheumatoid arthritis and their association with mortality. *Rheumatology* 2013; Epub Ahead of Publication.
- 290. Norton S., Fu B., Verstappen S., Symmons D., Lunt M., Davies R. et al. Common trajectories of HAQ disability progression over 15-years in the Early Rheumatoid Arthritis Study and the Norfolk Arthritis Register. *EULAR 2012* 2012; Poster .

- 291. National Institute for Health and Clinical Excellence. Guide to the methods of technology appraisal 2013. *NICE Methods Guide* 2013. http://publications.nice.org.uk/guide-to-the-methods-of-technology-appraisal-2013-pmg9
- 292. Grigor C., Capell H., Stirling A., McMahon A.D., Lock P., Vallance R. et al. Effect of a treatment strategy of tight control for rheumatoid arthritis (the TICORA study): a single-blind randomised controlled trial. *Lancet* 2004; 364(9430):263-269.
- 293. Bollen K., Curran P. "Autoregressive Latent Trajectory (ALT) Models. A Synthesis of Two Traditions". *Sociological Methods and Research* 2004; 32(3):336-383.
- 294. Satorra A. Scaled and adjusted restricted tests in multi-sample analysis of moment structures. 2000;233-247.
- 295. Norton S., Verstappen S.M.M., Symmons D.P., Lunt M., Davies R., Scott D.L. et al. Common Trajectories Of Haq Disability Progression Over 15-Years In The Early Rheumatoid Arthritis Study And The Norfolk Arthritis Register. *Ann Rheum Dis* 2012; 71(Supplement 3):508.
- 296. Hernandez Alava M., Wailoo A., Wolfe F., Michaud K. "A comparison of direct and indirect methods for the estimation of health utilities from clinical outcomes". *HEDS Discussion Paper* 2013.
- 297. Plant M.J., O'Sullivan M.M., Lewis P.A., Camilleri J.P., Coles E.C., Jessop J.D. What factors influence functional ability in patients with rheumatoid arthritis. Do they alter over time? *Rheumatology* 2005; 44(9):1181-1185.
- 298. Symmons D., Tricker K., Roberts C., Davies L., Dawes P., Scott D. The British Rheumatoid Outcome Study Group (BROSG) randomised controlled trial to compare the effectiveness and cost-effectiveness of aggressive versus symptomatic therapy in established rheumatoid arthritis. *Health Technol Assess* 2005; 9:1-78.
- 299. McWilliams D.F., Kiely P., Young A., Walsh D. Baseline factors predicting change from the initial DMARD treatment during the first 2 years of rheumatoid arthritis: experience in the ERAN inception cohort. *BMC Musculoskeletal Disorders* 2013; 14(153).
- 300. Bansback N., Fu E.H.Y., Sun H., Guh D., Zhang W., Lacaille D. et al. Impact of Biologics on Healthcare Utilization in Patients with Rheumatoid Arthritis: An Instrumental Variable Approach. *Canadian Rhuematology Meeting 2013* 2013.
- 301. National Schedule of Reference Costs Year : 2010-11 NHS Trusts and PCTs combined HRG Data. 2013.
- 302. Hernandez Alava M., Wailoo A., Wolfe F., Michaud K. "The relationship between EQ-5D, HAQ and pain in patients with rheumatoid arthritis". *Rheumatology* 2013.
- 303. Brazier J.E., Yang Y.L., Tsuchiya A., Rowen D.L. A review of studies mapping (or cross walking) non-preference based measures of health to generic preference-based measures. *European Journal of Health Economics* 2010; 11(2):215-225.
- 304. Hernandez Alava M., Wailoo A., Ara R. Tails from the Peak District: Adjusted Limited Dependent Variable Mixture Models of EQ-5D Health State Utility Values. Value in Health 2012; 15(550):61.

- 305. Hernandez Alava M., Wailoo A., Wolfe F., Michaud K. Acomparison of direct and indirect methods for the estimation of health utilities from clinical outcomes. *Medical Decision Making* 2013; (in press).
- 306. The relationship between EQ-5D, HAQ and pain in patients with rheumatoid arthritis. *Rheumatology* 2013.
- 307. Hawthorne G., Buchbinder R., Defina J. Functional status and health related quality of life assessment in patients with rheumatoid arthritis. *Monash University Centre for Health Program Evaluation* 2000; Working Paper 116.
- 308. Wolfe F., Mitchell D.M., Sibley J.T., Fries J.F., Bloch D.A., Williams C.A. et al. The mortality of rheumatoid arthritis. *Arthritis & Rheumatism* 1994; 37(4):481-494.
- 309. Michaud K., Vera-Llonch M., Oster G. Mortality Risk by Functional Status and Healthrelated Quality of Life in Patients with Rheumatoid Arthritis. *Journal of Rheumatology* 2012; 39(1):54-59.
- O'Hagan A., Stevenson M., Madan J. Monte Carlo probabilistic sensitivity analysis for patient level simulation models: efficient estimation of mean and variance using ANOVA. *Health Econ* 2007; 16(10):1009-1023.
- 311. Peterfy C., Haraoui B., Durez P., Patra K., Kupper H. Decreased incidence of synovitis, osteitis, and erosion in early RA patients treated with adalimumab plus methotrexate compared to those with methotrexate alone: High-field MRI analysis from OPTIMA. *Arthritis and Rheumatism Conference: American College of Rheumatology/Association of Rheumatology Health Professionals Annual Scientific Meeting, ACR/ARHP 10 Philadelphia, PA United States Conference Start: 20091016 Conference End: 20091021 Conference 2010; 62(pp 123):2010.*
- 312. Emery P., Kavanaugh A.F., Smolen J., Cifaldi M.A., Chaves L., Guerette B. et al. Combination therapy with adalimumabmethotrexate significantly improved work ability, physical function, fatigue, and other patient-reported outcomes in early rheumatoid arthritis: Results from a 26-week analysis. *Arthritis and Rheumatism Conference: Annual Scientific Meeting of the American College of Rheumatology and Association of Rheumatology Health Professionals 2011 Chicago, IL United States Conference Start: 20111104 Conference End:* 20111109 Conference Pu 2011; 63(10 SUPPL.#1):October.
- 313. Heijde D., Breedveld F.C., Kavanaugh A., Keystone E.C., Landewé R., Patra K. et al. Disease activity, physical function, and radiographic progression after longterm therapy with adalimumab plus methotrexate: 5-year results of PREMIER. *The Journal of Rheumatology* 2010; 37:2237-2246.
- 314. Emery P., Genovese M.C., van V.R., Sharp J.T., Patra K., Sasso E.H. Less radiographic progression with adalimumab plus methotrexate versus methotrexate monotherapy across the spectrum of clinical response in early rheumatoid arthritis. *Journal of Rheumatology* 2009; 36(7):1429-1441.
- 315. Strand V., Rentz A.M., Cifaldi M.A., Chen N., Roy S., Revicki D. Health-related quality of life outcomes of adalimumab for patients with early rheumatoid arthritis: Results from a randomized multicenter study. *Journal of Rheumatology* 2012; 39(1):63-72.
- 316. Kosinski M., Kujawski S.C., Martin R., Wanke L.A., Buatti M.C., Ware J. et al. Healthrelated quality of life in early rheumatoid arthritis: Impact of disease and treatment response. *American Journal of Managed Care* 2002; 8(3):231-240.

- 317. Fleischmann R., Weinblatt M.E., Schiff M.H., Khanna D., Furst D., Maldonado M.A. Changes in Patient Reported Outcomes in Response to Subcutaneous Abatacept or Adalimumab in Rheumatoid Arthritis: Results From the Ample (Abatacept Versus Adalimumab Comparison in Biologic Naive RA Subjects with Background Methotrexate) Trial. Arthritis and Rheumatism 2012; 64(10):S578.
- 318. Emery P., Smolen J.S., Samborski W., Berenbaum F., Davies O., Ambrugeat J. et al. Efficacy and safety of certolizumab pegol after incomplete response to dmards in rheumatoid arthritis patients with low moderate disease activity: Results from certain, a phase IIIB study. *Rheumatology (United Kingdom)* 2012; 51:iii134.
- 319. Kameda H., Kurasawa T., Nagasawa H., Amano K., Takeuchi T. The addition of another disease-modifying anti-rheumatic drug, bucillamine, to methotrexate in place of infliximab improves the rate of infliximab-free sustained remission. *International Journal of Rheumatic Diseases* 2010; 13:107.
- 320. Hidaka T., Suzuki K., Matsuki Y., Takamizawa-Matsumoto M., Kataharada K., Ishizuka T. et al. Filtration leukocytapheresis therapy in rheumatoid arthritis: a randomized, double-blind, placebo-controlled trial. *Arthritis & Rheumatism* 1999; 42(3):431-437.
- 321. Jobanputra P., Maggs F., Deeming A., Carruthers D., Rankin E., Jordan A. et al. Randomized efficacy and discontinuation study of etanercept versus adalimumab (Red sea): A pragmatic, open-label, non-inferiority study of first TNF inhibitor use in rheumatoid arthritis: 1-year data. *Rheumatology (United Kingdom)* 2012; 51:iii116-iii117.
- 322. Genovese M.C., Han C., Keystone E.C., Hsia E.C., Buchanan J., Gathany T. et al. Effect of golimumab on patient-reported outcomes in rheumatoid arthritis: results from the GO-FORWARD study. *Journal of Rheumatology* 2012; 39(6):1185-1191.
- 323. Genovese M.C., Bathon J.M., Martin R.W., Fleischmann R.M., Tesser J.R., Schiff M.H. et al. Etanercept versus methotrexate in patients with early rheumatoid arthritis: Two-year radiographic and clinical outcomes. *Arthritis and Rheumatism* 2002; 46(6):1443-1450.
- 324. Nishimoto N., Takagi N. Assessment of the validity of the 28-joint disease activity score using erythrocyte sedimentation rate (DAS28-ESR) as a disease activity index of rheumatoid arthritis in the efficacy evaluation of 24-week treatment with tocilizumab: subanalysis of the SATORI study. *Modern Rheumatology* 2010; 20(6):539-547.
- 325. Ostergaard M., Emery P., Conaghan P.G., Fleischmann R., Hsia E.C., Xu W. et al. Significant improvement in synovitis, osteitis, and bone erosion following golimumab and methotrexate combination therapy as compared with methotrexate alone: A magnetic resonance imaging study of 318 methotrexate-naive rheumatoid arthritis patients. *Arthritis and Rheumatism* 2011; 63(12):3712-3722.
- 326. Conaghan P.G., Emery P., Ostergaard M., Keystone E.C., Genovese M.C., Hsia E.C. et al. Assessment by MRI of inflammation and damage in rheumatoid arthritis patients with methotrexate inadequate response receiving golimumab: results of the GO-FORWARD trial. *Annals of the Rheumatic Diseases* 2011; 70(11):1968-1974.
- 327. Allaart C.F., Breedveld F.C., Dijkmans B.A.C. Treatment of recent-onset rheumatoid arthritis: Lessons from the BeSt study. *Journal of Rheumatology* 2007; 34(SUPPL. 80):25-33.
- 328. Maini R.N., Breedveld F.C., Kalden J.R., Smolen J.S., Furst D., Weisman M.H. et al. Sustained Improvement Over Two Years in Physical Function, Structural Damage, and Signs

and Symptoms Among Patients With Rheumatoid Arthritis Treated With and Methotrexate. *Arthritis and Rheumatism* 2004; 50(4):1051-1065.

329. Nishimoto N., Miyasaka N., Yamamoto K., Kawai S., Takeuchi T., Azuma J. Long-term safety and efficacy of tocilizumab, an anti-IL-6 receptor monoclonal antibody, in monotherapy, in patients with rheumatoid arthritis (the STREAM study): Evidence of safety and efficacy in a 5-year extension study. *Annals of the Rheumatic Diseases* 2009; 68(10):1580-1584.

## **11. APPENDICES**

### Appendix 1 Excluded studies

### Table 332: Table of excluded studies with rationale for exclusion

Study	Rationale for exclusion
ADJUST	Population DMARD-naive but moderate-severe (ABT)
Emery $2010^1$	
AGREE	Population: MTX naïve (not licensed for this population) (ABT)
Westhovens 2009 ²	
ALLOW	Population: prior biologics (open-label run-in phase) (ABT)
Kaine 2012 ³	
ARRIVE	Population – previous use of anti-TNF therapy in all (ABT)
Schiff 2009 ⁴	
ATTAIN	Population – previous use of anti-TNF therapy in all (ABT)
Genovese 2005 ⁵	
ATTUNE	Study design: not RCT. Long-term extension of AIM and
Keystone 2012 ⁶	ATTAIN trials (ABT)
Burmester et al., 2011	Not randomised controlled trial (single arm study) (TCZ)
(TAMARA) ⁷	
Bykerk et al., 2012	Not randomised controlled trial (TCZ)
(ACT-SURE) ⁸	
C87014 Choy 2012 ⁹	Intervention (not licensed dose) (CTZ)
CanACT Haraoui 2011	Not randomised controlled trial (ADA)
10	
Chen 2006 ¹¹	Study investigating serum levels of anti-cyclic citrullinated
	peptide antibodies (anti-CCP) and rheumatoid factor - excluded
	outcomes. (ETN)
Chen, 2009 ¹²	Participants on MTX, unclear if had inadequate response, 12
	week study, n=47 (ADA)
Choy 2002 ¹³	Intervention: not licensed dose (CTZ)
Choy <i>et al.</i> , 2002 ¹⁴	Not in line with licensed indications
DART Moots 2011 ¹⁵	Not randomised controlled trial (ADA, ETN, IFX)
Doseflex Furst 2012 ¹⁶	Population: prior biologics (open-label run-in) (CTZ)
Elliott <i>et al.</i> , 1994 ¹⁷	Not in line with licensed indications (IFX)
Emery et al., 2008	Biologic-experienced population (outside appraisal scope) (TCZ)
(RADIATE) ¹⁸	
FAST4WARD	Intervention: not licensed dose (CTZ)
Fleischmann 2009 ¹⁹	
Fleischmann 2012 ²⁰	Approximately 10% participants had prior biologics, fewer than
	22 weeks of ADA treatment (10 weeks ADA then switch to
	TOF), so not included as additional evidence
Furst et al., 2007	Biologic-experienced population (outside appraisal scope) (IFX)
OPPOSITE ²¹	
Genovese et al. 2012 ²²	Pooled data excluded

Genovese, the 20000223	Comparators unlicensed as ETN in combination with anakinra
study group 2004, ²³	
Hall & Fleischmann,	Insufficient details on data analyses and no useable pre-
2010 24	withdrawal data (TCZ)
HIKARI	Study design: no separate 6 month data for those with
(NCT00791921)	concomitant cDMARDs and monotherapy (CTZ)
Yamamoto 2011 ²⁵	
Ingham <i>et al.</i> , 2012	All patients received IFX prior to randomisation to range of IFX
(RESTART) ²⁰	doses (not comparable with other trial populations at baseline)
	(IFX)
Johnsen 2006 ²⁷	Comparator unlicensed dose (ETN)
Kaufmann <i>et al.</i> , 2011 ²⁸	Not randomised controlled trial (TCZ)
Kavanaugh <i>et al.</i> , 2000 $_{29}$	Not in line with licensed indications (IFX)
Kellner et al., 2011 ³⁰	Pre-treatment with biologics (TCZ)
Keystone, 2004 ³¹	Can't distinguish results between monotherapy and combination
	therapy, half participants in each of three treatment arms given
	MTX, half not, 8week RCT stage of 16week study (ETN)
Khraishi <i>et al.</i> , 2011 22	Pooled data excluded (TCZ)
Kume <i>et al.</i> , $2011^{-32}$	All had prior biologics (TCZ)
Kume <i>et al.</i> , 2011 ³³	No useable scope outcome data (TCZ)
Leirisalo-Repo <i>et al.</i> ,	Dosing interval in induction phase not in line with licensed
2013 (NEO-RACo) ³⁴	indications (IFX)
Lim <i>et al.</i> , 2012 ³⁵	Insufficient description of statistical analyses in conference
	abstract to permit critical appraisal and handling of data (TCZ)
Lisbona 2008 ³⁰ and	Treatment of tendosynovitis in RA, mostly excluded outcomes, 6
2010 37	week study (ETN)
Lorenz <i>et al.</i> , 1996	Not in line with licensed indications (IFX)
Lorenz <i>et al.</i> , $2000^{-99}$	Not in line with licensed indications (IFX)
Maini <i>et al.</i> , 1998	Not in line with licensed indications (IFX)
Maini <i>et al.</i> , 2006	Low levels of prior biologics and no ACR-EULAR response data
(CHARISMA)	at weeks 22-30 for NMA (week 16 data only) (TCZ)
Makashima <i>et al.</i> , 2010 42	Not randomised controlled trial (TCZ)
Marcora 2006 ⁴³	Treatment of cachexia (ETN)
Gwynedd Hospital	
Markatseli et al., 2012 44	Not randomised controlled trial (TNF inhibitors)
Moreland 1997 ⁴⁵	Unlicensed dose (ETN)
Nishimoto, 2010 ²²	Pooled data excluded
Pavelka <i>et al.</i> , 2009 ⁴⁶	All patients received prior biologics (IFX)
Perkins <i>et al.</i> , 1998 ⁴⁷	Not in line with licensed indications (IFX)
PRESERVE Smolen 2013 48	All participants on ETN, before randomisation
PRIZE (unpublished, MS	All participants on ETN, before randomisation
from Pfizer ⁴⁹ MS)	
ReACT	Not randomised controlled trial, prior biologics (ADA)
Bombardieri 2007	
Roux, 2011 51	Comparator steroid only (ETN)

Smeets <i>et al.</i> , 2003 ⁵²	No scope outcomes
Smolen <i>et al.</i> , 2009 (GO-	Biologic-experienced population (outside appraisal scope) (GOL)
AFTER) ⁵³	
STREAM	Participants didn't have to have diagnosis of RA to be eligible
van Eijk 2012 ⁵⁴	for trial, DAS under 3.2 (ADA)
Takeuchi 2012 ³³	Population: prior biologics (ABT)
Takeuchi <i>et al.</i> , 2009	All patients received IFX prior to randomisation to range of IFX
(RISING) ³⁶	doses (not comparable with other trial populations at baseline)
	(IFX)
Takeuchi <i>et al.</i> , 2012	Not in line with licensed indications (monotherapy) (GOL)
(GO-MONO) ³⁷	
Tam <i>et al.</i> , $2012^{36}$	Insufficient description of cDMARD treatment history (and no
	ACR/EULAR data at 22-30 weeks) (IFX)
TAME Greenwald 2011	Comparator rituximab
Taylor <i>et al.</i> , 2004 ⁶⁰	Not in line with licensed indications (IFX)
van de Putte, 2003 ⁶¹	Unlicensed dose (ADA)
Van Vollenhoven <i>et al.</i> ,	Pooled data excluded (TCZ)
2009 62	
Weinblatt 2008 ⁶³	Unlicensed dose (ETN), all prior inadequate response to
	etanercept
Weinblatt et al., 2012	High proportion of prior biologic use (outside appraisal scope)
(ACT-STAR) ⁶⁴	(TCZ)
Westhovens 2005 ⁶⁵	Population: inadequate response to anti-TNF therapy (ABT)
Westhovens et al.,	Not in line with licensed indications (IFX)
2006 ⁶⁶	
Westhovens et al., 2012	Unlicensed dose (i.v. administration) (GOL)
(GO-FURTHER) ⁶⁷	
Yamanaka et al., 2011	Not randomised controlled trial (TCZ)
(REACTION) ⁶⁸	
Yazici et al., 2012	High proportion of prior biologic use (outside appraisal scope)
(ROSE) ⁶⁹	(TCZ)

#### **References for Excluded Studies**

- Emery P., Durez P., Dougados M., Legerton C.W., Becker J.C., Vratsanos G. et al. Impact of Tcell costimulation modulation in patients with undifferentiated inflammatory arthritis or very early rheumatoid arthritis: a clinical and imaging study of abatacept (the ADJUST trial).[Erratum appears in Ann Rheum Dis. 2011 Aug;70(8):1519]. Annals of the Rheumatic Diseases 2010; 69(3):510-516.
- 2. Westhovens R., Robles M., Ximenes A.C., Nayiager S., Wollenhaupt J., Durez P. et al. Clinical efficacy and safety of abatacept in methotrexate-naive patients with early rheumatoid arthritis and poor prognostic factors. *Annals of the Rheumatic Diseases* 2009; 68(12):1870-1877.
- 3. Kaine J., Gladstein G., Strusberg I., Robles M., Louw I., Gujrathi S. et al. Evaluation of abatacept administered subcutaneously in adults with active rheumatoid arthritis: Impact of

withdrawal and reintroduction on immunogenicity, efficacy and safety (Phase IIIb ALLOW study). *Annals of the Rheumatic Diseases* 2012; 71(1):38-44.

- 4. Schiff M., Pritchard C., Huffstutter J.E., Rodriguez-Valverde V., Durez P., Zhou X. et al. The 6-month safety and efficacy of abatacept in patients with rheumatoid arthritis who underwent a washout after anti-tumour necrosis factor therapy or were directly switched to abatacept: the ARRIVE trial. *Annals of the Rheumatic Diseases* 2009; 68(11):1708-1714.
- 5. Genovese M.C., Becker J.-C., Schiff M., Luggen M., Sherrer Y., Kremer J. et al. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. *New England Journal of Medicine* 2005; 353(11):1114-1123.
- 6. Keystone E.C., Kremer J.M., Russell A., Box J., Abud-Mendoza C., Elizondo M.G. et al. Abatacept in subjects who switch from intravenous to subcutaneous therapy: Results from the phase IIIb ATTUNE study. *Annals of the Rheumatic Diseases* 2012; 71(6):857-861.
- 7. Burmester G.R., Feist E., Kellner H., Braun J., Iking-Konert C., Rubbert-Roth A. Effectiveness and safety of the interleukin 6-receptor antagonist tocilizumab after 4 and 24 weeks in patients with active rheumatoid arthritis: the first phase IIIb real-life study (TAMARA). *Annals of the Rheumatic Diseases* 2011; 70(5):755-759.
- 8. Bykerk V.P., Ostor A.J., Alvaro-Gracia J., Pavelka K., Ivorra J.A., Graninger W. et al. Tocilizumab in patients with active rheumatoid arthritis and inadequate responses to DMARDs and/or TNF inhibitors: a large, open-label study close to clinical practice. *Ann Rheum Dis* 2012; 71(12):1950-1954.
- 9. Choy E., McKenna F., Vencovsky J., Valente R., Goel N., Vanlunen B. et al. Certolizumab pegol plus MTX administered every 4 weeks is effective in patients with RA who are partial responders to MTX. *Rheumatology (United Kingdom)* 2012; 51(7):1226-1234.
- 10. Haraoui B., Cividino A., Stewart J., Guerette B., Keystone E.C. Safety and effectiveness of adalimumab in a clinical setting that reflects Canadian standard of care for the treatment of rheumatoid arthritis (RA): Results from the CanACT study. *BMC Musculoskeletal Disorders* 2011; 12.
- 11. Chen H.A., Lin K.C., Chen C.H., Liao H.T., Wang H.P., Chang H.N. et al. The effect of etanercept on anti-cyclic citrullinated peptide antibodies and rheumatoid factor in patients with rheumatoid arthritis. *Annals of the Rheumatic Diseases* 2006; 65(1):35-39.
- 12. Chen D.-Y., Chou S.-J., Hsieh T.-Y., Chen Y.-H., Chen H.-H., Hsieh C.-W. et al. Randomized, double-blind, placebo-controlled, comparative study of human anti-TNF antibody adalimumab in combination with methotrexate and methotrexate alone in Taiwanese patients with active rheumatoid arthritis. *Journal of the Formosan Medical Association* 2009; 108(4):310-319.
- 13. Choy E.H., Hazleman B., Smith M., Moss K., Lisi L., Scott D.G. et al. Efficacy of a novel PEGylated humanized anti-TNF fragment (CDP870) in patients with rheumatoid arthritis: a phase II double-blinded, randomized, dose-escalating trial. *Rheumatology* 2002; 41(10):1133-1137.
- 14. Choy E.H., Isenberg D.A., Garrood T., Farrow S., Ioannou Y., Bird H. et al. Therapeutic benefit of blocking interleukin-6 activity with an anti-interleukin-6 receptor monoclonal antibody in rheumatoid arthritis: a randomized, double-blind, placebo-controlled, dose-escalation trial. *Arthritis & Rheumatism* 2002; 46(12):3143-3150.

- 15. Moots R.J., Haraoui B., Matucci-Cerinic M., Van Riel P.L.C.M., Kekow J., Schaeverbeke T. et al. Differences in biologic dose-escalation, non-biologic and steroid intensification among three anti-TNF agents: evidence from clinical practice. *Clinical and Experimental Rheumatology* 2011; 29(1):26-34.
- 16. Furst D., Shaikh S., Greenwald M., Bennett B., Staelens F. Evaluation of two dosing regimens of certolizumab pegol for maintenance of clinical response in patients with active rheumatoid arthritis: Primary results from doseflex, a phase IIIB study. *Annals of the Rheumatic Diseases* 2012; 71:513.
- 17. Elliott M.J., Maini R.N., Feldmann M., Kalden J.R., Antoni C., Smolen J.S. et al. Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor alpha (cA2) versus placebo in rheumatoid arthritis. *Lancet* 1994; 344(8930):1105-1110.
- 18. Emery P., Keystone E., Tony H.P., Cantagrel A., van V.R., Sanchez A. et al. IL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-tumour necrosis factor biologicals: Results from a 24-week multicentre randomised placebo-controlled trial. *Annals of the Rheumatic Diseases* 2008; 67(11):1516-1523.
- 19. Fleischmann R., Vencovsky J., van Vollenhoven R.F., Borenstein D., Box J., Coteur G. et al. Efficacy and safety of certolizumab pegol monotherapy every 4 weeks in patients with rheumatoid arthritis failing previous disease-modifying antirheumatic therapy: The FAST4WARD study. *Annals of the Rheumatic Diseases* 2009; 68(6):805-811.
- 20. Fleischmann R., Cutolo M., Genovese M.C., Lee E.B., Kanik K.S., Sadis S. et al. Phase IIb dose-ranging study of the oral JAK inhibitor tofacitinib (CP-690,550) or adalimumab monotherapy versus placebo in patients with active rheumatoid arthritis with an inadequate response to disease-modifying antirheumatic drugs. *Arthritis and Rheumatism* 2012; 64(3):617-629.
- 21. Furst D.E., Gaylis N., Bray V., Olech E., Yocum D., Ritter J. et al. Open-label, pilot protocol of patients with rheumatoid arthritis who switch to infliximab after an incomplete response to etanercept: The opposite study. *Annals of the Rheumatic Diseases* 2007; 66(7):893-899.
- 22. Tocilizumab (RoActemra) for the treatment of rheumatoid arthritis. Roche MTA Submission. 2013.
- 23. Genovese M.C., Cohen S., Moreland L., Lium D., Robbins S., Newmark R. et al. Combination Therapy with Etanercept and Anakinra in the Treatment of Patients with Rheumatoid Arthritis Who Have Been Treated Unsuccessfully with Methotrexate. *Arthritis and Rheumatism* 2004; 50(5):1412-1419.
- 24. Hall S., Fleischmann R. Tocilizumab inhibits radiological progression and improves physical function in rheumatoid arthritis (RA) patients at 2 years with increasing clinical efficacy over time [Abstract]. *Internal Medicine Journal* 2010; 40:13.
- 25. Yamamoto K., Takeuchi T., Yamanaka H., Ishiguro N., Tanaka Y., Eguchi K. et al. Efficacy and safety of certolizumab pegol without methotrexate co-administration in japanese patients with active rheumatoid arthritis. *Arthritis and Rheumatism Conference: Annual Scientific Meeting of the American College of Rheumatology and Association of Rheumatology Health Professionals 2011 Chicago, IL United States Conference Start: 20111104 Conference End:* 20111109 Conference Pu 2011; 63(10 SUPPL.#1):October.

- 26. Ingham M., Tang L., Decktor D., Bolce R., Wang J. Benefits in patient reported outcomes supporting a "treat to target" paradigm for infliximab -treated ra patients previously inadequately responsive to prior anti-TNF treatment. *Value in Health* 2012; 15(4):A42-A43.
- 27. Johnsen A.K., Schiff M.H., Mease P.J., Moreland L.W., Maier A.L., Coblyn J.S. et al. Comparison of 2 doses of etanercept (50 vs 100 mg) in active rheumatoid arthritis: A randomized double blind study. *Journal of Rheumatology* 2006; 33(4):659-664.
- 28. Kaufman J., Seel S., Roske A.-E. Comparison of tocilizumab and TNF inhibitor therapy in rheumatoid arthritis. *Arthritis & Rheumatism* 2011; 63(Suppl 10):1271.
- 29. Kavanaugh A., St.Clair E.W., McCune W.J., Braakman T., Lipsky P. Chimeric anti-tumor necrosis factor-alpha monoclonal antibody treatment of patients with rheumatoid arthritis receiving methotrexate therapy. *Journal of Rheumatology* 2000; 27(4):841-850.
- 30. Kellner H., Kellner W. Tocilizumab improves in rheumatoid arthritis patients with longstanding but still active disease the clinical disease activity (DAS28) and ameliorates MRI findings within the first three months of therapy. *Arthritis & Rheumatism* 2011; 63(Suppl 10):951.
- 31. Keystone E.C., Schiff M.H., Kremer J.M., Kafka S., Lovy M., De V.T. et al. Once-Weekly Administration of 50 mg Etanercept in Patients with Active Rheumatoid Arthritis: Results of a Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial. *Arthritis and Rheumatism* 2004; 50(2):353-363.
- 32. Kume K., Amano K., Yamada S., Hatta K. Tocilizumab Improves Arterial Stiffness Compared with Abatacept In Patients with TNF Blockers-Resistant Active Rheumatoid Arthritis. An Open Label Randomized Controlled Trial. *Arthritis and Rheumatism* 2011; 63(10):S147.
- 33. Kume K., Amano K., Yamada S., Hatta K. Tocilizumab monotherapy improves bone mineral density as well as TNF blockers plus methotrexate with methotrexate-resistant active rheumatoid arthritis: an open-label randomized clinical trial. T-BONE trial. *Arthritis & Rheumatism* 2011; 63(Suppl 10):396.
- 34. Leirisalo-Repo M., Kautiainen H., Laasonen L., Korpela M., Kauppi M.J., Kaipiainen-Seppanen O. et al. Infliximab for 6 months added on combination therapy in early rheumatoid arthritis: 2-year results from an investigator-initiated, randomised, double-blind, placebo-controlled study (the NEO-RACo Study). *Annals of the Rheumatic Diseases* 2013; 72(6):851-857.
- 35. Lim M., Park S.-H., Shim S., Baek H., Yoo D.-H. A double-blind, placebo-controlled, multicenter trial of tocilizumab in moderate to severe active ra patients with inadequate response to methotrexate in Korean population. *Annals of the Rheumatic Diseases* 2012; 71:670.
- 36. Temsirolimus: CCI 779, CCI-779, Cell cycle inhibitor-779. Drugs in R and D 2004; 5(6):2004.
- 37. Lisbona M.P., Maymo J., Perich J., Almirall M., Carbonell J. Rapid reduction in tenosynovitis of the wrist and fingers evaluated by MRI in patients with rheumatoid arthritis after treatment with etanercept. *Annals of the Rheumatic Diseases* 2010; 69(6):1117-1122.
- 38. Lorenz H.M., Antoni C., Valerius T., Repp R., Grunke M., Schwerdtner N. et al. In vivo blockade of TNF-alpha by intravenous infusion of a chimeric monoclonal TNF-alpha antibody in patients with rheumatoid arthritis. Short term cellular and molecular effects. *Journal of Immunology* 1996; 156(4):1646-1653.

- 39. Lorenz H.M., Grunke M., Hieronymus T., Antoni C., Nusslein H., Schaible T.F. et al. In vivo blockade of tumor necrosis factor-alpha in patients with rheumatoid arthritis: longterm effects after repeated infusion of chimeric monoclonal antibody cA2. *Journal of Rheumatology* 2000; 27(2):304-310.
- 40. Maini R.N., Breedveld F.C., Kalden J.R., Smolen J.S., Davis D., Macfarlane J.D. et al. Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis. *Arthritis and Rheumatism* 1998; 41(9):1552-1563.
- 41. Maini R.N., Taylor P.C., Szechinski J., Pavelka K., Broll J., Balint G. et al. Double-blind randomized controlled clinical trial of the interleukin-6 receptor antagonist, tocilizumab, in European patients with rheumatoid arthritis who had an incomplete response to methotrexate. *Arthritis and Rheumatism* 2006; 54(9):2817-2829.
- 42. Nakashima Y., Kondo M., Harada H., Horiuchi T., Ishinishi T., Jojima H. et al. Clinical evaluation of tocilizumab for patients with active rheumatoid arthritis refractory to anti-TNF biologics: tocilizumab in combination with methotrexate. *Modern Rheumatology* 2010; 20(4):343-352.
- 43. Marcora S.M., Chester K.R., Mittal G., Lemmey A.B., Maddison P.J. Randomized phase 2 trial of anti-tumor necrosis factor therapy for cachexia in patients with early rheumatoid arthritis. *American Journal of Clinical Nutrition* 2006; 84(6):1463-1472.
- 44. Markatseli T.E., Alamanos Y., Saougou I., Voulgari P.V., Drosos A.A. Survival of TNF-alpha antagonists in rheumatoid arthritis: a long-term study. *Clinical and Experimental Rheumatology* 2012; 30(1):31-38.
- 45. Moreland L.W., Baumgartner S.W., Schiff M.H., Tindall E.A., Fleischmann R.M., Weaver A.L. et al. Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fusion protein. *New England Journal of Medicine* 1997; 337(3):141-147.
- 46. Pavelka K., Jarosova K., Suchy D., Senolt L., Chroust K., Dusek L. et al. Increasing the infliximab dose in rheumatoid arthritis patients: a randomised, double blind study failed to confirm its efficacy. *Annals of the Rheumatic Diseases* 2009; 68(8):1285-1289.
- 47. Perkins D.J., St Clair E.W., Misukonis M.A., Weinberg J.B. Reduction of NOS2 overexpression in rheumatoid arthritis patients treated with anti-tumor necrosis factor alpha monoclonal antibody (cA2). *Arthritis & Rheumatism* 1998; 41(12):2205-2210.
- 48. Smolen J.S., Nash P., Durez P., Hall S., Ilivanova E., Irazoque-Palazuelos F. et al. Maintenance, reduction, or withdrawal of etanercept after treatment with etanercept and methotrexate in patients with moderate rheumatoid arthritis (PRESERVE): a randomised controlled trial. *Lancet* 2013; 381(9870):918-929.
- 49. Etanercept for the treatment of rheumatoid arthritis. (Review of TA guidance 130, 186, 224, 234 and part review of TA guidance 225 and 247). Multiple Technology Appraisal (MTA). Pfizer submission. 2013.
- 50. Bombardieri S., Ruiz A.A., Fardellone P., Geusens P., McKenna F., Unnebrink K. et al. Effectiveness of adalimumab for rheumatoid arthritis in patients with a history of TNF-antagonist therapy in clinical practice. *Rheumatology* 2007; 46(7):1191-1199.

- 51. Roux C.H., Breuil V., Valerio L., Amoretti N., Brocq O., Albert C. et al. Etanercept compared to intraarticular corticosteroid injection in rheumatoid arthritis: Double-blind, randomized pilot study. *Journal of Rheumatology* 2011; 38(6):1009-1011.
- 52. Smeets T.J., Kraan M.C., van Loon M.E., Tak P.P. Tumor necrosis factor alpha blockade reduces the synovial cell infiltrate early after initiation of treatment, but apparently not by induction of apoptosis in synovial tissue. *Arthritis & Rheumatism* 2003; 48(8):2155-2162.
- 53. Smolen J.S., Kay J., Doyle M.K., Landewe R., Matteson E.L., Wollenhaupt J. et al. Golimumab in patients with active rheumatoid arthritis after treatment with tumour necrosis factor alpha inhibitors (GO-AFTER study): a multicentre, randomised, double-blind, placebo-controlled, phase III trial. *The Lancet* 2009; 374(9685):210-221.
- 54. van Eijk I.C., Nielen M.M.J., van d.H.-B., I, Tijhuis G.J., Boers M., Dijkmans B.A.C. et al. Aggressive therapy in patients with early arthritis results in similar outcome compared with conventional care: The STREAM randomized trial. *Rheumatology* 2012; 51(4):686-694.
- 55. Takeuchi T., Matsubara T., Nitobe T., Suematsu E., Ohta S., Honjo S. et al. Phase II doseresponse study of abatacept in Japanese patients with active rheumatoid arthritis with an inadequate response to methotrexate. *Modern Rheumatology* 2013; 23(2):226-235.
- 56. Takeuchi T., Miyasaka N., Inoue K., Abe T., Koike T., RISING s. Impact of trough serum level on radiographic and clinical response to infliximab plus methotrexate in patients with rheumatoid arthritis: results from the RISING study. *Modern Rheumatology* 2009; 19(5):478-487.
- 57. Takeuchi T., Harigai M., Tanaka Y., Yamanaka H., Ishiguro N., Yamamoto K. et al. Golimumab monotherapy in Japanese patients with active rheumatoid arthritis despite prior treatment with disease-modifying antirheumatic drugs: results of the phase 2/3, multicentre, randomised, double-blind, placebo-controlled GO-MONO study through 24 weeks. *Ann Rheum Dis* 2012.
- 58. Tam L.S., Shang Q., Li E.K., Wang S., Li R.J., Lee K.L. et al. Infliximab is associated with improvement in arterial stiffness in patients with early rheumatoid arthritis -- a randomized trial. *J RHEUMATOL* 2012; 39(12):2267-2275.
- 59. Greenwald M.W., Shergy W.J., Kaine J.L., Sweetser M.T., Gilder K., Linnik M.D. Evaluation of the safety of rituximab in combination with a tumor necrosis factor inhibitor and methotrexate in patients with active rheumatoid arthritis: Results from a randomized controlled trial. *Arthritis and Rheumatism* 2011; 63(3):622-632.
- 60. Taylor P.C., Steuer A., Gruber J., Cosgrove D.O., Blomley M.J.K., Marsters P.A. et al. Comparison of Ultrasonographic Assessment of Synovitis and Joint Vascularity With Radiographic Evaluation in a Randomized, Placebo-Controlled Study of Infliximab Therapy in Early Rheumatoid Arthritis. *Arthritis and Rheumatism* 2004; 50(4):1107-1116.
- 61. Van De Putte L.B.A., Rau R., Breedveld F.C., Kalden J.R., Malaise M.G., Van Riel P.L.C.M. et al. Efficacy and safety of the fully human anti-tumour necrosis factor alpha monoclonal antibody adalimumab (D2E7) in DMARD refractory patients with rheumatoid arthritis: A 12 week, phase II study. *Annals of the Rheumatic Diseases* 2003; 62(12):1168-1177.
- 62. van V.R., Ducournau P., Wintfeld N., Berger W., Alten R. Health assessment questionnairedisability index (HAQ-DI) scores in patients with rheumatoid arthritis (RA) treated with tocilizumab plus conventional anti-rheumatic drugs. *Value in Health Conference: ISPOR 12th*

Annual European Congress Paris France Conference Start: 20091024 Conference End: 20091027 Conference Publication: (Var Pagings) 2009; 12(7):October.

- 63. Weinblatt M.E., Schiff M.H., Ruderman E.M., Bingham C.O., III, Li J., Louie J. et al. Efficacy and safety of etanercept 50 mg twice a week in patients with rheumatoid arthritis who had a suboptimal response to etanercept 50 mg once a week: results of a multicenter, randomized, double-blind, active drug-controlled study. *Arthritis & Rheumatism* 2008; 58(7):1921-1930.
- 64. Weinblatt M.E., Kremer J., Cush J., Rigby W., Teng L.L., Devenport J. et al. Tocilizumab as monotherapy or in combination with nonbiologic DMARDs: 24-week results of an open-label, clinical practice study (ACT-STAR). *Arthritis Care Res (Hoboken )* 2012.
- 65. Westhovens R., Cole J.C., Li T., Martin M., MacLean R., Lin P. et al. Improved health-related quality of life for rheumatoid arthritis patients treated with abatacept who have inadequate response to anti-TNF therapy in a double-blind, placebo-controlled, multicentre randomized clinical trial. *Rheumatology* 2006; 45(10):1238-1246.
- 66. Westhovens R., Houssiau F., Joly J., Everitt D.E., Zhu Y., Sisco D. et al. A phase I study assessing the safety, clinical response, and pharmacokinetics of an experimental infliximab formulation for subcutaneous or intramuscular administration in patients with rheumatoid arthritis. *Journal of Rheumatology* 2006; 33(5):847-853.
- 67. Westhovens R., Weinblatt M.E., Han C., Gathany T., Kim L., Mack M. et al. Fatigue is an independent variable predicting physical function and DAS-28 remission for patients with rheumatoid arthritis treated with intravenously administered golimumab: Results from a phase 3, placebo controlled clinical trial. *Value in Health* 2012; 15(4):A42.
- 68. Yamanaka H., Tanaka Y., Inoue E., Hoshi D., Momohara S., Hanami K. et al. Efficacy and tolerability of tocilizumab in rheumatoid arthritis patients seen in daily clinical practice in Japan: results from a retrospective study (REACTION study). *Modern Rheumatology* 2011; 21(2):122-133.
- 69. Yazici Y., Curtis J.R., Ince A., Baraf H., Malamet R.L., Teng L.L. et al. Efficacy of tocilizumab in patients with moderate to severe active rheumatoid arthritis and a previous inadequate response to disease-modifying antirheumatic drugs: The ROSE study. *Annals of the Rheumatic Diseases* 2012; 71(2):198-205.

## **APPENDIX 2: Quality Assessment Summary of Findings**

# Table 333: Quality assessment: summary of findings

Trial	Interventio n	Po p	NMA (Y/N)	Was the method used to generate the allocation sequence to treatment groups adequate ? (Y/N/U)	Was the allocation of treatment concealed adequately ? (Y/N/U)	Were the treatment groups comparabl e at baseline? (Y/N/U/ NA)	Were patients and study personnel blinded to treatment ? (Y/N/U)	Were participant s analysed in their allocated treatment groups? (Y/N/U)	Were all randomise d patients included in efficacy analyses? (Y/N/U/ mITT/NA)	Were all randomise d patients included in safety analyses? (Y/N/U/ mITT/NA)	Were at least 80% of participant s originally randomise d included in the final analysis? (Y/N/U)	Free of evidence of selective reporting of outcomes ? (Y/N/U)
Abe 2006 ⁵⁶	IFX	2/3	N	U	U	Y	Y	U	mITT	mITT	Y	U
ACT-RAY ⁵⁷	TCZ	2/3	Y	Y	Y	Y	Y	Y	mITT	mITT	Y	N
ADACTA ⁵⁸	ADA, TOC	2/3	Y	Y	Y	Y	Y	Y	mITT	mITT	Y	N
ADORE ⁵⁹	ETN	2/3	N	U	U	U	N	Y	mITT	mITT	Y	U
AIM ⁶¹	ABT	2/3	Y	Y	Y	Y	Y	Y	mITT	mITT	Y	Y
AMPLE ⁶⁶	ADA, ABT	2/3	Y	U	U	Y	Ν	Y	mITT	mITT	Y	Y
APPEAL ⁶⁸	ETN	2/3	N	U	U	Y	Ν	Y	mITT	mITT	Y	Ν
ARMADA ⁶⁹	ADA	2/3	Y	U	U	Y	Y	Y	Y	Y	Y	U
ASPIRE ⁷¹	IFX	1	N	Y	Y	Y	Y	Y	N	mITT	Y	U
ASSET ⁷²	ABT	2/3	Ν	Y	Y	Ν	Y	Y	mITT	mITT	Y	N
ASSURE ⁷³	ABT	2/3	Ν	U	U	Y	Y	Y	mITT	mITT	Y	N
ATTEST ⁷⁴	IFX, ABT	2/3	Y	U	U	Y	Y	Y	mITT	mITT	U	Ν
ATTRACT ⁷⁵	IFX	2/3	Y	Y	Y	N	Y	Y	U	Y	Y	U
AUGUST II ⁷⁶	ADA	2/3	Y	Y	Y	Y	N	Y	Y	Y	Y	Y

Trial	Interventio n	Po p	NMA (Y/N)	Was the method used to generate the allocation sequence to treatment groups adequate ? (Y/N/U)	Was the allocation of treatment concealed adequately ? (Y/N/U)	Were the treatment groups comparabl e at baseline? (Y/N/U/ NA)	Were patients and study personnel blinded to treatment ? (Y/N/U)	Were participant s analysed in their allocated treatment groups? (Y/N/U)	Were all randomise d patients included in efficacy analyses? (Y/N/U/ mITT/NA)	Were all randomise d patients included in safety analyses? (Y/N/U/ mITT/NA)	Were at least 80% of participant s originally randomise d included in the final analysis? (Y/N/U)	Free of evidence of selective reporting of outcomes ? (Y/N/U)
Bejarano 2008 ⁷⁷	ADA	1	N	Y	Y	Y	Y	Y	Y	Y	Y	N
BeST ^{/8}	IFX	1	Y	Y	N	Y	N	Y	U	U	Y	U
CERTAIN ⁷⁹	CTZ	2/3	Y	U	U	U	Y	Y	U	U	Y	Y
CHANGE ⁸⁰	ADA	2/3	Y	U	U	Y	Y	Y	Y	Y	Y	U
COMET ⁸¹	ETN	1	N	Y	Y	Y	Y	Y	mITT	mITT	Y	Y
DE019 ⁸⁴	ADA	2/3	Y	U	U	Y	Y	Y	Y	Y	Y	Y
DeFilippis 2006 ⁸⁵	ETN, IFX	2/3	Y	U	U	Y	N	Y	Ν	Ν	Y	U
Durez 2004 ⁸⁶	IFX	2/3	Ν	U	U	N	N	Y	U	U	U	U
Durez 2007 ¹⁴²	IFX	1	Y	U	U	N	U	U	U	U	Y	Y
ERA ¹⁴¹	ETN	1	Y	U	U	Y	Y	Y	mITT	mITT	Y	U
ETN Study 309	ETN	2/3	Y	U	U	Y	Y	Y	mITT	mITT	Y	Y
GO-BEFORE ⁹⁰	GOL	1	Y	Y	Y	Y	Y	Y	Y	mITT	Y	Ν
GO-FORTH ⁹¹	GOL	2/3	Y	U	U	Y	Y	Y	mITT	mITT	Y	Y
GO-FORWARD ⁹²	GOL	2/3	Y	Y	Y	Y	Y	Y	Y	mITT	Y	N
GUEPARD ⁹³	ADA	1	Ν	U	U	Y	N	Y	mITT	Y	Y	U
HIT HARD ⁹⁴	ADA	1	Y	U	U	Ν	Y	Y	mITT	mITT	Y	U
IDEA ⁹⁵	IFX	1	N	U	U	U	U	U	U	NA	U	U
IIBCREATE ⁹⁶	ETN	2/3	Y	U	U	Y	N	Y	Y	Y	Y	N
JESMR ¹⁴⁴	ETN	2/3	Y	U	U	N	N	Y	mITT	mITT	Y	Y
Kay 2008 ⁹⁸	GOL	2/3	N	U	U	N	Y	Y	Y	mITT	Y	N
Kim 2007 ⁹⁹	ADA	2/3	Y	U	U	Y	Y	Y	mITT	Y	Y	U

Trial	Interventio n	Po p	NMA (Y/N)	Was the method used to generate the allocation sequence to treatment groups adequate ? (Y/N/U)	Was the allocation of treatment concealed adequately ? (Y/N/U)	Were the treatment groups comparabl e at baseline? (Y/N/U/ NA)	Were patients and study personnel blinded to treatment ? (Y/N/U)	Were participant s analysed in their allocated treatment groups? (Y/N/U)	Were all randomise d patients included in efficacy analyses? (Y/N/U/ mITT/NA)	Were all randomise d patients included in safety analyses? (Y/N/U/ mITT/NA)	Were at least 80% of participant s originally randomise d included in the final analysis? (Y/N/U)	Free of evidence of selective reporting of outcomes ? (Y/N/U)
Kume 2011 ¹⁰⁰	ADA, ETN	1	N	U	U	Y	Ν	Y	N	NA	Y	N
Lan 2004 ¹⁰¹	ETN	2/3	N	U	U	Y	Y	Y	mITT	mITT	Y	U
LARA ¹⁰²	ETN	2/3	Y	U	U	Y	Ν	Y	mITT	Y	Y	U
MEASURE ¹⁰³	TCZ	2/3	Ν	U	U	U	Y	U	U	NA	U	U
Moreland 1999 ¹⁰⁴	ETN	2/3	Y	Y	Y	Y	Y	Y	mITT	mITT	Y	U
Nishimoto 2004 ¹⁰⁶	TCZ	2/3	N	U	U	Y	Y	Y	Y	Y	Y	U
OPERA ¹⁰⁷	ADA	1	N	Y	Y	Y	Y	Y	mITT	mITT	Y	U
OPTIMA ¹⁰⁸	ADA	1	Y	Y	Y	Y	Y	Y	mITT	mITT	Y	Y
PREMIER ¹⁰⁹	ADA	1	Y	U	U	N	Y	Y	mITT	mITT	Y	U
Quinn 2005 ¹¹⁰	IFX	1	Ν	U	U	Y	Y	Y	U	U	Y	U
RACAT ¹¹¹	ETN	2/3	Y	Y	Y	Y	Y	Y	Ν	Ν	Y	Y
REALISTIC ¹¹³	CTZ	2/3	Ν	Y	Y	Y	U	Y	Y	mITT	Y	Ν
RED-SEA ¹¹⁴	ADA, ETN	2/3	N	Y	N	Y	Ν	Y	mITT	mITT	Y	Y
SAMURAI ¹¹⁵	TCZ	2/3	Y	U	Y	Y	Ν	Y	mITT	mITT	Y	U
SATORI ¹¹⁶	TCZ	2/3	Y	Y	Y	Y	Y	Y	mITT	mITT	Y	N
STAR ¹¹⁷	ADA	2/3	Y	U	U	Y	Y	Y	mITT	mITT	Y	U
START ¹¹⁸	IFX	2/3	Y	U	U	Y	Y	Y	mITT	N	Y	U
Swefot ¹¹⁹	IFX	2/3	Y	Y	Y	Y	N	Y	Y	Y	Y	N
TACIT [AIC] ¹²⁰	ADA / ETN / IFX	2/3	Y	Y	Y	N	N	Y	mITT	mITT	Y	U
TOWARD ¹²¹	TCZ	2/3	Y	U	U	Y	Y	Y	mITT	mITT	Y	U

Trial	Interventio n	Po p	NMA (Y/N)	Was the method used to generate the allocation sequence to treatment groups adequate ? (Y/N/U)	Was the allocation of treatment concealed adequately ? (Y/N/U)	Were the treatment groups comparabl e at baseline? (Y/N/U/ NA)	Were patients and study personnel blinded to treatment ? (Y/N/U)	Were participant s analysed in their allocated treatment groups? (Y/N/U)	Were all randomise d patients included in efficacy analyses? (Y/N/U/ mITT/NA)	Were all randomise d patients included in safety analyses? (Y/N/U/ mITT/NA)	Were at least 80% of participant s originally randomise d included in the final analysis? (Y/N/U)	Free of evidence of selective reporting of outcomes ? (Y/N/U)
van de Putte 2004 ¹²²	ADA	2/3	Y	Y	Y	Y	Y	Y	Y	Y	Y	U
Wajdula 2000 ¹²³	ETN	2/3	Ν	U	U	Y	Y	U	U	U	Y	U
Weinblatt 1999 ¹²⁴	ETN	2/3	Y	U	U	Y	Y	Y	Y	Y	Y	U
Wong 2009 ¹²⁶	IFX	2/3	Ν	U	U	Y	Y	Y	U	NA	U	U
Zhang 2006 ¹²⁷	IFX	2/3	Ν	U	U	N	Y	U	U	U	U	U

Key to tables in appendices:

ABT i.v. = abatacept ~10mg/kg intravenously on weeks 0, 2 and 4, and every 4 weeks thereafter

ABT s.c. = abatacept 125mg once per week subcutaneously, following an optional intravenous loading dose of ~10mg/kg based on weight range

ADA = adalimumab 40mg every other week subcutaneously

CTZ = subcutaneous certolizumab pegol 400mg at weeks 1, 2 and 4, then 200mg every other week

DMARDs = conventional DMARDs

ETN = etanercept 25mg twice a week subcutaneously

ETN50 = etanercept 50mg once a week subcutaneously

GOL = golimumab 50 mg every 4 weeks subcutaneously

HCQ = Hydroxychloroquine

IFX = infliximab 3 mg/kg intravenously at weeks 0, 2, 6 and every 8 weeks thereafter (with dose escalation permitted after week 12 if lack of response)

IQR = interquartile range

LEF = leflunomide

mon = monotherapy, without cDMARDs

MTX = methotrexate

PBO = placebo

RCT = randomised controlled trial

SSZ = Sulfasalazine

TCZ = tocilizumab 8 mg/kg intravenously every 4 weeks

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duration of RCT phase	Primary outcome	Early withdrawal plan reported?	Geographical location	Funding source	Primary and supplementary publication details (author, year, publication type (eg. full, abstract)
Kume 2011 ¹⁰⁰	RCT (open- label)	ADAmon (n=22 randomised)	NA	NR	24 weeks	Change in cardio- ankle vascular index (CAVI)	All patients with worsening disease activity (DAS28- ESR >5.1 or change from baseline of DAS28- ESR >1.at week 12 were allowed to leave the group, by clinican's judgement.	Japan	NR	Kume 2011 full text Kume <i>et al.</i> , 2011 ¹⁰⁰
Kume 2011 ¹⁰⁰		ETNmon (n=21 randomised)	NA	NR						

 Table 334:
 Trial characteristics: Population 1 head to head RCT
Trial name / Author, year (NCT/spons or number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Durati on of RCT phase	Primary outcome	Early withdrawa l plan reported?	Geographical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
Bejarano 2008 ⁷⁷	multicent re, RCT	PBO+MTX n=73	MTX dosage increased from 7.5 to 25 mg/ week by week 12 in the presence of remaining synovitis	Folate was administered according to regionally agreed guidelines (5 mg 6 times/week). Stable doses of anti- inflammatory drugs, analgesics, and prednisolone (up to10 mg/day) were maintained in order for study treatment effect to be assessed without confounders. Swollen joints were permitted to be treated during the study	56 weeks	job loss of any cause and/or imminent job loss at or after week 16	Rules for participant withdrawal included job loss, imminent job loss, and adverse events (at the discretion of the physicians could withdraw patients due to an unacceptab ly high disease activity	UK	Abbott Laboratories	Bejarano 2008 ⁷⁷ ⁷⁷ (full article in peer- reviewed journal)

 Table 335:
 Trial characteristics: Population 1 biologics vs. DMARD(s) or PBO

Trial name / Author, year (NCT/spons or number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Durati on of RCT phase	Primary outcome	Early withdrawa l plan reported?	Geographical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
Bejarano 2008 ⁷⁷		ADA+MTX		with intra- articular injections of methylprednisol one (up to 80 mg over the course of the study).						
GUEPARD ⁹³ a French acronym for GUe' rir laPolyArthrit e Rhumatoide De'butante (cure early RA), Soubrier 1999 ⁹³	RCT, prospecti ve, unblinded	Initial MTX 12 weeks, then step-up therapy in both groups based on DAS28 n=32 treatment adjusted every 3 months on the basis DAS28	12 weeks MTX 0.3 mg/kg/wee k, maximum of 20 mg/week, without escalating dose regimen (then step- up)	Patients were allowed to continue concomitant treatment with corticosteroids initiated before but not after inclusion (maximum daily dose of 10 mg of oral prednisone) and to take NSAIDs and simple	1 year	the proportion of patients in low disease activity at Week 12 for whom anti-TNF- was not introduced or reintroduce d at 1 year.	step-up therapy part of interventio n groups	France	Supported by a grant from the French Society of Rheumatolog y and the adalimumab treatment was provided free of charge by Abbott France	Soubrier 1999 ⁹³ (full article in peer- reviewed journal)

Trial name / Author, year (NCT/spons or number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Durati on of RCT phase	Primary outcome	Early withdrawa l plan reported?	Geographical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
		If the patient did not achieve a low disease activity (DAS28 <or=3. 2), the treating physician adjusted therapy by proceeding to the next step in the allocated treatment group</or=3. 		analgesics. A single IA steroid injection was allowed during the trial. All patients received folic acid (20 mg 72 h after MTX therapy)						
		initial monotherapy started with MTX (0.3 mg/kg/week, maximum of 20 mg/week, without escalating dose regimen). In the event of remission (DAS28<2.6								

Trial name / Author, year (NCT/spons or number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Durati on of RCT phase	<b>Primary</b> outcome	Early withdrawa l plan reported?	Geographical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
		for at least 6 months), MTX								
		was tapered								
		to a								
		maintenance								
		dose of 7.5								
		mg/week. If								
		flared after								
		tapering of								
		MTX, the								
		initial dose of								
		MTX was								
		reintroduced.								
		Subsequent								
		steps for								
		patients with an								
		insufficient								
		response at								
		Week 12 or								
		thereafter were								
		MTX and ADA								
		(40 mg every								
		other week),								
		MIX and $ADA$								
		(40 mg/week),			1			1		

Trial name / Author, year (NCT/spons or number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Durati on of RCT phase	Primary outcome	Early withdrawa l plan reported?	Geographical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
		MTX and etanercept (25								
		mg twice a								
		MTX and LEF.								
GUEPARD ⁹³		Initial ADA+MTX ADA 40mg s.c. eow 12 weeks, then step-up therapy in both groups based on DAS28 n=33 treatment adjusted every 3 months on the basis DAS28 If the patient did not achieve a low disease activity	12 weeks MTX 0.3 mg/kg/wee k, maximum of 20 mg/week, without escalating dose regimen (then step- up)							

Trial name / Author, year (NCT/spons or number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Durati on of RCT phase	Primary outcome	Early withdrawa l plan reported?	Geographical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
		(DAS28 <or=3. 2), the treating physician adjusted therapy by proceeding to the next step in the allocated treatment group</or=3. 								
		If the DAS28 was <3.2 at Week 12, ADA was stopped. In the event of remission (DAS28<2.6 for at least 6 months), MTX was tapered (2.5 mg/month) to a maintenance dose of 7.5 mg/week. If disease activity flared after								

Trial name / Author, year (NCT/spons or number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Durati on of RCT phase	Primary outcome	Early withdrawa l plan reported?	Geographical location	Funding source	Primary and supplement ary publication details (author,
		per treatment arm)								year, publication type (eg. full, abstract))
		tapering of MTX, the								
		initial dose of								
		reintroduced. In								
		the event of								
		relapse,								
		restarted ADA								
		40 mg every								
		other week for								
		12 weeks. If the								
		DAS28 was								
		>3.2 after 12								
		weeks, ADA								
		was stopped. In								
		the event of								
		inefficacy								
		(DAS28>3.2								
		of treatment)								
		ADA was								
		increased (40								
		mg/week) for								
		12 weeks. After								
		12 weeks of								
		effective								

therapy, ADA was decreased (40 mg every other week) for 12 weeks and stopped if successful. In	nt ,n )n
(40 mg every other week) for 12 weeks and stopped if successful. In	
other week) for       12 weeks and       stopped if       successful. In	
12 weeks and       stopped if       successful. In	
successful. In	
successial. In	
the event of	
failure on ADA	
40 mg/week,	
etanercept (25	
mg twice a	
week) was	
initiated for 12	
weeks. If	
effective,	
etanercept was	
stopped and	
for 12 weeks if	
relapse	
occurred. If	
etanercept	
failed, LEF was	
Initiated. If the	

Trial name / Author, year (NCT/spons or number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Durati on of RCT phase	Primary outcome	Early withdrawa l plan reported?	Geographical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
		after the initial 12 weeks, the same regimen was applied according to the protocol indicated above.								
HIT HARD ⁹⁴	RCT	MTX + PBO (85 randomised)	15mg/week	Folic acid 10 mg/week, stable dose of ≤10 mg/day prednisone or equivalent permitted	24 weeks	DAS28 at week 48	No	Germany	German Federal Ministry of Education and Research (ADA provided by Abbott under unconditional scientific grant)	Detert 2013 ⁹⁴ full paper
HIT HARD ⁹⁴		ADA + PBO (87 randomised)	NA							
OPERA ¹⁰⁷	RCT	MTX + PBO + steroid (91 randomised)	Dose escalated from 7.5 mg/week at	Folic acid (5-10 mg/week) and oral calcium with vitamin D	12 months	Proportion of patients in each group that	Treatment escalation – HCQ or SSZ given	Denmark	Abbott Laboratories, Denmark (who also	Horslev- Petersen ¹⁰⁷ 2013 full paper

Trial name / Author, year (NCT/spons or number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Durati on of RCT phase	Primary outcome	Early withdrawa l plan reported?	Geographical location	Funding source	Primary and supplement ary publication details (author, year, publication type (ag
		arm)								full, abstract))
			baseline to 15 mg/week at 1 month and 20 mg/week after 2 months (or highest tolerated dose)	(1000 mg calcium + 800 IU vitamin D daily). Alendronate (70 mg/week) initiated at baseline and mild analgesics (but not NSAIDs, muscle relaxants or other analgesics) were permitted.		had achieved low disease activity (DAS28C RP <3.at 12 months.	at 3 months if DAS28CR $P \ge 3.2$ and $\ge 1$ swollen joint or 4mg triamcinolo ne had been given monthly for 3 consecutiv e months. If low disease activity not achieved by 6 months patient treated as a non- responder, excluded and open- label		provided free ADA & PBO). Triamcinolon e supplied by Meda Pharmaceutic als, Denmark.	

Trial name / Author, year (NCT/spons or number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Durati on of RCT phase	Primary outcome	Early withdrawa l plan reported?	Geographical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
							biologics (not ADA) prescribed.			
OPERA ¹⁰⁷		ADA + MTX + steroid (89 randomised)								
OPTIMA ¹⁰⁸	RCT (Phase 4)	MTX + PBO (517 randomised)	Titrated to 20 mg/week by week 8	NSAIDs (79%), corticosteroids (46%)	26 weeks	Composite of DAS28(C RP) <3.2 at week 78 and no radiographi c progressio n from baseline to week 78	No	North and South America, Europe, Africa, New Zealand and Australia	Abbott Laboratories	Kavanaugh 2012 ¹⁰⁸ full paper Peterfy 2010 abstract ³¹¹ Emery 2011 abstract ³¹² Smolen 2010 abstract ¹⁴⁵
OPTIMA ¹⁰⁸		ADA + MTX (515 randomised)		NSAIDs (78%), corticosteroids (41%)						
PREMIER ¹⁰⁹	RCT	MTX + PBO (257 randomised)	7.5 mg/week for first 4 weeks, increased to	Folic acid, 5-10 mg/week	2 years	ACR50 response and mean change from	Dose escalation (frequency ) of ADA or PBO for	Australia, Europe and North America	Abbott Laboratories	Breedveld 2006 full paper ¹⁰⁹ Van der Heijde 2010

Trial name / Author, year (NCT/spons or number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Durati on of RCT phase	Primary outcome	Early withdrawa l plan reported?	Geographical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
			15 mg/week weeks 4-8 if tolerated and to 20 mg/week at week 9.			baseline in mTSS	those not achieving ACR20 response at week 16 or later			full text ³¹³ Emery 2009 full text ³¹⁴ Strand 2012 full text ³¹⁵
PREMIER ¹⁰⁹		ADA mon + PBO step up week 16 (274 randomised)	NA							
PREMIER ¹⁰⁹		ADA + MTX step up week 16 (268 randomised)	7.5 mg/week for first 4 weeks, increased to 15 mg/week weeks 4-8 if tolerated and to 20 mg/week at week 9.							
COMET ^{81 82} ⁸³ Combination of MTX and	prospecti ve double blind multicent re RCT	MTX +PBO n=268 1st period comprised 2	starting at 7.5 mg once a week. In patients	Stable doses of oral corticosteroids (≤10 mg per day of prednisone or	52week s	Coprimary endpoints were the proportion of patients	NR	Europe, Latin America, Asia, and Australia	Wyeth Research	Emery 2008 ⁸¹ (full article in peer- reviewed

Trial name / Author, year (NCT/spons or number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Durati on of RCT phase	<b>Primary</b> outcome	Early withdrawa l plan reported?	Geographical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
Etanercept in Early Rheumatoid Arthritis NCT0019549 4 Emery 2008		randomised groups a) MTX monotherapy in year 1 followed by combination (ETN+MTX) treatment in year 2 n=90 at start of period 2 b) MTX monotherapy in year 1 followed by continued MTX monotherapy in year 2 n=99 at start of period 2	with tender or swollen joints, the dose was titrated up over 8 weeks to a maximum of 20 mg a week	an equivalent agent) or a single non- steroidal anti- inflammatory drug were permitted if started at least 4 weeks before baseline and kept constant throughout the first 24 weeks of the study.		achieving remission (DAS28 <2.6) at week 52 and the change in van der Heijde modified total Sharp score (mTSS; joint erosion score plus joint space narrowing score) from baseline to week 52				journal)
COMET ⁸¹		ETN+MTX n=274 1st period comprised 2	starting at 7.5 mg once a week. In patients with tender							

Trial name / Author, year (NCT/spons or number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Durati on of RCT phase	Primary outcome	Early withdrawa l plan reported?	Geographical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
		randomised groups a) combination etanercept plus MTX treatment in year 1 followed by continued combination treatment in year 2 n=111 at start of period 2	or swollen joints, the dose was titrated up over 8 weeks to a maximum of 20 mg a week							
		b) combination treatment in year 1 followed by etanercept alone in year 2 n=111 at start of period 2								
ERA ¹⁴¹	RCT	MTX + PBO (217 randomised)	Initial dose of 7.5 mg/week escalated to	Folic acid (1 mg/day)	12 months	Overall response during the first 6	No	NR	Immunex	Bathon 2000 ⁸⁷ full paper Bathon 2003 full text ¹⁴¹

Trial name / Author, year (NCT/spons or number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Durati on of RCT phase	<b>Primary</b> outcome	Early withdrawa l plan reported?	Geographical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
			15mg/week at week 4 and 20 mg/week at week 8. One 5mg reduction permitted.			months				Kosinski 2002 full text ³¹⁶
ERA, Bathon 2000 Multicentre ¹⁴		ETN + PBO (207 randomised)								
GO- BEFORE ⁹⁰ (EudraCT database no. 2004- 003295-10)	RCT (Phase III, double- blind)	PBO + MTX (N=160)	19.1 (SD=2.7(w eek 23)	NSAIDs, other analgesics for RA, and oral corticosteroids ( $\leq 10$ mg prednisone/day or equivalent) permitted if doses stable for $\geq 2$ weeks before initiation of study agent and during treatment.	52 weeks	Co- primary endpoints: ACR50 response at week 24 Change from baseline in modified Sharp / van der Heijde score at week 52	No	Multicentre, multinational (90 sites across Europe/Australia/ New Zealand (n=34), Asia (n=25), North American (n=2) and Latin America (n=10)	Centocor Research and Development and Schering- Plough Research Institute)	Emery <i>et al.</i> , 2009 ⁹⁰ (full publication) ⁹ ⁰ ¹⁴⁶

Trial name / Author, year (NCT/spons or number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Durati on of RCT phase	<b>Primary</b> outcome	Early withdrawa l plan reported?	Geographical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
GO- BEFORE ⁹⁰		GOL 50 mg s.c. every 4 weeks + MTX (N=159)	19.2 (SD=2.35) (week 23)							
ASPIRE (Active- Controlled Study of Patients Receiving Infliximab for the Treatment of Rheumatoid Arthritis of Early Onset) ⁷¹	RCT (Phase 3, double- blind)	PBO. + MTX (298 randomised)	MTX started at 7.5 mg/wk and increased (2.5 mg/wk every 1-2 weeks) to 15 mg/wk by week 4 and 20 mg/wk by week 8. MTX dose could be adjusted in case of intolerance.	Oral corticosteroids (≤ 10 mg/day prednisone or equivalent) and NSAIDs maintained at baseline doses. Other DMARDs not allowed during study.	54 weeks	For radiographi c progressio n of joint damage: change from baseline to week 54 in van der Heijde modificatio n of total Sharp score. For physical function: change from baseline in	No	Multicentre, multinational (122 sites in North America and Europe)	Centocor	St Clair <i>et</i> <i>al.</i> , 2004 (full publication) ⁷

Trial name / Author, year (NCT/spons or number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Durati on of RCT phase	<b>Primary</b> outcome	Early withdrawa l plan reported?	Geographical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
						HAQ scores averaged over weeks 30-54.				
ASPIRE ⁷¹		IFX i.v. 3 mg/kg at weeks 0, 2 and 6 and every 8 weeks thereafter + MTX (373 randomised)								
BeST ⁷⁸	RCT (Phase NR, open label)	Sequential monotherapy (126 randomised)	DAS- steered step-up strategies for all 4 treatment groups	Concomitant treatment with NSAIDs and i.a. injections with corticosteroids permitted.	3 years	HAQ and modified Sharp/van der Heijde score	No (DAS- steered step-up strategies for all 4 treatment groups)	Multicentre, Netherlands	Dutch College of Health Insurances Schering- Plough	Goekoop- Ruiterman <i>et</i> <i>al.</i> , 2005 (full publication ⁷⁸
BeST ⁷⁸		Step-up combination therapy (121 randomised)								
BeST ⁷⁸		Initial combination therapy with								

Trial name / Author, year (NCT/spons or number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Durati on of RCT phase	Primary outcome	Early withdrawa l plan reported?	Geographical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
		prednisone (133 randomised)								
BeST ⁷⁸		Initial combination therapy with IFX (128 randomised)								
Durez 2007 ¹⁴² (NCT003967 47)	RCT (Phase IV, single- blind)	MTX (14 randomised)	All patients received MTX at dosage ranging from 7.5 mg/week (baseline) to 20 mg/wk (week 14).	Patients receiving NSAIDs required to be receiving stable doses (remaining unchanged during study). i.e. steroids not permitted. Introduction of oral glucocorticoster oids of other DMARDs not permitted.	12 months	Evaluation of MRI scores over time	No	Belgium	Schering- Plough	Durez <i>et al.</i> , 2007 (full publication ¹⁴²
Durez		MTX + i.v.								

Trial name / Author, year (NCT/spons or number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Durati on of RCT phase	Primary outcome	Early withdrawa l plan reported?	Geographical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
2007 ¹⁴²		methyprednisol one (MP) 1 g at weeks 0, 2 and 6 and then every 8 weeks thereafter (15 randomised)								
Durez 2007 ¹⁴²		IFX 3 mg/kg i.v. at weeks 0, 2, 6, 14, 22, 30, 38, 46 +MTX (15 randomised)								
IDEA ⁹⁵	RCT (Phase, NR, double- blind to week 26)	MP 250 mg i.v. at week 0, PBO i.v. at weeks 2, 6, 14, 22 + MTX Numbers randomised NR (112 patients included across both groups)	+ MTX 10 mg weekly increasing to 20 mg by week 6	NR	78 weeks	NR	Step-up from week 26 if DAS > 2.4 Other biologics permitted from week 26 (no further details) (data extracted to week 26)	Multicentre (no further details)	NR	Nam <i>et al.</i> , 2011 (conference abstract) ⁹⁵

Trial name / Author, year (NCT/spons or number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Durati on of RCT phase	Primary outcome	Early withdrawa l plan reported?	Geographical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
IDEA ⁹⁵		IFX 3 mg/kg i.v. at weeks 0, 2, 6, 14, 22 + MTX (IFX dose modifications permitted according to DAS44 from week 26) Numbers randomised NR (112 patients included across both groups)								
Quinn 2005 ¹¹⁰	RCT	MTX + PBO (10 randomised)	7.5 mg/week with escalation up to 15 mg/week by week 14. Increments up to 25 mg/week	Folic acid 5mg/twice a week	54 weeks	Compariso n of MRI- measured synovitis at week 14 between groups	No	NR	Arthritis Research Campaign	Quinn 2005 full paper ¹¹⁰ Haugeberg 2009 full paper 24927 Bejarano 2010 full paper 286

Trial name / Author, year (NCT/spons or number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Durati on of RCT phase	<b>Primary</b> outcome	Early withdrawa l plan reported?	Geographical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
Quinn 2005 ¹¹⁰		IFX 3mg/kg + MTX (10	titrated against evidence of active disease.							
		randomised)								

Trial name /	Trial	Treatment arms	MTX dose	Concomitant	Duration	Primary	Early	Geographic	Funding	Primary and
Author, year	design	for which data	during	treatments	of RCT	outcome	withdraw	al location	source	supplementar
(NCT/sponsor	(RCT,	extraction	study		phase		al plan			y publication
number)	phase,	performed	(where		_		reported?			details
	LTE)	(number of	applicable)				-			(author, year,
	-	patients	(mg/week)							publication
		randomised per	_							type (eg. full,
		treatment arm)								abstract))
ATTEST ⁷⁴	RCT	PBO+MTX (with	No MTX	Permitted	PBO-	DAS28-	No	Multinationa	Bristol-	Schiff et al.,
	(Phase III,	blinded crossover	dose	days 1-197:	controlle	ESR ABT		l, multicentre	Myers	2008 (full
(NCT0009514	double	to ABT at day	adjustments	oral	d phase	vs. PBO at		(86 sites)	Squibb,	publication) ⁷⁴
7)	blind)	198) (110	permitted	corticosteroids	to day	6 months			USA	
		randomised)	except due	(≤10 mg/day	197	(not				
			to adverse	prednisone or		powered				
			events.	equivalent)		with				
			MTX dose	(stable $\geq 25$ /		superiority				
			could be	28 days prior		or non-				
			altered (to	to		inferiority				
			less than 25	randomisation		design to				
			mg/wk)	), and/or		compare				
			between	stable		two active				
			days 198-	NSAIDs and		arms)				
			365	analgesics.						
				Days 198-365						
				dose of oral						
				corticosteroids						
				could be						
				modified (≤10						
				mg/day						
				prednisone of						
				equivalent),						
				HCQ, SSZ,						
				GLD or AZA						
				also						
				permitted.						
ATTEST ⁷⁴		IFX 3 mg/kg i.v.								
		administered on								

 Table 335:
 Trial characteristics: Populations 2/3 head to head RCTs

Trial name /	Trial	Treatment arms	MTX dose	Concomitant	Duration	Primary	Early	Geographic	Funding	Primary and
Author, year	design	for which data	during	treatments	of RCT	outcome	withdraw	al location	source	supplementar
(NCT/sponsor	(RCT,	extraction	study		phase		al plan			y publication
number)	phase,	performed	(where				reported?			details
	LTE)	(number of	applicable)							(author, year,
		patients	(mg/week)							publication
		randomised per								type (eg. full,
		treatment arm)								abstract))
		days 1 (i.e. week								
		0), 15 (i.e. week								
		2), 43 (i.e. week								
		6) and 85 (i.e.								
		week 12) and								
		every 56 days (i.e.								
		8 weeks)								
		thereafter (NB:								
		licensed dose 3								
		mg/kg i.v. at								
		weeks 0, 2, 6 and								
		every weeks								
		thereafter,								
		adjustments in								
		dosage and								
		frequency of								
		administration								
		permitted after								
		week 12 in								
		license)								
		(165 randomised)								
4 mmn am ⁷⁴		+ MTX								
ATTEST		ABT dosed								
		according to								
		weight: patients								
		weighing less than								
		60 kg, 60-100kg,								
		or more than								
		100kg received								
		500 mg, 750 mg								
	1	or 1000 mg of								

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase,	Treatment arms for which data extraction performed	MTX dose during study (where	Concomitant treatments	Duration of RCT phase	Primary outcome	Early withdraw al plan reported?	Geographic al location	Funding source	Primary and supplementar y publication details
	LTE)	(number of nationts	applicable)							(author, year,
		randomised per	(Ing/week)							type (eg. full.
		treatment arm)								abstract))
		ABT respectively.								
		ABT administered								
		i.v. on days 1, 15								
		and 29 and every								
		28 days thereafter,								
		up to and								
		including day 337								
		(156 randomised)								
AMPI F ⁶⁶	RCT (non-	+ MTX ABTs c + MTX	15-	Predisone	2 vears	ACR20	No	N & S	Bristol-	Weinblatt
	inferiority)	(N=318)	25mg/week	(mean dose	(first 12	response at	110	America	Myers	2013 full
		(1 ( 010)	(or	6.6  mg/day;	months'	1 year			Squibb	paper ¹⁴⁷
			$\geq$ 7.5mg/wee	Corticosteroid	data just	5			1	Weinblatt
			k in patients	s (50.9%);	published					2012 abstract
			intolerant to	SFZ (3.1%);	)					317
			higher	HCQ (13.2%)						
			doses)							
			17.5 (6.35)							
			mg/week at							
$\Delta MPI F^{147}$		$\Delta D \Delta \pm MT X$		Predisone						
		(N=328)	25mg/week	(mean dose						
		(1 ( 020)	(or	6.4  mg/day;						
			$\geq$ 7.5mg/wee	Corticosteroid						
			k in patients	s (50.3%);						
			intolerant to	SFZ (3.4%);						
			higher	HCQ (10.7%)						
			doses)							
			17.3 (6.16)							
			mg/week at							
AMPLE ¹⁴⁷		ADA + MTX (N=328)	higher doses) 17.5 (6.35) mg/week at baseline 15- 25mg/week (or ≥7.5mg/week k in patients intolerant to higher doses) 17.3 (6.16) mg/week at baseline	Predisone (mean dose 6.4 mg/day); Corticosteroid s (50.3%); SFZ (3.4%); HCQ (10.7%)						

Trial name /	Trial	Treatment arms	MTX dose	Concomitant	Duration	Primary	Early	Geographic	Funding	Primary and
Author, year	design	for which data	during	treatments	of RCT	outcome	withdraw	al location	source	supplementar
(NCT/sponsor	(RCT,	extraction	study		phase		al plan			y publication
number)	phase,	performed	(where		-		reported?			details
	LTE)	(number of	applicable)				-			(author, year,
	,	patients	(mg/week)							publication
		randomised per								type (eg. full,
		treatment arm)								abstract))
REDSEA ¹¹⁴	Pragmatic,	ADA+cDMARDs	66.7%	There were no	52 weeks	proportion	Yes	UK	sponsorshi	Jobanputra
	randomise	n=60	patients on	constraints on		of patients			p of	2012 ¹¹⁴ (full
EU Clinical	d, parallel		MTX,	changes in the		continuing			University	article in peer-
Trials Register	group,		Median	dose of MTX,		treatment			Hospital	reviewed
2006-006275-	multicentre		dose	use of other		after			Birmingha	journal)
21/GB	, unblinded		(mg/week)	DMARDs		52 weeks			m NHS	
	and non-		20	including					Foundation	
A randomised	inferiority			previously					Trust	
efficacy and	trial			untried agents,					part	
discontinuation				or on use of					supported	
study of				oral,					by a grant	
etanercept				parenteral					from the	
versus				or intra-					Queen	
adalimumab				articular					Elizabeth	
				corticosteroids					Hospital	
				once patients					Birmingha	
				were					m Charity	
				included in					-	
				the study.						
				-						
				Other						
				DMARDs						
				AZA 1 (1.7%)						
				HCQ 12						
				(20%)						
				LEF 5 (8.3%)						
				Penicillamine						
				1 (1.7%)						
				SSZ 13						
				(21.7%)						
REDSEA ¹¹⁴		ETN50+cDMAR	66.7%	Other						

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duration of RCT phase	Primary outcome	Early withdraw al plan reported?	Geographic al location	Funding source	Primary and supplementar y publication details (author, year, publication type (eg. full, abstract))
		Ds n=60	patients on MTX, Median dose (mg/week) 17.5	DMARDs AZA 1 (1.7%) HCQ 1 (1.7%) LEF 8 (13.3%) Penicillamine 0 SSZ 8 (13.3%)						
ADACTA ³⁶ (NCT0111985 9)	RCT (Phase IV, double- blind)	TCZ 8 mg/kg i.v. every 4 weeks + s.c. PBO ADA (163 randomised)	NA	All DMARDs washed out before baseline (all $\geq$ 2 weeks, LEF $\geq$ 12 weeks or after standard washout)	24 weeks	Mean change from baseline in DAS28 at 24 weeks	Yes	Multicentre, multinational	Roche	Gabay <i>et al.</i> , 2013 (full publication) 58
ADACTA ⁵⁸		ADA +. PBO (163 randomised)	NA							
De Filippis 2006 ⁸⁵	RCT	ETN + MTX (N=16)	Between 10 and 12.5mg/wee k	Prednisone (max dosage 10mg/day)	54 weeks	ACR20, 50 & 70 & HAQ improveme nt	No	Sicily	NR	De Filippis ⁸⁵ 2011 full paper
De Filippis 2006 ⁸⁵		IFX + MTX (N=16)	Between 10 and 12.5mg/wee k							

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
AIM ^{61,62} AIM ⁶¹ (Abatacept in Inadequate responders to MTX) NCT00048568	randomized, double- blind, placebo- controlled trial confirmator y phase III	MTX+PBO n=219	15.7 (3.5) mg/week	Patients were permitted to continue taking oral corticosteroid s, provided that the prescribed dose was reduced to the equivalent of (10 mg prednisone daily for 28 days	12mont hs	health related quality of life (HRQoL)	nr	USA and Europe (incl UK)	Bristol- Myers Squibb	Russell         2007         61           Kremer         2006         62
AIM ⁶¹		ABTi.v.+ MTX n=433	16.1 (3.6)							
ASSET ⁷²	RCT (Phase IIIb)	PBO + MTX (23 randomised)	10-25 mg/week, mean dose at baseline: 17.3 (4.2)	MTX (100%), oral and/or injectable corticosteroid s (60.9%), low dose oral corticosteroid	4 months	Reductio n in wrist synovitis score from mean MRI	No	Europe	Bristol- Myers Squibb	Conaghan 2012 full paper ⁷²

 Table 336:
 Trial characteristics: Population 2/3 biologics vs. DMARD(s) or PBO

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
				s (52.2%), NSAIDs (87.0%)		scores at baseline and month 4.				
ASSET ⁷²		ABT i.v. (~10mg/kg) + MTX (27 randomised)	10-25 mg/week, mean dose at baseline: 16.9 (4.6)	MTX (100%), oral and/or injectable corticosteroid s (70.4%), low dose oral corticosteroid s (59.3%), NSAIDs (81.5%)						
ASSURE ⁷³	RCT	PBO + cDMARDs (482 treated)	NR	MTX, HCQ, chloroquine, SSZ, LEF, GLD, AZA, (ETN, IFX, ADA)	1 year	Safety	No	NR	Bristol- Myers Squibb	Weinblatt 2006 full paper ⁷³
ASSURE ⁷³		ABT + cDMARDs (959 treated)	NR	MTX, HCQ, chloroquine, SSZ, LEF, GLD, AZA, (ETN, IFX, ADA)						

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
AUGUST II ⁷⁶ 2011 NCT00595413. Atacicept for Reduction of Signs and Symptoms in the Rheumatoid Arthritis Trial II	Phase II, Randomize d, Placebo- Controlled Trial	MTX+PBO n=76	NR	allowed steroids unless prednisone dosage >10 mg/day (or equivalent) or change in steroid or nonsteroidal antiinflammat ory drug dosing regimen <=28 days before study day 1	25week s	proportio n of patients with 20% improve ment in disease severity according to the ACR criteria, as assessed using the CRP level (ACR20- CRP)	NR	Europe and USA	Merck Serono, Geneva, Switzerlan d and EMD Serono, Rockland, Massachus etts, which are affiliates of Merck KGaA, Darmstadt, Germany.	van Vollenhoven 2011 ⁷⁶ (full article in peer- reviewed journal)
AUGUST II ⁷⁶		ADA+MTX n=79	NR							
CHANGE ⁸⁰ Miyasaka 2008 Clinical investigation in Highly disease-	Phase II/III, multicenter, double- blind, placebo- controlled	PBO n=87	NA	steroids allowed	24week s	ACR20 response rate at Week 24	Patients who experienced an increase in disease activity or who had less than 10%	Japan	Abbott Japan Co., Ltd., Osaka, Japan, and Eisai Co.,	Miyasaka 2008 ⁸⁰ (full article in peer- reviewed journal)

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
affected rheumatoid Arthritis patients in Japan with Adalimumab applying staNdard and General Evaluation							reduction in tender joint counts (TJC) and swollen joint counts (SJC) compared with baseline after at least eight weeks of treatment stopped study therapy with adalimumab/pla cebo and were switched to an open-label rescue treatment that could include higher doses of steroids, nonsteroidal antiinflammator y drugs, or		Ltd., Tokyo, Japan.	

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	Primary outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
							conventional DMARDs.			
CHANGE ⁸⁰		ADAmon n=91	NA							
DE019 ⁸⁴ Keystone 2004 NCT00195702	phase III multicenter double- blind, placebo- controlled study	MTX+PBO n=200	16.7 (4.1)	Doses and routes of administration of concomitant RA therapies, such as MTX, corticosteroid s, and nonsteroidal antiinflammat ory drugs (NSAIDs), were kept constant throughout the study. Oral corticosteroid s, if used previously,	52 weeks	radiograp hic progressi on at week 52 (total Sharp score by a modified method [TSS]), clinical response at week 24 (improve ments of at least 20% in the American College of	At week 16 or thereafter, patients who were not achieving an ACR20 response (improvements of at least 20% in the ACR core criteria) were allowed to receive "rescue" treatment with a traditional DMARD at the discretion of their treating physician.	USA and Canada	Abbott Laboratori es, Abbott Park, Illinois	Keystone 2004 ⁸⁴ (full article in peer- reviewed journal)

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full,
24				were allowed at a maximum prednisone- dose equivalent of 10 mg/day		Rheumat ology core criteria [ACR20]) , and physical function at week 52 (disability index of the Health Assessme nt Question naire [HAQ]				abstract))
DE019 ⁸⁴		ADA+MTX n=207	16.7 (SD 4.5) weekly dose mg/kg							
STAR ¹¹⁷ Safety Trial of Adalimumab in Rheumatoid	randomized, double- blind, placebo- controlled	PBO+cDMARDs n=318	Number of traditional DMARDs 0 DMARD n=48 (15.1%)	Patients continued to receive their baseline doses of standard	24 weeks	frequenci es of adverse events, serious	NR	USA	Abbott Laboratori es, Abbott Park, Illinois,	Furst 2003 ¹¹⁷ (full article in peer- reviewed

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
Arthritis Furst 2003 24653			1 n=172 (54.1) 2 n= 84 (26.4) 3+ n=14 (4.4) Mean number of DMARDs 1.2	antirheumatic therapy, which could include traditional DMARD, low dose corticosteroid s (prednisone equivalent dose ≤10 mg/day), NSAID, and/or analgesics. Treatment with traditional DMARD permitted during the study included chloroquine, HCQ, LEF, MTX (MTX),		adverse events, severe or life- threatenin g adverse events, adverse events leading to withdraw al, infection, or serious infection			USA	journal)

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
				parenteral GLD, oral GLD, SSZ, or any combination of these. Doses of traditional DMARD, corticosteroid s, NSAID, and/or analgesics must have been stable for at least 28 days before screening,						
STAR ¹¹⁷		ADA+cDMARDs n=318	Number of traditional DMARDs 0 n=57 (17.9%) 1 n=184 (57.9)							

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
			2 n=66 (20.8) 3+ n=11 (3.5) Mean number of DMARDs 1.1							
van de Putte 2004 ¹²²	RCT (Phase III, double- blind)	PBO s.c. (110 randomised)	NR	Use of NSAIDs and oral corticosteroid s before study permitted at stable doses (up to 10 mg/day prednisolone or equivalent. Analgesics permitted (not within 12 hours of study visits)	26 weeks	ACR20 response at week 26	Yes (ADA or PBO patients with increased inflammatory synovitis or <10% improvement in TJC and SJC after >8 weeks treatment could enter rescue arm, during which study drug could be discontinued and doses of NSAIDs/cortic osteroids	Multicent re, multinati onal (Europe, Canada, Australia )	Abbott	van de Putte <i>et al.</i> , 2004 (full publication) 122

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
							increased/other DMARDs initiated at physician's discretion)			
van de Putte $2004^{122}$		ADA mon (113 randomised)	NR							
ARMADA ^{69 70} Anti- TNF Research Study Program of the Monoclonal Antibody Adalimumab [D2E7] in Rheumatoid Arthritis	randomized, double- blind, placebo- controlled trial phase II/III	MTX+PBO (n=62)	16.5 (SD 5.0) mg/week	salicylates, nonsteroidal antiinflammat ory drugs, and corticosteroid s (maximum daily dose of 10 mg of oral prednisone or equivalent). Folic acid or leucovorin was permitted.	24week	American College of Rheumat ology criteria for 20% improve ment (ACR20) at 24 weeks	Patients who failed to meet or to maintain an ACR20 response but had received study drug (adalimumab or placebo) for at least 16 weeks were eligible to remain in the study or to roll over to an open-label continuation study with adalimumab	USA and Canada	Abbott Laboratori es and Knoll Pharmace uticals	Weinblatt 2003 ⁶⁹ (full article in peer- reviewed journal)
Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	Primary outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
---------------------------------------------------------	------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------	---------------------------	---------------------------------	---------------------------------------------------------------------------------------------------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------------------	-----------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------
ARMADA ⁶⁹		ADA+MTX (n=67)	16.4 (SD 4.mg/week							
Kim 2007 ⁹⁹	phase III randomized, double- blind, placebo- controlled, phase III study	MTX+PBOrescue Week18 n=65	16.3 (3.4)	NR	24week s	20% improve ment in the American College of Rheumat ology response criteria (ACR20) at week 24	Beginning at week 18, patients with documented non-response could discontinue their double- blind study medication and switch to rescue therapy with open-label adalimumab 40 mg sc eow.	Korea	Abbott Laboratori es, Abbott Park, Illinois, USA	Kim 2007 ⁹⁹ (full article in peer- reviewed journal)
Kim 2007 ⁹⁹		ADA+MTX n=63	16.6 (3.3)							
CERTAIN ⁷⁹ (NCT00674362)	RCT (Phase IIIb)	PBO + cDMARDs (98 randomised)	NA	Existing cDMARDs	52 weeks	% patients in CDAI remission (≤2.8)	Patients in CDAI remission at weeks 20 and 24 stopped CTZ and were monitored to	NR	UCB	Smolen 2011 abstract ⁷⁹ Emery 2012 abstract ³¹⁸

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
							week 52			
CERTAIN'		CTZ 400mg at weeks 0, 2 & 4 then 200mg Q2W + DMARDs (96 randomised)	NA	Existing cDMARDs						
REALISTIC ¹¹³	RCT (Phase 3)	PBO + existing cDMARDs	NA	MTX, LEF, SSZ, chlorquine, HCQ, AZA, GLD, steroids , NSAIDs	12 weeks	ACR20 at 12 weeks	NA (12 week study)	USA, Canada and Europe	UCB	Weinblatt 2012 abstract ( ¹¹³ )
REALISTIC ¹¹³		CTZ 400mg weeks 0, 2, 4 then 200mg every 2 weeks + existing cDMARDs		MTX, LEF, SSZ, chlorquine, HCQ, AZA, GLD, steroids , NSAIDs						
ADORE ^{59,60} Add Enbrel or Replace MTX	prospective, 16 week, randomised, open-label, parallel group, outpatient study	ETNmon n=160 (n=159 received treatment and provided data)	NA	NSAIDs and corticosteroid s allowed	16 weeks	The primary efficacy measure was the proportio n of evaluable	NR	60 centres in eight countries (Denmar k, Finland, France,	Wyeth Research	van Riel 2006 ⁵⁹ (full article in peer- reviewed journal) ⁶⁰ vanRiel

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
						patients in each treatment group who achieved an improve ment of >1.2 units in DAS28 score from baseline to week 16		Germany , The Netherla nds, Turkey, UK and Spain)		2008 (full article in peer- reviewed journal)
ADORE ⁵⁹		ETN+MTX n=155	MTX (>=12.5 mg/week orally or by injection) median 15mg/week							
CREATE - IIb ⁹⁶	phase IIb study was a randomised,	DMARD+PBO n=65	Patients were required to have received	Concurrent treatment with stable	6 months	the proportio n of	NR	Canada and UK	AstraZene ca	Keystone 2012 ⁹⁶ (full article in

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
D1520C00001 NCT00520572 (Phase IIa and IIb trials)	double- blind, placebocont rolled, parallel- group multicentre trial (with an open- label etanercept treatment group) to evaluate the effi cacy of four doses of AZD9056 administere d for 6 months on background MTX or sulphasalazi ne		MTX for $\geq 6$ months (the dose must have been stable between 5 and 25 mg/week for $\geq 6$ weeks) or sulphasalazin e for $\geq 16$ weeks (at a stable dose of 0.5–3 g/day for $\geq 6$ weeks) prior to randomisatio n.	doses of non- steroidal anti- infl ammatory drugs and/or prednisone (maximum 10 mg daily) was allowed throughout the study.		patients meeting ACR 20% response criteria (ACR20) at 6 months (based on 28 joint counts).				peer- reviewed journal)
CREATE - IIb ⁹⁶		ETN50+DMARD								

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	Primary outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
		n=64 note either MTX %s across both arms (89.8%) or SSZ (9.7%) used as DMARD (not both)								
ETN309 ⁸⁹ Etanercept Study 309	randomized, double- blind, controlled trial	SSZ+PBO n=50	SSZ dose (g/day), mean (SD) 2.1 (0.4)	Patients were permitted stable doses of oral corticosteroid s ((10 mg/day of prednisone or equivalent), one non- steroidal anti- inflammatory drug, simple analgesics with no anti- inflammatory action or daily doses of aspirin (300	2 years	percentag e of patients achieving >20% improve ment as assessed by the ACR 20 response at week 24.	nr	Europe (incl UK), Australia , USA	Wyeth Research, Collegevil le, Pennsylva nia, USA	Combe 2006 ⁸⁸ (full article in peer- reviewed journal) ⁸⁹ Combe 2009) (full article in peer- reviewed journal)

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	Primary outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
				mg) during the study.						
ETN309 ⁸⁹		ETN+PBO n=103	NA							
ETN309 ⁸⁹		ETN+SSZ n=101	SSZ dose (g/day), mean (SD) 2.1 (0.5)							
JESMR ¹⁴⁴	RCT (Phase 4)	ETN mon (74 randomised)	7.0 (1.4)	Folic acid (37.7%), corticosteroid s (46.4%)	52 weeks	Good EULAR response and ACR50 response at week 24	No	Japan	Japanese Ministry of Health, Labour and Welfare	Kameda 2010 full paper ³¹⁹ Kameda 2011 full paper ³²⁰
JESMR ¹⁴⁴		ETN + MTX 6- 8mg/week (77 randomised)	7.4 (1.1)	Folic acid (52.1%), corticosteroid s (60.3%)						
Lan 2004 ¹⁰¹	RCT, double- blind	PBO+MTX n=29	12.5-20 mg/week	NSAIDs, aspirin and corticosteroid s were allowed	12 weeks	reduction of tender and swollen joint counts by 20%	NR	Taiwan	Wyeth- Ayerst (Asia) Ltd, Taiwan branch	Lan 2004 ¹⁰¹ (full article in peer- reviewed journal)

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
						(ACR20), 50%, 70% at 12weeks				
Lan 2004 ¹⁰¹		ETN+MTX n=29								
LARA ¹⁰² NCT00848354 Latin American RA study	randomised, open-label, active- comparator study phase 4	MTX+DMARD n=142	14.4 (3.9)	NR	24 weeks	proportio n of subjects achieving ACR50 criteria at week 24	NR	Latin America n region (Argentin a, Chile, Colombi a, mexico, panama)	Wyeth	Machado 2012 (conference abstract) ¹⁰²
LARA ¹⁰²		ETN50+MTX n=281	14.1 (3.8)							
Moreland 1999 ¹⁰⁴ Mathias 2000 ¹⁰⁵	confirmator y phase III randomized, double- blind, placebo- controlled	PBO n=80	NA	corticosteroid s and NSAIDs allowed	6 months	20% and 50% improve ment ACR, at 3 months and 6 months	Nr	USA	Immunex Corp, Seattle, Washingto n	Moreland 1999 ¹⁰⁴ (full article in peer- reviewed journal) Mathias 2000 ¹⁰⁵ (

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
										full article in peer- reviewed journal)
Moreland 1999 Mathias 2000 ¹⁰⁵		ETN+PBO n=78	NA							
RACAT ¹¹¹ O'Dell et al 2013 ¹¹² Rheumatoid Arthritis: Comparison of Active Therapies in Patients With Active Disease Despite MTX Therapy NCT00405275	randomised, double- blind, placebo- controlled, non- inferiority trial	MTX+SSZ+HCQ n=178 potential to switch groups at week 24	19.5 (5.0)	Participants continued to receive nonsteroidal antiinflammat ory agents and prednisone (≤10 mg per day) at stable doses	48 weeks	The originally proposed primary outcome was the difference in the proportio n of participan ts who had a DAS28 of 3.2 or less at week 48. In response	Part of study design - If the score on the DAS28 decreased (indicating improvement) by 1.2 or more by 24 weeks, the initial therapy was continued. If the score on the DAS28 decreased by less than 1.2, the participant was switched to the alternative	USA and Canada	Supported by the Cooperati ve Studies Program, Departme nt of Veterans Affairs Office of Research and Developm ent, and the Canadian Institutes for Health Research	O'Dell 2013 (full article in peer- reviewed journal) ¹¹² O'Dell 2012 ¹¹¹ (conf erence abstract)

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
						to unexpecte dly low enrollmen t, the protocol was amended in October 2008 to change the primary outcome from a binary outcome from a binary outcome to a continuou s outcome in order to increase the power of the	regimen.		and by an interagenc y agreement with the National Institutes of Health– American Recovery and Reinvestm ent Act.	

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	Primary outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
D + C + m ¹¹¹						study				
RACAT		potential to switch groups at week 24	19.7 (4.5)							
Wajdula 2000 European Etanercept Investigators Group) Protocol 0881A1- 300-EU ¹²³	RCT, multi- centre, double blind	PBO n=105			12 weeks	change from baseline in the number of swollen and painful joints at 3 months	NA (12week study)	Europe, multicent re		Info taken from published HTA report that had access to manufacture r trial reports Chen 2006
Wajdula 2000 ¹²³		ETN n=111								
Weinblatt 1999 ¹²⁴	RCT, double- blind	MTX +PBO , n=30	Stable dose 12.5- 25mg/week	NSAIDs and corticosteroid s allowed	24 weeks	American College of	[condition not described; Patients who	Multicent re USA	Supported by Immunex	Weinblatt 1999, ¹²⁴ (full article

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
Weinblatt 1999 ¹²⁴		ETN+MTX n=59				Rheumat ology criteria for a 20 percent improve ment in measures of disease activity (ACR 20) at 24 weeks	received intraarticular injections of corticosteroids during the study were counted as having or not having a response according to their overall evaluation,]			in peer- reviewed journal) Kremer 2003 ¹²⁵ (full article in peer- reviewed journal)
APPEAL ^{67,68}	open-label, active- comparator, parallel- design, multi-centre RCT	MTX plus DMARD (SSZ, HCQ or LEF), n=103	6.9 (8.5)	NSAIDs or corticosteroid s were allowed, but not multiple non- steroidal anti- inflammatory drugs (NSAIDs), and any increase in	16 weeks	ACR response (ACR-N) area under the curve (AUC) over 16 weeks	NR	Asia- Pacific region	Wyeth	Kim 2012 ⁶⁷ full article in peer- reviewed journal) Bae 2013 ⁶⁸ (full article in peer- reviewed journal)

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	Primary outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
				dosage of baseline NSAID or corticosteroid						
APPEAL ⁶⁸		ETN+MTX , n=197	6.5 (7.3)							
GO-FORTH ⁹¹	RCT (Phase 2/3)	PBO Q4W + MTX 6- 8mg/week (90 randomised)	NR	Concurrent NSAIDs, analgesic and oral corticosteroid s ( $\leq$ 10 mg prednisolone/ day or equivalent) allowed with stable doses $\geq$ 2 weeks prior to and during the study	24 weeks	ACR20 response at week 14	Patients with <20% improvement from baseline in TJC and SJC at week 14 could enter double-blind early escape where the dose was increased (or added in PBO arm).	Japan	Centocor Research & Developm ent Inc., Janssen Pharmace uticals KK and Mitsubishi Tanabe Pharmace utical Corporatio n	GO- FORTH ⁹¹ Tanaka 2012 full paper
GO-FORTH ⁹¹		GOL 50mg s.c. Q4W + MTX 6- 8mg/week (89 randomised)	NR							
GO-FORWARD ⁹²	RCT (Phase	Placebo s.c. every	Mean (SD)=	Patients	Double-	2 co-	Yes	Multinati	Centocor	Keystone et

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
(NCT00264550)	III, double- blind)	4 weeks + MTX (133 randomised)	17.0 (2.75) 15.0 (15.0 to 20.0) (median, IQR)	receiving NSAIDs or other analgesics for RA required to have been taking stable dose for at least 2 weeks before first dose of study agent. Patents receiving oral corticosteroid s required to have been taking stable dose equivalent to 10 mg/day or less of prenisone for at least 2 weeks before first dose of study drug.	blind placebo- controll ed phase to week 24 and open- label extensio n up to 5 years	primary endpoints : proportio n of patients achieving ACR20 response at week 14 and improve ment from baseline in HAQ- DI score at week 24.		onal, multicent re (60 sites over 12 countries )		<i>al.</i> , 2009 ²¹¹ (full publication, results to week 24) Keystone <i>et</i> <i>al.</i> , 2010 ⁹² (full publication, results to week 52)

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
GO-FORWARD ⁹²		GOL 50 mg s.c. every 4 weeks + MTX (89 randomised)	Mean (SD)= 17.4 (3.00) 15.0 (15.0 to 20.0) (median, IQR)							
Kay 2008 ⁹⁸ (NCT00207714)	RCT (Phase II, double- blind)	PBO s.c. + MTX (35 randomised)	All patients continued to receive stable doses of MTX (at least 10 mg/week) through end of study.	Oral corticosteroid s permitted at stable pre- study dosage not exceeding equivalent 10 mg prednisone per day. Commercially available NSAIDs permitted at stable pre- study dose. Folic acid at stable dosage of at least 5	52 weeks	Proportio n of patients meeting ACR 20% improve ment criteria (achievin g an ACR20 response) at week 16.	Yes	Multicent re (40 study sites, geograph ical location( s) not stated)	Centocor	Kay <i>et al.</i> , 2008 (full publication) 98

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
				mg every week for at least 4 weeks before first study drug dose.						
Kay 2008 ⁹⁸		GOL 50 mg s.c. every 4 weeks + MTX (35 randomised)								
Abe 2006 ⁵⁶	RCT (Phase NR, double- blind)	PBO + MTX (N randomised NR, 47 patients received ≥ 1 infusion)	7.4 (SD = 2.2)	Patients taking NSAIDs, folic acid or corticosteroid s (10 mg/day or less prednisolone equivalent) required to have received stable dose for at least 4 weeks before study entry.	14 weeks	ACR20 response at week 14	No	Multicent re, Japan	NR	Abe <i>et al.</i> , 2006 (full publication) 56
Abe 2006 ⁵⁶		IFX 3 mg/kg i.v.	7.1 (SD =							

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
		at weeks 0, 2 and 6 + MTX (N randomised NR, 49 patients received $\geq 1$ infusion)	1.9)							
ATTRACT ⁷⁵	RCT (Phase III, double blind)	PBO i.v. + MTX (88 randomised)	Median 15 (IQR 12.5- 17.5)	Patients receiving oral corticosteroid s (10 mg/kg or less prednisone equivalent) or NSAIDS required to have stable dose for at least 4 weeks before screening (and must not have received either drug for at least 4 weeks before screening). Patients	54 week PBO- controll ed RCT with LTE to 102 weeks	ACR20 response at week 30 without requiring a surgical joint procedure , initiation of new antirheum atic drugs or increased in antirheum atic drugs.	No	Multicent re, multinati onal,	Centocor	Maini <i>et al.</i> , 1999 (full publication) ⁷⁵

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
				received baseline dose of MTX or corticosteroid s during study.		ACR20 response at week 30				
ATTRACT ⁷⁵		IFX 3 mg/kg i.v. at weeks 0, 2 and 6 and every 8 weeks thereafter (86 randomised) +MTX	Median 15 (IQR 12.5- 17.5)							
Durez 2004 ⁸⁶	RCT (Phase NR, open label)	Single i.v. infusion of 1 g methylprednisolo ne (MP) (sodium hemisuccinate) at week 0 + MTX (14 randomised)	Median 12.5 (range 10-15)	Oral glucocorticoid doses remained unaltered during study. i.a. steroids not permitted. Introduction of new NSAID or DMARD not permitted.	14 weeks	NR	No	Belgium	Schering- Plough	Durez <i>et al.</i> , 2004 (full publication) ⁸⁶
Durez 2004		IFA 5 mg/kg at	Median 15	1			1	1		

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
		weeks 0, 2 and 6 + MTX (12 randomised	(range 10-15)							
START ¹¹⁸	RCT	PBO + MTX (363 randomised)	Median (IQR): 15.0 (10-15)	MTX only (70.0%), MTX + 1 DMARD (25.3%), MTX + 2 DMARDs (4.4%), NSAIDs (39.4%), corticosteroid s (59.2%), narcotics/opio id analgesics (6.1%)	1 year (22 weeks before dose escalati on commen ced)	Occurren ce of a serious infection within 22 weeks of initiating therapy	No, but dose escalation from 22 weeks if <20% improvement in SJC and TJC or $\geq 50\%$ discontinuation in improvement in combined SJC and TJC	NR	Centocor Research and Developm ent Inc	Westhovens 2006 full paper ¹¹⁸
START ¹¹⁸		IFX 3mg/kg + MTX (360 randomised)	Median (IQR): 15.0 (10-18)	MTX only (70.8%), MTX + 1 DMARD (24.4%), MTX + 2 DMARDs (4.7%),						

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
				NSAIDs (43.3%), corticosteroid s (59.2%), narcotics/opio id analgesics (5.8%)						
Swefot ¹¹⁹ (Swedish Pharmacotherapy) study (WHO database number CT20080004)	RCT (phase NR, open label)	SSZ (1000 mg twice daily orally) + HCQ (400 mg daily orally) + MTX (with optional increase to SSZ 1500 mg twice daily if ineffective and cDMARD adjustment in event of toxicity with potential switch to CYC A (5 switched to CYC A, included in primary analyses) n=130	Up to 20 mg/wk	If patients were receiving glucocorticoid s, dose was required to be stable for at least 4 weeks at no more than 10 mg daily prednisolone (or equivalent).	2 years	EULAR good response at 12 months	Dose adjustments permitted (see left)	Multicent re (15 rheumato logy units), Sweden)	Swedish Rheumatis m Associatio n. Schering- Plough	van Vollenhoven <i>et al.</i> , 2009) (full publication) ¹¹⁹ ¹⁵⁰

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
		at weeks 0, 2, 6 and every 8 weeks thereafter with optional increase to IFX every 6 weeks thereafter) (in event of toxicity, optional switch to ETN 50 mg weekly) (5 switched to ETN, included in primary analyses)+MTX n=128								
Wong 2009 ¹²⁶	RCT (Phase NR, double- blind)	PBO + MTX (with crossover to open-label IFX at week 24). n=9	NR	All antirheumatic medications kept stable for at least 4 weeks before and during study (unless dose alterations were	56 weeks	Vascular ultrasoun d assessme nts at weeks 24 and 56	Yes (PBO patients could escape to open- label IFX at week 16)	UK	Centocor Pty Ltd Arthritis Foundatio n of Australia.	Wong <i>et al.</i> , 2009 (full publication) ¹²⁶

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
				clinically indicated).						
Wong 2009 ¹²⁶		IFX 3 mg/kg at weeks 0, 2, 6 and 8 weeks thereafter + MTX n=17								
Zhang 2006 ¹²⁷	RCT (Phase NR, double- blind)	PBO i.v. + MTX n=86	Stable dose of MTX continued during study	Glucocorticos teroid dose required to be stable for 4 weeks before screening and dosage not permitted to exceed 10 mg/day prednisone or equivalent.	18 weeks	NR	No	Multicent re (5 centres), China		Zhang <i>et al.</i> , 2006 (full publication) ¹²⁷

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
Zhang 2006 ¹²⁷		IFX 3 mg/kg i.v. at weeks 0, 2, 6 and 14 + MTX n=87								
ACT-RAY ⁵⁷ (NCT00810199)	RCT (Phase III, double- blind)	TCZ 8 mg/kg i.v. every 4 weeks + oral PBO (277 randomised)	Patients received mean weekly doses of MTX/PBO ranging from: TCZ 8 mg/kg i.v. every 4 weeks + oral PBO = 15.8 to 16.3 mg/week TCZ 8 mg/kg i.v. every 4 weeks + MTX = 15.2 to 15.9 mg/week	Oral corticosteroid s ( $\leq$ 10 mg/day prednisone or equivalent) and NSAIDs permitted if doses had been stable for at least 25 of 28 days before start of study agent	2 years	% patients in remission according to DAS28- ESR (DAS28 <2.6) at week 24	No	NR	Roche	Dougados <i>et</i> <i>al.</i> , 2013 (full publication) ⁵⁷

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	Primary outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
ACT-RAY ⁵⁷		TCZ 8 mg/kg i.v. every 4 weeks + MTX n=276								
MEASURE ¹⁰³	(RCT, phase NR, double- blind)	PBO + MTX (69 randomised)	NR	NR	24 weeks double- blind phase of 2 year study	NR	Yes (27 patients in PBO arm entered early escape treatment with open label TCZ at week 16)	UK, USA, Canada	Lead author: grant/resea rch support from Roche	McInnes <i>et</i> <i>al.</i> , 2011 (conference abstract) ¹⁰³
MEASURE ¹⁰³		TCZ 8 mg/kg i.v. every 4 weeks + MTX (69 randomised)	NR							
Nishimoto 2004 ¹⁰⁶	RCT (Phase NR, double- blind)	PBO i.v. every 4 weeks (53 randomised)	NA	Stable prednisolone (≤ 10 mg/day) and NSAIDs permitted at stable doses. No parenteral and/or i.a. corticosteroid s permitted during 4 week	3 months	ACR20 at week 12	No	Multicent re, Japan	Chugai Pharmace utical, Japan	Nishimoto <i>et al.</i> , 2004 (full publication) ¹⁰⁶

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
				washout period before initiation of study agent and during study period.						
Nishimoto 2004 ¹⁰⁶		TCZ 8mg/kg i.v. every 4 weeks (55 randomised)	NA							
SAMURAI ¹¹⁵ Study of Active Controlled Monotherapy Used for Rheumatoid Arthritis,	multi- centre, x- ray reader- blinded, randomised, controlled trial phase III	cDMARDsDiseas eActivity n=145	8.0 (2. 123 patients (85%) received MTX: 81 (56%) received a combination of MTX and DMARDs, 42 (29%) received MTX monotherapy, and 20 (14%) received DMARDs	For the conventional DMARD group, the dose, type and combination of DMARDs and/or immunosuppr essants, except for anti-TNF agents and LEF, could be varied according to disease	52 weeks	progressi on of structural joint damage	nr	Japan	Chugai Pharmace utical Co., Ltd., Tokyo, Japan	Nishimoto 2007 (full article in peer- reviewed journal) ¹¹⁵

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
			and/or immunosuppr essants other than MTX, besides corticosteroid s	activity at the discretion of the treating physician						
SAMURAI ¹¹⁵		TCZi.v. n=157	NA	both groups - Oral corticosteroid s ((10 mg prednisolone per day) were allowed, but the dosage could not be increased during the study. Use of one nonsteroidal anti- inflammatory drug (NSAID),						

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
				including switching to another NSAID, was allowed.						
SATORI ¹¹⁶ (NCT0 0144521)	RCT (Phase III, double- blind)	PBO + MTX n=64	8 (maximum permitted dose in Japan)	Oral corticosteroid s permitted at ≤ 10 mg/day prednisolone (as worded) (dose increase not permmited) i.a. corticosteroid injections (one joint max at one treatment) and hyaluronate preparations permitted. Use of 1 NSAID permitted	Double- blind controll ed phase to week 24	ACR20 response at week 24	No	Single country, multicent re (25 sites across Japan)	Chugai Pharmace utical Co., Ltd., Japan	Nishimoto <i>et al.</i> , 2009 (full publication) ¹¹⁶

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
				(switching to another NSAID allowed). DMARDs, i.v. or i.m. corticosteroid s, plasmapharesi s and surgical treatment not allowed.						
SATORI ¹¹⁶		TCZ 8 mg/kg i.v. every 4 weeks+ PBO capsules n=61								
TOWARD ¹²¹	RCT (Phase III, double- blind)	PBO i.v. every 4 weeks + stable cDMARDs (415 randomised)	14.7	Oral glucocorticoid s (≤ 10 mg/day prednisone or equivalent) and NSAIDs/CO X-2 inhibitors permitted if doses stable	24 weeks	ACR20 at week 24	Yes (early escape at week 16 for patients failing to achieve >20% improvement in both SJC and TJC consisting of adjustment of background	Multinati onal (18 countries ), multicent re	Roche	Genovese <i>et</i> <i>al.</i> , 2008 (full publication) ¹²¹

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
				for $\geq 6$ weeks.			DMARD dosage and/or a different DMARD and/or i.a./oral glucocorticoids )			
TOWARD ¹²¹		TCZ 8 mg/kg i.v. every 4 weeks + stable DMARDs (805 randomised)	15.0							
TACIT ¹²⁰	Pragmatic RCT	Combination cDMARDs (107 randomised)	25 mg/week	Various options – triple therapy (MTX, SSZ, HCQ), other MTX combinations (e.g. MTX- ciclosporin, MTX-LEF, MTX-GLD), one SSZ combination (SSZ-LEF), additional monthly	6 months	HAQ	6 month non- responders in cDMARD arm could start TNFis and those in TNFi arm could have a second TNFi	UK	Health Technolog y Assessme nt Programm e	Scott 2013 report ¹²⁰

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
				steroids (IM						
				depomedrone (120mg stat)						
				Or equivalent)						
				Non-opiate						
				analgesics and						
				NSAIDs were						
				used as						
				standard						
				doses. Folic						
				acid (5						
				mg/week) if						
				taking MTX.						
				Bone protection (or						
				alendronate						
				and						
				calcium/vitam						
				in D) if taking						
				steroids.						
		TNFi + DMARD	25 mg/week	MTX unless						
unpublished		(10/ randomised)		intolerant, in						
				another						
				cDMARD						

Trial name / Author, year (NCT/sponsor number)	Trial design (RCT, phase, LTE)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geograp hical location	Funding source	Primary and supplement ary publication details (author, year, publication type (eg. full, abstract))
				was used. Non-opiate analgesics and NSAIDs were used as needed at standard doses. Folic acid (5 mg/week) if taking MTX. Bone protection (eg alendronate and calcium/vitam in D) if taking steroids.						

Trial name / Author, year (NCT/sponsor number)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geographic al location	Funding source	Primary and supplementar y publication details (author, year, publication type (eg. full, abstract))
ACQUIRE ¹³⁰	ABT s.c. + PBO i.v. + MTX n=736	≥15 mg/week (mean at baseline: 16.3 (3.6) mg/week)	Corticosteroids (oral and/or injectable): 72.1%, mean (SD) dose 4.8 (4.5) mg/day.	6 months	ACR20 (% patients achieving response) at 6 months.	No	NR	Bristol-Myers Squibb	Genovese 2011 ¹³⁰ full paper
ACQUIRE ¹³⁰	ABT i.v. + PBO s.c. + MTX n=721	≥15 mg/week (mean at baseline: 16.5 (3.8) mg/week)	Corticosteroids (oral and/or injectable): 74.6%, mean (SD) dose 5.2 (6.9) mg/day.						
NCT00254293 ¹	PBO + MTX (119 randomised)	10- 30mg/week, mean (SD) 15.8 (4.1)	Addition of another DMARD (HCQ, SSZ, GLD, AZA) and/or adjustment in corticosteroids equivalent to ≤10mg/day prednisone were permitted. Use of the above not reported.	12 months	ACR20 response at 6 months	No	Multicentre	Bristol-Myers Squibb	Kremer 2005 ¹³⁵ full paper Kremer 2003 full paper (RM24716)
NCT00254293 ¹	ABT i.v. (~10mg/kg) + MTX (115 randomised)	10- 30mg/week, mean (SD) 15.0 (4.4)							
ORAL STANDARD ¹³⁷	MTX+PBO n=108	7.5 to 25 mg of MTX	Glucocorticoids and Lipid-lowering	12month s	20% improvement	Patients in the placebo	Europe, USA, Korea,	Supported by Pfizer.	van Vollenhoven

 Table 337:
 Trial characteristics: RCTs (ineligible for systematic review) used as additional evidence in NMA Sensitivity analyses

Trial name / Author, year (NCT/sponsor number)	Treatment arms for which data extraction performed	MTX dose during study (where	Concomitant treatments	Duratio n of RCT phase	Primary outcome	Early withdrawal plan reported?	Geographic al location	Funding source	Primary and supplementar y publication details
	(number of patients randomised	applicable) (mg/week)							(author, year, publication type (eg. full,
	per treatment								abstract))
NCT00853385		weekly all groups	medication allowed		at month 6 in the American College of Rheumatolog y scale (ACR 20); the change from baseline to month 3 in the score on the Health Assessment Questionnaire –Disability Index (HAQ- DI) (which ranges from 0 to 3, with higher scores indicating greater disability); and the percentage of patients at month 6 who had a Disease Activity Score for 28-	group who did not have a 20% reduction in the number of swollen and tender joints after 3 months (considered as not having had a response) were randomly assigned to either 5 mg or 10 mg of tofacitinib.	Latin America		2012 ¹³⁷ (full article in peer- reviewed journal)
					joint counts				

Trial name / Author, year (NCT/sponsor number)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	Primary outcome	Early withdrawal plan reported?	Geographic al location	Funding source	Primary and supplementar y publication details (author, year, publication type (eg. full, abstract))
					based on the erythrocyte sedimentation rate				
ORAL STANDARD ¹³⁷	TOF5+MTX n=204								
ORAL STANDARD ¹³⁷	TOF10+MTX n=201								
ORAL STANDARD ¹³⁷	ADA+MTX								
	n=204								
Yamamoto 2011 / JRAPID ¹³³ (NCT00791999 )	PBO + MTX every 2 weeks (77 patients randomised)	NR	MTX	24 weeks	ACR20 response at week 12	Early escape at week 16 for patients who failed to achieve ACR20 response at both weeks 12 and 14	Japan, multicentre	NR	Yamamoto <i>et</i> <i>al.</i> , 2011 (conference abstract) ¹³³
JRAPID ¹³³	CTZ 200 mg + MTX every 2 weeks (82 patients randomised)	NR	MTX						
RA0025 ¹³⁸	PBO + MTX	10-20	MTX	24	ACR20	Patients with	Korea	Not reported	Kang 2012

Trial name / Author, year (NCT/sponsor number)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geographic al location	Funding source	Primary and supplementar y publication details (author, year, publication type (eg. full, abstract))
	(40 randomised?)	mg/week		weeks	response at week 24	no ACR20 response at both weeks 12 and 14 were withdrawn			abstract ¹³⁸
RA0025 ¹³⁸	CTZ 400mg at weeks 0, 2 & 4 then 200mg Q2W + MTX (81 randomised?)	10-20 mg/week	MTX						
RAPID1 ¹³⁹	PBO + MTX (199 randomised)	13.4	MTX, oral corticosteroids (≤10 mg/day prednisone or equivalent with stable dose from 4 weeks prior to baseline), NSAIDs/cyclooxygena se 2 inhibitors and analgesics.	52 week	ACR20 response rate at week 24 and mean change form baseline in mTSS at week 52	Early escape at week 16 for patients who failed to achieve ACR20 response at both weeks 12 and 14	NR	UCB	Keystone 2008 full paper ¹³⁹
RAPID1 ¹³⁹	CTZ 400mg at weeks 0, 2 & 4 then 200mg Q2W + MTX (393 randomised)	13.6							
RAPID2 ¹⁴⁰	PBO + MTX (127	12.2	MTX	24 week	ACR20 response at	Early escape at week 16	International	UCB	Smolen 2009 full paper ¹⁴⁰

Trial name / Author, year (NCT/sponsor	Treatment arms for which data extraction	MTX dose during study (where	Concomitant treatments	Duratio n of RCT	Primary outcome	Early withdrawal plan	Geographic al location	Funding source	Primary and supplementar y publication
number)	(number of patients randomised per treatment arm)	(where applicable) (mg/week)		pnase		reported ?			(author, year, publication type (eg. full, abstract))
	randomised)				week 24	for patients who failed to achieve ACR20 response at both weeks 12 and 14			
RAPID2 ¹⁴⁰	CTZ 400mg at weeks 0, 2 & 4 then 200mg Q2W + MTX (246 randomised)	12.5	MTX						
TEAR ⁵⁴ (SA mixed pop)	MTXmon(ST) n=124 ST =step-up	MTX, which was escalated to	for those receiving corticosteroids, the dosage	102 weeks	an observed- group analysis of	step-up therapy part of study	USA	Supported by Amgen through a grant	Moreland 2012 ⁵⁴ (full article in peer-
NCT00259610 The Treatment of Early Aggressive Rheumatoid Arthritis Trial	from MTX to triple disease- modifying antirheumatic drug therapy (MTX plus SSZ plus HCQ);	a dosage of 20 mg/week or to a lower dosage if treatment resulted in no active tender/painf ul or swollen joints by week 12.	up to 10 mg/day of prednisone) had to be stable for at least 2 weeks prior to screening; for those receiving nonsteroidal anti-inflammatory drugs, the dosage had to be stable for at least 1 week prior to screening folic acid at a dosage of 1		DAS28-ESR values from week 48 to week 102	design		to the University of Alabama at Birmingham. The study drugs were provided by Amgen (etanercept and placebo), Barr Pharmaceutica Is (MTX), and Pharmacia	reviewed journal)

Trial name / Author, year (NCT/sponsor number)	Treatment arms for which data extraction performed (number of patients randomised per treatment	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	Primary outcome	Early withdrawal plan reported?	Geographic al location	Funding source	Primary and supplementar y publication details (author, year, publication type (eg. full, abstract))
			mg per day					(SSZ and placebo). The initial phases of the study were supported by the NIH (planning grant 1-R34- AR-055122 from the National Institute of Arthritis and Musculoskelet al and Skin Diseases to.	
TEAR ⁵⁴ (SA mixed pop)	MTXmon(SE) n=255 SE=step-up from MTX to MTX plus etanercept;								
TEAR ⁵⁴ (SA mixed pop)	MTX+SSZ+HC Q n=132								
mixed pop)	ETN50+MTX n=244								
Trial name / Author, year (NCT/sponsor number)	Treatment arms for which data extraction performed (number of patients	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	Primary outcome	Early withdrawal plan reported?	Geographic al location	Funding source	Primary and supplementar y publication details (author, year, publication
------------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------	-------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------	---------------------------------	-----------------------------------------------------------------------------------------------------------------------	------------------------------------------	-------------------------------	-------------------	------------------------------------------------------------------------------------------
	randomised per treatment arm)								type (eg. full, abstract))
TEMPO ⁵⁵ Trial of Etanercept and MTX with Radiographic Patient Outcomes	MTXmon n=228	MTX dose (median [IQR], mg/week) 10 (7.5– 15.0) 1	NSAIDs and corticosteroids allowed 5-mg folic acid supplement twice a week	52weeks	numeric index of the ACR response (ACR-N) area under the curve (AUC) over the first 24 weeks.	NR	Europe, Australia, USA	Wyeth Research	Klarekskog 2004 ⁵⁵ (full article in peer- reviewed journal)
TEMPO ⁵⁵	ETNmon n=223	MTX dose (median [IQR], mg/week) 10 (7.5– 13.8) 10							
TEMPO ⁵⁵	ETN+MTX n=231	MTX dose (median [IQR], mg/week) 10 (7·5– 15·0)							
AMBITION ¹³¹ (NCT00109408 )	MTX alone (284 randomised)	7.5-20	Oral glucocorticoids ( $\leq$ 10 mg/day prednisone or equivalent) and NSAIDs permitted if dose stable for $\geq$ 6 weeks.	24 weeks	ACR20 at week 24	No	Multicentre, multinational	Roche	Jones <i>et al.</i> , 2010 (full publication ( ¹³¹ )
AMBITION ¹³¹	TCZ 8mg/kg	NA							

Trial name / Author, year (NCT/sponsor number)	Treatment arms for which data extraction performed (number of patients	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	Primary outcome	Early withdrawal plan reported?	Geographic al location	Funding source	Primary and supplementar y publication details (author, year, publication
	randomised per treatment arm)								type (eg. full, abstract))
	i.v. every 4 weeks (288 randomised)								
LITHE ¹³⁴ (NCT00106535 )	PBO i.v. every 4 weeks + MTX (393 randomised)	Patients received stable dose of MTX 10- 25 mg/wk Mean (SD) = 15.0 (4.2)	Oral corticosteroids (≤ 10 mg/day prednisone or equivalent) and NSAIDs permitted if doses had been stable for ≥ 6 weeks before study entry.	52 weeks	Co-primary endpoints at week 52: Change from baseline in total Genant- modified Sharp score and AUC for change from baseline in HAQ-DI.	Yes (Rescue therapy at week 16 for patients not achieving $\geq$ 20% improvemen t in TJC and SJC. PBO group received TCZ 4 mg/kg + steroids. TCZ 8 mg/kg group received TCZ 8 mg/kg + steroids. If <20% improvemen t persisted after 3 doses of blinded	Multicentre, multinational (14 countries)	Roche	Kremer <i>et al.</i> , 2011 (full publication) ( ¹³⁴ )

Trial name / Author, year (NCT/sponsor number)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	<b>Primary</b> outcome	Early withdrawal plan reported?	Geographic al location	Funding source	Primary and supplementar y publication details (author, year, publication type (eg. full, abstract))
						first-step rescue therapy, patients received second-step rescue of TCZ 8 mg/kg. If still no response, treatment discontinued ).			
LITHE ¹³⁴	TCZ 8 mg/kg i.v. every 4 weeks + MTX (398 randomised)	Mean (SD) = 15.4 (10.6)							
OPTION ¹³⁶	PBO i.v. every 4 weeks + MTX (204 randomised)	14.8 (4.2)	Oral glucocorticoids ( $\leq$ 10 mg/day prednisone or equivalent) and NSAIDs permitted if doses stable for $\geq$ 6 weeks before study entry.	24 weeks	ACR20 at week 24	Yes (Patients not achieving $\geq$ 20% improvemen t in both SJC and TJC by week 16 eligible for rescue	Multicentre (73 centres), multinational (17 countries)	Roche, Chugai Pharmaceutica l	Smolen <i>et al.</i> , 2008 (full publication ( ¹³⁶ )

Trial name / Author, year (NCT/sponsor number)	Treatment arms for which data extraction performed (number of patients randomised per treatment arm)	MTX dose during study (where applicable) (mg/week)	Concomitant treatments	Duratio n of RCT phase	Primary outcome	Early withdrawal plan reported?	Geographic al location	Funding source	Primary and supplementar y publication details (author, year, publication type (eg. full, abstract))
						therapy with TCZ 8mg/kg and steroids if necessary or increase in oral corticosteroi d dose (max 10 mg/day)			
OPTION ¹³⁶	TCZ 8 mg/kg i.v. every 4 weeks + MTX (205 randomised)	14.5 (4.4)							

 Table 338:
 Population characteristics additional information Population 1 Head to head trial

Trial name	Treatment arms for	Ethnicity	Rheumatoid	Prior DMARD treatment history (brief	% receiving	% receiving
/ Author,	which data	(where	factor (%	description, including definition of	NSAIDs at	steroids at
year	extraction	reported)	positive)	active RA despite previous treatment,	baseline	baseline
	performed			where relevant)		
Kume 2011	ADA mon	NR	85.8	No prior treatment with MTX or biologics.	NR	NR
100				Dosage of all DMARDs had to be stable		
				for $\geq 8$ weeks prior to enrolment.		
Kume	ETN mon	NR	88.6	No prior treatment with MTX or biologics.	NR	NR
$2011^{100}$				Dosage of all DMARDs had to be stable		
				for $\geq 8$ weeks prior to enrolment.		

Trial name /	Treatment arms for which	Ethnicity	Rheumatoid	Prior DMARD treatment history (brief	%	%
Author, year	data extraction performed	(where	factor (%	description, including definition of active RA	receiving	receiving
		reported)	positive)	despite previous treatment, where relevant)	NSAIDs at	steroids at
					baseline	baseline
Bejarano	PBO+MTX	NR	95	MTX naive	NR	NR
2008 ⁷⁷	n=73			mean 0.2 prior cDMARDs		
Bejarano	ADA+MTX	NR	96	MTX naive	NR	NR
2008 ⁷⁷	n=75			mean 0.2 prior cDMARDs		
GUEPARD ⁹³	Initial MTX	NR	77.4	MTX naive; no prior biologics	NR	31.3
	12 weeks, then step-up					
	therapy in both groups					
	based on DAS28					
	n=32					
GUEPARD ⁹³	Initial ADA+MTX	NR	70.0	MTX naive; no prior biologics	NR	30.3
	12 weeks, then step-up					
	therapy in both groups					
	based on DAS28					
	n=33					
HIT HARD ⁹⁴	MTX + PBO	NR	69.4	Required to be DMARD naïve, mean number of prior	NR	NR
				DMARDs was 0.		
HIT HARD ⁹⁴	ADA + PBO	NR	63.2	Required to be DMARD naïve, mean number of prior	NR	NR
				DMARDs was 0.		
OPERA ¹⁰⁷	MTX + PBO + steroid	NR	74	Active RA by ACR (1987) revised criteria. Excluded	NR	NR
				if had glucocorticoids within the last 4 weeks or		
				previous DMARD therapy.		
OPERA ¹⁰⁷	ADA + MTX + steroid	NR	70	Active RA by ACR (1987) revised criteria. Excluded	NR	NR
				if had glucocorticoids within the last 4 weeks or		
				previous DMARD therapy.		
OPTIMA ¹⁰⁸	MTX + PBO	90% white	89	Patients were excluded if they had received prior	79	46
				MTX, >2 synthetic DMARDs or biologics.		
OPTIMA ¹⁰⁸	ADA + MTX	89% white	87	Patients were excluded if they had received prior	78	41
				MTX, >2 synthetic DMARDs or biologics.		
PREMIER ¹⁰⁹	MTX + PBO	94.4%	84.0	Required to be MTX naïve (and no previous treatment	NA	35.4

 Table 339:
 Population characteristics additional information Population 1 biologic vs DMARD(s) or PBO

		white		with cyclophosphamide, cyclosporine, AZA or >2 other DMARDs). 31.5% had prior DMARD experience.		
PREMIER ¹⁰⁹	ADA mon + PBO step up week 16	93.5% white	83.5	Required to be MTX naïve (and no previous treatment with cyclophosphamide, cyclosporine, AZA or >2 other DMARDs). 33.2% had prior DMARD experience.	NA	36.5
PREMIER ¹⁰⁹	ADA + MTX step up week 16	93.6% white	85.1	Required to be MTX naïve (and no previous treatment with cyclophosphamide, cyclosporine, AZA or >2 other DMARDs). 32.5% had prior DMARD experience.	NA	35.8
COMET ^{81 82}	MTX +PBO n=268	White 88%	NR	MTX naive % having prior cDMARDs 24%	76	50
COMET ⁸¹	ETN+MTX n=274	White 87%	NR	MTX naive % having prior cDMARDs 18%	72	49
ERA, Bathon 2000 Multicentre ¹⁴¹	MTX + PBO	88% Caucasian	89	Required to be MTX naïve. 46% of patients had prior DMARDs, mean no. of DMARDs 0.6 (0.7).	80	41
ERA, Bathon 2000 Multicentre ¹⁴¹	ETN + PBO	86% Caucasian	87	Required to be MTX naïve. 40% of patients had prior DMARDs, mean no. of DMARDs 0.5 (0.7).	86	39
GO-BEFORE ⁹⁰	PBO+MTX	White =71.3%, Black =3.8%, Asian =15.6% Other (no further details) =9.4%	NR	MTX-naïve patients. Patients had not received more than 3 weekly doses of oral MTX as RA treatment. Patients who had previously received infliximab, etanercept, adalimumab, rituximab, natalizumab or cytotoxic agents excluded. Patients receiving anakinra could participate 4 weeks after receiving last dose. Patients receiving alefacept or efalizumab could participate 3 months after last dose. Previous DMARDs =83/160 (51.9%) HCQ_=26/160 (16.3%) SSZ_=51/160 (31.9) LEF_= 12/160 (7.5%) Other DMARDs_(no further details) =26 (16.3) Anakinra =0/0 (0.0%)	95.6	68.1

				Immunosuppresive agents = $3/160(1.9\%)$		
GO-BEFORE ⁹⁰	GOL + MTX	White = 74.8% Black = 0.6% Asian = 18.9% Other (no further details) = 5.7%	NR	Previous DMARDs = 80/159 (50.3%) HCQ =33/159 (20.8%) SSZ = 36/159 (22.6%) LEF = 13/159 (8.2%) Other DMARDs (no further details) =29/159 (18.2%) Anakinra = 0 (0.0) Immunosuppressive agents =2/159 (1.3%)	98.1	69.8
ASPIRE ⁷¹	PBO + MTX	NR	71	Patients had persistent synovitis $\geq 3$ months and $\leq 3$ years, $\geq 10$ swollen joints, and $\geq 12$ tender joints. All patients were MTX-naïve. 65-71% DMARD- naïve. Patients were excluded if any prior treatment with MTX (had to be 3 or fewer pre-study doses), had received other DMARDs within 4 weeks of entry (or LEF within past 6 months), or had been treated with infliximab, etanercept, adalimumab or other anti-TNF agent. 65% DMARD naïve	82	38
ASPIRE ⁷¹	IFX i.v. 3 mg/kg at weeks 0, 2 and 6 and every 8 weeks thereafter + MTX	NR	71	71% DMARD naïve	85	37
BeST ⁷⁸	Sequential monotherapy (DAS-steered)	NR	67	Patients had active disease with $\geq 6$ of 66 swollen joints, $\geq 6$ of 68 tender joints and ESR $\geq 28$ mm/hr or global health score of $\geq 20$ mm (0-100 VAS). Exclusion criteria included previous treatment with DMARDs other than antimalarials. (Hydroxychloroquine and chloroquine = antimalarials) Previous antimalarial therapy = 7%	NR	NR

BeST ⁷⁸	Step-up combination therapy (DAS-steered)	NR	64	Previous antimalarial therapy = 11%	NR	NR
BeST ⁷⁸	Initial combination therapy with prednisone (DAS- steered)	NR	65	Previous antimalarial therapy = 8%	NR	NR
BeST ⁷⁸	Initial combination therapy with IFX (DAS-steered)	NR	64	Previous antimalarial therapy = 9%	NR	NR
Durez 2007 ¹⁴²	MTX	NR	64	MTX-naïve population. Patients had not been previously treated with MTX. Exclusion criteria included previous treatment with > 2 DMARDs (no further details), MTX or i.v. MP.	NR	NR
Durez 2007 ¹⁴²	MTX + i.v. methyprednisolone (MP)	NR	100		NR	NR
Durez 2007 ¹⁴²	IFX 3 mg/kg i.v. at weeks 0, 2, 6, 14, 22, 30, 38, 46+MTX	NR	67		NR	NR
IDEA ⁹⁵	MP 250 mg i.v. at week 0, PBO i.v. at weeks 2, 6, 14, 22 + MTX	NR	NR	Patients described as DMARD-naïve (no further details)	NR	NR
IDEA ⁹⁵	IFX 3 mg/kg i.v. at weeks 0, 2, 6, 14, 22 + MTX (IFX dose modifications permitted according to DAS44 from week 26)	NR	NR		NR	NR
Quinn 2005 ¹¹⁰	MTX + PBO	NR	60	No prior treatment with DMARDs or oral corticosteroids.	NR	NR
Quinn 2005 ¹¹⁰	IFX + MTX	NR	70	No prior treatment with DMARDs or oral corticosteroids.	NR	NR

Trial name / Author, year	Treatment arms for which data extraction performed	Ethnicity (where reported)	Rheumatoid factor (% positive)	Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)	% receiving NSAIDs at baseline	% receiving steroids at baseline
ATTEST ⁷⁴	PBO+MTX	76.4% Caucasian	77.3	MTX $\geq$ 15 mg/week for $\geq$ 3 months (stable for $\geq$ 28 days) and washed out all DMARDs (at least 28 days prior) except for MTX. No prior ABT or anti-TNF therapy permitted. MTX, n (%) = 110/110 (100) Dose, mg/wk (SD) = 16.6 (3.7) Duration, months (SD) = 23.7 (25.6)	84.5	70.0
ATTEST ⁷⁴ (NCT00095147)	IFX 3 mg/kg i.v. administered on days 1 (i.e. week 0), 15 (i.e. week 2), 43 (i.e. week 6) and 85 (i.e. week 12) and every 56 days (i.e. 8 weeks) thereafter (NB: licensed dose 3 mg/kg i.v. at weeks 0, 2, 6 and every weeks thereafter, adjustments in dosage and frequency of administration permitted after week 12 in license) + MTX	80.6% Caucasian	84.8	MTX, n (%) = 164/165 (99.4) Dose, mg/wk (SD) = 16.3 (3.6) Duration, months (SD) = 23.6 (26.8)	86.1	71.5
ATTEST ⁷⁴ (NCT00095147)	ABT dosed according to weight: patients weighing less than 60 kg, 60-100kg, or more than 100kg received 500 mg, 750 mg or 1000 mg of ABT respectively. ABT administered i.v. on days 1, 15 and 29 and every 28 days thereafter, up to and including day 337 (156 randomised) + MTX	80.8% Caucasian	87.2	MTX, n (%) = 156/156 (100) Dose, mg/wk (SD) = 16.5 (3.7) Duration, months (SD) = 18.3 (20.0)	85.3	75.6
AMPLE ⁶⁶	ABT s.c.	80.8% Caucasian	75.5	Inadequate response to MTX, no prior bDMARDs. Concomitant medication	NR	50.9

 Table 340:
 Population characteristics additional information Population 2 Head to head trials

Trial name / Author, year	Treatment arms for which data extraction performed	Ethnicity (where reported)	Rheumatoid factor (% positive)	Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)included SSZ (3.1%) and	% receiving NSAIDs at baseline	% receiving steroids at baseline
AMPLE ⁶⁶	ADA	78.0% Caucasian	77.4	HCQ (13.2%). Inadequate response to MTX, no prior bDMARDs. Concomitant medication included SSZ (3.4%) and HCQ (10.7%).	NR	50.3
RED-SEA ¹¹⁴	ADA+cDMARDs n=60	NR	91.7	100% prior MTX	58.3%	On oral prednisolone 33.3%
RED-SEA ¹¹⁴	ETN50+cDMARDs n=60	NR	85	100% prior MTX	43.3%	On oral prednisolone 45%
ADACTA ⁵⁸	TCZ + PBO	NR	75	Patients with RA of at least 6months duration and DAS28> 5.1 who were MTXintolerant or for whomcontinued treatment withMTX was consideredineffective or inappropriate.Mean number of previousDMARDs = 2.0 (1.1)Stopped taking MTX < 2	NR	55
ADACTA ⁵⁸	ADA + PBO	NR	73	Mean number of previous DMARDs = 2.0 (1.1) Stopped taking MTX < 2 months before baseline = 102/162 (63%)	NR	57
DeFilippis	ETN + MTX	NR	NR	Non-responder to DMARDs	NR	NR

Trial name /	Treatment arms for which data extraction	Ethnicity	Rheumatoid	Prior DMARD treatment	%	% receiving
Author, year	performed	(where	factor (%	history (brief description,	receiving	steroids at
		reported)	positive)	including definition of	NSAIDs at	baseline
				active RA despite previous	baseline	
				treatment, where relevant)		
2006 ⁸⁵				for $>6$ months (no further		
				detail reported). All receiving		
				a stable dose of concomitant		
				MTX in 3 months before		
				entering the study.		
DeFilippis	IFX + MTX	NR	NR	Non-responder to DMARDs		
2006 ⁸⁵				for $>6$ months (no further		
				detail reported). All receiving		
				a stable dose of concomitant		
				MTX in 3 months before		
				entering the study.		

Trial	Treatment	Ethnici	Rheum	Prior DMARD treatment history (brief description, including definition of active RA	%	%
name /	arms for which	ty	atoid	despite previous treatment, where relevant)	recei	receivin
Author,	data extraction	(where	factor		ving	g
year	performed	reporte	(%		NSA	steroids
		<b>d</b> )	positiv		IDs	at
			<b>e</b> )		at	baseline
					basel	
					ine	
AIM ^{61,62}	MTX+PBO	88.1%	78.5	100% prior MTX	82.6	68.5
	n=219	white				
				8.7 % prior cDMARDs other than MTX		
AIM ⁶¹	ABTi.v.+ MTX	87.5%	81.8	100% prior MTX	85.5	72.1
	n=433	white				
				12.2 % prior cDMARDs other than MTX		
ASSET ⁷²	PBO + MTX	82.6%	82.6	Non-response to MTX ( $\geq$ 15 mg/week or a maximum tolerated dose of $\geq$ 10 mg/week for $\geq$ 3	87.0	60.9
		Caucasi		months prior to day 1)		
		an				
ASSET ⁷²	ABT i.v.	96.3%	55.6	Non-response to MTX ( $\geq 15$ mg/week or a maximum tolerated dose of $\geq 10$ mg/week for $\geq 3$	81.5	70.4
	(~10mg/kg) +	Caucasi		months prior to day 1)		
	MTX	an				
ASSURE	PBO +	83.3%	NR	Active disease (functional classes I, II, III, IV ACR) despite ≥1 biologic and/or nonbiologic	NR	(73.7
73	cDMARDs	white		therapy, stable dose for $\geq$ 28 days before trial (split analyses, only nonbiologic extracted).		(Conco
						mitant)
ASSURE	ABT +	83.9%	NR	Active disease (functional classes I, II, III, IV ACR) despite ≥1 biologic and/or nonbiologic	NR	71.6
73	cDMARDs	white		therapy, stable dose for $\geq$ 28 days before trial (split analyses, only nonbiologic extracted).		(Conco
						mitant)
AUGUST	MTX+PBO		83	100% prior MTX	NR	59
II ⁷⁶	n=76					
AUGUST	ADA+MTX		81	100% prior MTX	NR	66
$\mathrm{II}^{76}$	n=79					
CHANG	PBO	NR	86.2	87.2% prior MTX	NR	NR
E ⁸⁰	n=87			[91.5 % 2 or more DMARDsacross all arms]		
CHANG	ADAmon	NR	90.8	87.2% prior MTX	NR	NR
E ^{su}	n=91					
DE019 ⁸⁴	MTX+PBO	83.0%	89.5	100% prior MTX	NR	49.5

 Table 341:
 Population characteristics: additional information Population 2 biologic vs. DMARD(s) or PBO

Trial	Treatment	Ethnici	Rheum	Prior DMARD treatment history (brief description, including definition of active RA	%	%
name /	arms for which	ty	atoid	despite previous treatment, where relevant)	recei	receivin
Author,	data extraction	(where	factor		ving	g
year	performed	reporte	(%		NSA	steroids
-		<b>d</b> )	positiv		IDs	at
			<b>e</b> )		at	baseline
					basel	
					ine	
	n=200	white		mean 2.4 prior cDMARDs including MTX		
DE019 ⁸⁰	ADA+MTX	83.6%	81.6	100% prior MTX	NR	across
	n=207	white		mean 2.4 prior cDMARDs including MTX		two
						ADA
						arms,
						44.9%
117						
STAR ¹¹⁷	PBO+cDMARD	85.8%	62.3	mean 1.2 prior cDMARDs	63.8	54.4
	S	white				
117	n=318					
STAR	ADA+cDMAR	89.0%	63.4	mean 112 prior cDMARDs	62.3	50.9
	Ds	white				
	n=318		01.0		00.0	(5.0
van de	PBO s.c.	NR	81.8	Previous treatment with at least one DMARD had failed, with patients having active RA	83.6	67.3
Putte $2004^{122}$				defined as $\geq 12$ tender joints (0-68 scale), $\geq 10$ swollen joints (0-66 scale), and either ESR $\geq 12$ solution (1) and either ESR $\geq 12$ shows (1)		
2004				$28 \text{ mm/1}^{\circ}$ n or CRP $\geq 20 \text{ mg/1}$ .		
				Patients excluded if had received investigational small molecule drug or biological agent		
				within 2 months or 6 months before screening respectively.		
				Four-week washout period required for patients taking CDMARDs at time of recruitment.		
				Number of $cDMARDs = 3.6(1.8)$		
van de	ADA mon	NR	79.6	Number of $cDMARDs = 3.8 (1.8)$	823	68.1
Putte			19.0	1.01100101010101010103 = 3.0(1.0)	02.5	00.1
$2004^{122}$						
ARMAD	MTX+PBO	NR	Rheum	100% prior MTX	NR	58.1
A ^{69 70}	(n=62)		atoid	F		2011
	· ·-/		factor.	mean 3.0 prior cDMARDs including MTX		
			IU/litre			
			mean(S			

Trial	Treatment	Ethnici	Rheum	Prior DMARD treatment history (brief description, including definition of active RA	%	%
name /	arms for which	ty	atoid	despite previous treatment, where relevant)	recei	receivin
Author,	data extraction	(where	factor		ving	g
year	performed	reporte	(%		NSA	steroids
		<b>d</b> )	positiv		IDs	at
			e)		at	baseline
					basel	
			D)		me	
			321.2			
			(518.2)			
ARMAD	ADA+MTX	NR	Rheum	100% prior MTX	NR	across
$A^{69}$	(n=67)		atoid			all ADA
			factor,	mean 2.9 prior cDMARDs including MTX		dose
			IU/litre			arms
			mean(S			46.4%
			D)			
			269.3			
			(390.0)			
V.	MTY DDO	ND	92.5		ND	ND
$2007^{99}$	MIA+PBOresc uoWook18	INK	82.3	70.3% used 2 or 2 cDMAPDs	NK	INK
2007	n=65			79.5% used 2 01 5 CDWARDS		
Kim	ADA+MTX	NR	76.9	100% prior MTX	NR	NR
2007 ⁹⁹	n=63			86.2% used 2 or 3 cDMARDs		
CERTAI	PBO +	NR	67.3		NR	NR
N ⁷⁹	cDMARDs					
CERTAI	CTZ 400mg at	NR	74.0		NR	NR
N''	weeks 0, 2 & 4					
	then 200mg					
	$ Q^2W + DMADD_{\alpha} $					
DEVIC	DIVIAKDS DBO   ovisting	ND	ND	Inadequate regnance to >1 DMARD Part has analysis of those with DAS28 > 5.1 of	NP	ND
TIC ¹¹³	cDMARDs		overall	has eline $>2$ prior cDMARDs and anti-TNF naive		1111
			trial			

Trial	Treatment	Ethnici	Rheum	Prior DMARD treatment history (brief description, including definition of active RA	%.	%
name / Author, year	arms for which data extraction performed	ty (where reporte d)	atoid factor (% positiv e)	despite previous treatment, where relevant)	recei ving NSA IDs at basel ine	receivin g steroids at baseline
			рор 76.5			
REALIS TIC ¹¹³	CTZ 400mg weeks 0, 2, 4 then 200mg every 2 weeks + existing cDMARDs	NR	NR overall trial pop 73.9	Inadequate response to $\geq$ 1 DMARD. Post-hoc analysis of those with DAS28 >5.1 at baseline, $\geq$ 2 prior cDMARDs and anti-TNF naïve.	NR	NR
ADORE ⁵ 9,60	ETNmon n=159	White 158 (99.4%) Black 0 (0%) Asian 1 (0.6%)	70.9	100% prior MTX mean 2 .2 other prior DMARDs	74.2	51.6
ADORE ⁵	ETN+MTX n=155	White 153 (98.7%) Black 2 (1.3%) Asian 0 (0%)	69.5	100% prior MTX mean 2.3 other prior DMARDs	81.3	56.8
CREATE IIb ⁹⁶	DMARD+PBO n=65	NR	81.5	100 % prior MTX or SSZ	NR	NR
CREATE IIb ⁹⁶	ETN50+DMAR D n=64	NR	85.9	100 % prior MTX or SSZ	NR	NR
ETN Study	SSZ+PBO n=50	NR	NR	100% prior SSZ 58% prior cDMARDs other than SSZ	NR	40

Trial	Treatment	Ethnici	Rheum	Prior DMARD treatment history (brief description, including definition of active RA	%	%
name /	arms for which	ty	atoid	despite previous treatment, where relevant)	recei	receivin
Author,	data extraction	(where	factor		ving	g
year	performed	reporte	(%		NSA	steroids
-		<b>d</b> )	positiv		IDs	at
		,	e)		at	baseline
			,		basel	
					ine	
309 88,89						
(Combe						
2006)						
ETN	ETN+PBO	NR	NR	100% prior SSZ	NR	59.
Study	n=103			69.9% prior cDMARDs other than SSZ		
309						
(Combe						
2006)						
ETN	ETN+SSZ	NR	NR	100% prior SSZ	NR	44.6
Study	n=101			58.4% prior cDMARDs other than SSZ		
309						
(Combe						
2006)						
JESMR ¹⁴	ETN 25mg	NR	91.5	Non-response to MTX (6-8mg/week). No prior biologics.	NR	46.4
4	Q2W					
	monotherapy					
JESMR ¹⁴	ETN 25mg	NR	86.7	Non-response to MTX (6-8mg/week). No prior biologics.	NR	60.3
4	Q2W + MTX 6-					
	8mg/week					
Lan	PBO+MTX	NR	NR	100% prior MTX	NR	NR
2004	, n=29					
Lan	ETN+MTX			100% prior MTX	NR	NR
2004	,					
103	n=29					
LARA ¹⁰²	MTX+DMARD	White,	83.8	100 prior MTX	NR	NR
	n=142	n (%)65				
		(45.8)				
		Mestizo				

Trial	Treatment	Ethnici	Rheum	Prior DMARD treatment history (brief description, including definition of active RA	%	%
name /	arms for which	ty	atoid	despite previous treatment, where relevant)	recei	receivin
Author,	data extraction	(where	factor		ving	g
year	performed	reporte	(%		NSA	steroids
-	_	<b>d</b> )	positiv		IDs	at
			<b>e</b> )		at	baseline
					basel	
					ine	
		s, n (%)				
		34				
		(23.9)				
		African				
		-Latin				
		Americ				
		an, n				
		(%)23				
		(16.2)				
		Other, n				
		(%) 20				
		(14.1)				
LARA ¹⁰²	ETN50+MTX	White,	86.1	100 prior MTX		
	n=281	n (%)				
		134				
		(47.7)				
		Mestizo				
		s, n (%)				
		60 (21.				
		African				
		-Latin				
		Americ				
		an, n				
		(%) 39				
		(13.9)				
		Other, n				
		(%) 48				
		(17.1)				
Moreland	PBO	89%	79	90% prior MTX	84	58

Trial	Treatment	Ethnici	Rheum	Prior DMARD treatment history (brief description, including definition of active RA	%	%
name /	arms for which	tv	atoid	despite previous treatment, where relevant)	recei	receivin
Author.	data extraction	(where	factor		ving	g
vear	performed	reporte	(%)		NSĂ	steroids
5	Performen	d)	nositiv		IDs	at
		u)	POSICI (		at	haseline
			•)		hasel	busenne
					ine	
1999 ¹⁰⁴	n=80	white				
				mean 3 prior cDMARDs including MTX		
Moreland	ETN+PBO	94%	79	87%prior MTX	67	81
1999 ¹⁰⁴	n=78	white		mean 3.3 prior cDMARDs including MTX		
RACAT ¹¹	MTX+SSZ+HC	90.4%	65.7	100% prior MTX	NR	47.2
1	Q	white				
	n=178					
RACAT	ETN50+MTX	83.4%	67.2	100% prior MTX		49.7
1	n=175	white				
Wajdula	PBO			mean 3.5 prior cDMARDs	85	71
$2000^{123}$				failed to respond to at least one		
	n=111			DMARD		
Wajdula	ETN			mean 3.6 prior cDMARDs	86	70
$2000^{123}$				failed to respond to at least one		
	n=105			DMARD		
Weinblatt	MTX plus	White	90	100 prior MTX	80	70
1999124	placebo, n=30	83%				
Weinblatt	Etanercept	White	84	100 prior MTX	75	53
1999***	25mg twice	76%				
	weekly plus					
	MTX, n=59	ND	ND			ND
APPEAL	MTX plus	NK	NK		NR	NK
51,00	DMARD (SSZ,			30.1% also other cDMARD(S)		
	HCQ or LEF),					
	n=103					
APPEAL	Etanercept	NR	NR	100% prior MTX	NR	NR

Trial	Treatment	Ethnici	Rheum	Prior DMARD treatment history (brief description, including definition of active RA	%	%
name /	arms for which	ty	atoid	despite previous treatment, where relevant)	recei	receivin
Author,	data extraction	(where	factor		ving	g
year	performed	reporte	(%		NSA	steroids
-		<b>d</b> )	positiv		IDs	at
			<b>e</b> )		at	baseline
					basel	
					ine	
68	25mg twice			24.4% also other cDMARD(S)		
	weekly					
	(licensed dose)					
	plus MTX,					
	n=197					
GO-	PBO Q4W +	NR	NR	All patients had received MTX $\geq$ 6mg/week for $\geq$ 3 months prior to the start of the study.	NR	NR
FORTH ⁹¹	MTX 6-			Other prior DMARDs and biologics not reported.		
	8mg/week					
GO-	GOL 50mg s.c.	NR	NR	All patients had received MTX $>$ 6mg/week for $\geq$ 3 months prior to the start of the study.	NR	NR
FORTH ⁹¹	Q4W + MTX 6-			Other prior DMARDs and biologics not reported.		
	8mg/week					
GO-	PBO s.c. every	NR	81.2	Patients had to have been on stable MTX dose of 15mg/week or greater but 25mg/week or	85.7	65.4
FORWA	4  weeks + MTX			less during 4 week period immediately preceding screening. Must have tolerated at least 15	%	
$RD^{92}$				mg/week for at least 3 months before screening. Patients had active RA defined as $\geq 4$ of 66		
				swollen joints, $\geq 4$ of 68 tender joints, and at least 2 of following criteria: CRP $\geq 1.5$ mg/dl		
				or $\text{ESR} \ge 28 \text{ mm/h}$ .		
				Median (IQR) MTX dose (mg/week) = $15.0 (15.0 \text{ to } 20.0)$		
				Duration of previous MTX use (years)		
				< 1 = 33 (24.8%)		
				$\geq 1$ to $< 3 = 30$ (22.6%)		
				$\geq 3 = 68 (51.1\%)$		
				Patients with previous use of DMARD other than $MTX = 94 (70.7\%)$		
				(Any previous use of any anti-TNF agent, rituximab, natalizumab or cytotoxic agents		
				excluded patients from trial participation. In addition, patients should not have taken		
				anakinra; DMARDs other than MTX; or i.v., i.m. or i.a. corticosteroids within 4 weeks		

Trial	Treatment arms for which	Ethnici ty	Rheum	Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)	% recei	% receivin
Author, year	data extraction performed	(where reporte d)	factor (%	despite previous treatment, where relevant	ving NSA IDs	g steroids
		u)	e)		at basel ine	baseline
				before first dose of study drug or alefacept or efalizumab within 3 months of first dose of study drug)		
GO- FORWA RD ⁹²	GOL 50 mg s.c. every 4 weeks + MTX	NR	86.5 (77/89)	Median (IQR) MTX dose (mg/week) = 15.0 (15.0 to 20.0) Duration of previous MTX use (years) < 1 = 20 (22.5%) $\ge 1$ to $< 3 = 32 (36.0\%)$ $\ge 3 = 37 (41.6\%)$ Patients with previous use of DMARD other than MTX = 70 (78.7\%)	86.5 %	75.3
Kay 2008 ⁹⁸ (NCT002 07714)	PBO s.c. + MTX	NR	NR	All patients treated with MTX at dosage of at least 10 mg/week for $\geq$ 3 months and at stable dosage for $\geq$ 4 weeks before receiving first dose of study drug. Patients had active RA defined as $\geq$ 6 swollen joints, $\geq$ 6 tender joints and at least 2 of the following 3 criteria: CRP $\geq$ 1.5 mg/dl, ESR $\geq$ 28 mm/h or morning stiffness of $\geq$ 30 mins.	NR	NR
Kay 2008 ⁹⁸	GOL 50 mg s.c. every 4 weeks + MTX	NR	NR		NR	NR
Abe 2006 ⁵⁶	PBO + MTX	Japanes e patients	NR	Eligible patients had received MTX treatment for more than 3 months, with a stable MTX dosage at 6 mg/week or more during the last 4 weeks. Patients had active RA defined as $\geq$ 6 of 68 tender joints, $\geq$ 6 of 66 swollen joints, and at least 2 of the following: morning stiffness $\geq$ 45 mins, ESR $\geq$ 28 mm/hr, or CRP $\geq$ 2 mg/dl.Patients not permitted to use DMARD, immunosuppressive drugs other than MTX, or i.a., i.m., i.v. or epidural corticosteroids	95.7	89.4
Abe	IFX 3 mg/kg i.v.		NR		89.8	85.7

Trial	Treatment	Ethnici	Rheum	Prior DMARD treatment history (brief description, including definition of active RA	%	%
name /	arms for which	ty	atoid	despite previous treatment, where relevant)	recei	receivin
Author,	data extraction	(where	factor		ving	g
year	performed	reporte	(%		NSA	steroids
		d)	positiv		IDs	at
			e)		at	Dasenne
					ine	
200656	at weeks 0, 2				me	
	and $6 + MTX$					
ATTRAC	PBO i.v. +	White	77	Patients had been receiving MTX for at least 3 months with no break in treatment of more	72	64
$T^{75}$ (Anti-	MTX	78/88		than 2 weeks during that period. MTX dose required to have been stable at $\geq 12.5$ mg/wk		
TNF		(89)		for at least 4 weeks before screening.		
Trial in				Patients were excluded if they had used a DMARD other than MTX or received IA/IM /IV		
rheumatoi				corticosteroids in 4 weeks before screening; received any other agent to reduce TNF.		
d arthritis				Mass sumber (SD) of reavious DMADDs (evolution MTY) $25(14)$		
Concomit				Mean number (SD) of previous DMARDS (excluding $MTX$ ) = 2.5 (1.4)		
ant						
Therapy)						
ATTRAC	IFX 3 mg/kg i.v.	White	84	Mean number (SD) of previous DMARDs (excluding MTX) = $2.8(1.5)$	79	63
T ⁷⁵	at weeks 0, 2	80/86				
	and 6 and every	(93)				
	8 weeks					
	thereafter					
-	+MTX	ND	07			) ID
Durez	Single 1.v.	NR	87	Eligible patients had received 15 mg/wk MTX treatment (10 mg when tolerance poor).	NR	NR
2004	methylprednisol			participation		
	one (sodium					
	hemisuccinate)			By randomisation patients had received: MTX (100%) SSZ (85%) GLD salts (79%)		
	at week 0 +			HCO (61%), cyclosporine A (58%), D-penicillamine (42%), AZA (30%) and LEF (18%)		
	MTX			(authors stated no differences between i.v. MP and IFX arms, no data presented).		
				Previous DMARDs = Median 3 (range 1-7)		
Durez	IFX 3 mg/kg at	NR	67	Previous DMARDs = Median 3 (range 2-6)	NR	NR
2004°°	weeks 0, 2 and 6					

Trial	Treatment	Ethnici	Rheum	Prior DMARD treatment history (brief description, including definition of active RA	%	%
name /	arms for which	ty	atoid	despite previous treatment, where relevant)	recei	receivin
Author,	data extraction	(where	factor		ving	g
year	performed	reporte	(%		NSĂ	steroids
		<b>d</b> )	positiv		IDs	at
			e)		at	baseline
					basel	
					ine	
	+ MTX					
START ¹¹	PBO + MTX	NR	80.7	All patients had been receiving MTX for at least 6 months prior to randomisation and were	39.4	59
8				permitted to receive stable doses of the following: chloroquine, AZA, penicillamine,		
				oral/intramuscular GLD, HCQ, SSZ, LEF, cyclosporine, oral corticosteroids, NSAIDs. No		
				prior biologics allowed.		
START ¹¹	IFX 3mg/kg +	NR	82.8	All patients had been receiving MTX for at least 6 months prior to randomisation and were	43.3	59.2
8	MTX			permitted to receive stable doses of the following: chloroquine, AZA, penicillamine,		
				oral/intramuscular GLD, HCQ, SSZ, LEF, cyclosporine, oral corticosteroids, NSAIDs. No		
				prior biologics allowed.		
Swefot ¹¹⁹	SSZ (1000 mg	NR	65	Patients with early RA (with no previous treatment with DMARDs) were administered	NR	8
	twice daily			MTX (up to 20 mg/wk). After 3-4 months, patients who had not achieved low disease		
	orally) + HCQ			activity (having DAS28 > 3.but were able to tolerate MRX were randomised to treatment		
	(400 mg daily			arms.		
	orally) + MTX					
Swefot ¹¹⁹	IFX 3 mg/kg i.v.	NR	69		NR	6
	at weeks 0, 2, 6					
	and every 8					
	weeks					
	thereafter+MTX					
Wong	PBO + MTX	NR	7/8	Eligible patients had failed on two DMARDs including MTX. All patients had been	NR	NR
$2009^{120}$	(with crossover			receiving MTX ( $\leq 25$ mg/wk).		
	to open-label					
	IFX at week					
	24).					
Wong	IFX 3 mg/kg at	NR	7/16		NR	NR
$2009^{126}$	weeks 0, 2, 6					
	and 8 weeks					
	thereafter +					
	MTX					

Trial	Treatment	Ethnici	Rheum	Prior DMARD treatment history (brief description, including definition of active RA	%	%
name /	arms for which	ty	atoid	despite previous treatment, where relevant)	recei	receivin
Author,	data extraction	(where	factor		ving	g
year	performed	reporte	(%		NSA	steroids
-	_	<b>d</b> )	positiv		IDs	at
			<b>e</b> )		at	baseline
					basel	
					ine	
Zhang	PBO i.v. +	Chinese	NR	Patients had been treated with MTX for at least 3 months at a stable dose (7.5 to 20 mg/wk)	NR	NR
2006127	MTX	patients		for at least 4 weeks.		
				Patients who began treatment with other DMARDs within 4 weeks before screening were		
				ineligible. Treatment with other anti-TNF agents within 3 months of study entry was not		
				permitted.		
				64.00/ had proviously used drug other than MTV (no other details)		
				04.0% had previously used drug other than MTX (no other details)		
Zhang	IFX 3 mg/kg i.v.		NR	55.2% had previously used drug other than MTX (no other details)	NR	NR
$2006^{127}$	at weeks $0, 2, 6$		1,11	551270 had providently used drug outer drain hirrin (no outer details)	1,11	1.11
	and 14 + MTX					
ACT-	TCZ 8 mg/kg	NR	NR	Subjects had been receiving MTX for at least 12 weeks with stable dose of at least 15	NR	49.1
RAY ⁵⁷	i.v. every 4			mg/week for at least 6 weeks before starting study treatment.		
(NCT008	weeks + oral			Patients were excluded if had any previous use of biological agents as well as any		
10199)	PBO (277			cDMARD drug treatment other than MTX during the month (3 months for LEF) preceding		
	randomised)			baseline visit.		
				Mean MTX dose, mg/week (SD) = $16.2 (4.1)$		
				Number of prior DMARDs (including MTX before study entry) mean $(SD) = 1.9 (1.0)$		
ACT-	TC7 8 mg/kg	NR	NR	Mean MTX dose mg/week (SD) = $160(44)$	NR	48.9
RAY ⁵⁷	i v everv 4	INIX	INIX	(4.4)		40.7
iu i i	weeks + MTX			Number of prior DMARDs (including MTX before study entry), mean $(SD) = 1.9 (1.1)$		
MEASU	PBO + MTX	NR	NR	Patients were described as MTX inadequate responders	NR	NR
RE ¹⁰³						
MEASU	TCZ 8 mg/kg	NR	NR		NR	NR
RE ¹⁰³	i.v. every 4					
	weeks $+$ MTX		1		1	

Trial	Treatment	Ethnici	Rheum	Prior DMARD treatment history (brief description, including definition of active RA	%	%
name /	arms for which	ty	atoid	despite previous treatment, where relevant)	recei	receivin
Author,	data extraction	(where	factor		ving	g
year	performed	reporte	(%		NSA	steroids
		<b>d</b> )	positiv		IDs	at
			<b>e</b> )		at	baseline
					basel	
					ine	
Nishimot $0.2004^{106}$	PBO i.v. every 4 weeks	NR	NR	Eligible patients had been treated unsuccessfully (due to lack of efficacy) with $\geq 1$ DMARD or immunosuppressant	NR	NR
0 200 1	weeks			Active RA defined as $\geq 6$ swollen joints $\geq$ tender joints and 1 of following 2 criteria: ESR $\geq$		
				30  mm/h or CRP > 1.0  mg/d.		
				No DMARDs permitted during 4 week washout period before initiation of study agent and		
				during study period.		
				No. of failed DMARDs (median (range)) = $5(1-10)$		
Nishimot	TCZ 8mg/kg	NR	NR	No. of failed DMARDs (median (range))= 5 (1-11)	NR	NR
o 2004 ¹⁰⁶	i.v. every 4					
	weeks					
SAMUR	cDMARDsDise	NR	NR	67% prior MTX	NR	NR
AI	aseActivity					
	n=145					
SAMUR	TCZi.v.	NR	NR	73% prior MTX	NR	NR
Al	n=157					
SATORI ¹	PBO i.v. every 4	NR	NR	Mean number of failed DMARDs (range) = $3.6 (1 \text{ to } 8)$	NR	NR
(NICT001	weeks $+$ MTX			All condidates were treated with MTV 9 mg/weak for at least 9 weaks until appalment		
(NC1001)				An candidates were treated with MTX 8 mg/week for at least 8 weeks until enrolment.		
44321)				Patients not permitted to receive prior anti TNE agents or LEE (within 12 weeks prior to		
				first dose). Patients not permitted to receive DMAPDs other than MTX or		
				immunosuppressants (within 2 weeks prior to first dose))		
				minutosuppressants (within 2 weeks prior to first dose))		
SATORI	TCZ 8 mg/kg	NR	NR	Mean number of failed DMARDs (range) = 3.3 (1 to 8)	NR	NR
16	i.v. every 4					
	weeks+ PBO					
	capsule					
TOWAR	PBO i.v. every 4	72%	NR	Eligible patients had received stable doses of permitted DMARDs (MTX, chloroquine,	77.1	54.6

name / Author,arms for which data extractionty (whereatoid factordespite previous treatment, where relevant)recei receirecei vingg	ceivin eroids
Author,data extraction(wherefactorvingg	eroids
	eroids
year performed reporte (% NSA ste	
d) positiv IDs at	
e) at ba	aseline
basel	
ine	
D ¹²¹ weeks + stable White HCQ, parenteral GLD, SSZ, AZA, and LEF) for $\ge 8$ weeks before study entry.	
cDMARDs 10% Patients unsuccessfully treated with an anti-TNF agent or any cell-depleting therapy were	
Asian excluded.	
8%	
AmericMedication at baseline (%):	
an MTX = 73.9	
Indian/ Chloroquine/HCQ = 19.8	
Native $SSZ = 14.3$	
Alaskan $LEF = 15.5$	
Parenteral $GLD = 0.7$	
Black $AZA = 2.2$	
3%	
Other Number of background DMARDs at baseline (%):	
1 = 75	
2  or more = 24	
None = $1$	
$\begin{bmatrix} 10WAR & ICZ 8 mg/kg \\ D^{121} & I \end{bmatrix} = \begin{bmatrix} 72\% & NR & Medication at baseline (%): \\ NTX = 75.9 \end{bmatrix}$	2
D 1.v. every 4 white $M1X = 75.8$	
DMADDa = Arian = SSZ = 12.1	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Americ Patenteial $GLD = 0.2$	
$\begin{bmatrix} an \\ Indian \end{bmatrix} = \begin{bmatrix} ALA - 2.2 \end{bmatrix}$	
Native Number of background DMARDs at baseline $(\%)$ :	
$\Delta laskan = 1 - 77$	
1 - 77 4% $2  or more - 22$	
$\begin{array}{c c} \hline & & & \\ \hline \\ \hline$	

Trial	Treatment	Ethnici	Rheum	Prior DMARD treatment history (brief description, including definition of active RA	%	%
name /	arms for which	ty	atoid	despite previous treatment, where relevant)	recei	receivin
Author,	data extraction	(where	iactor		VING	g storoids
ycai	performed	d)	nositiv		IDs	at
		u)	e)		at	baseline
			•)		basel	
					ine	
		3%				
120		Other				
TACIT ¹²⁰	Combination	86%	NR	Established RA by the 1987 ACR criteria. Failed response to two DMARDs including	NR	NR
unpublish	cDMARDs	white,		MTX		
ed		6%				
		black,				
		8%				
		Asian,				
		0% Chinasa				
		, 1%				
$TACIT^{120}$	TNE	01%	ND		NP	ND
unnuhlish		white	INIX			
ed	Dimited	8%				
ea		black				
		6%				
		Asian,				
		1%				
		Chinese				
		,0%				
		other				

Trial name /	Treatment arms for which data	Mean	Gender	Early	Disease	Mean DAS28 score
Author, year	extraction performed	Age	(%	withdrawal	duration	at baseline (SD)
		(years,	female)	plan reported?	(years, SD)	(ESR or CRP
		SD)				where stated)
ACQUIRE ¹³⁰	ABT . + PBO + MTX	49.9	84.4	NR	7.6 (8.1)	6.23 (0.85) (CRP)
	n=736	(13.2)				
ACQUIRE ¹³⁰	ABT. + PBO. + MTX	50.1	80.4		7.7 (7.8)	6.20 (0.8DAS-28
	n=721	(12.6)				CRP
NCT00254293 ¹³⁵	PBO + MTX	54.7 (NR)	66	NR	8.9 (8.3)	5.5 (0.87) CRP
	n=119	range 23-				
		80				
NCT00254293 ¹³⁵	ABT i.v. (~10mg/kg) + MTX	55.8 (NR)	75		9.7 (9.8)	5.5 (0.6CRP
	n=115	range 17-				
		83				
ORAL	MTX+PBO	53.7	75.9	Yes	7.9	6.5 ESR
STANDARD ¹³⁷	n=108					5.5CRP
ORAL	TOF5+MTX	53.0	85.3		7.6	6.6 ESR
STANDARD ¹³⁷	n=204					5.4 CRP
ORAL	TOF10+MTX	52.9	83.6		7.4	6.5 ESR
STANDARD ¹³⁷	n=201					5.4 CRP
ORAL	ADA+MTX	52.5	79.4		8.1	6.4 ESR
STANDARD ¹³⁷	n=204					5.3 CRP
JRAPID ¹³³	MTX + PBO	51.9	85.7	Yes	5.8 (4.1)	6.5 (0.9)
	n=77	(11.1)				(ESR)
JRAPID ¹³³	CTZ 200mg Q2W + MTX	50.6	84.1		5.6 (4.2)	6.2 (0.8)
	n=82	(11.4)				(ESR)
RA0025 ¹³⁸	PBO + MTX	51.6	88.9	Yes	6.5 (4.2)	7.33 (1.09)

 Table 342:
 Population characteristics: Trials providing additional evidence for the NMA

Trial name /	Treatment arms for which data	Mean	Gender	Early	Disease	Mean DAS28 score
Author, year	extraction performed	Age	(%	withdrawal	duration	at baseline (SD)
		(years,	female)	plan reported?	(years, SD)	(ESR or CRP
		SD)				where stated)
	n=40	(11.7)				ESR
RA0025 ¹³⁸	CTZ + MTX	50.8	87.5		5.5 (4.6)	7.46 (1.29)
	n=81	(11.1)				ESR
RAPID1 ¹³⁹	PBO + MTX	52.2	83.9	Yes	6.2 (4.4)	7.0 (0.9)
	n=199	(11.2)				ESR
RAPID1 ¹³⁹	CTZ + MTX	51.4	82.4		6.1 (4.2)	6.9 (0.8)
	n=393	(11.6)				ESR
RAPID2 ¹⁴⁰	PBO + MTX	51.5	84.3	Yes	5.6 (3.9)	6.83 (0.87)
	n=127	(11.8)				ESR
RAPID2 ¹⁴⁰	CTZ + MTX	52.2	83.7		6.1 (4.1)	6.85 (0.84)
	n=246	(11.1)				ESR
TEAR ⁵⁴	MTXmon(ST)	49.3	70.2	Yes	0.38	5.8 ESR
	n=124					
	ST =step-up from MTX to triple					
	disease-modifying antirheumatic drug					
	therapy (MTX plus SSZ plus HCQ);					
TEAR ⁵⁴	MTXmon(SE)	48.6	69		0.24	5.8 ESR
	n=255					
	SE=step-up from MTX to MTX plus					
	etanercept;					
TEAR ⁵⁴	MTX+SSZ+HCQ	48.8	76.5		0.34	5.8 ESR
	n=132					
TEAR ⁵⁴	ETN50+MTX	50.7	74.2		0.29	5.8 ESR
	n=244					
TEMPO ⁵⁵	MTXmon	53.0	79	NR	6.8(5.5)	5.5 (1.2)
	n=228					

Trial name / Author, year	Treatment arms for which data extraction performed	Mean Age (years, SD)	Gender (% female)	Early withdrawal plan reported?	Disease duration (years, SD)	Mean DAS28 score at baseline (SD) (ESR or CRP where stated)
TEMPO ⁵⁵	ETNmon n=223	53.2	77		6.3 (5.1)	5.7 (1.1)
TEMPO ⁵⁵	ETN+MTX n=231	52.5	74		6.8 (5.4)	5.5 (1.2)
AMBITION ¹³¹ (ITT baseline covariate data presented)	MTX n=284 (note that data is presented for the whole trial population as data for the MTX-experienced subgroiup was not reported)	50.0 (12.9)	79	NR	6.2 (7.8)	6.8 (0.9)
AMBITION ¹³¹	TCZ mon n=288	50.7 (13.1)	83		6.4 (7.9)	6.8 (1.0)
LITHE ¹³⁴	PBO + MTX n=393	51.3 (12.4)	83	Yes	Mean (range) = 9.0 (0.5-44.3)	6.5 (1.0)
LITHE ¹³⁴	TCZ + MTX n=398	53.4 (11.7)	82		Mean (range) = 9.3 (0.6-48.8)	6.6 (1.0)
OPTION ¹³⁶	PBO + MTX n=204	50.6 (12.1)	78	NR	7.8 (7.2)	6.8 (0.9)
OPTION ¹³⁶	TCZ + MTX n=205	50.8 (11.8)	85		7.5 (7.3)	6.8 (0.9)

Trial name / Author, year	Treatment arms for which data extraction	Ethnicity (where reported)	Rheumatoid factor (% positive)	Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)	nN (%) receiving NSAIDs at	nN (%) receiving steroids at
	performed	portea)	<b>P</b> osici ( c)		baseline	baseline
ACQUIRE ¹³⁰	ABT s.c. + PBO i.v. + MTX	74.7% Caucasian	84.8	Inadequate response to $\geq$ 3 months of MTX at $\geq$ 15mg/week. Prior biologics in 4.3% of the sample.	NR	NR
ACQUIRE ¹³⁰	ABT i.v. + PBO s.c. + MTX	74.5% Caucasian	85.9	Inadequate response to $\geq$ 3 months of MTX at $\geq$ 15mg/week. Prior biologics in 6.0% of the sample.	NR	NR
NCT00254293 ¹³⁵	PBO + MTX	87% white	NR	99.2% prior MTX, 21.0% other prior DMARDs, 2.6% prior anti-TNF.	NR	67.2
NCT00254293 ¹³⁵	ABT i.v. (~10mg/kg) + MTX	87% white	NR	99.1% prior MTX, 16.5% other prior DMARDs, 2.6% prior anti-TNF.	NR	60.0
ORAL STANDARD ¹³⁷	MTX+PBO	Region of origin North America 28.7% Latin America 4.7% Europe 49% Other 18.5%	66.3	100% prior MTX 54.7% other prior cDMARDs 8.3% prior TNFi	NR	66.7
ORAL STANDARD ¹³⁷	TOF5+MTX	Region of origin North America 24.5% Latin America 3.9 Europe 53.9% Other 17.6%	66.8	100% prior MTX 53.4% other prior cDMARDs 5.9% prior TNFi	NR	61.8
ORAL STANDARD ¹³⁷	TOF10+MTX	Region of origin North	66.2	100% prior MTX 57.2% other prior cDMARDs 7.0% prior TNFi	NR	64.2

 Table 343:
 Population characteristics additional information NMA sensitivity analyses trials

Trial name /	Treatment arms for	Ethnicity	Rheumatoid	Prior DMARD treatment history (brief	nN (%)	nN (%)
Author, year	which data extraction performed	(where reported)	factor (% positive)	description, including definition of active RA despite previous treatment, where relevant)	receiving NSAIDs at baseline	receiving steroids at baseline
		America 24.9% Latin America 1.5% Europe 55.7% Other 17.9%				
ORAL STANDARD ¹³⁷	ADA+MTX	Region of origin North America 25.5% Latin America 2.9% Europe 53.9% Other 17.6%	68.2	100% prior MTX 55.9% other prior cDMARDs 7.8% prior TNFi	NR	61.3
Yamamoto 2011 / JRAPID ¹³³	MTX + PBO	NR	85.7	Inadequate response to MTX . 19.5% had prior TNF inhibitors.	NR	NR
(NCT00791999) JRAPID ¹³³	CTZ 200mg Q2W +	NR	86.6	Inadequate response to MTX . 13.4% had prior TNF inhibitors	NR	NR
RA0025 ¹³⁸	PBO + MTX	NR	NR	Inadequate response to MTX. Study MTX dose 10- 20 mg (min-max). Prior TNF inhibitors in 13.6%.	NR	NR
RA0025 ¹³⁸	CTZ 400mg at weeks 0, 2 & 4 then 200mg Q2W + MTX	NR	NR	Inadequate response to MTX. Study MTX dose 10- 20 mg (min-max). Prior TNF inhibitors in 17.5%.	NR	NR
RAPID1 ¹³⁹	PBO + MTX	NR	82.8	Patients were required to receive MTX for $\geq 6$ months with a stable dosage of $\geq 10$ mg/week for $\geq 2$ months prior to baseline. No biologics within 6 months of	NR	NR

Trial name /	Treatment arms for	Ethnicity	Rheumatoid	Prior DMARD treatment history (brief	nN (%)	nN (%)
Author, year	which data	(where	factor (%	description, including definition of active RA	receiving	receiving
	extraction	reported)	positive)	despite previous treatment, where relevant)	NSAIDs at	steroids at
	performed				baseline	baseline
				baseline (or within 3 months for ETN/ANA) and/or		
				no previous biologics that resulted in severe		
				hypersensitivity or anaphylactic reaction, or response		
				failure to anti-TNF agent. Mean (SD) of 1.4		
120				(1.previous DMARDs. Prior TNF inhibitors in 3.5%.		
RAPID1 ¹³⁹	CTZ 400mg at weeks	NR	79.6	Patients were required to receive MTX for $\geq 6$ months	NR	NR
	0, 2 & 4 then 200mg			with a stable dosage of $\geq 10$ mg/week for $\geq 2$ months		
	Q2W + MTX			prior to baseline. No biologics within 6 months of		
				baseline (or within 3 months for ETN/ANA) and/or		
				no previous biologics that resulted in severe		
				hypersensitivity or anaphylactic reaction, or response		
				failure to anti-TNF agent. Mean (SD) of 1.3		
				(1.previous DMARDs. Prior TNF inhibitors in 2.8%.		
RAPID2 ¹⁴⁰	PBO + MTX	NR	78.2	Patients were required to receive MTX for $\geq 6$ months	NR	59.8
				with a stable dosage of $\geq 10$ mg/week for $\geq 2$ months		
				prior to baseline. No biologics within 6 months of		
				baseline (or within 3 months for ETN/ANA) and/or		
				no previous biologics that resulted in severe		
				hypersensitivity or anaphylactic reaction, or response		
				failure to anti-TNF agent. Mean (SD) of 1.2		
				(1.previous DMARDs excluding MTX. Prior anti-		
				TNF use in 1.6% patients.		
RAPID2 ¹⁴⁰	CTZ 400mg at weeks	NR	77.5	Patients were required to receive MTX for $\geq 6$ months	NR	55.3
	0, 2 & 4 then 200mg			with a stable dosage of $\geq 10$ mg/week for $\geq 2$ months		
	Q2W + MTX			prior to baseline. No biologics within 6 months of		
				baseline (or within 3 months for ETN/ANA) and/or		
				no previous biologics that resulted in severe		
				hypersensitivity or anaphylactic reaction, or response		
				failure to anti-TNF agent. Mean (SD) of 1.2		
				(1.previous DMARDs excluding MTX. Prior anti-		
				TNF use in 1.6% patients.		
TEAR ⁵⁴	MTXmon(ST)	White 85.5%	87.1	14.5% prior MTX	NR	33.1
	n=124	African		0% prior biologics		

Trial name / Author, year	Treatment arms for which data extraction performed	Ethnicity (where reported)	Rheumatoid factor (% positive)	Prior DMARD treatment history (brief description, including definition of active RA despite previous treatment, where relevant)	nN (%) receiving NSAIDs at baseline	nN (%) receiving steroids at baseline
	MTX to triple disease-modifying antirheumatic drug therapy (MTX plus SSZ plus HCO);	American 11.3% Hispanic 8.1%				
TEAR ⁵⁴	MTXmon(SE) n=255 SE=step-up from MTX to MTX plus etanercept;	White 784% African American 11.4% Hispanic 12.6%	91	20% prior MTX 0.8% prior biologics	NR	43.5
TEAR ⁵⁴	MTX+SSZ+HCQ n=132	White 81.1% African American 8.3% Hispanic 12.9%	91.7	20.5% prior MTX 0% prior biologics	NR	43.9
TEAR ⁵⁴	ETN50+MTX n=244	White 77.1% African American 12.7% Hispanic 10.7%	88.5	24.6% prior MTX 0.8% prior biologics	NR	43.0
TEMPO ⁵⁵	MTXmon n=228	NR	71	42% prior MTX mean 2.3 prior cDMARDs including MTX	86	64
TEMPO ⁵⁵	ETNmon	NR	75	42% prior MTX	88	57

Trial name / Author, year	Treatment arms for which data	Ethnicity (where	Rheumatoid factor (%	Prior DMARD treatment history (brief description, including definition of active RA	nN (%) receiving	nN (%) receiving
	extraction performed	reported)	positive)	despite previous treatment, where relevant)	NSAIDs at baseline	steroids at baseline
	n=223			mean 2.3 prior cDMARDs including MTX		
TEMPO ⁵⁵	ETN+MTX n=231	NR	76	44% prior MTX mean 2.3 prior cDMARDs including MTX	88	62
AMBITION ¹³¹ (ITT baseline covariate data presented)	MTX alone	NR	NR	Patients excluded if had been unsuccessfully treated with an anti-TNF agent, had received MTX in the 6 months before randomisation or discontinued MTX due to clinically important adverse effects or lack of efficacy. Patients who had temporarily discontinued MTX due to side effects or desire to become pregnant and those who discontinued anti-TNF agents for reasons other than efficacy (e.g. treatment cost, side effects) could participate in study. Patients had active RA defined as $\geq 6$ of 66 swollen joints, $\geq 8$ of 68 tender joints, and CRP $\geq 1$ mg/dl or ESR $\geq 28$ mm/hr. MTX-naïve = 67% No. previous DMARDs / anti-TNF agents, mean (SD) = 1.1 (1.4) Previous use of anti-TNF agents = 7.4% (PP)	NR	47
AMBITION ¹³¹	TCZ 8mg/kg i.v. every 4 weeks	NR	NR	MTX-naïve = $67\%$ No. previous DMARDs / anti-TNF agents, mean (SD) = $1.2 (1.3)$	NR	48
LITHE ¹³⁴	PBO i.v. every 4 weeks + MTX	NR	82	Previous use of anti-TNF agents = $8.3\%$ (PP)Eligible patients had inadequate responses to MTX(despite receiving MTX for $\geq 12$ weeks before	NR	70

Trial name /	Treatment arms for	Ethnicity	Rheumatoid	Prior DMARD treatment history (brief	nN (%)	nN (%)
Author, year	which data	(where	factor (%	description, including definition of active RA	receiving	receiving
-	extraction	reported)	positive)	despite previous treatment, where relevant)	NSAIDs at	steroids at
	performed				baseline	baseline
				baseline (stable dose of 10-25 mg/wk for $\ge 8$ weeks)), with active RA defined as $\ge 6$ swollen joints, $\ge 8$ tender joints, and either CRP $\ge 1$ mg/dl or ESR $\ge 28$ mm/hr, and had $\ge$ radiographically confirmed joint erosion.		
				All other DMARDs or biological agents were discontinued before study entry (LEF for $\ge 12$ weeks, IFX or ADA for $\ge 8$ weeks and ETN for $\ge 2$ weeks).		
				anti-TNF treatment.		
				No. of previous DMARDs/anti-TNFs, mean (SD) = $1.6 (1.5)$		
				% with past use of DMARDs = $71.2$		
<b>I ITTUE</b> ¹³⁴		ND	02	% with past use of anti-TNF agents = 11.5	ND	62
	every 4 weeks + MTX	INK	83	<ul> <li>No. of previous DMARDs/anti-TNFs, mean (SD) =</li> <li>1.6 (1.4)</li> <li>% with past use of DMARDs = 75.4</li> <li>% with past use of anti-TNF agents = 10.8</li> </ul>	INK	02
OPTION ¹³⁶	PBO i.v. every 4 weeks + MTX	NR	71	Eligible patients had experienced an inadequate response to MTX, with active RA defined as $\geq 6$ swollen joints, $\geq 8$ tender joints and CRP $\geq 10$ mg/l or ESR $\geq 28$ mm/hr. Patients had received MTX for $\geq$ 12 weeks before study entry (with a stable dose of 10-25 mg/week for $\geq 8$ weeks).	68	54
				All other DMARDs were discontinued prior to study entry (LEF for $\geq 12$ weeks, AKR for $\geq 1$ week, ETN for $\geq 2$ weeks, and IFX or ADA for $\geq 8$ weeks).		
				Patients excluded if had previous unsuccessful anti-		

Trial name /	Treatment arms for	Ethnicity	Rheumatoid	Prior DMARD treatment history (brief	nN (%)	nN (%)
Author, year	which data	(where	factor (%	description, including definition of active RA	receiving	receiving
	extraction	reported)	positive)	despite previous treatment, where relevant)	NSAIDs at	steroids at
	performed				baseline	baseline
				TNF treatment (discontinuations due to cost or injection discomfort not excluded).		
				No. of previous DMARDs (not including MTX) = 1.7 (1.5)		
				Previous anti-TNF treatment = 19/204 (5%)		
OPTION ¹³⁶	TCZ 8 mg/kg i.v. every 4 weeks + MTX	NR	83	No. of previous DMARDs (not including MTX) = 1.5 (1.4)	66	55
				Previous anti-TNF treatment = $11/205$ (5%)		

Table 344:DAS Population 1 Head to head trial

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	DAS28- ESR or DAS28- CRP where stated	N analysed	Mean DAS28 score at baseline (SD)	DAS28 mean change from baseline (SD)		
Kume 2011	ADA mon	24 weeks	DAS28- ESR	19	5.34 (1.4) (n=21)	-2.12 (0.38)		
Kume 2011 ¹⁰⁰	ETN mon	24 weeks	DAS28- ESR	20	5.17 (1.5) (n=21)	-2.84 (0.42)		
Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	DAS28-ESR or DAS28- CRP where stated	N analysed	Mean DAS28 score at baseline (SD)	Mean DAS28 score at follow-up (SD)	DAS28 mean change from baseline (SD)	% achieving DAS28 remission (defined threshold)
------------------------------	------------------------------------------------------------------------------------------	-------------------------------------	-----------------------------------------------	------------	--------------------------------------------------------------	---------------------------------------------	-----------------------------------------------	-------------------------------------------------------------
GUEPARD ⁹³	Initial MTX	week 12	NR	32	DAS28(ESR) 6.15 (SD0.88) DAS28(CRP) 5.85 (SD0.9)	NR	NR	DAS<2.6 12.5%
GUEPARD ⁹³	Initial ADA+MTX	week 12	NR	33	DAS28(ESR) 6.31 (SD0.78) DAS28(CRP) 5.80 (SD0.8)	NR	NR	DAS<2.6 36.4%
GUEPARD ⁹³	Initial MTX 12 weeks, then step-up therapy in both groups based on DAS28	week 52	NR	32	NR	NR	NR	DAS<2.6 59.4%
GUEPARD ⁹³	Initial ADA+MTX 12 weeks, then step-up therapy in both groups based on DAS28	week 52	NR	33	NR	NR	NR	DAS<2.6 39.4%
HIT HARD ^{94 202}	MTX + PBO	24 weeks (study RCT endpoint)	DAS28-ESR	85	6.3 (0.9)	3.6 (1.4)	-2.7 (NR)	29.5 (<2.6)
HIT HARD ⁹⁴	ADA + MTX	24 weeks (study RCT endpoint)	DAS28-ESR	87	6.2 (0.8)	3.0 (1.2) ^a	-3.2 (NR)	47.9 ^a (<2.6)
OPERA ¹⁰⁷	MTX + PBO + steroid	12 months (primary	DAS28-CRP	91	5.6 (3.8-7.0) ^c	2.6 (1.7-4.7) ^c	-3.0(NR)	49 (<2.6)

Table 345:DAS Population 1 biologics vs. DMARD(s) or PBO

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	DAS28-ESR or DAS28- CRP where stated	N analysed	Mean DAS28 score at baseline (SD)	Mean DAS28 score at follow-up (SD)	DAS28 mean change from baseline (SD)	% achieving DAS28 remission (defined threshold)
		endpoint and study RCT endpoint)						
OPERA ¹⁰⁷	ADA + MTX + steroid	12 months (primary endpoint and study RCT endpoint)	DAS28-CRP	89	5.5 (3.8-7.8) ^c	2.0 (1.7-5.0) a,c	-3.5(NR)	74 ^b (<2.6)
OPTIMA ²⁰²	MTX + PBO	26 weeks (study RCT endpoint)	DAS28-CRP	517	6.0 (1.0)	4.1 (n=505)	-1.9 (NR)	17 (<2.6)
OPTIMA ¹⁰⁸	ADA + MTX	26 weeks (study RCT endpoint)	DAS28-CRP	515	6.0 (1.0)	3.3 ^a (n=499)	-2.7 (NR)	34 (<2.6) ^b
PREMIER ¹⁰⁹	MTX + PBO	1 year (primary endpoint)	NR	257	6.3 (0.9)	NR	NR	21 (<2.6)
PREMIER ¹⁰⁹	ADA monotherapy + PBO step up week 16	1 year (primary endpoint)	NR	274	6.4 (0.9)	NR	NR	23 (<2.6)
PREMIER ¹⁰⁹	ADA + MTX step up week 16	1 year (primary endpoint)	NR	268	6.3 (0.9)	NR	NR	43 (<2.6) ^{b (vs.} MTX, vs. ADA)
PREMIER ¹⁰⁹	MTX + PBO	2 years (study RCT endpoint)	NR	257	6.3 (0.9)	NR	NR	25 (<2.6)
PREMIER ¹⁰⁹	ADA monotherapy + PBO step up week 16	2 years (study RCT endpoint)	NR	274	6.4 (0.9)	NR	NR	25 (<2.6)
PREMIER ¹⁰⁹	ADA + MTX step up week 16	2 years (study RCT endpoint)	NR	268	6.3 (0.9)	NR	NR	49 (<2.6) ^{b (vs.} MTX, vs. ADA)
COMET ⁸¹	MTX +PBO	52 weeks	NR	263	6.5 (SD1.0)	NR	NR	DAS28<2.6

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	DAS28-ESR or DAS28- CRP where stated	N analysed	Mean DAS28 score at baseline (SD)	Mean DAS28 score at follow-up (SD)	DAS28 mean change from baseline (SD)	% achieving DAS28 remission (defined threshold)
	n=268							28%
COMET ⁸¹	ETN+MTX n=274	52 weeks	NR	265	6.5 (SD1.0)	NR	NR	DAS28<2.6 50% ^b
COMET ⁸²	MTX in year 1 MTX in year 2 n=99 at start of period 2	2 years	NR	130	NR	NR	NR	22%
COMET ⁸¹	MTX year 1 ETN+MTX in year 2 n=90 at start of period 2	2 years	NR	133	NR	NR	NR	36% ^a vs group given MTX both years
COMET ⁸¹	ETN+MTX in year 1 ETN+MTX in year 2 n=111 at start of period 2	2 years	NR	131	NR	NR	NR	45% ^b vs group given MTX both years
COMET ⁸¹	ETN+MTX in year 1 ETN in year 2 n=111 at start of period 2	2 years	NR	134	NR	NR	NR	37% ^a vs group given MTX both years
GO-BEFORE ⁹⁰	PBO + MTX	24 weeks	DAS28-ESR	160	DAS28ESR= 6.2 (1.17)	NR	NR	DAS28-ESR 11
GO-BEFORE ⁹⁰	GOL 50 mg s.c.	24 weeks	1	159	DAS28ESR=	NR	NR	25 ^b

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	DAS28-ESR or DAS28- CRP where stated	N analysed	Mean DAS28 score at baseline (SD)	Mean DAS28 score at follow-up (SD)	DAS28 mean change from baseline (SD)	% achieving DAS28 remission (defined threshold)
	every 4 weeks + MTX				6.3 (1.1			
GO-BEFORE ¹⁴⁶	PBO + MTX	52 weeks	DAS28-CRP	160	DAS28ESR= 6.2 (1.17)	NR	NR	38.8
GO-BEFORE ⁹⁰	GOL 50 mg s.c. every 4 weeks + MTX	52 weeks		159	DAS28ESR= 6.3 (1.1)	NR	NR	45
ASPIRE ⁷¹	PBO i.v. + MTX	54 weeks	NR	235	6.7 (1)	4.6 (1.8)	-2.1 (NR)	(defined as DAS28 <2.6) 15.0
ASPIRE ⁷¹	IFX i.v. 3 mg/kg at weeks 0, 2 and 6 and every 8 weeks thereafter + MTX	54 weeks	NR	294	6.6 (1)	4.0 (1.8)	-2.6 (NR)	21.2
BeST ⁷⁸	Sequential monotherapy (DAS-steered)	6 months	DAS44	126	DAS44 = 4.5 (0.9)	3	-1.5 (NR)	NR
BeST ⁷⁸	Step-up combination therapy (DAS- steered)	6 months	DAS44	121	DAS44 = 4.5 (0.8)	3	-1.5 (NR)	NR
BeST ⁷⁸	Initial combination therapy with prednisone (DAS- steered)	6 months	DAS44	133	DAS44 = 4.4 (0.9)	2.2	-2.2 (NR)	NR
BeST ⁷⁸	Initial combination therapy with IFX (DAS-steered)	6 months	DAS44	128	DAS44 = 4.3 (0.9)	2.2	-2.1 (NR)	NR
Durez 2007 ¹⁴²	MTX	52 weeks (study RCT endpoint)	DAS28-CRP	14	5.2 (0.8)	3.26 (1.3)	-1.94(NR)	NR
Durez 2007 ¹⁴²	MTX + i.v.	52 weeks	DAS28-CRP	15	5.3 (1)	2.77 (1.09)	-2.53(NR)	NR

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	DAS28-ESR or DAS28- CRP where stated	N analysed	Mean DAS28 score at baseline (SD)	Mean DAS28 score at follow-up (SD)	DAS28 mean change from baseline (SD)	% achieving DAS28 remission (defined threshold)
	methylprednisolone (MP)	(study RCT endpoint)						
Durez 2007 ¹⁴²	IFX 3 mg/kg i.v. at weeks 0, 2, 6, 14, 22, 30, 46+MTX	52 weeks (study RCT endpoint)	DAS28-CRP	15	5.3 (1)	2.79 (0.77)	-2.51(NR)	NR
IDEA ⁹⁵	MP 250 mg i.v. at week 0, PBO i.v. at weeks 2, 6, 14, 22 + MTX	26 weeks	NR	56	NR	NR	NR	(DAS (assumed DAS4 < 1.6) 44.6
IDEA ⁹⁵	IFX 3 mg/kg i.v. at weeks 0, 2, 6, 14, 22 + MTX (IFX dose modifications permitted according to DAS44 from week 26)	26 weeks	NR	54	NR	NR	NR	33.3
Quinn 2005 ¹¹⁰	MTX + PBO	14 weeks (primary endpoint)	Not stated	10	7.0 (0.9)	6.0 (4.9-6.8) _{d,e}	-1.0(NR)	NR
Quinn 2005 ¹¹⁰	IFX 3mg/kg + MTX	14 weeks (primary endpoint)	Not stated	10	6.2 (0.8)	2.9 (2.3-3.8) a,d,e	-3.3(NR)	NR
Quinn 2005 ¹¹⁰	MTX + PBO	54 weeks (study RCT endpoint)	Not stated	10	7.0 (0.9)	4.6 (3.1-5.1) _{d,e}	-2.4(NR)	NR
Quinn 2005 ¹¹⁰	IFX 3mg/kg + MTX	54 weeks (study RCT endpoint)	Not stated	10	6.2 (0.8)	2.7 (2.0-3.5) d,e	-3.5(NR)	NR

 $a^{a} = p < 0.05$   $b^{b} = p < 0.01$   $c^{c} = Median (5th, 95th centile range)$   $d^{d} = Median (IQR)$   $e^{e} = Estimated from graphical data$ 

Table 346:DAS Population 2/3 Head to head

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	DAS28- ESR or DAS28- CRP where stated	N analysed	Mean DAS28 score at baseline (SD)	Mean DAS28 score at follow-up (SD)	DAS28 mean change from baseline (SD)	% achieving DAS28 remission (defined threshold)
ATTEST ⁷⁴	PBO+MTX	Day 197	DAS28- ESR	110	6.8 (1.0)	5.32(NR)	- 1.48	(defined as DAS28- ESR<2.6) 2.9
ATTEST ⁷⁴	IFX + MTX	Day 197	DAS28- ESR	165	6.8 (0.9)	4.55(NR)	- 2.25	12.8
ATTEST ⁷⁴	ABT + MTX	Day 197	DAS28- ESR	156	6.9 (1.0)	4.37(NR)	- 2.53	11.3
AMPLE ⁶⁶	ABT s.c.	1 year (primary endpoint)	DAS28- CRP	318	5.5 (1)	3.188	-2.30 (0.08)	43.3 (<2.6)
AMPLE ⁶⁶	ADA	1 year (primary endpoint)	DAS28- CRP	328	5.5 (1)	3.188	-2.27 (0.08)	41.9 (<2.6)
RED-SEA ¹¹⁴	ADA+cDMARDs(REDSEA) n=60	24weeks	DAS28- CRP	60	5.6(0.9)	4.16(NR)	-1.44(NR)	NR
RED-SEA ¹¹⁴	ETN50+cDMARDs(REDSEA) n=60	24weeks	DAS28- CRP	60	5.8(0.9)	4.04(NR)	-1.76(NR)	NR
RED-SEA ¹¹⁴ 321	ADA+cDMARDs(REDSEA) n=60	12months	DAS28- CRP	60	Median 5.8 (5.1-6.1) ^c	4.4 (3.1–5.0) c	Median -1.4 Mean -1.54 (1.47)	NR
RED-SEA ¹¹⁴	ETN50+cDMARDs(REDSEA) n=60	12months	DAS28- CRP	60	Median 5.7 (5.0-6.5) [°]	4.6 (3.5–5.6)	Median -1.1 Mean -1.34 (1.3)	NR
ADACTA ⁵⁸	TCZ 8 mg/kg i.v. every 4 weeks + s.c. PBO ADA	24 weeks	DAS28- ESR	163	6.7 (0.9)	3.4(NR)	- 3.3	(DAS28<2.6) 65/163 (39.9%)
ADACTA ⁵⁸	ADA 40 mg s.c. every 2 weeks + i.v. PBO TCZ	24 weeks	DAS28- ESR	162	6.8 (0.9)	5.0(NR)	- 1.8 b	17/162 (10.5%) ^b

 $^{a} = p < 0.05$   $^{b} = p < 0.01$   $^{c} = Median (IQR)$ 

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	DAS28- ESR or DAS28-	N analysed	Mean DAS28 score at	Mean DAS28 score at	DAS28 mean change	% change from baseline	% achieving DAS28 remission
			CRP where stated		baseline (SD)	follow-up (SD)	from baseline (SD)		(defined threshold)
AIM ^{61,62}	MTX+PBO n=219	12 months	CRP	219	6.4 (0.1) CRP	NR	NR	NR	DAS28<3.2 9.9% DAS28<2.6 1.9%
AIM ⁶¹	ABTi.v.+ MTX n=433	12 months	CRP	433	6.4 (0.08) CRP	NR	NR	NR	DAS28<3.2 42.5% DAS28<2.6 23.8% ^a
ASSET ⁷²	PBO + MTX	4 months (primary endpoint and study RCT endpoint)	DAS28- CRP	22	5.3 (0.9)	4.75(NR)	-0.55 (95% CI -0.95, - 0.16)	NR	0.0 (<2.6)
ASSET ⁷²	ABT i.v. (~10mg/kg) + MTX	4 months (primary endpoint and study RCT endpoint)	DAS28- CRP	26	5.3 (1)	3.62(NR)	-1.68 (95% CI -2.15, - 1.2)	NR	15.4 (<2.6)
van de Putte 2004 ¹²²	PBO s.c.	26 weeks	NR	110	7.1 (0.9)	6.4(NR)	- 0.7 (1.3)	- 9.1	NR
van de Putte 2004 ¹²²	ADA 40mg s.c. eow monotherapy	26 weeks	NR	113	7.1 (0.8)	5.4(NR)	- 1.7 (1.6)	- 23.8 ^b	NR
CERTAIN ⁷⁹	PBO + cDMARDs	24 weeks (primary endpoint and study RCT endpoint)	DAS28-ESR	98	4.47 (0.3	4.5	-0.07 (1.20)	NR	5.5 (<2.6)
CERTAIN ⁷⁹	CTZ 400mg at weeks 0, 2 & 4 then 200mg Q2W +	24 weeks (primary	DAS28-ESR	96	4.53 (0.4	3.38	-1.12 (1.06)	NR	26.1 (<2.6)

Table 347:DAS Population 2/3 biologic vs. DMARD(s) or PBO

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	DAS28- ESR or DAS28- CRP where	N analysed	Mean DAS28 score at baseline	Mean DAS28 score at follow-up	DAS28 mean change from	% change from baseline	% achieving DAS28 remission (defined
			stated		(SD)	(SD)	baseline (SD)		threshold)
	DMARDs	endpoint and study RCT endpoint)							
REALISTIC ¹¹³	PBO + existing cDMARDs	12 weeks	DAS28- CRP DAS28-ESR	29	NR	NR	-0.80 ^e -0.80 ^e	NR	NR
REALISTIC ¹¹³	CTZ 400mg weeks 0, 2, 4 then 200mg every 2 weeks + existing cDMARDs	12 weeks	DAS28- CRP DAS28-ESR	134	NR	NR	-1.88 ^e -1.94 ^e	NR	NR
ADORE ^{59,60}	ETNmon n=159	16 weeks	ESR	156	6.2 ESR	4.25(NR)	1.95	NR	DAS28 (4)<2.6 14.6% DAS28 (3) <2.6 15.2% ^d
ADORE ⁵⁹	ETN+MTX n=155	16 weeks	ESR	151	6.3 ESR	4.1(NR)	2.20	NR	DAS28 (4) <2.6 17.3% DAS28 (3) <2.6 15.1%
CREATEIIb ⁹⁶	DMARD+PBO	24 weeks	NR	65	6.3 (0.76)	5.3(NR)	-1 (1.2)	NR	NR
CREATEIIb ⁹⁶	ETN50+DMARD	24 weeks		64	6.4 (0.85)	4.1(NR)	-2.3 (1.38)	NR	NR
JESMR ¹⁴⁴	ETN 25mg Q2W monotherapy	24 weeks (primary endpoint)	Not stated	69	6.1 (CI: 5.9- 6.)	4.1 (CI: 3.8- 4.5)	-2.0(NR)	NR	10.1 (<2.6)
JESMR ¹⁴⁴	ETN 25mg Q2W + MTX	24 weeks	Not stated	73	6.0 (CI: 5.8-	3.3 (CI: 3.0-	-2.7(NR)	NR	27.4 ^a (<2.6)

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	DAS28- ESR or DAS28- CRP where stated	N analysed	Mean DAS28 score at baseline (SD)	Mean DAS28 score at follow-up (SD)	DAS28 mean change from baseline (SD)	% change from baseline	% achieving DAS28 remission (defined threshold)
	6-8mg/week	(primary endpoint)			6.)	3.5) ^b			
JESMR ¹⁴⁴	ETN 25mg Q2W monotherapy	52 weeks (primary endpoint)	Not stated	69	6.1 (0.9)	4.2 (1.5)	-1.9(NR)	NR	18.8 (<2.6)
JESMR ¹⁴⁴	ETN 25mg Q2W + MTX 6-8mg/week	52 weeks (primary endpoint)	Not stated	73	6.0 (1.0)	3.0 (1.0) ^b	3.0(NR)	NR	35.6 ^b (<2.6)
LARA ¹⁰²	MTX+DMARD(LARA)	24weeks	ESR	142	5.9(0.7)	NR	NR	NR	DAS<2.6 5/142 (3.5%) DAS<3.2 12.0%
LARA ¹⁰²	ETN50+MTX	24 weeks		279	5.9(0.6)	NR	NR	NR	DAS<2.6 70/279 (25.1%) ^b DAS<3.2 47.0% ^b
RACAT ¹¹¹	MTX+SSZ+HCQ	24weeks	CRP	157	5.8(0.9)	4.1(NR)	-1.79(1.20)	NR	DAS28≤2.6 12.7% DAS28≤3.2 24.8%
RACAT ¹¹¹	ETN50+MTX	24 weeks		161	5.9(0.9)	3.8(NR)	-2.06(1.35)	NR	DAS28≤2.6 21.7% a DAS28≤3.2 34.8% a
RACAT ¹¹¹	MTX+SSZ+HCQ n=178	48 weeks	CRP	154	NR	NR	-2.12(1.28)	NR	DAS28≤2.6 20.8%

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	DAS28- ESR or DAS28- CRP where stated	N analysed	Mean DAS28 score at baseline (SD)	Mean DAS28 score at follow-up (SD)	DAS28 mean change from baseline (SD)	% change from baseline	% achieving DAS28 remission (defined threshold)
	In analysis n=154 (of whom 39 switched to ETN)								DAS28≤3.2 37.0%
RACAT ^{III}	ETN50+MTX n=175 In analysis n=155 (of whom 41 switched to MTX+SSZ+HCQ)	48 weeks		155	NR	NR	-2.29(1.30)	NR	DAS28≤2.6 25.2% DAS28≤3.2 41.9%
APPEAL ^{67,68}	MTX plus DMARD (SSZ, HCQ or LEF)	16 weeks (primary endpoint and study RCT endpoint)	DAS28- ESR, DAS28- CRP	103	6.1 (1.1) 5.34 (1.1)	4.4, 3.7	-1.7(NR) -1.64(NR)	27.5, 31.0	7.8 (<0.26), 21.4 (<0.26)
APPEAL 68	Etanercept 25mg twice weekly (licensed dose) plus MTX	16 weeks (primary endpoint and study RCT endpoint)	DAS28- ESR, DAS28- CRP	197	6.1 (1.1) 5.23 (1.1)	3.8, ^b 3.1 ^b	-2.3(NR) -2.13(NR)	38.3, ^b 40.3 ^b	15.7 (<0.26), 41.6 ^b (<0.26)
GO-FORTH ⁹¹	PBO Q4W + MTX 6- 8mg/week	14 weeks (primary endpoint)	DAS28-ESR	88	5.6 (0.99)	5.17(NR)	-0.43 (1.20)	NR	3.4 (<2.6)
GO-FORTH ⁹¹	GOL 50mg s.c. Q4W + MTX 6-8mg/week	14 weeks (primary endpoint)	DAS28-ESR	86	5.5 (1.18)	3.52(NR)	-1.98 (1.25)	NR	31.4 ^b (<2.6)
GO-FORTH ⁹¹	PBO Q4W + MTX 6- 8mg/week	24 weeks (study RCT endpoint)	DAS28-ESR	88	5.6 (0.99)	5.0(NR)	-0.60 (1.38)	NR	6.8 (<2.6)
GO-FORTH ⁹¹	GOL 50mg s.c. Q4W + MTX 6-8mg/week	24 weeks (study RCT endpoint)	DAS28-ESR	86	5.5 (1.18)	3.45(NR)	-2.05 (1.23)	NR	34.9 ^b (<2.6)
GO-	PBO s.c. every 4 weeks +	14 weeks	DAS28-	133	DAS28-	NR	NR	NR	1.5

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	DAS28- ESR or DAS28- CRP where stated	N analysed	Mean DAS28 score at baseline (SD)	Mean DAS28 score at follow-up (SD)	DAS28 mean change from baseline (SD)	% change from baseline	% achieving DAS28 remission (defined threshold)
FORWARD ⁹²	MTX		CRP DAS28-ESR		CRP 5.458 (4.672 to 6.09) ^c DAS28-ESR 6.111 (5.260 to 6.57 ^c				
GO- FORWARD ⁹²	GOL 50 mg s.c. every 4 weeks + MTX	14 weeks	DAS28- CRP DAS28-ESR	89	DAS28- CRP 5.766 (4.628 to 6.32 ° DAS28-ESR 6.105 (5.366 to 6.940) °	NR	NR	NR	15.7 b
GO- FORWARD ⁹²	PBO s.c. every 4 weeks + MTX	24 weeks	DAS28- CRP DAS28-ESR	133	5.458 (4.672)to 6.09 ° Median (IQR) = 6.111 (5.260) to 6.57 °	NR	NR	NR	6.0
GO- FORWARD ⁹²	GOL 50 mg s.c. every 4 weeks + MTX	24 weeks	DAS28- CRP DAS28-ESR	89	5.766 (4.628 to 6.32 ° DAS28-ESR 6.105 (5.366 to 6.940) °	NR	NR	NR	20.2
Kay 2008 ⁹⁸	PBO s.c. + MTX	16 weeks	Both measures	35	DAS28- CRP	4.8 °	<u>DAS28-CRP</u> - 1.0 (- 1.8, -	NR	$\frac{\text{DAS28-CRP}}{=0}$

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	DAS28- ESR or DAS28- CRP where stated	N analysed	Mean DAS28 score at baseline (SD)	Mean DAS28 score at follow-up (SD)	DAS28 mean change from baseline	% change from baseline	% achieving DAS28 remission (defined threshold)
			reported		$= 5.8 (5.2, 6.0)^{\circ}$ $\frac{DAS28-ESR}{= 6.3 (5.7, 7.0)^{\circ}}$		$(SD) = (SD) = (0.1)^{\circ}$ $DAS28-ESR = -1.0 (-2.0, 0.0))^{\circ}$		(DAS28 <2.6) <u>DAS28-ESR</u> = 0 (DAS28 <2.6)
Kay 2008 ⁹⁸	GOL 50 mg s.c. every 4 weeks + MTX	16 weeks	Both measures reported	35	$\frac{DAS28-}{CRP} = 5.9 (5.5, 6.9)^{\circ}$ $\frac{DAS28-ESR}{= 6.4 (5.6, 7.)^{\circ}}$	3.9°	DAS28-CRP - 2.0 (1. (- 2.0 (- 2.6, - 1.5) ^c DAS28-ESR - 2.1 (1. - 2.2 (- 2.8, - 1.5) ^c ^b	NR	DAS28-CRP           11 ca           (DAS28 < 2.6)
START ¹¹⁸	PBO + MTX	22 weeks (primary endpoint and study RCT endpoint)	Not stated	363	NR	4.4 (1.40)	NR	NR	14 (<2.6)
START	IFX 3mg/kg + MTX	22 weeks (primary endpoint and study RCT endpoint)	Not stated	360	NR	3.5 (1.4) ^b	NR	NR	31 ^b (<2.6)
Wong 2009 ¹²⁶	PBO + MTX (with crossover for PBO group to open-label IFX at week	Week 16	NR	NR	6.4 (0.8)	6.7	+0.3(NR)	NR	NR

Trial name /	Treatment arms for	Assessment	DAS28-	N analysed	Mean	Mean	DAS28	% change	% achieving
Author, year	which data extraction performed	time point	ESR or DAS28- CRP where stated		DAS28 score at baseline (SD)	DAS28 score at follow-up (SD)	mean change from baseline (SD)	from baseline	DAS28 remission (defined threshold)
<b>•</b> • • • • 126	2.					h			
Wong 2009 ¹²⁰	IFX 3 mg/kg at weeks 0, 2, 6 and 8 weeks thereafter + MTX	Week 16	NR	NR	6.2 (0.9)	4.4 °	-1.8(NR)	NR	NR
ACT-RAY ⁵⁷	TCZ + oral PBO	24 weeks	DAS28-ESR	267	6.36 (1.00)	3.15NR	- 3.21 (1.3)	NR	34.8%
ACT-RAY ⁵⁷	TCZ + MTX	24 weeks	DAS28-ESR	277	6.33 (0.98)	2.9NR	- 3.43 (1.3) ^a	NR	40.4% (P=0.19 for absolute difference of 5.65%, 95%CI -2.41, 13.71%)
ACT RAY ⁵⁷	TCZ + oral PBO	52 weeks	NR	NR	6.36 (1.00)	2.62NR	- 3.74	NR	36.6
ACT RAY ⁵⁷	TCZ + MTX	52 weeks	NR	NR	6.33 (0.98)	2.67NR	- 3.66	NR	45.5 ^a
MEASURE ¹⁰³	PBO + MTX	12 weeks	NR	NR	NR	NR	- 0.8	NR	NR
MEASURE ¹⁰³	TCZ + MTX	12 weeks	NR	NR	NR	NR	- 2.7	NR	NR
SAMURAI ¹¹⁵	cDMARDsDiseaseActivity	24weeks	NR	145	6.4(0.9)	5.91(NR)	-0.49NR	NR	NR
SAMURAI ¹¹⁵	TCZmon	24weeks	NR	157	6.5(08)	2.75(NR)	-3.75NR	NR	NR
SAMURAI ¹¹⁵	cDMARDsDiseaseActivity	52weeks	NR	145	6.4(0.9)	NR	NR	NR	DAS28<2.6 3%
SAMURAI ¹¹⁵	TCZmon	52weeks	NR	157	6.5(08)	NR	NR	NR	DAS28<2.6 59%
SATORI ¹¹⁶	PBO i.v. every 4 weeks + MTX	24 weeks	NR	64	6.2 (0.9)	5.13 (SD NR)	-1.07NR	NR	NR
SATORI ¹¹⁶	TCZ 8 mg/kg i.v. every 4 weeks+ PBO capsules	24 weeks	NR	61	6.1 (0.9)	2.86 (SD NR)	-3.24NR	NR	NR
TOWARD ¹²¹	PBO i.v. every 4 weeks +	24 weeks	NR	413	6.6 (1.0)	5.44NR	- 1.16	NR	(DAS28 <2.6)

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	DAS28- ESR or DAS28- CRP where stated	N analysed	Mean DAS28 score at baseline (SD)	Mean DAS28 score at follow-up (SD)	DAS28 mean change from baseline (SD)	% change from baseline	% achieving DAS28 remission (defined threshold)
	stable cDMARDs (415 randomised)								3
TOWARD ¹²¹	TCZ 8 mg/kg i.v. every 4 weeks + stable DMARDs (805 randomised)	24 weeks	NR	803	6.7 (1.0)	3.53NR	- 3.17 b	NR	30 b
TACIT ¹²⁰	Combination cDMARDs	6 months (RCT endpoint)	DAS28-ESR	104	6.21 (0.92)	4.78 [95% Cl 4.45,5.12]	NR	NR	NR
TACIT unpublished ¹²⁰	TNFi + DMARD	6 months (RCT endpoint)	DAS28-ESR	101	6.30 (0.81)	4.23 [95% Cl 3.89,4.58]	NR	NR	NR

^a = p<0.05^b = p<0.01^c = Median (IQR): ^d = The DAS28 (4) score is a function of ESR, the patient's Visual Analogue Scale of General Health (GH VAS), and the number of tender and swollen joints assessed using the 28-joint count method DAS28 (3) score, is a function of ESR, tender joint count and swollen joint count, but not GH VAS ^c locat equation

e = least square

Table 348:HAQ-DI Population 1 trials

Trial name / Author, year	Treatmen t arms for which data extraction performe d	Assessm ent time point	N analyse d	Mean HAQ- DI score at baselin e (0-3) (SD)	Mean HAQ- DI score at follow -up (0- 3) (SD)	HAQ- DI mean change from baseline (SD)	% change from baselin e
Bejarano 2008 ⁷⁷	MTX + PBO	Week 56	73	1.3(0.6)	0.9 (NR)	-0.4 (0.7)	
	ADA + MTX +	Week 56	75	1.3(0.6)	0.6 (NR)	-0.7 (0.6)	
GUEPARD ⁹³	Initial MTX	week 12	32	1.41 (0.74)	0.9 NR	-0.51; 95% CI -0.30, - 0.72)	NR
GUEPARD ⁹³	Initial ADA+MT X	week 12	33	1.69 (0.59)	0.87 NR	-0.82; 95% CI -0.52, - 1.11	NR
GUEPARD ⁹³	Initial MTX 12 weeks, then step- up therapy in both groups based on DAS28	week 52	32	NR	NR	-0.93 (95% CI -0.69,- 1.17),	NR
GUEPARD ⁹³	Initial ADA+MT X 12 weeks, then step- up therapy in both groups based on DAS28	week 52	33	NR	NR	-1.02 (95% CI -0.81, - 1.24);	NR
HIT HARD ⁹⁴	MTX + PBO	24 weeks (study RCT endpoint)	85	1.3 (0.6)	0.72 (0.6)	-0.58 (NR)	NR
HIT HARD ⁹⁴	ADA +	24 weeks	87	1.4	0.49	-0.91	NR

Trial name /	Treatmen	Assessm	Ν	Mean	Mean	HAQ-	%
Author, year	t arms for which data extraction performe d	ent time point	analyse d	HAQ- DI score at baselin e (0-3) (SD)	HAQ- DI score at follow -up (0- 3) (SD)	DI mean change from baseline (SD)	change from baselin e
	MTX	(study RCT endpoint)		(0.6)	(0.6)	(NR)	
OPERA ¹⁰⁷	MTX + PBO + steroid	12 months (primary endpoint and study RCT endpoint)	91	1.00 (0.25- 2.31) ^c	0.13 (0-1.5) c	-0.63 (- 0.82- 0.38)	NR
OPERA ¹⁰⁷	ADA + MTX + steroid	12 months (primary endpoint and study RCT endpoint)	89	1.13 (0.17- 2.58) ^c	0.25 (0- 1.44) ^c	-0.88 (- 2.46- 0.13)	NR
OPTIMA ¹⁰⁸	MTX + PBO	26 weeks (study RCT endpoint)	517	1.6 (0.65)	0.9	-0.66 (0.73) (n=512)	NR
OPTIMA ¹⁰⁸	ADA + MTX	26 weeks (study RCT endpoint)	515	1.61 (0.69)	0.7	-0.89 (0.74) (n=512)	NR
PREMIER ¹⁰⁹	MTX + PBO	1 year (primary endpoint)	256	1.5 (0.7)	0.7 (0.6)	-0.8 (0.6)	NR
PREMIER ¹⁰⁹	ADA monothera py + PBO step up week 16	1 year (primary endpoint)	272	1.6 (0.6)	0.8 (0.6)	-0.8 (0.7)	NR
PREMIER ¹⁰⁹	ADA + MTX step up week 16	1 year (primary endpoint)	266	1.5 (0.6)	0.5 (0.5)	-1.1 (0.6)	NR
PREMIER ¹⁰⁹	MTX + PBO	2 years (study RCT endpoint)	256	1.5 (0.7)	0.5 (0.6)	-0.9 (0.6)	NR

Trial name / Author, year	Treatmen t arms for which data extraction performe d	Assessm ent time point	N analyse d	Mean HAQ- DI score at baselin e (0-3) (SD)	Mean HAQ- DI score at follow -up (0- 3) (SD)	HAQ- DI mean change from baseline (SD)	% change from baselin e
PREMIER ¹⁰⁹	ADA monothera py + PBO step up week 16	2 years (study RCT endpoint)	272	1.6 (0.6)	0.6 (0.6)	-0.9 (0.6)	NR
PREMIER ¹⁰⁹	ADA + MTX step up week 16	2 years (study RCT endpoint)	266	1.5 (0.6)	0.3 (0.5)	-1.0 (0.7)	NR
COMET ⁸¹	MTX +PBO	week 52	263	1.64 (0.65)	0.92 (0.74)	-0.72	NR
COMET ⁸¹	ETN+MT X	week 52	265	1.70 (0.68)	0.68 (0.71)	-1.02 b	NR
COMET ⁸²	MTX in year 1 MTX in year 2 n=99 at start of period 2	from week 52 to week 104	99	NR	NR	Non- significa nt change from baseline	NR
COMET ⁸¹	MTX year 1 ETN+MT X in year 2 n=90 at start of period 2	from week 52 to week 104	90	NR	NR	0.17(0.4 2) ^b	NR
COMET ^{81 82 83}	ETN+MT X in year 1 ETN+MT X in year 2 n=111 at start of period 2	from week 52 to week 104	111	NR	NR	Non- significa nt change from baseline	NR

Trial name / Author, year	Treatmen t arms for which data extraction performe d	Assessm ent time point	N analyse d	Mean HAQ- DI score at baselin e (0-3) (SD)	Mean HAQ- DI score at follow -up (0- 3) (SD)	HAQ- DI mean change from baseline (SD)	% change from baselin e
COMET ⁸¹	ETN+MT X in year 1 ETN in year 2 n=111 at start of period 2	from week 52 to week 104	111	NR	NR	Non- significa nt change from baseline	NR
ERA, Bathon 2000 Multicentre ¹⁴¹	MTX + PBO	12 months (study RCT endpoint)	217	NR	NR	-0.76 (SE=0.0 5)	NR
ERA, Bathon 2000 Multicentre ¹⁴¹	ETN 25mg Q2W + PBO	12 months (study RCT endpoint)	207	NR	NR	-0.73 (SE=0.0 5)	NR
GO-BEFORE ⁹⁰	PBO + MTX	24 weeks	160	1.5 (0.64)	NR	NR	36.95
GO-BEFORE ⁹⁰	GOL 50 mg s.c. every 4 weeks + MTX	24 weeks	159	1.5 (0.66)	NR	NR	43.65
Kume 2011 ¹⁰⁰	ADA	6 months	22	NR	NR	-0.69 (0.11)	NR
Kume 2011 ¹⁰⁰	ETN	6 months	21	NR	NR	-0.68 (0.09)	NR

95%CI = 95% confidence interval SE = standard error

 $a^{a} = p < 0.05$  $b^{b} = p < 0.01$  $c^{c} = Median (5^{th}, 95^{th} centile range)$ 

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	N analysed	Mean HAQ-DI score at baseline (0-3) (SD)	Mean HAQ- DI score at follow- up (0-3)	HAQ-DI mean change from baseline (SD)	% change from baseline
ATTEST ⁷⁴	PBO+MTX	Day 197	110	1.8 (0.7)	(SD) NR	NR	% achieving $\geq 0.3$ improvement from baseline = 40.9
ATTEST ⁷⁴	IFX + MTX	Day 197	165	1.7 (0.7)	NR	NR	% achieving $\geq 0.3$ improvement from baseline $= 58.8^{a vs}$ PBO+MTX
ATTEST ⁷⁴	ABT + MTX	Day 197	156	1.8 (0.6)	NR	NR	% achieving $\geq 0.3$ improvement from baseline $= 61.5^{a vs PBO}$ + MTX
AMPLE ⁶⁶	ABT s.c.	1 year (primary endpoint)	318	1.5 (0.7)	NR	NR	41.7
AMPLE ¹⁴⁷	ADA	1 year (primary endpoint)	328	1.5 (0.7)	NR	NR	38.7
ADACTA ⁵⁸	TCZ 8 mg/kg i.v. every 4 weeks + s.c. PBO ADA	24 weeks	163	1.6 (0.6)	0.9 (NR)	- 0.7	NR
ADACTA ⁵⁸	ADA 40 mg s.c. every 2 weeks + i.v. PBO TCZ	24 weeks	162	1.7 (0.6)	1.2 (NR)	- 0.5	NR
DeFilippis 2006 ⁸⁵	ETN + MTX	22 weeks	16	1.89 (0.65)	NR	NR	-17.5
DeFilippis 2006 ⁸⁵	IFX + MTX	22 weeks	16	1.67 (0.68)	NR	NR	-16.2
DeFilippis 2006 ⁸⁵	ETN + MTX	54 weeks	16	1.89 (0.65)	NR	NR	-32.3
DeFilippis 2006 ⁸⁵	IFX + MTX	54 weeks	16	1.67 (0.68)	NR	NR	-21.6

b = p < 0.01

Trial name /	Treatment	Assessment	N	Mean	Mean	HAQ-DI	%
Author, year	arms for which data extraction performed	time point	analysed	HAQ-DI score at baseline (0-3) (SD)	HAQ-DI score at follow-up (0-3) (SD)	mean change from baseline (SD)	change from baseline
AIM ^{61,62}	MTX+PBO	12months	219	1.7(0.6)	(estimate from graph 1.3)	adjusted - 0.50(0.05)	NR
AIM ⁶¹	ABTi.v.+ MTX	12months	433	1.7(0.7)	(estimate from graph 1.05)	adjusted - 0.68(0.03)	NR
ASSURE ⁷³	PBO + cDMARDs	1 year (primary endpoint and study RCT endpoint)	413	1.5 (0.7) (n=418)	1.24 NR	-0.26	9
ASSURE ⁷³	ABT + cDMARDs	1 year (primary endpoint and study RCT endpoint)	845	1.5 (0.6) (n=856)	1.03 NR	-0.47	30
CHANGE ⁸⁰	РВО	24weeks	87	1.4 (0.7)	1.3 NR	0.1 (0.6)	NR
CHANGE ⁸⁰	ADAmon	24weeks	91	1.6 (0.7)	1.4 NR	-0.2 (0.6)	NR
DE019 ⁸⁴	MTX+PBO n=200	24weeks	200	1.48 (0.59)	1.24 NR	-0.24 (0.52)	-16.2
DE019 ⁸⁰	ADA+MTX n=207	24weeks	207	1.45 (0.63)	0.89 NR	-0.56 (0.52)	-38.6
DE019 ⁸⁰	MTX+PBO n=200	52weeks	200	1.48 (0.59)	1.23 NR	- 0.25(0.56)	-16.9
DE019 ⁸⁰	ADA+MTX n=207	52weeks	207	1.45 (0.63)	0.86 NR	- 0.59(0.57)	-40.7
van de Putte 2004 ¹²²	PBO s.c.	26 weeks	110	1.88 (0.64)	1.81 NR	- 0.07 (0.49)	+ 1.8
van de Putte 2004 ¹²²	ADA mon	26 weeks	113	1.83 (0.59)	1.45 NR	- 0.38 (0.60)	- 21.3 ^b
ARMADA ⁶⁹	MTX+PBO	24weeks	62	1.64 (0.63)	1.37 NR	-0.27 (0.57)	-16.5
ARMADA ⁶⁹	ADA+MTX	24weeks	67	1.55 (0.61)	0.93 NR	-0.62 (0.63)	-40.0 b
CERTAIN ⁷⁹	PBO + cDMARDs (biologic naïve subgroup)	24 weeks (primary endpoint and study RCT endpoint)	98	1.11 (0.62)			NR
CERTAIN ⁷⁹	CTZ 400mg at weeks 0, 2 & 4 then 200mg Q2W + DMARDs (biologic naïve subgroup) PBO + existing	24 weeks (primary endpoint and study RCT endpoint)	96 29	1.04 (0.60)	NR	-0.10 ^d	NR
3	cDMARDs	1				0.10	

 Table 350:
 HAQ-DI Population 2/3 vs. DMARD(s) or PBO

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	N analysed	Mean HAQ-DI score at baseline (0-3) (SD)	Mean HAQ-DI score at follow-up (0-3) (SD)	HAQ-DI mean change from baseline (SD)	% change from baseline
REALISTIC ¹¹	CTZ 400mg weeks 0, 2, 4 then 200mg every 2 weeks + existing cDMARDs	12 weeks	134	NR	NR	-0.48 ^d	NR
ADORE ^{59,60}	ETNmon n=159	16 weeks	142	1.6	1.01 NR	-0.59 (0.69)	NR
ADORE ⁵⁹	ETN+MTX n=155	16 weeks	141	1.7	1.11 NR	-0.59 (0.58)	NR
ETN Study 309 ^{88,89}	SSZ+PBO n=50	24weeks	50	1.6(0.5)	1.5(NR)	-0.1 (NR)	9.2
ETN Study 309	ETN+PBO n=103	24weeks	103	1.7(0.6)	1.1(NR)	-0.6 (NR)	35.3 ^b vs SSZ
ETN Study 309	ETN+SSZ n=101	24weeks	101	1.6(0.6)	1.0(NR) ^a vs SSZ non-sig vs ETN+PB O	-0.6 (NR)	40.2 ^b vs SSZ non-sig vs ETN+P BO
ETN Study 309 ^{88,89}	SSZ+PBO n=50	104weeks	50	1.6(0.5)	(estimate from graph 1.6)	estimate from graph 0 NR	NR
ETN Study 309	ETN+PBO n=103	104weeks	103	1.7(0.6)	(estimate from graph 1.1) ^b vs SSZ	estimate from graph 0.6 NR	NR
ETN Study 309	ETN+SSZ n=101	104weeks	101	1.6(0.6)	(estimate from graph 0.9) ^b vs SSZ	estimate from graph 0.7 NR	NR
JESMR ¹⁴⁴	ETN 25mg Q2W monotherapy	24 weeks (primary endpoint)	69	1.3 (0.8)	0.9 (0.8)	-0.4NR	NR
JESMR ¹⁴⁴	ETN 25mg Q2W + MTX 6- 8mg/week	24 weeks (primary endpoint)	73	1.2 (0.7)	0.7 (0.6)	-0.5 NR	NR
JESMR ¹⁴⁴	ETN 25mg Q2W monotherapy	52 weeks (primary endpoint)	69	1.3 (0.8)	0.9 (0.7)	-0.4 NR	NR
JESMR ¹⁴⁴	ETN 25mg Q2W + MTX 6- 8mg/week	52 weeks (primary endpoint)	73	1.2 (0.7)	0.6 (0.6)	-0.6 NR	NR
Lan 2004 ¹⁰¹	PBO+MTX	12 weeks	29	1.23	0.99	-0.24	NR

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	N analysed	Mean HAQ-DI score at baseline (0-3) (SD)	Mean HAQ-DI score at follow-up (0-3) (SD)	HAQ-DI mean change from baseline (SD)	% change from baseline
	Placebo plus MTX	(primary endpoint and study RCT endpoint)					
Lan 2004 ¹⁰¹	ETN+MTX Etanercept 25mg twice weekly plus MTX	12 weeks (primary endpoint and study RCT endpoint)	29	0.99	0.34	-0.65	NR
LARA ¹⁰²	MTX+DMARD	24weeks	142	1.6(0.7)	NR	adjusted -0.5 (SE 0.1)	NR
LARA ¹⁰²	ETN50+MTX	24weeks	279	1.6(0.7)	NR	adjusted -0.9 (SE <0.1) ^b	NR
Moreland 1999 ¹⁰⁴	РВО	6months	80	1.66(0.06	1.54 (NR)	-0.12	NR
Moreland 1999 ¹⁰⁴	ETN+PBO	6months	78	1.63(0.06	1.04 (NR)	-0.59 a	NR
RACAT ¹¹¹	MTX+SSZ+HC Q n=178	24weeks	155	4(0.8)	0.97(0.85)	- 0.44(0.77)	NR
RACAT ¹¹¹	ETN50+MTX n=175	24weeks	160	1.5(0.8)	0.98(0.87)	- 0.51(0.84)	NR
RACAT ^{III}	MTX+SSZ+HC Q n=178 randomised In analysis n=155 (of whom 39 switched to ETN)	48 weeks	155	1.4(0.8)	0.93 ( 0.85)	- 0.46(0.82)	NR
RACAT ¹¹¹	ETN50+MTX n=175 randomised In analysis n=155 (of whom 41 switched to MTX+SSZ+HC Q)	48 weeks	155	1.5(0.8)	0.83 ( 0.81)	-0.64(0.78)	NR
Wajdula 2000 ¹²³	РВО	12weeks	81	1.8	0.1(NR)	1.70 (0.60)	NR
Wajdula 2000 ¹²³	ETN	12weeks	99	1.9	0.6(NR)	1.30 (0.60)	NR
Weinblatt 1999 ¹²⁴	MTX plus placebo	24weeks	30	1.5 °	1.1 °	-0.4(NR)	NR
Weinblatt	ETN + MTX	24weeks	59	1.5 °	0.8 ^c	-0.7(NR)	NR

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	N analysed	Mean HAQ-DI score at baseline (0-3) (SD)	Mean HAQ-DI score at follow-up (0-3) (0-3)	HAQ-DI mean change from baseline (SD)	% change from baseline
1999 ¹²⁴					в		
APPEAL ^{67,68}	MTX plus DMARD (SSZ, HCQ or LEF)	16 weeks (primary endpoint and study RCT endpoint)	100	1.4 (0.7)	0.9	-0.5(NR)	38.3
APPEAL ⁶⁸	Etanercept 25mg twice weekly (licensed dose) plus MTX	16 weeks (primary endpoint and study RCT endpoint)	193	1.4 (0.7)	0.7	-0.7(NR)	49.4
IIbCREATE ⁹⁶ (clinicaltrials. gov)	PBO + DMARD	24 weeks	65	1.4(0.59)	1.1(NR)	-0.3 (0.46)	NR
IIbCREATE ⁹⁶	ETN50 + DMARD	24 weeks	64	1.5(0.68)	0.9(NR)	-0.6 (0.66)	NR
GO-FORTH ⁹¹	PBO Q4W + MTX 6- 8mg/week	14 weeks (primary endpoint)	88	1.0 (0.68)	0.93NR	0.07 (0.49)	NR
GO-FORTH ⁹¹	GOL 50mg s.c. Q4W + MTX 6- 8mg/week	14 weeks (primary endpoint)	86	1.0 (0.61)	0.68NR	0.32 (0.40)	NR
GO-FORTH ⁹¹	PBO Q4W + MTX 6- 8mg/week	24 weeks (study RCT endpoint)	88	1.0 (0.68)	0.97NR	0.03 (0.58)	NR
GO-FORTH ⁹¹	GOL 50mg s.c. Q4W + MTX 6- 8mg/week	24 weeks (study RCT endpoint)	86	1.0 (0.61)	0.67NR	0.33 (0.42)	NR
GO- FORWARD ³²	PBO s.c. every 4 weeks + MTX	14 weeks	133	Mean 1.3 (0.7) 1.250 (0.750 to 1.750) ^c	1.14NR	Mean change – 0.16 (0.49) - 0.13 (- 0.38 to 0.13) ^c	NR
GO- FORWARD ⁹²	GOL 50 mg s.c. every 4 weeks + MTX	14 weeks	89	Mean 1.4 (0.7) 1.375 (1.000 to 1.875) ^c	NR	Mean change - 0.42 (0.50) (P<0.001 vs. PBO) - 0.38 (- 0.75 to - 0.13) ^c ( ^b vs PBO + MTX )	NR
GO- FORWARD ⁹²	PBO s.c. every 4 weeks + MTX	24 weeks	133	Mean 1.3 (0.7) (0.750 to 1.750) ^c	NR	Mean change - 0.13 (0.58) - 0.13 (- 0.38 to	NR

Trial name / Author, year	Treatment arms for which data extraction	Assessment time point	N analysed	Mean HAQ-DI score at	Mean HAQ-DI score at	HAQ-DI mean change	% change from
	performed			baseline (0-3) (SD)	follow-up (0-3) (SD)	from baseline (SD)	baseline
						0.13) ^c	
GO- FORWARD ⁹²	GOL 50 mg s.c. every 4 weeks + MTX	24 weeks	89	Mean 1.4 (0.7) (1.000 to 1.875)	NR	Mean change - 0.47 (0.55) (P<0.001 vs. PBO) - 0.38 (-	NR
						0.75 to – 0.13) ^c ( ^b vs PBO + MTX )	
ATTRACT ⁷⁵	PBO i.v. + MTX	30 weeks	88	HAQ (0- 3) = 1.8 (1.3, 2.1) c	HAQ (0- 3) = 1.5 (1.0, 2.0)	-0.3NR	- 3
ATTRACT ⁷⁵	IFX 3 mg/kg i.v. at weeks 0, 2 and 6 and every 8 weeks thereafter	30 weeks	86	HAQ (0- 3) = 1.8 (1.4, 2.3)	HAQ (0- 3) = 1.5 (0.9, 2.1)	-0.3NR	- 13 (P=0.16 7)
ATTRACT ²⁰⁰	PBO i.v. + MTX	54 week	68	1.8 (1.3, 2.1)°	1.8NR	HAQ change = 0 $^{\circ}$ (range 0.0 - 2.2)	% achievin g HAQ change $\geq 0.25 =$ 43
ATTRACT ⁷⁵	IFX 3 mg/kg i.v. at weeks 0, 2 and 6 and every 8 weeks thereafter	54 week	77	HAQ (IQR) = 1.8 (1.4, 2.3) ^c	1.4NR	HAQ -0.4 ° (range 0.0 – 1.9)	% achievin g HAQ change $\geq 0.25 = 69$ b
Durez 2004 ⁸⁶	Single i.v. infusion of 1 g MP at week 0 + MTX (15 randomised)	14 weeks	NR	HAQ (range) = 1.5 [°] (0.75- 2.13)	Mean = 1.55	0.05NR	NR
Durez 2004 ⁸⁶	IFX 3 mg/kg at weeks 0, 2 and 6 + MTX (12 randomised)	14 weeks	NR	HAQ (range) = 1.3 ° (0.75-2)	Mean = 0.95 ^a	-0.35NR	NR
START ¹¹⁸	PBO + MTX	22 weeks (primary endpoint and study RCT endpoint)	363	1.5 (1-2) c	1.39(NR)	-0.11	NR
START ¹¹⁸	IFX 3mg/kg + MTX	22 weeks (primary endpoint and study RCT endpoint)	360	1.5 (1-2)	111(NR)	-0.39	NR

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	N analysed	Mean HAQ-DI score at baseline (0-3) (SD)	Mean HAQ-DI score at follow-up (0-3) (SD)	HAQ-DI mean change from baseline (SD)	% change from baseline
Zhang 2006 ¹²⁷	PBO i.v. + MTX (86 randomised, 71 completed)	18 weeks	NR	NR	NR	HAQ score decreased by 0.45 (unclear whether mean value reported)	NR
Zhang 2006 ¹²⁷	IFX 3 mg/kg i.v. at weeks 0, 2, 6 and 14 + MTX (87 randomised, 78 completed)	18 weeks	NR	NR	NR	HAQ score decreased by 0.76 (unclear whether mean value reported) ^b	NR
ACT-RAY ⁵⁷	TCZ 8 mg/kg i.v. every 4 weeks + oral PBO	24 weeks	276	1.48 (0.60)	NR	- 0.54	NR
ACT-RAY ⁵⁷	TCZ 8 mg/kg i.v. every 4 weeks + MTX	24 weeks	277	1.46 (0.66)	NR	- 0.56	NR
TOWARD ¹²¹	PBO i.v. every 4 weeks + stable cDMARDs (415 randomised)	24 weeks	413	1.5 (0.6)	1.3(NR)	- 0.2	% achievin $g \ge 0.3$ change from baseline = 34
TOWARD ¹²¹	TCZ 8 mg/kg i.v. every 4 weeks + stable DMARDs (805 randomised)	24 weeks	803	1.5 (0.6)	1.0(NR)	- 0.5	% achievin $g \ge 0.3$ change from baseline = 60
TACIT ¹²⁰	Combination cDMARDs	6 months (RCT endpoint)	104	1.80 (0.59)	1.52 [95% CI 1.39, 1.65]	0.28 [95% Cl 0.18,0.38]	NR
TACIT unpublished ¹²	TNFi + DMARD	6 months (RCT endpoint)	101	1.90 (0.67)	1.55 [95% CI 1.39, 1.71]	0.35 [95% Cl 0.23,0.46]	NR

a = p < 0.05b = p < 0.01c = median (IQR)

Trial name	Treatment arms	Assessment	Mean	Mean	Swollen	Mean	Mean	Tender	CRP	CRP	ESR	ESR
/ Author,	for which data	time point	swollen	swollen	joint count	tender	tender	joint	level at	level at	level at	level at
year	nerformed		count	count at	from	count	count at	w	(mean)	ionow-	(mean)	10110w-
	periormeu		at	follow-	baseline	at	follow-	change	(mg/dl)	(mean)	(mm/hr)	(mean)
			baseline	up (SD)	Suscinic	baseline	up (SD)	from	(1119, 41)	(mg/dl)	(1111)	(mm/hr)
			( <b>SD</b> )	(scale)		( <b>SD</b> )	(scale)	baseline				
			(scale)	``´´		(scale)	` <i>´</i>					
HIT	MTX + PBO	24 weeks	10.7	3.6 (4.9)	NR	13.1	5.0 (6)	NR	17 (7-34)	7.1 (8.1)	36 (29-	18.7
HARD ⁹⁴			(4.5)	(0-28		(5.9)	(0-28		^c mg/l		55) ^c	(14.2)
			(0-28	scale)		(0-28	scale)					
			scale)	h		scale)						
	ADA + MTX	24 weeks	10.2	1.4 (2.2) ^b	NR	13.0	3.2 (4.8)	NR	12 (6-37)	5.7	33 (29-	16.1
			(5.0)	(0-28		(6.5)	a (0. <b>0</b> 0		° mg/l	(10.3)	45)	(13.3)
			(0-28	scale)		(0-28	(0-28					
00000 + 107		10 1	scale)			scale)	scale)		1.5.(5		ND	
OPERA	MTX + PBO + steroid	12 months	$(5^{\text{th}}, 95^{\text{th}})$	$(5^{\text{th}}, 95^{\text{th}})$	NK	$(5^{\text{th}}, 95^{\text{th}})$	$(5^{\text{th}}, 95^{\text{th}})$	NR	15 (7- 109) ^d	d (/-44)	NR	NR
			centile	centile		centile	centile		,			
			range):	range):		range):	range):					
			11 (3-	0 (0-3)		16 (6-	0 (0-9)					
			31)			34)						
	ADA + MTX +	12 months	Median (5 th 95 th	Median (5 th 95 th	NR	Median (5 th 95 th	Median (5 th 95 th	NR	15 (7-	7 (7-21) d	NR	NR
	steroid		centile	centile		centile	centile		155)			
			range):	range):		range):	range):					
			10 (3-	0 (0-6)		15 (5-	0 (0-13)					
			33)	~ /		38)	, ,					
OPTIMA ¹⁰⁸	MTX + PBO	26 weeks	12 (5.8)	5.8	NR	16 (6.7)	7.6	NR	30 (33)	11.7	NR	NR
			(0-28	(0-28		(0-28	(0-28		mg/l			
			scale)	scale)		scale)	scale)					
			18 (11)			27 (15)						
			(0-66			(0-68						
			scale)			scale)						
	ADA + MTX	26 weeks	13 (5.8)	3.6	NR	16 (6.6)	5.3 ^a	NR	27 (32)	7.1 ^a	NR	NR
			(0-28	(0-28		(0-28	(0-28		mg/l			
			scale)	scale)		scale)	scale)					

Table 351: Joint counts and assessment of inflammation markers: Population 1 RCTs of biologic vs. DMARD(s) or PBO

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	Mean swollen joint count	Mean swollen joint	Swollen joint count % change from	Mean tender joint count	Mean tender joint	Tender joint count	CRP level at baseline (mean)	CRP level at follow-	ESR level at baseline (mean)	ESR level at follow-
	por contraction of the second s		at baseline (SD) (scale)	follow- up (SD) (scale)	baseline	at baseline (SD) (scale)	follow- up (SD) (scale)	change from baseline	(mg/dl)	(mean) (mg/dl)	(mm/hr)	(mean) (mm/hr)
			18 (11) (0-66 scale)			29 (15) (0-68)						
PREMIER 314	MTX + PBO	1 year	22.1 (11.7) (0-66 scale)	NR	NR	32.3 (14.3) (0-68 scale)	NR	NR	4.0 (4.0)	NR	NR	NR
	ADA monotherapy + PBO step up week 16	1 year	21.8 (10.5) (0-66 scale)	NR	NR	31.8 (13.6) (0-68 scale)	NR	NR	4.1 (3.9)	NR	NR	NR
	ADA + MTX step up week 16	1 year	21.1 (11.2) (0-66 scale)	NR	NR	30.7 (14.2) (0-68 scale)	NR	NR	3.9 (4.2)	NR	NR	NR
PREMIER 314	MTX + PBO	2 years	22.1 (11.7) (0-66 scale)	NR	NR	32.3 (14.3) (0-68 scale)	NR	NR	4.0 (4.0)	NR	NR	NR
	ADA monotherapy + PBO step up week 16	2 years	21.8 (10.5) (0-66 scale)	NR	NR	31.8 (13.6) (0-68 scale)	NR	NR	4.1 (3.9)	NR	NR	NR
	ADA + MTX step up week 16	2 years	21.1 (11.2) (0-66 scale)	NR	NR	30.7 (14.2) (0-68 scale)	NR	NR	3.9 (4.2)	NR	NR	NR
COMET ⁸²	MTX +PBO n=268	52 weeks	mean DAS28 swollen-	4.3	65 % improvement	NR	NR	NR	NR	NR	NR	NR

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	Mean swollen joint count at	Mean swollen joint count at follow-	Swollen joint count % change from baseline	Mean tender joint count at	Mean tender joint count at follow-	Tender joint count % change	CRP level at baseline (mean) (mg/dl)	CRP level at follow- up (mean)	ESR level at baseline (mean) (mm/hr)	ESR level at follow- up (mean)
			baseline (SD) (scale)	up (SD) (scale)	~~~~~~	baseline (SD) (scale)	up (SD) (scale)	from baseline	(112)	(mg/dl)	()	(mm/hr)
			joint count 12.3									
	ETN+MTX n=274		12.4	1.8	85 % improvement ^a	NR	NR	NR	NR	NR	NR	NR
COMET ⁸²	MTX in year 1 MTX in year 2 n=99 at start of period 2	From week 52 to week 104	2.4	2.9	NR	NR	NR	NR	NR	NR	NR	NR
	MTX year 1 ETN+MTX in year 2 n=90 at start of period 2		2.6	1.3 ^{b vs.} MTX/MTX	NR	NR	NR	NR	NR	NR	NR	NR
COMET ⁸¹	ETN+MTX in year 1 ETN+MTX in year 2 n=111 at start of period 2		1.7	1.3	NR	NR	NR	NR	NR	NR	NR	NR
	ETN+MTX in year 1 ETN in year 2 n=111 at start of period 2		1.1	1.7	NR	NR	NR	NR	NR	NR	NR	NR
ERA ³²³	MTX + PBO	6 months	24 (11.9)	NR	NR	30 (16.1)	NR	NR	3.7	NR	NR	NR
	ETN 25mg Q2W +	6 months	24	NR	NR	31	NR	NR	3.3	NR	NR	NR

Trial name	Treatment arms	Assessment	Mean	Mean	Swollen	Mean	Mean	Tender	CRP	CRP	ESR	ESR
/ Author,	for which data	time point	swollen	swollen	joint count	tender	tender	joint	level at	level at	level at	level at
year	extraction		joint	joint	% change	joint	joint	count	baseline	follow-	baseline	follow-
	performed		count	count at	from bogoling	count	count at	%	(mean)	up (mean)	(mean)	up (mean)
			at baseline	$\frac{10110W}{UD}$	Dasenne	at baseline	10110W-	from	(mg/m)	(mean) (mg/dl)	(mm/nr)	(mean) (mm/hr)
			(SD)	(scale)		(SD)	(scale)	haseline		(Ing/ul)		
			(scale)	(seure)		(scale)	(seare)	Susenne				
	РВО		(11.9)			(15.8)						
ERA ³²³	MTX + PBO	12 months	24	NR	NR	30	NR	NR	NR	NR	NR	NR
			(11.9)			(16.1)						
	ETN 25mg Q2W +	12 months	24	NR	NR	31	NR	NR	NR	NR	NR	NR
	PBO		(11.9)			(15.8)						
GO-	PBO + MTX	24 weeks	(0-66)	NR	66.7 °	(0-68)	NR	57.1 °	2.6	NR	NR	NR
BEFORE			14.9			27.3			(3.28)			
	COL 50 mg s s	24 woolse	(10.01)	ND	75.6 °	(10.10)	ND	67 2 ^{a,c}	2.4	ND	ND	ND
	OOL 50  mg s.c.	24 weeks	(0.08)	INK	75.0	(17.05)	INK	07.2	(3.02)	INK	INK	INK
	MTX		().)0)			(17.05)			(3.02)			
Durez	MTX	52 weeks	10.3	NR	NR	11.6	NR	NR	2.5 (3.5)	2.5 (1-	NR	NR
$2007^{142}$		(study RCT	(5.5)			(7.5)			[7 (3-	31) ^c		
		endpoint)							121) ^c	mg/l		
									mg/l]			
	MTX + i.v.	52 weeks	12.4	NR	NR	13.2	NR	NR	4.7 (5.1)	7.5 (1-	NR	NR
	methylprednisolone	(study RCT	(7.6)			(9.1)			[32(3-	27)*		
	(MP)	enapoint)							213)	mg/1		
	IFX 3 mg/kg iv at	52 weeks	12.5	NR	NR	15.9	NR	NR	$\frac{111}{48(52)}$	35(1-	NR	NR
	weeks 0, 2, 6, 14.	(study RCT	(5.4)			(8.0)		111	[19 (1-	$(1)$ $(29)^{\circ}$		
	22, 30, 46	endpoint)	(011)			(0.0)			29)°	mg/l		
		1 /							mg/l]	U		
Quinn	MTX + PBO	14 weeks	NR	NR	NR	NR	NR	NR	37 (38.8)	41 ^e	NR	NR
$2005^{110}$									mg/l			
	IFX 3mg/kg +	14 weeks	NR	NR	NR	NR	NR	NR	47 (27.9)	7 ^e	NR	NR
	MTX								mg/l			
Quinn 2005 ¹¹⁰	MTX + PBO	54 weeks	NR	NR	NR	NR	NR	NR	37 (38.8) mg/l	10 °	NR	NR
	IFX 3mg/kg +	54 weeks	NR	NR	NR	NR	NR	NR	47 (27.9)	8 ^e	NR	NR

Trial name	Treatment arms	Assessment	Mean	Mean	Swollen	Mean	Mean	Tender	CRP	CRP	ESR	ESR
/ Author,	for which data	time point	swollen	swollen	joint count	tender	tender	joint	level at	level at	level at	level at
year	extraction		joint	joint	% change	joint	joint	count	baseline	follow-	baseline	follow-
	performed		count	count at	from	count	count at	%	(mean)	սթ	(mean)	սթ
			at	follow-	baseline	at	follow-	change	(mg/dl)	(mean)	(mm/hr)	(mean)
			baseline	up (SD)		baseline	up (SD)	from		(mg/dl)		(mm/hr)
			(SD)	(scale)		(SD)	(scale)	baseline				
			(scale)			(scale)						
	MTX								mg/l			

a = P < 0.05b = P < 0.001

c =Median (IQR) d = Median (5th, 95th centile range)

e = Estimated from graphical data

f = Mean % change g = Median % change h = Adjusted mean change (SE) i = Mean change (SD)

j = Median (range)

Trial name /	Treatment arms for which data extraction	Assessme nt time	Mean swolle	Mean swollen	Swolle n joint	Mean tender	Mean tender	Tender joint	CRP level	CRP level	ESR level at	ESR level at
Author,	performed	point	n joint	joint	count	joint	joint	count	at	at	baselin	follow-
year			count	count at	%	count	count at	%	baseli	follow	e (marked)	up
			at baseli	10110W- un (SD)	from	at baseli	10110W-	from	ne (mean	-up (mea	(mean) (mm/h	(mean) (mm/hr)
			ne	(scale)	baselin	ne	(scale)	baselin	(incan	n)	r)	(11111/111)
			(SD)	(30000)	e	(SD)	(50020)	e	/ (mg/dl	(mg/d	- /	
			(scale)			(scale)			)	l)		
AMPLE ⁶⁶	ABT s.c. + MTX	1 year	15.8	NR	70.9	25.4	NR	59.8	1.6	0.80	NR	NR
			(9.8)		improv	(15.3)		improv	(2.1)	(1.13)		
			(0-66		ed	(0-68		ed				
			scale)			scale)						
	ADA + MTX	1 year	15.9	NR	68.2	26.3	NR	61.4	1.5	0.65	NR	NR
			(10.0)		improv	(15.8)		improv	(2.8)	(1.21)		
			(0-66		ed	(0-68		ed				
DEDGEA		10 11	scale)			scale)			10.6	<i>L</i> ( )		
REDSEA	ADA+cDMARDs(REDS	12months	(scale	4 (1–6) °		(scale	5(1-14)		10(5-	$6(3-14)^{\circ}$		
	EA)		0-28)			(0-28)			22)	14)		
	11=00		$9(3-12)^{\circ}$			$14(9-20)^{\circ}$						
			12)			20)						
	ETN50+cDMARDs(RED		(scale	5 (2-11)		(scale	8 (4-14)		12.5	9 (3-		
	SEA)		0-28)	c (		0-28)	c		(5-31)	14) °		
	n=60		9 (6–			14 (8–			c	,		
			13) ^c			20) [°]						
De	ETN + MTX	54 weeks	16.87	Conflicti	49.5	22.40	Conflicti	-61.3 ^a	NR	NR	35.47	Conflicti
Filippis			(7.31)	ng data		(8.10)	ng data				(20.31)	ng data
2011 ⁸⁵	IFX + MTX	54 weeks	14.73	Conflicti	45.3	20.93	Conflicti	-24.33	NR	NR	38	Conflicti
			(5.04)	ng data		(9.97)	ng data				(26.28)	ng data
ADACT	TCZ 8 mg/kg i.v. every 4	24 weeks	(0-28	(0-66	NR	(0-28	(0-68	NR	NA	NR	NA	NR
$A^{58}$	weeks + s.c. PBO ADA		scale)	scale)		scale)	scale)					
			11.3	6.7		15.9	12.7					
			(5.3)	(10.7)		(6.7)	values					

Table 352: Joint counts and assessment of inflammation markers: Population 2/3 biologic head-to-head RCTs

Trial name / Author, year	Treatment arms for which data extraction performed	Assessme nt time point	Mean swolle n joint count at baseli ne (SD)	Mean swollen joint count at follow- up (SD) (scale)	Swolle n joint count % change from baselin	Mean tender joint count at baseli ne (SD)	Mean tender joint count at follow- up (SD) (scale)	Tender joint count % change from baselin	CRP level at baseli ne (mean ) (mg/dl	CRP level at follow -up (mea n) (mg/d	ESR level at baselin e (mean) (mm/h r)	ESR level at follow- up (mean) (mm/hr)
			(scale)		C	(SD) (scale)		e	)	l)		
			(scale)		C	(SD) (scale)	NR)	e	)	l)		

a = P < 0.05

*b* = *P*<0.001

c = Median (IQR) d = Median (5th, 95th centile range)

a = Median (Sin, Sin Centre range),e = Estimated from graphical dataf = Mean % changeg = Median % changeh = Adjusted mean change (SE)i = Mean change (SD):= Median (range).

j = Median (range)

Trial name / Author, year	Treatment arms for which data extraction performed	Assessm ent time point	Mean swolle n joint count at baseli ne (SD) (scale)	Mean swollen joint count at follow- up (SD) (scale)	Swollen joint count % change from baseline	Mean tender joint count at baselin e (SD) (scale)	Mean tender joint count at follow- up (SD) (scale)	Tender joint count % change from baseline	CRP level at baselin e (mean) (mg/dl)	CRP level at follow- up (mean) (mg/dl )	ESR level at baseli ne (mean ) (mm/h r)	ESR level at follow-up (mean) (mm/hr)
AIM ⁶²	MTX+PBO n=219	12 months	(scale unclea r) 22.1 (8.8)	NR	adjusted mean change - 11.5(0.54)	(scale unclear) 32.3 (13.6)	NR	adjusted mean change - 16.3(0.85)	28 (25)	adjuste d mean change - 8.2(1.4 )	NR	NR
	ABTi.v.+ MTX n=433		21.4 (8.8)	NR	adjusted mean change - 16.1(0.35)	31.0 (13.2)	NR	adjusted mean change - 22.5(0.55)	33 (31)	adjuste d mean change - 18.3(0. 9)	NR	NR
ASSET ⁷²	PBO + MTX	4 months	8.5 (4.1) (scale NR)	NR	NR	13.3 (7.2) (scale NR)	NR	NR	16.6 (16.8) mg/l	NR	NR	NR
	ABT i.v. (~10mg/kg) + MTX	4 months	11.3 (6.6) (scale NR)	NR	NR	12.9 (7.1) (scale NR)	NR	NR	13.6 (17.4) mg/l	NR	NR	NR
CHANGE ⁸⁰	PBO n=87	24weeks	[scale unclea r]	NR	mean change -1.8(7.4)	[scale unclear] 23.7(8.	NR	mean change -0.5(10.9)	5.9(3.3)	mean change 0.1(3.2	NR	NR

Table 353: Joint counts and assessment of inflammation markers: Population 2/3 RCTs of biologic vs. DMARD(s) or PBO

Trial name / Author, year	Treatment arms for which data extraction performed	Assessm ent time point	Mean swolle n joint count at baseli ne (SD) (scale)	Mean swollen joint count at follow- up (SD) (scale)	Swollen joint count % change from baseline	Mean tender joint count at baselin e (SD) (scale)	Mean tender joint count at follow- up (SD) (scale)	Tender joint count % change from baseline	CRP level at baselin e (mean) (mg/dl)	CRP level at follow- up (mean) (mg/dl )	ESR level at baseli ne (mean ) (mm/h r)	ESR level at follow-up (mean) (mm/hr)
	ADAmon n=91		19.3(7) 19.1(7. 3)	NR	mean change -8.2(8.8) ^a	8) 24.4(10 .7)	NR	mean change -10.7 (12.3) ^a	6.5(4.4)	) mean change -1.6 (4.1) ^a	NR	NR
ADORE ^{59,60}	ETNmon n=159 n=156 at 16 weeks	16 weeks		NR	NR	NR	NR	NR	NR	NR	33.2	26.4
	ETN+MTX n=155 n=151 at 16weeks			NR	NR	NR	NR	NR	NR	NR	36.7	20.8 ^b
ETN309 ⁸⁹	SSZ+PBO n=50	24weeks	[scale unclea r]	NR	38.5 Improvem ent	painful joints [scale unclear]	NR	painful joints 22.7 improvem ent	NR	32.9 ^g	NR	0.2 ^f
	ETN+PBO n=103			NR	68.7 Improvem ent		NR	65.4 Improvem ent	NR	69.9 ^a (vs. SSZ), g	NR	37.6 ^{a (vs.} ssz), f
	ETN+SSZ n=101			NR	70.1 ^{a vs.} ssz improvem ent		NR	62.0 improvem ent	NR	66.7 ^a (vs. SSZ), g	NR	43.0 ^{a (vs.} SSZ), f
JESMR ¹⁴⁴	ETN 25mg Q2W monotherapy	24 weeks	12.4 (6.1) (0-66	4.3 (5.2)	NR	15.0 (9.4) (0-68	4.5 (8.0)	NR	2.5 (2.5)	1.2 (1.7)	59.7 (28.4)	41.6 (25.4)

Trial name / Author, year	Treatment arms for which data extraction performed	Assessm ent time point	Mean swolle n joint count at baseli ne (SD) (scale)	Mean swollen joint count at follow- up (SD) (scale)	Swollen joint count % change from baseline	Mean tender joint count at baselin e (SD) (scale)	Mean tender joint count at follow- up (SD) (scale)	Tender joint count % change from baseline	CRP level at baselin e (mean) (mg/dl)	CRP level at follow- up (mean) (mg/dl )	ESR level at baseli ne (mean ) (mm/h r)	ESR level at follow-up (mean) (mm/hr)
	ETN 25mg Q2W + MTX 6-8mg/week	24 weeks	scale) 12.5 (6.5) (0-66 scale)	3.0 (3.8)	NR	scale) 15.1 (8.1) (0-68 scale)	2.4 (3.9)	NR	3.0 (3.2)	0.6 (1.0) ^a	59.5 (26.5)	29.9 (23.3) ^a
JESMR ¹⁴⁴	ETN 25mg Q2W monotherapy	52 weeks	12.4 (6.1) (0-66 scale)	4.0 (4.4)	NR	15.0 (9.4) (0-68 scale)	4.3 (5.3)	NR	2.5 (2.5)	1.3 (1.6)	59.7 (28.4)	43.7 (27.0)
	ETN 25mg Q2W + MTX 6-8mg/week	52 weeks	12.5 (6.5) (0-66 scale)	1.8 (2.3)	NR	15.1 (8.1) (0-68 scale)	2.1 (2.8)	NR	3.0 (3.2)	3.0 (3.2) ^b	59.5 (26.5)	28.9 (23.8) ^b
Lan 2004 ¹⁰¹	PBO+MTX Placebo plus MTX	12 weeks	14.45 (0-28 scale)	10.59 (0-28 scale)	27	16.00 (0-28 scale)	13.55 (0-28 scale)	15	1.83	1.38	NR	NR
	ETN+MTX Etanercept 25mg twice weekly plus MTX	12 weeks	13.21 (0-28 scale)	4.66 ^a (0-28 scale)	65	14.03 (0-28 scale)	7.03 ^a (0-28 scale)	50	1.65	0.39 ^a	NR	NR
LARA ¹⁰²	MTX+DMARD(L ARA) n=142	24weeks	(scale unclea r) 19.3 (10.1)	NR	-8.6 (0.6)	(scale unclear) 26.2 (12.3)	NR	-12.8 (0.8) ^h	NR	NR	NR	NR
	ETN50+MTX		18.2	NR	-15.1	25.1	NR	-19.8	NR	NR	NR	NR
Trial name / Author, year	Treatment arms for which data extraction performed n=281(n=279 at	Assessm ent time point	Mean swolle n joint count at baseli ne (SD) (scale) (8.4)	Mean swollen joint count at follow- up (SD) (scale)	Swollen joint count % change from baseline (0.4) ^{a,h}	Mean tender joint count at baselin e (SD) (scale) (11.9)	Mean tender joint count at follow- up (SD) (scale)	Tender joint count % change from baseline (0.6) ^{a,h}	CRP level at baselin e (mean) (mg/dl)	CRP level at follow- up (mean) (mg/dl )	ESR level at baseli ne (mean ) (mm/h r)	ESR level at follow-up (mean) (mm/hr)
------------------------------------------------------	-------------------------------------------------------------------------------	------------------------------------	--------------------------------------------------------------------------------------	-----------------------------------------------------------------------	-----------------------------------------------------------------------------------	----------------------------------------------------------------------------------	----------------------------------------------------------------------	----------------------------------------------------------------------------------	------------------------------------------------------	-----------------------------------------------------------	-----------------------------------------------------------------	---------------------------------------------------
Moreland 1999 ¹⁰⁴ Mathias	week24) PBO n=80	6months	(scale 0-68) 25	NR	7% (worsenin g)	(scale 0-71) 35	NR	-6%	4.1	207% worse ^f	39	18% worse ^f
2000 ¹⁰⁵ data from Moreland 1999	ETN+PBO n=78		25	NR	-47 ^b	33	NR	-56% ^a	4.7	31% improv ed ^{b,f}	35	18% improved _{a,f}
RACAT ¹¹¹	MTX+SSZ+HCQ n=178 (not all analysed)	24weeks	(scale 0-28) 11.12 (5.26)	5.32 (4.73)	NR	(scale 0-28) 13.39 (6.62)	5.87 (5.96)	NR	NR	NR	27.39 (21.03 )	20.38 (16.73) change 0.97(0.85 )
	ETN50+MTX n=175(not all analysed)		(scale 0-28) 11.34 (5.22)	4.76 (5.14)	NR	(scale 0-28) 13.39 (6.39)	5.94 (6.85)	NR	NR	NR	29.80 (23.51 )	19.01 (17.89) change 0.98(0.87 )
RACAT ¹¹¹	MTX+SSZ+HCQ n=178 (not all analysed) some switched ETN50+MTX	48weeks n=310 both groups	NR	NR	3.93 (4.19)	NR	4.64 (5.61)	NR	NR	NR	NR	18.88 (15.35)

Trial name / Author, year	Treatment arms for which data extraction performed	Assessm ent time point	Mean swolle n joint count at baseli ne (SD) (scale)	Mean swollen joint count at follow- up (SD) (scale)	Swollen joint count % change from baseline	Mean tender joint count at baselin e (SD) (scale)	Mean tender joint count at follow- up (SD) (scale)	Tender joint count % change from baseline	CRP level at baselin e (mean) (mg/dl)	CRP level at follow- up (mean) (mg/dl )	ESR level at baseli ne (mean ) (mm/h r)	ESR level at follow-up (mean) (mm/hr)
	analysed) some switched						(0.10)					(10.00)
Weinblatt 1999 ¹²⁴	MTX plus placebo, n=30	24weeks	(scale 0-68) 17 ^c	16 °	NR	(scale 0-71) 28 ^c	17 °	NR	2.6 °	1.6 °	36 °	30 °
	Etanercept 25mg twice weekly plus MTX, n=59		20 °	6 ^{b.c}	NR	28 °	7 ^{b,c}	NR	2.2 °	0.5 ^{b,c}	25 °	15 ^{a,c}
APPEAL 67,68	MTX plus DMARD (SSZ, HCQ or LEF)	16 weeks	NR	NR	NR	NR	NR	NR	2.06 (2.48) calculat ed from 20.6 (24.8) mg/L	9.8 (52.2)	54.80 (28.2)	40.4 (26.2)
	Etanercept 25mg twice weekly (licensed dose) plus MTX	16 weeks	NR	NR	NR	NR	NR	NR	1.70 (2.10) calculat ed from 17.0 (21.0) mg/L	7.9 (53.3)	57.7 (33.0)	34.4 (40.4) ^a
GO- FORTH ⁹¹	PBO Q4W + MTX 6-8mg/week	14 weeks	11.4 (6.58)	NR	NR	13.2 (7.83)	NR	NR	NR	NR	NR	NR

Trial name / Author, year	Treatment arms for which data extraction performed	Assessm ent time point	Mean swolle n joint count at baseli ne (SD) (scale)	Mean swollen joint count at follow- up (SD) (scale)	Swollen joint count % change from baseline	Mean tender joint count at baselin e (SD) (scale)	Mean tender joint count at follow- up (SD) (scale)	Tender joint count % change from baseline	CRP level at baselin e (mean) (mg/dl)	CRP level at follow- up (mean) (mg/dl )	ESR level at baseli ne (mean ) (mm/h r)	ESR level at follow-up (mean) (mm/hr)
	GOL 50mg s.c. Q4W + MTX 6- 8mg/week	14 weeks	(0.00 scale) 11.8 (6.72) (0-66 scale)	NR	NR	(0-68 scale) (0-68 scale)	NR	NR	NR	NR	NR	NR
GO- FORTH ⁹¹	PBO Q4W + MTX 6-8mg/week	24 weeks	11.4 (6.58) (0-66 scale)	NR	NR	13.2 (7.83) (0-68 scale)	NR	NR	NR	NR	NR	NR
	GOL 50mg s.c. Q4W + MTX 6- 8mg/week	24 weeks	11.8 (6.72) (0-66 scale)	NR	NR	13.1 (8.38) (0-68 scale)	NR	NR	NR	NR	NR	NR
GO- FORWAR D ⁹²	PBO s.c. every 4 weeks + MTX	Week 14	12.0 (8.0 to 19.0) ^c (0-66 scale)	NR	37.5 (0.0, 71.4) ^c As reported	21.0 (14.0 to 34.0) ^c (0-68 scale)	NR	30.0 (- 12.1, 66.7) ^c As reported	0.80 (0.30 to 2.00) ^c	NR	NR	NR
	GOL 50 mg s.c. every 4 weeks + MTX	Week 14	13.0 (8.0 to 22.0) ^c (0-66 scale)	NR	62.1 (28.6, 84.6) ^{b,c} As reported	26.0 (16.0 to 39.0) ^c (0-68 scale)	NR	59.5 (24.0, 77.8) ^{a,c} As reported	1.00 (0.40 to 2.80) ^c	NR	NR	NR

Trial	Treatment arms	Assessm	Mean	Mean	Swollen	Mean	Mean	Tender	CRP	CRP	ESR	ESR
name /	for which data	ent time	swolle	swollen	joint	tender	tender	joint	level at	level at	level	level at
Author,	extraction	point	n joint	joint	count	joint	joint	count	baselin	Iollow-	at bogeli	Iollow-up
year	performed		count	follow-	% change	ot	follow-	% change	e (maan)	up (meen)	Dasen	(mean)
			ai haseli	$\frac{1000W}{100}$	haseline	at baselin	$\frac{1010W}{100}$	haseline	(mg/dl)	(mg/dl	ine (mean	(11111/111)
			ne	(scale)	Subenne	e (SD)	(scale)	Susenne	(1119, 41)	)	)	
			(SD)	(~~~~~)		(scale)	(			,	(mm/h	
			(scale)			, ,					r)	
GO-	PBO s.c. every 4	Week 24	12.0	NR	32.1 (-9.1,	21.0	NR	20.9 (-	NR	NR	NR	NR
FORWAR	weeks + MTX		(8.0 to		71.4) ^c	(14.0 to		13.3,				
$D^{92}$			19.0) ^c		As	34.0) ^c		64.3) ^c				
					reported	As						
						reported						
	GOL 50 mg s.c.	Week 24	13.0	NR	72.1	26.0	NR	61.6	NR	NR	NR	NR
	every 4 weeks +		(8.0  to)		(24.0,	(16.0 to		(18.7,				
	MTX		22.0)		92.3)	39.0)		85.4)				
					As	As						
		20 1	(0.60)	12 (0	reported	reported	16 (7	26	2.0	0.0	ND	ND
ATTRAC	PBO 1.V. + MTX	30 weeks	(0-66)	13(8,	- 20	(0-68)	16(/,	- 26	3.0	2.3	NK	NK
1 75			$19(13, 20)^{\circ}$	26)		$24(10, 40)^{\circ}$	33)		$(1.2, 5.7)^{\circ}$	$(0.7, 5.1)^{\circ}$		
			20)			48)			5.7)	3.1) (- 0%		
										9% change		
										)		
	IFX 3 mg/kg i v at	30 weeks	(0-66)	9 (4 18)	- 52 ^b	(0-68)	12 (3	- 59 ^a	31	0.8	NR	NR
	weeks 0 2 and 6	50 weeks	(0 00)	b,c	52	32 (16	$(21)^{a,c}$	57	(1.3	(0.0)	111	
	and every 8 weeks		$(10, 10)^{\circ}$			$46)^{\circ}$			(1.3, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5	$(0.1)^{b,c}$		
	thereafter		20)			,			0.0)	(- 60%		
										change		
										) ^b		
ATTRAC	PBO i.v. + MTX	54 week	(0-66)	NR	13 (61) ⁱ	(0-68)	NR	23 (63) ⁱ	NA	NR	NR	NR
T ¹⁴⁹			19 (13,		As	24 (16,		As				
			28) ^c		reported	48) ^c		reported				
	IFX 3 mg/kg i.v. at	54 week	(0-66)	NR	37 (62) ^{b,i}	(0-68)	NR	49 (52) ^{b,i}	NA	NR	NR	NR

Trial name / Author, year	Treatment arms for which data extraction performed	Assessm ent time point	Mean swolle n joint count	Mean swollen joint count at follow-	Swollen joint count % change from	Mean tender joint count	Mean tender joint count at	Tender joint count % change from	CRP level at baselin e (mean)	CRP level at follow- up (mean)	ESR level at baseli	ESR level at follow-up (mean) (mm/hr)
			baseli ne (SD) (scale)	up (SD) (scale)	baseline	baselin e (SD) (scale)	up (SD) (scale)	baseline	(mg/dl)	(mg/dl )	ne (mean ) (mm/h r)	
	weeks 0, 2 and 6 and every 8 weeks thereafter		19 (13, 30) ^c		As reported	32 (16, 46) ^c		As reported				
Durez 2004 ⁸⁶	Single i.v. infusion of 1 g MP at week 0 + MTX (15 randomised)	14 weeks	22 (7- 38) ^j (0-66 scale)	22	NR	24 (7- 38) ^j (0-68 scale)	20	NR	1.9 ^j	2.0	NR	NR
	IFX 3 mg/kg at weeks 0, 2 and 6 + MTX (12 randomised)	14 weeks	16 (8- 27) ^j (0-66 scale)	7 6	NR	20 (6- 44) ^j (0-68 scale)	8 ^a	NR	1.3 ^j	0.9	NR	NR
START ¹¹⁸	PBO + MTX	22 weeks	15 (10- 21) ^c (0-66 scale)	NR	NR	22 (15- 32) ^c (0-68 scale)	NR	NR	1.2 (1- 3) °	NR	NR	NR
	IFX 3mg/kg + MTX	22 weeks	15 (11- 21) ^c (0-66 scale)	NR	NR	22 (15- 31) ^c (0-68 scale)	NR	NR	1.6 (1- 3) °	NR	NR	NR
Wong 2009 ¹²⁶	PBO + MTX (with crossover for PBO group to open-label IFX at week 24).	Week 16	(0-28 scale) 12 (5)	12	NR	(0-28 scale) 15 (7)	16	NR	3.0	22	40 (24)	37
	IFX 3 mg/kg at weeks 0, 2, 6 and 8	Week 16	10 (5)	4	NR	14 (7)	8 ^a	NR	3.2	12	39 (26)	26

Trial name / Author, year	Treatment arms for which data extraction performed	Assessm ent time point	Mean swolle n joint count at baseli ne (SD) (scale)	Mean swollen joint count at follow- up (SD) (scale)	Swollen joint count % change from baseline	Mean tender joint count at baselin e (SD) (scale)	Mean tender joint count at follow- up (SD) (scale)	Tender joint count % change from baseline	CRP level at baselin e (mean) (mg/dl)	CRP level at follow- up (mean) (mg/dl )	ESR level at baseli ne (mean ) (mm/h r)	ESR level at follow-up (mean) (mm/hr)
ACT-RAY	MTX TCZ 8 mg/kg i.v. every 4 weeks + oral PBO	Week 24	15.3 (10.2) (scale NR)	NR	- 11.75 (9.45) ⁱ	26.6 (15.2) (scale NR)	NR	- 17.00 (13.64) ⁱ	NR	NR	NR	NR
	TCZ 8 mg/kg i.v. every 4 weeks + MTX	Week24	14.4 (8.9) (scale NR)	NR	- 11.33 (8.04) ⁱ	25.8 (13.9) (scale NR)	NR	- 17.25 (13.35) ⁱ	NR	NR	NR	NR
SATORI 324	PBO i.v. every 4 weeks + MTX	24 weeks	(0-28) 12 ^e	(0-28) 9 e	NR	(0-28) 10.5 ^e	(0-28) 7 e	NR	2.6 ^e	7 ^e	50 ^e	45 ^e
	TCZ 8 mg/kg i.v. every 4 weeks+ PBO capsules	24 weeks	(0-28) 10 ^e	(0-28) 4.5 ^e	NR	(0-28) 10 ^e	(0-28) 2 e	NR	3.0 ^e	2 ^e	50 °	11 ^e
TOWARD 121	1) PBO i.v. every 4 weeks + stable cDMARDs (415 randomised)	24 weeks	(0-68) 18.7 (10.8)	13.8	NR	(0-66) 29.1 (14.8)	20.6	NR	2.6 (4.7)	2.33	49.2 (28.3)	44.5
	2) TCZ 8 mg/kg i.v. every 4 weeks + stable DMARDs (805 randomised)	24 weeks	19.7 (11.6)	9.4 ^b	NR	30.1 (16.0)	14.4 ^b	NR	2.6 (3.2)	0.4 ^b	48.2 (27.5)	12.6 ^b
TACIT ¹²⁰	1) Combination cDMARDs	6 months (RCT endpoint)	10.5 (6.1) (0-28	6.11 [95% CI 4.74,7.4	NR	16.4 (7.1) (0-28	10.16 [95% CI 8.39,11.	NR	NR	NR	33.1 (26.1)	29.25 [95% CI 24.16,34.

Trial name / Author, year	Treatment arms for which data extraction performed	Assessm ent time point	Mean swolle n joint count at baseli ne (SD) (scale)	Mean swollen joint count at follow- up (SD) (scale)	Swollen joint count % change from baseline	Mean tender joint count at baselin e (SD) (scale)	Mean tender joint count at follow- up (SD) (scale)	Tender joint count % change from baseline	CRP level at baselin e (mean) (mg/dl)	CRP level at follow- up (mean) (mg/dl )	ESR level at baseli ne (mean ) (mm/h r)	ESR level at follow-up (mean) (mm/hr)
			scale)	9]		scale)	93]					33]
	2) TNFi +	6 months	10.8	4.66	NR	17.5	8.57	NR	NR	NR	30.1	21.80
	DMARD	(RCT	(6.74)	[3.41,5.		(6.74)	[95% CI				(22.84	[95% CI
		endpoint)	(0-28	90] ^a		(0-28	6.87,10.				)	17.64,25.
			scale)			scale)	27] ^a					96] ^a

a = P < 0.05

*b* = *P*<0.001

c = Median (IQR) d = Median (5th, 95th centile range)

a = Median (Sin, Sin Centre Tange),e = Estimated from graphical dataf = Mean % changeg = Median % changeh = Adjusted mean change (SE)i = Mean change (SD)

j = Median (range)

Trial name / Author,	Treatment arms for	Assessment time point	Patient's global	Patient's global	% change from	Evaluator's global	Evaluator's global	% change
year	which data extraction performed		assessment of disease activity at baseline ^d	assessment of disease activity at follow-un ^d	baseline	assessment of disease activity at baseline ^d	assessment of disease activity at follow-up ^d	from baseline
OPERA ¹⁰⁷	PBO + MTX + steroid	12 months	65 (17-96) ^c	18 (0-69) ^c	NR	51 (22-86) ^c	4 (0-33) ^c	NR
	ADA + MTX + steroid	12 months	70 (12-100) ^c	10 (0-54) ^c	NR	57 (22-86) ^c	1 (0-59) ^c	NR
OPTIMA ¹⁰⁸	PBO + MTX	26 weeks	63 (22)	35.1	NR	62 (18)	28.9	NR
	ADA + MTX	26 weeks	64 (23)	26.4	NR	63 (18)	21.3	NR
GO- BEFORE ⁹⁰	PBO + MTX	24 weeks	(0-10 scale) 5.9 (2.32)	NR	- 36.70	(0-10 scale) 6.0 (1.72)	NR	- 63.00
	GOL + MTX	24 weeks	(0-10 scale) 6.1 (2.21)	NR	- 49.55 ^a	(0-10 scale) 6.2 (1.63)	NR	- 66.70
BeST ¹⁵²	Sequential monotherapy	6 months	59.2	NR	Mean change from BL= - 22.3	NR	NR	NR
	Step-up combination therapy	6 months	59.4	NR	Mean change from BL= - 28.0	NR	NR	NR
	Initial combination therapy + prednisone	6 months	59.5	NR	Mean change from BL= - 32.0 ^a for sequential mono vs. initial combo + pred and initial combo + MTX	NR	NR	NR
	Initial	6 months	61.8	NR	Mean	NR	NR	NR

Table 354: Global assessments of disease activity: Population 1 RCTs of biologic vs. DMARD(s) or PBO

<b>Trial name</b>	Treatment	Assessment	Patient's	Patient's	% change	Evaluator's	<b>Evaluator's</b>	%
/ Author,	arms for	time point	global	global	from	global	global	change
year	which data		assessment of	assessment of	baseline	assessment of	assessment of	from
	extraction		disease	disease		disease	disease activity	baseline
	performed		activity at	activity at		activity at	at follow-up ^d	
			baseline ^d	follow-up ^d		baseline ^d		
	combination				change from			
	therapy + IFX				BL= - $35.9^{a}$ for sequential			
					mono vs. initial			
					combo + pred and			
					initial combo +			
					MTX			

^a = P<0.05 ^b = P<0.001 ^c = Median (IQR) ^d = Reported on 0-100 VAS scale unless otherwise stated ^e = Estimated from graphical data

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	Patient's global assessment of	Patient's global assessment of	% change from baseline	Evaluator's global assessment of	Evaluator's global assessment of	% change from baseline
			disease activity at baseline ^d	disease activity at follow-up ^d		disease activity at baseline ^d	disease activity at follow-up ^d	
AMPLE ⁶⁶	ABT s.c.	12 months	61.1 (22.1)	NR	46.1 (as reported)	58.8 (18.6)	NR	68.5 (as reported)
	ADA	12 months	61.5 (22.5)	NR	41.2 (as reported)	58.8 (18.9)	NR	63.0 (as reported)
REDSEA ¹¹⁴	ADA +cDMARDs	12 months	70 (50-82)	49 (20-65)	NR	NR	NR	NR
	ETN50+cDMARDs	12 months	70 (54–80)	50 (27–71)	NR	NR	NR	NR
De Filippis 2011 ⁸⁵	ETN + MTX	22 weeks	64.33 (18.89)	NR	34.8 (as reported)	58.33 (14.60)	NR	38.3 (as reported)
	IFX + MTX	22 weeks	69.33 (16.57)	NR	21.4 (as reported)	60.67 (12.0)	NR	35.6 (as reported)
De Filippis 2011 ⁸⁵	ETN + MTX	54 weeks	64.33 (18.89)	74.88	50.6 (as reported)	58.33 (14.60)	77.05	41.8 (as reported)
	IFX + MTX	54 weeks	69.33 (16.57)	86.91	22.2 (as reported)	60.67 (12.0)	83.31	43.6 (as reported)

Table 355: Global assessments of disease activity: Population 2/3 biologic head-to-head RCTs

a = P < 0.05b = P < 0.001

 $c^{c} = R$ -edian (1QR)  $d^{d} = Reported on 0-100 VAS scale unless otherwise stated$  $<math>e^{e} = Estimated from graphical data$ 

Trial name /	Treatment arms	Assessment	Patient's	Patient's	% change	Evaluator's	Evaluator's	% change
Author, year	for which data	time point	global	global	from	global	global	from
	nerformed		disaasa	disease activity	Dasenne	disease	disease activity	Dasenne
	performed		activity at	at follow-up ^d		activity at	at follow-up d	
			baseline ^d	ut follow up		baseline ^d	ut tono (t up	
AIM ⁶²	PBO + MTX	12 months	62.8 (21.6)	NR	adjusted	67.4 (17.0)	NR	adjusted
					mean			mean
					change			change
					- 24.2 (1.72)			- 34.3 (1.44)
	ABT i.v.+ MTX	12 months	62.7 (21.2)	NR	adjusted	68.0 (16.0)	NR	adjusted
					mean			mean
					change			change
A GGLIDD ⁷³		1	(1.2.(20.1)	ND	- 35.8 (1.12)	50.2 (17.5)	ND	- 49.1 (0.93)
ASSURE	PBO + cDMARDs	1 year	61.3 (20.1)	NR	20	58.3 (17.5)	NR	3/
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ABT + cDMARDs	l year	60.6 (19.7)	NR	41	57.8 (17.4)	NR	56
CHANGE	PBO	24 weeks	64.6 (22.9)	NR	mean	74.1(15.6)	NR	mean
					change			change
					2.6 (23.5)			- 8.0 (21.8)
	ADA monotherapy	24 weeks	71.2(19.2)	NR	mean	76.2(14.7)	NR	mean
					change			change
					-19.9 (31.0)			- 30.3 (24.8)
DE01084		50 1	54.2(22.0)		a 20.1	(1.0(15.0)		a 01.0
DE019	PBO + MTX	52 weeks	54.3(22.9)	NR	- 20.1	61.3(17.3)	NR	- 31.8
	ADA + MTX	52 weeks	52.7(21.0)	NR	- 52.2	62.0(16.7)	NR	- 63.5
van de Putte	PBO	26 weeks	71.8 (19.9)	NR	- 7.9	68.5 (18.2)	NR	- 12.9
2004122	ADA monotherapy	26 weeks	72.6 (19.3)	NR	- 38.9 "	67.3 (16.6)	NR	- 38.8 "
ARMADA ⁶⁹ /0	PBO + MTX	24 weeks	58.0 (23.2)	NR	-14.7	58.9 (15.3)	NR	- 11.6
	ADA + MTX	24 weeks	56.9 (21.1)	NR	- 52.4 ^b	58.7 (15.8)	NR	- 53.0 ^b
Kim 2007 ⁹⁹	PBO + MTX	24 weeks	63.2 (20.44)	NR	mean	64.0 (13.61)	NR	mean
					change			change
					- 10.7			-9.6 (26.47)
					(24.85)			
	ADA+MTX	24 weeks	59.7 (17.19)	NR	mean	63.7 (15.16)	NR	mean

Table 356:Global assessments of disease activity: Population 2/3 RCTs of biologic vs. DMARD(s) or PBO

Trial name /	Treatment arms	Assessment	Patient's	Patient's	% change	Evaluator's	Evaluator's	% change
Autiloi, year	extraction	time point	assessment of	assessment of	baseline	assessment of	assessment of	baseline
	performed		disease	disease activity		disease	disease activity	
			activity at baseline ^d	at follow-up "		activity at baseline ^d	at follow-up "	
					change			change
					$(26.54)^{a}$			-29.2 (27.48) ^b
ADORE ⁵⁹	ETN monotherapy	16 weeks	(0-10 scale)	NR	(0-10 scale)	NR	NR	NR
			6.6		mean			
					change from			
					baseline			
		1.6 1			-2.78 (2.60)	ND	ND	
	ETN + MTX	16 weeks	(0-10 scale)	NK	(0-10 scale)	NK	NK	NR
			0.0		change from			
					baseline			
					-2.95 (2.59)			
ETN309 ⁸⁹	PBO + SSZ	24 weeks	NR	NR	(0-10 scale)	NR	NR	(0-10 scale)
					13.6			16.0
	ETN + PBO	24 weeks	NR	NR	50.5 0 vs. 332	NR	NR	59.5 ^{0 vs. 332}
	ETN + SSZ	24 weeks	NR	NR	53.5 ^b vs. SSZ,	NR	NR	62.0 ^{b vs. SSZ,}
					NS VS. ETN + PBO			NS VS. ETN + PBO
JESMR ¹⁴⁴	ETN monotherapy	24 weeks	62.5 (20.5)	31.5 (28.4)	NR	58.2 (21.5)	NR	NR
	ETN + MTX	24 weeks	53.7 (23.7)	21.6 (18.8)	NR	58.2 (19.3)	NR	NR
JESMR ¹⁴⁴	ETN monotherapy	52 weeks	62.5 (20.5)	27.4 (25.1)	NR	NR	NR	NR
	ETN + MTX	52 weeks	53.7 (23.7)	21.3 (19.4)	NR	NR	NR	NR
Lan 2004 ¹⁰¹	PBO+MTX	12 weeks	69.7	61.4	NR	79.7	54.2	NR
102	ETN + MTX	12 weeks	66.2	37.9	NR	75.2	22.8	NR
LARA ¹⁰²	MTX + DMARD	24 weeks	(1-10 scale)	NR	(1-10 scale)	(1-10 scale)	NR	(1-10 scale)
			7.1 (1.9)		adjusted	6.7 (1.6)		adjusted

Trial name / Author, year	Treatment arms for which data	Assessment time point	Patient's global	Patient's global	% change from	Evaluator's global	Evaluator's global	% change from
	extraction performed		assessment of disease activity at baseline ^d	assessment of disease activity at follow-up ^d	baseline	assessment of disease activity at baseline ^d	assessment of disease activity at follow-up ^d	baseline
					mean change (SE) -2.3 (0.2)			mean change (SE) -2.4 (0.2)
	ETN50 + MTX	24 weeks	(1-10 scale) 7.1 (2.0)	NR	(1-10 scale) adjusted mean change (SE) -3.9 (0.2) ^b	(scale 1-10) 6.7 (1.6)	NR	(1-10 scale) adjusted mean change (SE) -4.8 (0.1) ^b
Moreland 1999 ^{104 105}	РВО	6 months	(0-10 scale) 6.9	NR	3 (worse)	(0-10 scale) 6.9	NR	2 (improved)
	ETN + PBO	6 months	(0-10 scale) 7.0	NR	6 (improved) between groups ^b	(0-10 scale) 6.9	NR	44 (improved) between groups ^b
RACAT ¹¹¹	MTX+SSZ+HCQ n=178 (not all analysed)	24 weeks	(scale 0-10) 5.43 (2.20)	3.51 (2.19)	NR	(scale 0-100) 60.14 (22.98)	35.70(22.18)	NR
	ETN50 + MTX n=175 (not all analysed)		5.63 (1.95)	3.18 (2.32)	NR	61.06 (20.01)	35.35(24.43)	NR
RACAT ¹¹¹	MTX + SSZ + HCQ n=178 (not all analysed) some switched	48 weeks n=310 both groups	(scale 0-10) 5.43 (2.20)	3.01 (2.33)	NR	(scale 0-100) 60.14 (22.98)	32.87 (25.07)	NR
	ETN50 + MTX n=175 (not all analysed) some		5.63 (1.95)	2.98 (2.38)	NR	61.06 (20.01)	30.77 (23.05)	NR

Trial name /	Treatment arms	Assessment	Patient's	Patient's	% change	Evaluator's	Evaluator's	% change
Author, year	for which data	time point	global	global	from	global	global	from
	extraction		assessment of	assessment of	baseline	assessment of	assessment of	baseline
	performed		disease	disease activity		disease	disease activity	
			baseline ^d	at follow-up		baseline ^d	at follow-up	
	switched							
APPEAL 67,68	MTX plus DMARD (SSZ, HCQ or LEF)	16 weeks	6.5 (1.8)	4.5	30.6	6.6 (1.8)	3.6	45.0
	ETN + MTX	16 weeks	6.7 (2.0)	3.3	50.8	6.6 (1.7)	2.5	62.1
Weinblatt 1999 ¹²⁴	PBO + MTX	24 weeks	(0-10 scale) 6.0 ^c	(0-10 scale) 4.0 ^c	NR	(0-10 scale) 6.5 ^c	(0-10 scale) 4.0 ^c	NR
	ETN + MTX	24 weeks	(0-10 scale) 6.0 ^c	(0-10 scale) 2.0 ^{a, c}	NR	(0-10 scale) 6.0 ^c	(0-10 scale) 2.0 ^{a, c}	NR
GO- FORWARD ⁹²	PBO + MTX	Week 14	(0-10 scale) 5.30 (3.70, 7.20) ^c	NR	- 14.6 (+10.8, - 50.0) ^c	(0-10 scale) 5.65 (4.30 to 6.85) ^c	NR	- 34.9 (+2.4, - 64.6) ^c
	GOL + MTX	Week 14	(0-10 scale) 6.00 (3.80 to 7.90) ^c	NR	- 45.3 (- 16.7, - 76.9) ^{b, c}	(0-10 scale) 6.10 (5.10 to 7.10) ^c	NR	- 54.5 (- 35.2, - 72.9) ^{b, c}
GO- FORWARD ⁹²	PBO + MTX	Week 24	(0-10 scale) 5.30 (3.70, 7.20) ^c	NR	- 17.3 (+16.3, - 46.0) ^c	(0-10 scale) 5.65 (4.30 to 6.85) ^c	NR	- 39.1 (- 1.3, - 67.3) °
	GOL + MTX	Week 24	(0-10 scale) 6.00 (3.80 to 7.90) ^c	NR	- 47.9 (- 17.0, - 76.1) ^{b, c}	(0-10 scale) 6.10 (5.10 to 7.10) ^c	NR	- 61.7 (- 38.7, - 82.1) ^{b, c}
ATTRACT ⁷⁵	PBO + MTX	30 weeks	(0-10 scale) 6.2 (4.3, 8.1) ^c	(0-10 scale) 5.5 (3.1, 7.5) ^c	- 7	(0-10 scale) 6.5 (5.2, 7.4) ^c	(0-10 scale) 5.0 (3.0, 7.0) ^c	- 13
	IFX + MTX	30 weeks	(0-10 scale) 6.6 (4.9, 7.8) ^c	(0-10 scale) 3.6 (1.8, 6.7) ^c	- 23 ª	(0-10 scale) 6.1 (4.8, 7.1) ^c	(0-10 scale) 2.6 (1.5, 5.2) ^{,c}	- 53 ^b
Durez 2004 ⁸⁶	MP + MTX	14 weeks	63 (19-100) °	50 ^e	NR	58 (18-83) °	59 ^e	NR
	IFX + MTX	14 weeks	52 (15-80) ^c	42 ^e	NR	43 (14-85) °	16 ^{b,e}	NR
Wong 2009 ¹²⁶	PBO + MTX	Week 16	70 (25)	68 ^e	NR	NR	NR	NR

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	Patient's global assessment of disease activity at baseline ^d	Patient's global assessment of disease activity at follow-up ^d	% change from baseline	Evaluator's global assessment of disease activity at baseline ^d	Evaluator's global assessment of disease activity at follow-up ^d	% change from baseline
	IFX + MTX	Week 16	68 (15)	32 ^a , e	NR	NR	NR	NR
ACT-RAY 57	TCZ + oral PBO	Week 24	NR	NR	Mean change (SD) = - 32.4 (24.34)	NR	NR	Mean change (SD) = - 38.5 (21.65)
	TCZ + MTX	Week 24	NR	NR	Mean change (SD) = - 34.3 (25.68)	NR	NR	Mean change (SD) = - 40.7 (19.55)
SATORI ³²⁴	PBO + MTX	24 weeks	57 °	47 ^e	NR	60 ^e	47 ^e	NR
	TCZ + PBO capsules	24 weeks	60 ^e	28 °	NR	63 °	22 °	NR
TACIT ¹²⁰	Combination cDMARDs	6 months	68.13 [95% CI 64.32,71.95]	48.25 [95% CI 42.42,54.09]	NR	NR	NR	NR
	TNFi + DMARD	6 months	68.18 [95% CI 64.00,72.36]	40.51 [95% CI 34.98,46.03]	NR	NR	NR	NR

 $a^{a} = P < 0.05$ $b^{b} = P < 0.001$

^c = Median (IQR) ^d = Reported on 0-100 VAS scale unless otherwise stated ^e = Estimated from graphical data

Trial name / Author, year	Scoring system applied	Treatment arms for which data extraction performed	Assessment point	Mean (SD) change from BL in total score	Mean (SD) change from BL in erosion score	Mean (SD) change from BL in joint space narrowing score (JSN)	Radiographic non-progression
GUEPARD ⁹³	van der Heijde- modified Sharp score data	Initial MTX 12 weeks, then step- up therapy in both groups based on DAS28 (N=29)	52 weeks	(score range of 0–448) 1.8 (4.7)	NR	NR	% patients with no radiographic progression = 55 (16/29)
		Initial ADA+MTX 12 weeks, then step-up therapy in both groups based on DAS28 (N=27)	52 weeks	1.9 (4)	NR	NR	% patients with no radiographic progression = 59 (16/27)
OPTIMA ¹⁰⁸	Van der Heijde modified Total Sharp	PBO + MTX (N=517, N=514 analysed for Δ mTSS)	26 weeks	0.96 (SD NR)	0.48 (SD NR)	0.48 (SD NR)	(∆mTSS ≤0.5) 72%
	Score	ADA + MTX (N=515, N=508 analysed for Δ mTSS)	26 weeks	0.15 ^b (SD NR)	0.10 ^b (SD NR)	0.05 ^b (SD NR)	87% ^b

 Table 357: Radiographic score data: Population 1 RCTs of biologic interventions vs. DMARD(s) or PBO

PREMIER ¹⁰⁹	van der	PBO + MTX	1 year	(0-398, with	(scale NR,	(scale NR,	(change in mTSS
	Heijde	(N=257)		higher scores	higher scores	higher scores	≤ 0.5 from
	modified			indicating	indicate worse	indicate worse	baseline)
	TSS			greater	erosion)	joint space	37%
				progression)	3.7 worse	narrowing)	
				5.7 worse		2.0 worse	
		ADA mon + PBO	1 year	3.0 worse	1.7 worse	1.3 worse	51% a (vs. MTX mon)
		(N=274)					
		ADA + MTX	1 year	1.3 worse ^b (vs.	0.8 worse ^b (vs.	0.5 worse	64% ^{a (vs. MTX mon,}
		(N=268)		MTX mon, vs. ADA	MTX mon, vs. ADA		vs. ADA mon)
				mon)	mon)		
PREMIER ¹⁰⁹	van der	PBO + MTX	2 years	10.4 worse	6.4 worse	4.0 worse	34%
	Heijde	(N=257)					
	modified	ADA mon + PBO	2 years	5.5 worse	3.0 worse	2.6 worse	45% a (vs. MTX mon)
	TSS	(N=274)					
		ADA + MTX	2 years	1.9 worse ^{b (vs.}	$1.0 \text{ worse}^{b \text{ (vs.})}$	0.9 worse	61% ^{a (vs. MTX mon,}
		(N=268)		MTX mon, vs. ADA	MTX mon, vs. ADA		vs. ADA mon)
				mon)	mon)		
COMET ⁸¹ 82 83	Van der	PBO + MTX	52 weeks	(Mean and 95%	NR	NR	(defined as mTSS
	Heijde-	(N=230)		CI)			of 0.5 or less)
	modified			2.44 (1.45 to			135/230 (59%)
	Total Sharp			3.43)			
	Score						
		ETN + MTX	52 weeks	(Mean and 95%	NR	NR	196/246 (80%)
		(N-246)		CI)			
		(11-2+0)		0.27 (- 0.13 to			
				0.68)			

ERA^{141}	Total	PBO + MTX	6 months	(mTSS, 0 (no	(Erosion score, 0	(JSN score, 0	NR
	modified	(n=217)		damage) to 398	(no new erosion)	(no narrowing)	
	Sharp score			(severe joint	to 230 (new	to 168 (complete	
				destruction)	erosion,	loss of joint	
				scale)	worsening of	space))	
				1.06 (worse)	erosion))	0.35 (worse) ^d	
					0.65 (worse) ^d		
		ETN + PBO	6 months	0.57^{b} (worse)	$0.25^{a,d}$ (worse)	0.2 (worse)	NR
		(n=207)					
ERA ¹⁴¹	Total	PBO + MTX	12 months	1.59 (worse)	1.0 (worse)^{d}	0.55 (worse) ^d	NR
	modified	(n=217)					
	Sharp score	ETN + PBO	12 months	1.00 (worse)	$0.45^{a,d}$ (worse)	0.55 (worse)	NR
		(n=207)					
ASPIRE ⁷¹	van der	PBO + MTX	54 weeks	(scale 0 to 448,	(scale 0 to 280)	(scale 0 to 168)	NR
	Heijde-	(N=282 for total		higher score =	3.0 (7.8)	0.6 (2.1)	
	modified	score, N=226 for		more joint	$0.3^{\circ}(0.0, 3.8)$	$0.0^{\circ} (0.0, 0.4)$	
	Sharp score	erosion and JSN		damage)			
	data	scores)		3.7 (9.6),			
				0.43 ^c (0.0, 4.5)			
		IFX + MTX	54 weeks	0.4 (5.8)	0.3 (4.9)	0.1 (1.6)	NR
		(N=359 for total		0.0 ^c (-0.8, 1.3) ^b	0.0 ^c (-0.8, 1.3) ^b	0.0 ^c (0.0, 0.0) ^b	
		score, N=306 for					
		erosion and JSN					
		scores)					

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment point	Mean change from BL in synovitis (SD)	Mean change from BL in erosions (SD)	Mean change from BL in osteitis (SD)
OPTIMA ¹⁰⁸ Peterfy <i>et al.</i> , 2010 ³¹¹	PBO + MTX (N=32)	26 weeks	OMERACT-RAMRIS scoring system. Progression or improvement of MRI scores defined as positive or negative change from baseline ≥ smallest detectable change (SDC) respectively - 2.0 (improved) % patients showing progression = 6 % patients showing improvement = 44	OMERACT- RAMRIS scoring system 1.4 (worse) % patients showing progression = 38 % patients showing improvement = 9	OMERACT- RAMRIS scoring system. 0.0 % patients showing progression = 13 % patients showing improvement = 9
	ADA + MTX (N=27)	26 weeks	 - 3.6 (improved) % patients showing progression = 0 % patients showing improvement = 74 ^a 	- 0.8 (improved) % patients showing progression = 4 ^a % patients showing improvement = 22	- 4.0 (improved) % patients showing progression = 0 % patients showing improvement = 30
GO-BEFORE	PBO + MTX (synovitis N=81 wrists + MCP joint, N=82 wrist joints only, osteitis and erosion N=82)	24 weeks	$(RAMRIS \ scores \ (higher \ RAMRIS \ scores = more \ severe \ inflammation/damage))$ $\underline{Wrist + MCP \ joints} \ (range \ 0-21)$ $Mean = -1.04 \ (3.04)$ $Median \ (IQR) = -1.00 \ (-1.63, \ 0.00)$ $\underline{Wrist \ joints \ only} \ (range \ 0-9)$ $Mean = -0.74 \ (1.86)$ $Median \ (IQR) = -0.50 \ (-1.00, \ 1.00)$	(RAMRIS scores) (range 0-230) - 0.24 (6.39) 0.00 ^c (0.00, 0.50)	(RAMRIS scores oedema (osteitis) (range 0-69)) - 0.32 (4.66) 0.00 ^c (- 1.50, 1.00)

Table 358:	Assessments of svi	novitis, erosi	on and osteitis: Po	opulation 1 RCTs	s of biologic interve	entions vs. DMARD(s) or PBO

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment point	Mean change from BL in synovitis (SD)	Mean change from BL in erosions (SD)	Mean change from BL in osteitis (SD)
	GOL + MTX (synovitis N=77 wrists + MCP joint, N=78 wrist joints only, osteitis and erosion N=78)	24 weeks	<u>Wrist + MCP joints</u> (range 0-21) - 2.21 (3.10) - 1.50 (- 3.50, - 0.33) ^{a,c} <u>Wrist joints only</u> (range 0-9) - 1.29 (1.67) - 1.00 (- 2.50, 0.00) ^{a,c}	(range 0-230) - 0.65 (5.98) 0.00 (- 0.58, 0.00) _{a,c}	<u>oedema (osteitis)</u> (range 0-69) - 2.47 (4.08) - 1.00 (-3.00, 0.00) _{a,c}

Trial name	Scoring	Treatment arms	Assessment	Mean (SD)	Mean (SD)	Mean (SD)	Radiographic non-
/ Author,	system	for which data	point	change from	change from	change from b L	progression
year	applied	extraction		BL in total	BL in erosion	in joint space	
		performed		score	score	narrowing score	
AMPLE ⁶⁶	Modified	ABT s.c.	1 year	(Scale 0-448,	(Scale and	(Scale and	(change from BL in
	Sharp/van der	(n=318, 91.1%	-	direction NR)	direction NR)	direction NR)	total score \leq SDC at
	Heijde scoring	assessed for		0.58 (3.22)	0.29 (1.84)	0.28 (1.92)	cut-off 2.8)
	system	radiographic non-					84.8%
		progression)					
		ADA	1 year	0.38 (5)	- 0.01 (2.83)	0.39 (2.50)	88.6%
		(n=328, 88.1%					
		assessed for					
		radiographic non-					
		progression)					

Table 359: Radiographic score data: Population 2/3 head to head biologic RCTs

Trial name / Author, year	Scoring system applied	Treatment arms for which data extraction performed	Assessment point	Mean (SD) change from BL in total score	Mean (SD) change from BL in erosion score	Mean (SD) change from BL in joint space narrowing score	Radiographic non- progression
AIM ^{61,62}	Total Genant-	PBO + MTX (N=195)	1 year	2.32 (SD NR) 0.53 (0.0, 2.5) ^c	1.14 (SD NR) 0.27 (0.0, 1.3) ^a	1.18 (SD NR) 0.0 (0.0, 1.0) ^a	NR
	modified Sharp score	ABT i.v.+ MTX (N=391)	1 year	1.21 (SD NR) 0.25 (0.0, 1.8) ^{a, c}	0.63 (SD NR) 0.0 (0.0, 1.0) ^a	0.58 (SD NR) 0.0 (0.0, 0.5) ^{a, c}	NR
DE019 ⁸⁴	Total Sharp score	PBO + MTX (N=200)	52 weeks	2.7 (6.8)	1.6 (4.4)	1.0 (3.0) % patients with improvement or no change in JSN = 52.2	NR
		ADA + MTX (N=207)	52 weeks	0.1 (4.8) ^b	0.0 (2.8) ^b	0.1 (2.3) ^a % patients with improvement or no change in JSN = 68.5^{a}	NR
JESMR ¹⁴⁴	van der Heijde- modified Sharp score	ETN mon (N=71)	24 weeks	(0-448, positive score indicates progression) 2.57 (SD NR)	(Scale NR, positive value indicates progression) 1.16 (SD NR)	(Scale NR, positive value indicates progression) 1.42 (SD NR)	NR
		ETN + MTX (N=76)	24 weeks	0.34 (SD NR)	- 0.02 (SD NR)	0.37 (SD NR)	NR

 Table 360:
 Radiographic score data: Population 2/3 RCTs of biologic interventions vs. DMARD(s) or PBO

JESMR ¹⁴⁴	van der Heijde- modified Sharp score	ETN mon (N=71)	52 weeks	3.6 (SD NR)	1.87 (SD NR)	1.78 (SD NR)	No radiographic progression to week 52 (change ≤ 0.5) = 39.6% No clinically significant radiographic progression to week 52 (\leq smallest detectable change) = 58.5%
		ETN + MTX (N=76)	52 weeks	0.8 (SD NR)	- 0.15 (SD NR) ^a	1.01 (SD NR)	No radiographic progression to week 52 (change ≤ 0.5) = 57.4% No clinically significant radiographic progression to week 52 (\leq smallest detectable change) = 67.6%
LARA ¹⁰²	Modified total Sharp score	MTX + DMARD (N=119)	24 weeks	adjusted mean change (SE) = 1.4 (0.5)	adjusted mean change (SE) = 1.1 (0.3)	adjusted mean change (SE) = 0.2 (0.3)	% patients with change $\leq 0 = 68.1$
		ETN + MTX (N=247)	24 weeks	adjusted mean change (SE) = 0.4 $(0.4)^{a}$	adjusted mean change (SE) = $0.4 (0.2)^{a}$	adjusted mean change (SE) = - 0.1 (0.2)	% patients with change $\leq 0 = 75.3$
RACAT ¹¹¹	van der Heijde- modified	MTX + SSZ + HCQ (N=158)	24 weeks	0.42 (1.91)	0.23 (1.32)	0.19 (1.25)	NR
	Sharp score	ETN50 + MTX (N=160)	24 weeks	0.003 (0.62)	- 0.03 (0.44)	0.03 (2.47)	NR

RACAT ¹¹¹	van der	MTX + SSZ +	48 weeks	0.54 (1.93)	0.29 (1.35)	0.25 (1.18)	NR
	modified	(N=151)					
	Sharp score	ETN50 + MTX (N=153)	48 weeks	0.29 (3.32)	0.08 (1.48)	0.21 (2.09)	NR
GO-FORTH ⁹¹	van der Heijde- modified Sharp score	PBO + MTX (N=88)	24 weeks	Scale NR, positive value indicates greater progression	Scale NR, positive value indicates greater progression	Scale NR, positive value indicates greater progression	(No increase in totalvdH-Sharp score, i.e. change from baseline to week 24 <0) 44/88 (50.0%)
				2.31 (3.32)	(N=84)	(N=84)	
		GOL + MTX (N=66)	24 weeks	1.05 (3.71) ^a	0.54 (1.62) ^a (N=81)	0.71 (2.91) (N=81)	51/86 (59.3%)
ATTRACT ¹⁴⁹	van der Heijde- modified Sharp score	PBO + MTX (N=64)	54 weeks	(total scores range 0 to 440, higher scores indicating more joint damage) 7.0 (10.3)	(erosion scores range 0 to 280) 4.0 (7.9)	(JSN scores range 0 to 160) 2.9 (4.2)	Major progression (% patients) = 31 Improvement (% patients) = 14
		IFX + MTX (N=71)	54 weeks	1.3 (6.0) ^b	0.2 (2.9) ^b	1.1 (4.4) ^b	Major progression (% patients) = 8 ^b Improvement (% patients) = 44 ^b
Swefot ¹⁵⁰	van der Heijde- modified Sharp score	SSZ + HCQ + MTX (N=109)	24 months from baseline (i.e. 20-21 months post- randomisation)	Treatment difference (95% CI) = 3.23 (0.14 to 6.32) ^a	Treatment difference (95% CI) = 1.53 (- 0.03 to 3.09) ^a	Treatment difference (95% CI) = $1.66 (-0.14)$ to 3.46) ^a	NR
		IFX + MTX (N=106)	24 months from baseline (i.e. 20-21 months post- randomisation)				NR

ACT-RAY 57	Total	TCZ + oral	24 weeks	0.22 (1.11)	0.11 (0.63)	0.11 (0.70)	% patients with no
	Genant-	PBO					radiographic
	modified	(N=276)					progression (change in
	Sharp score						score ≤ 0) = 58.7
		TCZ + MTX	24 weeks	0.08 (1.88)	- 0.01 (0.78)	0.08 (1.48)	% patients with no
		(N=277)					radiographic
							progression (change in
							score ≤ 0) = 65.3
ACT-RAY	Total	TCZ + oral	52 weeks	0.63 (SD NR)	NR	NR	% patients with no
155	Genant-	PBO					radiographic
	modified	(N=276)					progression (change in
	Sharp score						score ≤ 0) = 57.6
		TCZ + MTX	52 weeks	0.40 (SD NR)	NR	NR	% patients with no
		(N=276)					radiographic
							progression (change in
							score ≤ 0) = 67.5
SAMURAI ¹¹⁵	Modified	cDMARDs	52 weeks	Mean (95% CI)	Mean (95% CI)	Mean (95% CI)	(change from baseline
	Total Sharp	(N=143)		6.1 (4.2 to 8.0)	3.2 (2.1 to 4.3)	2.9 (2.0 to 3.8)	in TSS (0.5))
	score (no						39%
	further	TCZ	52 weeks	2.3 (1.5 to 3.2) ^a	Mean (95% CI)	Mean (95% CI)	56% ^a
	detail)	(N=157)			0.9 (0.3 to 1.4 $^{\rm b}$	1.5 (0.9 to 2.1 ^a	

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment point	Mean change from BL in synovitis	Mean change from BL in erosions	Mean change from BL in osteitis
ASSET ⁷²	PBO + MTX (N=23)	4 months	(OMERACT RAMRIS scores) adjusted mean change (wrists) (SE) = 0.38 (0.27)	(OMERACT RAMRIS scores) adjusted mean change (wrist and hand) (SE) = 0.95 (0.45)	(OMERACT RAMRIS scores) adjusted mean change (wrist and hand) (SE) = 1.54 (0.90)
	ABT i.v. + MTX (N=25)	4 months	adjusted mean change (wrists) (SE) = - 0.31 (0.26)	adjusted mean change (wrist and hand) (SE) = 0.45 (0.43)	adjusted mean change (wrist and hand) (SE) = - 1.94 (0.86)
GO- FORWARD ³²⁶	PBO + MTX (N=72) GOL + MTX (N=47)	24 weeks 24 weeks	RAMRIS synovitis (wrist plus MCP) - 0.38 (2.66) - 0.50 (- 1.45, 1.00) ° RAMRIS synovitis (wrist) 0.08 (1.51) 0.00 (- 1.00, 1.00) ° <u>RAMRIS synovitis</u> (wrist plus MCP) - 1.85 (2.28) - 1.75 (- 3.00, - 0.50) ^{b, c} RAMRIS synovitis (wrist) - 1.13 (1.61) 1.00 (- 2.00, 0.00) ^{b, c}	RAMRIS bone erosion score - 0.47 (3.40) 0.00 (- 0.50, 0.00) ^c RAMRIS bone erosion score - 1.08 (4.35) 0.00 (- 0.50, 0.00) ^c	RAMRIS bone oedema (osteitis) score 0.71 (7.54) 0.00 (- 0.50, 0.50) ^c RAMRIS bone oedema (osteitis) score Mean (SD)= - 2.58 (4.75) - 0.50 (- 4.09, 0.00) ^{b, c}
Durez ¹⁴² 2007	MTX (N=14)	52 weeks	(OMERACT RAMRIS scores. Global synovitis score ranged from 0 (absence of synovitis) to 66 (severe synovitis)) (Mean change NR) Score at baseline = 21 (15-33) ^d	(OMERACT RAMRIS scores. 0 (no erosion) to 300 (100% bone eroded) (Mean change NR) Score at baseline = 12 (8-25) ^d	(OMERACT RAMRIS scores) (Mean change NR) Score at baseline = 13 (10- 31)

Table 361:	Assessments of synovitis.	erosion and osteitis: Po	pulation 2/3 RCTs of biolog	gic interventions vs. DMARD(s) or PBO
1 4010 0011	Tibbebbilleneb of by no vielb	ci obioni una obicitibi i o		

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment point	Mean change from BL in synovitis	Mean change from BL in erosions	Mean change from BL in osteitis
			Score at follow-up = $20 (12-24)^{d}$	Score at follow-up = 14 (9-32) d	Score at follow-up = 13 (5-21)
	MTX + i.v. MP (N=15 randomised)	52 weeks	Score at baseline = $29 (17-33)^{d}$ Score at follow-up = $14 (7-29)^{d}$	Score at baseline = $5 (3-23)^{d}$ Score at follow-up = $13 (5-41)^{d}$	Score at baseline = $22 (7-40)^{d}$ Score at follow-up = $12 (6-38)^{d}$
	IFX + MTX (N=15 randomised)	52 weeks	Score at baseline = $25 (15-29)^{d}$ Score at follow-up = $10 (6-12)^{d}$	Score at baseline = $9 (5-11)^{d}$ Score at follow-up = $11 (6-21)^{d}$	Score at baseline = $25 (12-32)^{d}$ Score at follow-up = $11 (7-16)^{d}$

 $a^{a} < 0.05$ $b^{b} < 0.001$ $c^{c} = Median$ $a^{d} = estimated from graphical data$

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	N analysed	Mean Pain VAS score at baseline, 0-100 (SD)	Mean Pain VAS score at follow- up, 0-100 (SD)	Pain VAS mean change from baseline (SD)	% change from baseline
OPERA ¹⁰⁷	MTX + PBO + steroid	12 months (primary endpoint and study RCT endpoint)	91	58 (13-92) °	20 (0-71) ^c	NR	NR
OPERA ¹⁰⁷	ADA + MTX + steroid	12 months (primary endpoint and study RCT endpoint)	89	63 (13-98) ^c	7 (0-64) ^{a,c}	NR	NR
OPTIMA ³¹²	MTX + PBO	26 weeks (study RCT endpoint)	517	65 (21)	49.4(NR)	-15.6 (22.70) (n=513)	NR
OPTIMA ¹⁰⁸	ADA + MTX	26 weeks (study RCT endpoint)	515	65 (21)	36.1(NR)	-28.9 (26.61) ^b (n=513)	NR
PREMIER ¹⁰⁹	MTX + PBO	1 year (primary endpoint)	256	59.6 (24.3)	23.4 (16.1)	-36.2NR	NR
PREMIER ¹⁰⁹	ADA monotherapy + PBO step up week 16	1 year (primary endpoint)	273	64.6 (23.6)	26.6 (17.1)	-38.0NR	NR
PREMIER ¹⁰⁹	ADA + MTX step up week 16	1 year (primary endpoint)	265	62.5 (21.3)	16.8 (15.7) ^{b (vs.} _{MTX), d}	-45.7NR	NR
PREMIER ¹⁰⁹	MTX + PBO	2 years (study RCT endpoint)	256	59.6 (24.3)	12.5 (15.8)	-47.1NR	NR
PREMIER ¹⁰⁹	ADA monotherapy + PBO step up week 16	2 years (study RCT endpoint)	273	64.6 (23.6)	19.6 (16.6)	-45.0NR	NR
PREMIER ¹⁰⁹	ADA + MTX step up week 16	2 years (study RCT endpoint)	265	62.5 (21.3)	9.6 (14.9) ^{b (vs. MTX),}	-52.9NR	NR
COMET ⁸³	MTX +PBO	week 52	263	65.1 (20.8)	33.7 (27.5)	-31.4	NR
COMET ⁸¹	ETN+MTX	week 52	265	66.0(21.4)	24.1(24.2)	-41.9	NR

 Table 362:
 Pain VAS Population 1 biologic vs. DMARD(s) or PBO

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	N analysed	Mean Pain VAS score at baseline, 0-100 (SD)	Mean Pain VAS score at follow- up, 0-100 (SD)	Pain VAS mean change from baseline (SD)	% change from baseline
						b	
GO-BEFORE ⁹⁰	PBO + MTX	24 weeks	160	(0-10 scale) 6.3 (2.12)	NR	NR	44.35 °
GO-BEFORE ⁹⁰	GOL 50 mg s.c. every 4 weeks + MTX (24 weeks	159	(0-10 scale) 6.4 (2.11)	NR	NR	52.15 ^{a, c}
BeST ¹⁵²	Sequential monotherapy (DAS-steered)	6 months	NR	53.1 (SD NR)	35.7NR	- 17.4	NR
BeST ⁷⁸	Step-up combination therapy (DAS- steered)	6 months	NR	53.4 (SD NR)	27.9NR	- 25.5	NR
BeST ⁷⁸	Initial combination therapy with prednisone (DAS- steered)	6 months	NR	54.1 (SD NR)	23.8NR	- 30.3 ª	NR
BeST ⁷⁸	Initial combination therapy with IFX (DAS-steered)	6 months	NR	54.1 (SD NR)	23.9NR	- 30.2 a	NR

 $a^{a} = p < 0.05$ $b^{b} = p < 0.01$ $c^{c} = Median (5^{th}, 95^{th} centile range)$ $d^{d} = Mixed model repeated measures analyses$

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	N analysed	Mean Pain VAS score at baseline, 0-100 (SD)	Mean Pain VAS score at follow-up, 0- 100 (SD)	Pain VAS mean change from baseline (SD)	% change from baseline
AMPLE ⁶⁶	ABT s.c.	1 year (primary endpoint)	318	63.1 (22.3)	NR	NR	53
AMPLE ¹⁴⁷	ADA	1 year (primary endpoint)	328	65.5 (21.8)	NR	NR	39.2
DeFilippis 2006 ⁸⁵	ETN + MTX	22 weeks	15	60.67 (16.57)	NR	NR	28.6
DeFilippis 2006 ⁸⁵	IFX + MTX	22 weeks	15	70.10 (14.14)	NR	NR	22
DeFilippis 2006 ⁸⁵	ETN + MTX	54 weeks	15	60.67 (16.57)	77.54	16.87(NR)	43.06
DeFilippis 2006 ⁸⁵	IFX + MTX	54 weeks	15	70.10 (14.14)	87.75	17.65(NR)	21.1

 Table 363:
 Pain VAS Population 2/3 biologic Head to head

Trial name /	Treatment arms for	Assessment time	N analysed	Mean Pain VAS	Mean Pain VAS	Pain VAS mean	% change from
Author, year	performed	point		0-100 (SD)	up, 0-100 (SD)	baseline (SD)	Dasenne
AIM ^{61,62}	MTX+PBO	12 months	219	65.9 (20.6)	NR	adjusted -24.2(1.72)	NR
AIM ⁶¹	ABTi.v.+ MTX	12 months	433	63.3 (21.1)	NR	adjusted -35.8(1.12)	NR
ASSURE ⁷³	PBO + cDMARDs	1 year (primary endpoint and study RCT endpoint)	413	61.3 (20.8) (n=418)	NR	NR	18
ASSURE ⁷³	ABT + cDMARDs	1 year (primary endpoint and study RCT endpoint)	845	61.1 (20.4) (n=856)	NR	NR	37
CHANGE ⁸⁰	PBO n=87	24weeks	87	62.7 (22.8)	66.2(NR)	3.5 (25.4)	NR
CHANGE ⁸⁰	ADAmon n=91	24weeks	91	68.1 (21)	50.7(NR)	-17.4(27.9) a	NR
DE019 ⁸⁴	MTX+PBO n=200	52weeks	200	56.3(22.9)	45.1(NR)	-11.2 (27.7)	-19.9%
DE019 ⁸⁴	ADA+MTX n=207	52weeks	207	55.9(20.4)	26.5(NR)	-29.4(26.4)	-52.6%
van de Putte 2004 ¹²²	PBO s.c.	26 weeks	110	70.2 (18.1)	59.2(NR)	- 11.0 (26.7)	- 11.4
van de Putte 2004 ¹²²	ADA 40mg s.c. eow monotherapy	26 weeks	113	70.3 (19.9)	42.7(NR)	- 27.6 (31.1) (^b vs. PBO)	- 37.7 (^b vs. PBO)
ARMADA ^{69 70}	MTX+PBO (n=62)	24 weeks	62	57.2 (21)	48.6(NR)	-8.6 (22.5)	-15.0
ARMADA ⁶⁹	ADA+MTX (n=67)	24 weeks	67	53 (22)	27.9(NR)	-25.1 (33.1)	-47.2 ^b
Kim 2007 ⁹⁹	MTX+PBOrescueWeek18 n=63	24weeks	63	59.4(18.6)	52.1(NR)	-7.3(27.5)	NR
Kim 2007 ⁹⁹	ADA+MTX n=65 (n=64 at 24weeks)	24weeks	64	57.6(18.2)	33.9(NR)	-23.7(22.86) ^b	NR

Table 364:Pain VAS Population 2/3 biologic vs. DMARD(s) or PBO

Trial name /	Treatment arms for	Assessment time	N analysed	Mean Pain VAS	Mean Pain VAS	Pain VAS mean	% change from
Author, year	which data extraction performed	point		score at baseline, 0-100 (SD)	score at follow- up, 0-100 (SD)	change from baseline (SD)	baseline
CERTAIN ¹⁵⁴	PBO + cDMARDs	24 weeks (primary endpoint and study RCT endpoint)	98	NR	NR		NR
CERTAIN ⁷⁹	CTZ 400mg at weeks 0, 2 & 4 then 200mg Q2W + DMARDs	24 weeks (primary endpoint and study RCT endpoint)	96	NR	NR		NR
ADORE ^{59,60}	ETNmon n=159	16 weeks	140	62.7	33.3(NR)	-29.40 (25.09)	NR
ADORE ⁵⁹	ETN+MTX n=155	16 weeks	135	63.3	33.37(NR)	-29.93 (27.25)	NR
ETN Study 309 ^{88,89} (Combe 2006)	SSZ+PBO n=50	24weeks	50	58.8(20)	NR	NR	13.3
ETN Study 309 (Combe 2006)	ETN+PBO n=103	24weeks	103	62.6(21.7)	NR	NR	55.6 ^b vs SSZ
ETN Study 309 (Combe 2006)	ETN+SSZ n=101	24weeks	101	58.5(20.7)	NR	NR	53.9 ^b vs SSZ non-sig vs ETN+PBO
JESMR ¹⁴⁴	ETN 25mg Q2W monotherapy	24 weeks (primary endpoint)	69	NR	NR	NR	NR
JESMR ¹⁴⁴	ETN 25mg Q2W + MTX 6-8mg/week	24 weeks (primary endpoint)	73	NR	NR	NR	NR
Lan 2004 ¹⁰¹	PBO+MTX	12 weeks (primary endpoint and study RCT endpoint)	29	57.52	57.59	0.07(NR)	0.05%

Trial name /	Treatment arms for	Assessment time	N analysed	Mean Pain VAS	Mean Pain VAS	Pain VAS mean	% change from
Author, year	which data extraction	point	-	score at baseline,	score at follow-	change from	baseline
	performed			0-100 (SD)	up, 0-100 (SD)	baseline (SD)	
Lan 2004 ¹⁰¹	ETN+MTX	12 weeks	29	55.21	31.66 ^a	-23.55(NR)	43%
		(primary endpoint					
		and study RCT					
N 1 1 1000 ¹⁰⁴	DDO	enapoint)		(0.10, 1.)	ND	ND	
Moreland 1999	РВО	omonths	80	(0-10 scale) 6.5	INK	INK	22 (worse)
Moreland 1999 ¹⁰⁴	ETN+PBO	6months	78	(0-10 scale) 6.7	NR	NR	-53 (improved)
RACAT ¹¹¹	MTX+SSZ+HCQ	24weeks	319 both groups	5.64(2.21)	3.64(2.38)	-2.0(NR)	NR
111	n=178 (not all analysed)						
RACAT	ETN50+MTX	24weeks		5.88(1.99)	3.56(2.53)	-2.32(NR)	NR
111	n=175(not all analysed)						
RACAT	MTX+SSZ+HCQ	48weeks	155	NR	3.22 (2.37)	NR	NR
	n=1/8 randomised						
	In analysis $n=155$ (01						
	FTN)						
RACAT ¹¹¹	ETN50+MTX	48weeks	155	NR	3 17 (2 58)	NR	NR
	n=175 randomised	10 Weeks	100		5.17 (2.50)		
	In analysis n=155 (of						
	whom 41 switched to						
	MTX+SSZ+HCQ)						
Weinblatt 1999 ¹²⁴	MTX +PBO	24weeks	30	(0-10 scale)	(0-10 scale)	-1.2NR	NR
				5.6 °	4.4 ^c		
Weinblatt 1999 ¹²⁴	ETN+ MTX, n=59	24weeks	59	(0-10 scale)	(0-10 scale)	-3.2(NR)	NR
27 20				5.0 °	1.8 ° °		
APPEAL 07,00	MTX plus DMARD	16 weeks	103	60.8 (19.2)	38.6	-22.2(NR)	36.5
	(SSZ, HCQ or LEF)	(primary endpoint					
		and study RCT					
	Etanone at 25mg tariog	endpoint)	107	(25(224))	20 5 b	24.0(ND)	544b
APPEAL	Etanercept 25mg twice	10 weeks	197	02.3 (23.4)	28.3	-34.U(INK)	34.4
	plus MTY	(primary enupoint					
		endpoint)					
1		(indpoint)	1		1		

Trial name /	Treatment arms for	Assessment time	N analysed	Mean Pain VAS	Mean Pain VAS	Pain VAS mean	% change from
Author, year	which data extraction	point		score at baseline,	score at follow-	change from	baseline
	performed	-		0-100 (SD)	up, 0-100 (SD)	baseline (SD)	
GO-FORWARD ⁹²	PBO s.c. every 4 weeks +	Week 14	133	(0-10 scale) 5.70	NR	NR	17.6 (-8.1, 40.0) ^c
	MTX			(3.60 TO 7.50) ^c			
GO-FORWARD ⁹²	GOL 50 mg s.c. every 4	Week 14	89	(0-10 scale) 6.10	NR	NR	55.0 (17.0, 76.5) ^c
	weeks + MTX			$(4.70 \text{ to } 7.70)^{\circ}$			b
GO FORWARD ⁹²	PBO s.c. every 4 weeks +	Week 24	133	(0-10 scale) 5.70	NR	NR	15.4 (-16.4, 41.6)
	MTX			(3.60 TO 7.50) ^c			c
GO FORWARD ⁹²	GOL 50 mg s.c. every 4	Week 24	89	(0-10 scale) 6.10	NR	NR	50.4 (16.3, 83.3) ^c
	weeks + MTX			$(4.70 \text{ to } 7.70)^{\circ}$			b
ATTRACT ⁷⁵	PBO i.v. + MTX	30 weeks	88	(0-10 scale)	(0-10 scale)	-0.8(NR)	- 6
				6.7 (5.0, 8.0) ^c	5.9 (3.3, 7.4) ^c		
ATTRACT ⁷⁵	IFX 3 mg/kg i.v. at	30 weeks	86	(0-10 scale)	(0-10 scale)	-3.2(NR)	- 33 ^a
	weeks 0, 2 and 6 and			7.0 (5.6, 8.1) ^c	3.8 (2.3, 6.9) ^c		
	every 8 weeks thereafter						
START ¹¹⁸	PBO + MTX	22 weeks	363	(0-10 scale)	NR	NR	NR
		(primary endpoint		$5.9(5-7)^{d}$			
		and study RCT					
		endpoint)					
START ¹¹⁸	IFX 3mg/kg + MTX	22 weeks	360	(0-10 scale)	NR	NR	NR
		(primary endpoint		$6.1(5-8)^{d}$			
		and study RCT					
		endpoint)					
ACT-RAY ⁵⁷	TCZ 8 mg/kg i.v. every 4	Week 24	276	NR	NR	- 29.8 (24.92)	NR
	weeks + oral PBO						
ACT-RAY ⁵⁷	TCZ 8 mg/kg i.v. every 4	Week 24	277	NR	NR	- 29.3 (26.64)	NR
	weeks + MTX						

a = p < 0.05 b = p < 0.01 c = Median (5th, 95th centile range) d = Median (IQR)

Table 365: 0-100 VAS of fatigue: Population 1 RCTs of biologic vs. DMARD(s) or PBO

Trial name /	Treatment arms for which data	Assessment	Mean (SD) score	Mean (SD) score	Mean (SD) change
Author, year	extraction performed	point	at baseline	at follow-up	from baseline
COMET ⁸³	MTX	52 weeks	NR	NR	-19.7
	ETN + MTX	52 weeks	NR	NR	-29.6 ^b

a = P < 0.05

 $^{b} = P < 0.001$

^c = significant in a mixed-model repeated measures analysis

 $d^{d} = Adjusted mean change from baseline$ $e^{e} = Estimated from graphical data$

Table 366: FACIT-F score (0-52, greater scores indicate less fatigue): Population 1 RCTs of biologic vs. DMARD(s) or PBO

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment point	Mean (SD) score at baseline	Mean (SD) score at follow-up	Mean (SD) change from baseline	% change from baseline
OPTIMA ³¹²	MTX + PBO	26 weeks	NR	NR	8.3 (11.12)	NR
	ADA + MTX	26 weeks	NR	NR	10.5 (11.82) ^a	NR
PREMIER ³¹⁵	MTX + PBO	1 year	29.0 (11.1)	40.0 (8.10)	11.0(NR)	NR
	ADA monotherapy + PBO step up week 16	1 year	26.2 (11.3) ^{a,c} (vs. MTX)	38.6 (8.0)	12.4(NR)	NR
	ADA + MTX step up week 16	1 year	28.4 (11.7)	41.1 (8.2) ^{b (vs. MTX), c}	12.7(NR)	NR
PREMIER ³¹⁵	MTX + PBO	2 years	29.0 (11.1)	42.5 (8.1)	13.5(NR)	NR
	ADA monotherapy + PBO step up week 16	2 years	26.2 (11.3) ^{a,c} (vs. MTX)	40.8 (8.1)	14.6(NR)	NR
	ADA + MTX step up week 16	2 years	28.4 (11.7)	43.0 (8.1) ^{b (vs. MTX), c}	14.6(NR)	NR

a = P < 0.05

 $^{b} = P < 0.001$

c = significant in a mixed-model repeated measures analysis

 $d^{d} = Adjusted$ mean change from baseline

^e = Estimated from graphical data

Table 367: 0-100 VAS of fatigue: Population 2/3 biologic head-to-head RCTs

Trial name /	Treatment arms for which data	Assessment	Mean (SD) score	Mean (SD) score	Mean (SD) change
Author, year	extraction performed	point	at baseline	at follow-up	from baseline
AMPLE ¹⁴⁷	ABT s.c. + MTX	1 year	NR	NR	-23.2
	ADA + MTX	1 year	NR	NR	-23.2

a = P < 0.05

 $^{b} = P < 0.001$

^c = significant in a mixed-model repeated measures analysis

 $d^{d} = Adjusted mean change from baseline$ $e^{e} = Estimated from graphical data$

Table 368: FACIT-F score (0-52, greater scores indicate less fatigue): Population 2/3 biologic head-to-head RCTs

Trial name /	Treatment arms for which	Assessment	Mean (SD)	Mean (SD)	Mean (SD)	% change
Author, year	data extraction performed	point	score at	score at follow-	change from	from baseline
			baseline	up	baseline	
ADACTA ⁵⁸	TCZ 8 mg/kg i.v. every 4	24 weeks	NR	NR	8.9 ^d	NR
	weeks + s.c. PBO ADA					
	ADA 40 mg s.c. every 2	24 weeks	NR	NR	11.4 ^d	NR
	weeks + i.v. PBO TCZ					

a = P < 0.05b = P < 0.001

 $c^{c} = significant$ in a mixed-model repeated measures analysis $d^{d} = Adjusted$ mean change from baseline

^e = Estimated from graphical data
Table 369: 0-100 VAS of fatigue: Population 2/3 RCTs of biologic vs. DMARD(s) or PBO

Trial name /	Treatment arms for which data	Assessment	Mean (SD) score	Mean (SD) score at	Mean (SD) change
Author, year	extraction performed	point	at baseline	follow-up	from baseline
AIM ⁶³	MTX + PBO	1 year	63.5	40.9(NR)	-22.6
	ABT + PBO	1 year	65.3	37.3(NR)	-28.0 ^a

a = P < 0.05

 $^{b} = P < 0.001$

^c = significant in a mixed-model repeated measures analysis

 $d^{d} = Adjusted mean change from baseline$ $e^{e} = Estimated from graphical data$

Table 370: FACIT-F score (0-52, greater scores indicate less fatigue): Population 2/3 RCTs of biologic vs. DMARD(s) or PBO

Trial name /	Treatment arms for which data	Assessment	Mean (SD) score	Mean (SD) score at	Mean (SD) change	% change from
Author, year	extraction performed	point	at baseline	follow-up	from baseline	baseline
ARMADA ⁶⁹ ⁷⁰	MTX+PBO	24weeks	NR	NR	3.0 improvement	NR
	ADA+MTX	24weeks	NR	NR	8.5 ^a improvement	NR
APPEAL 68	MTX + DMARD (SSZ, HCQ or	16 weeks	30.1	33.2	3.1(NR)	10.4
	LEF)					
	ETN + MTX	16 weeks	28.1	36.2 ^a	8.1(NR)	28.0 ^a
GO-FORWARD ⁹²	PBO + MTX	Week 24	28.7 (10.5)	30.86NR	2.16 (9.53)	NR
	GOL 50 mg + MTX	Week 24	26.6 (11.0)	33.9NR	7.30 (8.65) ^b	NR
TOWARD ¹²¹	PBO + cDMARDs	24 weeks	NR	NR	3.6	NR
	TCZ 8 mg/kg i.v. + DMARDs	24 weeks	NR	NR	8.0 ^b	NR

a = P < 0.05

b = P < 0.001

 c^{c} = significant in a mixed-model repeated measures analysis d^{d} = Adjusted mean change from baseline

^e = Estimated from graphical data

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment point	Mean (SD) physical component score (PCS) at baseline	Mean (SD) PCS at follow- up	Mean (SD) change from baseline in PCS	Mean (SD) mental component score (MCS) at baseline	Mean (SD) MCS at follow- up	Mean (SD) change from baseline in MCS	Mean (SD) arthritis- specific health index (ASHI) score at baseline	Mean (SD) ASHI at follow- up	Mean (SD) change from baseline in ASHI score
HIT HARD ⁹⁴	MTX + PBO	24 weeks	31.7 (8.3)	39.8 (9.9)	8.1(NR)	45.2 (10.2)	48.9 (8.8)	3.7(NR)	NR	NR	NR
	ADA + MTX	24 weeks	28.3 (7.7) ^a	44.0 (11.1) ^b	15.7(NR)	46.7 (9.9)	48.8 (9.8)	2.1(NR)	NR	NR	NR
PREMIER 315	MTX + PBO	1 year	32.2 (7.9)	43.5 (8.1)	11.3(NR)	43.5 (12.4)	51.3 (8.5)	7.8(NR)	NR	NR	NR
	ADA monotherapy + PBO step up week 16	1 year	30.7 (7.4)	42.5 (7.9)	11.8(NR)	42.6 (12.1)	49.1 (8.2) ^{a,f}	6.5(NR)	NR	NR	NR
	ADA + MTX step up week 16	1 year	31.7 (7.8)	46.6 (8.2) ^b (vs. MTX), f	14.9(NR)	44.1 (12.5)	50.7 (8.7)	6.6(NR)	NR	NR	NR
PREMIER 315	MTX + PBO	2 years	32.2 (7.9)	45.9 (7.8)	13.7(NR)	43.5 (12.4)	52.4 (8.4)	8.9(NR)	NR	NR	NR
	ADA monotherapy + PBO step up week 16	2 years	30.7 (7.4)	44.7 (8.0)	14(NR)	42.6 (12.1)	49.8 (8.1) ^a (vs. MTX), f	7.2(NR)	NR	NR	NR

 Table 371: 0-100 SF-36 components scores: Population 1 RCTs of biologic vs. DMARD(s) or PBO

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment point	Mean (SD) physical component score (PCS) at baseline	Mean (SD) PCS at follow- up	Mean (SD) change from baseline in PCS	Mean (SD) mental component score (MCS) at baseline	Mean (SD) MCS at follow-	Mean (SD) change from baseline in MCS	Mean (SD) arthritis- specific health index (ASHI)	Mean (SD) ASHI at follow-	Mean (SD) change from baseline in ASHI
							up		score at baseline	up	score
	ADA + MTX step up week 16	2 years	31.7 (7.8)	48.8 (8.3) ^b (vs. MTX), f	17.1(NR)	44.1 (12.5)	51.8 (8.8)	7.7(NR)	NR	NR	NR
COMET ⁸³	MTX	52 weeks	NR	NR	10.7	NR	NR	6.1	NR	NR	NR
DD 4 316	ETN + MTX	52 weeks	NR	NR	13.7^{a}	NR	NR	6.8	NR	NR	NR
ERA ⁵¹⁰	MTX + PBO	52 weeks	NR	NR	9.6 (0.8) ^a	NR	NR	4.1 (0.8) d	NR	NR	8.1 (1.0) ^a
	ETN 25mg Q2W + PBO	52 weeks	NR	NR	10.7 (0.8)	NR	NR	3.6 (0.8)	NR	NR	8.2 (1.0) _{a,d}
ASPIRE ⁷¹	PBO i.v. + MTX	54 weeks	NR	NR	10.1 (11.4)	NR	NR	NR	NR	NR	NR
	IFX i.v. + MTX	54 weeks	NR	NR	11.7 (11.6)	NR	NR	NR	NR	NR	NR
BeST ⁷⁸	Sequential monotherapy	6 months	NR	NR	8.0 ^b (vs. combi+pred & combi+IFX)	NR	NR	3.1	NR	NR	NR
	Step-up combination therapy	6 months	NR	NR	8.5 ^b (vs. combi+pred & combi+IFX)	NR	NR	3.5	NR	NR	NR
	Initial combination therapy with prednisone	6 months	NR	NR	12.5	NR	NR	1.2	NR	NR	NR

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment point	Mean (SD) physical component score (PCS) at baseline	Mean (SD) PCS at follow- up	Mean (SD) change from baseline in PCS	Mean (SD) mental component score (MCS) at baseline	Mean (SD) MCS at follow- up	Mean (SD) change from baseline in MCS	Mean (SD) arthritis- specific health index (ASHI) score at baseline	Mean (SD) ASHI at follow- up	Mean (SD) change from baseline in ASHI score
	Initial combination therapy with IFX	6 months	NR	NR	12.4	NR	NR	4.1	NR	NR	NR

 a = P < 0.05

 b = P < 0.001

 $c = Median (5^{th}/95^{th} percentile range)$

 d = Mean change from baseline (SE)

 e = Adjusted mean change from baseline

 f = Estimated from graphical data

 g = significant in a mixed-model repeated measures analysis

 h = Mean [95% CI]

Trial name / Author, year	Treatme nt arms for which data extractio n perform ed	Assessme nt point	Mean (SD) physical functionin g (PF) score at baseline	Mean (SD) PF score at follow -up	Mean (SD) role- physic al (RP) score at baselin e	Mean (SD) RP score at follow- up	Mean (SD) bodily pain (BP) score at baselin e	Mean (SD) BP score at follow -up	Mean (SD) genera l health (GH) score at baselin e	Mean (SD) GH score at follow -up	Mean (SD) vitality (VT) score at baselin e	Mean (SD) VT score at follow -up	Mean (SD) social functionin g (SF) score at baseline	Mean (SD) SF score at follow -up	Mean (SD) role- emotion al (RE) score at baseline	Mean (SD) RE score at follow -up	Mean (SD) mental health (MH) score at baselin e	Mean (SD) MH score at follow -up
PREMIER ³ 15	MTX + PBO	1 year	31.5 (10.3)	41.8 (9.7)	32.6 (8.4)	44.1 (8.9)	32.7 (7.7)	46.5 (7.3)	40.5 (9.1)	46.4 (8.2)	40.6 (9.7)	51.8 (8.7)	38.1 (12.2)	47.9 (7.8)	36.7 (13.8)	46.2 (8.6)	42.6 (12.1)	50.0 (9.0)
	ADA monother apy + PBO step up week 16	1 year	29.1 (9.5)	40.5 (9.0)	32.5 (8.1)	43.3 (8.0)	31.6 (7.8)	44.9 (6.9) _{a,f}	39.8 (9.6)	45.4 (7.9) _{a,f}	39.2 (9.4)	49.6 (8.3) _{a,f}	35.2 (12.2)	45.9 (7.4) _{a.f}	37.5 (13.9)	44.5 (7.9) _{a.f}	41,4 (11.9)	48.0 (8.7)
	ADA + MTX step up week 16	1 year	30.2 (10.0)	44.7 (9.2) _{b,f}	33.1 (8.8)	46.6.(8. 2) ^{b,f}	32.5 (7.1)	49.7 (7.3) _{b,f}	40.9 (10.0)	48.2 (8.2)	40.0 (10.0)	52.9 (8.8) _{a,f}	38.3 (12.0)	48.7 (7.4)	38.4 (14.1)	47.3 (8.1)	42.1 (12.2)	49.9 (8.8)
PREMIER ³ 15	MTX + PBO	2 years	31.5 (10.3)	44.3 (9.3)	32.6 (8.4)	46.5 (8.6)	32.7 (7.7)	48.8 (7.1)	40.5 (9.1)	47.2 (8.2)	40.6 (9.7)	53.7 (8.5)	38.1 (12.2)	49.2 (7.6)	36.7 (13.8)	48.1 (8.0)	42.6 (12.1)	51.1 (9.3)
	ADA monother apy + PBO step up week 16	2 years	29.1 (9.5)	43.0 (9.1)	32.5 (8.1)	45.5. (8.0)	31.6 (7.8)	47.1 (6.9) _{a,f}	39.8 (9.6)	46.7 (8.1) _{a,f}	39.2 (9.4)	51.4 (8.4) _{a,f}	35.2 (12.2)	48.0 (7.6) _{a,f}	37.5 (13.9)	45.8 (7.9) _{a,f}	41,4 (11.9)	49.2 (8.7)
	ADA + MTX step up week 16	2 years	30.2 (10.0)	46.9 (9.2) _{b,f}	33.1 (8.8)	48.8 (8.2) ^{b,f}	32.5 (7.1)	51.8 (7.2) _{b,f}	40.9 (10.0)	49.5 (8.3)	40.0 (10.0)	54.7 (9.0) _{a,f}	38.3 (12.0)	49.9 (7.4)	38.4 (14.1)	49.1 (7.8)	42.1 (12.2)	51.1 (8.7)

Table 372: 0-100 SF-36 domains scores – baseline and follow-up: Population 1 RCTs of biologic vs. DMARD(s) or PBO

b = P < 0.001

^c = P<0.001
 ^c = Median (5th/95th percentile range)
 ^d = Mean change from baseline (SE)
 ^e = Adjusted mean change from baseline
 ^f = Estimated from graphical data
 ^g = significant in a mixed-model repeated measures analysis
 ^h = Mean [95% CI]

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment point	Mean (SD) change from baseline in physical functioning (PF) score	Mean (SD) change from baseline in role- physical (RP) score	Mean (SD) change from baseline in bodily pain (BP) score	Mean (SD) change from baseline in general health (GH) score	Mean (SD) change from baseline in vitality (VT) score	Mean (SD) change from baseline in social functioning (SF) score	Mean (SD) change from baseline in role- emotional (RE) score	Mean (SD) change from baseline in mental health (MH) score
ERA ³¹⁶	MTX + PBO	52 weeks	10.4 (0.8)	9.9 (0.9)	10.1 (0.7)	3.4 (0.7)	6.8 (0.8)	8.1 (0.9)	4.7 (1.0)	5.8 (0.8)
	ETN 25mg Q2W + PBO	52 weeks	9.7 (0.8)	10.8 (0.9)	10.5 (0.8)	4.5 (0.7)	7.9 (0.8)	8.4 (0.9)	4.0 (1.1)	4.4 (0.8)

Table 373: 0-100 SF-36 domains scores – mean change from baseline: Population 1 RCTs of biologic vs. DMARD(s) or PBO

^a = P<0.05
 ^b = P<0.001
 ^c = Median (5th/95th percentile range)
 ^d = Mean change from baseline (SE)
 ^e = Adjusted mean change from baseline
 ^f = Estimated from graphical data
 ^g = significant in a mixed-model repeated measures analysis
 ^h = Mean [95% CI]

Table 374: 0-100 SF-12 components scores: Population 1 RCTs of biologic vs. DMARD(s) or PBO

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment point	Mean (SD) physical component score (PCS) at baseline (0-100)	Mean (SD) PCS at follow-up (0-100)	Mean (SD) change from baseline in PCS (0-100)	Mean (SD) mental component score (MCS) at baseline (0-100)	Mean (SD) MCS at follow-up (0-100)	Mean (SD) change from baseline in MCS (0-100)
OPERA ¹⁰⁷	MTX + PBO + steroid	12 months	31.7 (19.3-44.5) [°]	43.3 (26.1- 55.8) ^c	10.6 (-11.26- 22.7) [°]	46.7 (25.7-60.1) [°]	54.8 (40.4- 65.7) [°]	4.3 (-9.3-27.4)
	ADA + MTX + steroid	12 months	30.9 (13.1-50.6) [°]	49.2 (29.9- 56.6) ^{a,c}	13.2 (-2.3- 33.0) ^{a,c}	47.0 (28.6-60.6) ^c	55.7 (35.8- 62.6) ^c	5.5 (-8.5-20.1)

b = P < 0.001

^b = P<0.001
 ^c = Median (5th/95th percentile range)
 ^d = Mean change from baseline (SE)
 ^e = Adjusted mean change from baseline
 ^f = Estimated from graphical data
 ^g = significant in a mixed-model repeated measures analysis
 ^h = Mean [95% CI]

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment point	Mean (SD) SF6D score at baseline	Mean (SD) SF6D score at	Mean (SD) change from baseline in	% change from baseline in RAQoL
	-	•		follow-up	RAQoL score	score
Bejarano	PBO + MTX	56 weeks	NR	NR	-4.7 (8.4)	NR
2008 ^{77,77}	ADA + MTX	56 weeks	NR	NR	-7.6(7.4) ^a	NR
PREMIER ³¹⁵	MTX + PBO	1 year	0.56 (0.11)	0.72 (0.14)	NR	NR
	ADA monotherapy + PBO step up week 16	1 year	0.54 (0.11)	0.70 (0.14) ^{a,f}	NR	NR
	ADA + MTX step up week 16	1 year	0.45 (0.11)	0.75 (0.13) ^{a,f}	NR	NR
PREMIER ³¹⁵	MTX + PBO	2 years	0.56 (0.11)	0.73 (0.14)	NR	NR
	ADA monotherapy + PBO step up week 16	2 years	0.54 (0.11)	0.70 (0.13) ^{a,f}	NR	NR
	ADA + MTX step up week 16	2 years	0.45 (0.11)	0.76 (0.14) ^{a,f}	NR	NR
Quinn 2005 ¹¹⁰	MTX + PBO	14 weeks	NR	NR	NR	7 ^f (worse)
	IFX 3mg/kg + MTX	14 weeks	NR	NR	NR	-74 ^{a,f} (improved)
Quinn 2005 ¹¹⁰	MTX + PBO	54 weeks	NR	NR	NR	0 ^f
	IFX 3mg/kg + MTX	54 weeks	NR	NR	NR	-82 ^{a,f} (improved)

Table 375: 0-100 SF6D & RAQoL: Population 1 RCTs of biologic vs. DMARD(s) or PBO

a = P < 0.05

 $^{b} = P < 0.001$

 $c^{c} = Median (5^{th}/95^{th} percentile range)$ $d^{d} = Mean change from baseline (SE)$ $e^{e} = Adjusted mean change from baseline$

f = Estimated from graphical data $g^{g} = significant in a mixed-model repeated measures analysis$ $h^{h} = Mean [95\% CI]$

Table 376: 0-100 EQ5D & EQ5D-5L: Population 1 RCTs of biologic vs. DMARD(s) or PBO

Trial name /	Treatment arms for which data	Assessment	Mean (SD) EQ5D score	Mean (SD) EQ5D score	Mean (SD) change from baseline
Author, year	extraction performed	point	at baseline (0-1)	at follow-up (0-1)	in EQ5D score (0-1)
OPERA ¹⁰⁷	MTX + PBO + steroid	12 months	0.64 (0.22-0.80) ^c	0.78 (0.49-1.00) ^c	0.20 (-0.06-0.56) ^c
	ADA + MTX + steroid	12 months	0.61 (0.17-0.80) ^c	0.82 (0.38-1.00) ^{a,c}	0.22 (-0.05-0.67) ^c
BeST ³²⁷	Sequential monotherapy	6 months	0.5 ^f	0.65 ^f	-0.15(NR)
	Step-up combination therapy	6 months	0.5 ^f	0.6 ^f	-0.1(NR)
	Initial combination therapy with prednisone	6 months	0.5 ^f	0.75 ^f	-0.25(NR)
	Initial combination therapy with IFX	6 months	0.5 ^f	0.8 ^f	03(NR)

a = P < 0.05

 $^{b} = P < 0.001$

^c = P<0.001
 ^c = Median (5th/95th percentile range)
 ^d = Mean change from baseline (SE)
 ^e = Adjusted mean change from baseline
 ^f = Estimated from graphical data
 ^g = significant in a mixed-model repeated measures analysis
 ^h = Mean [95% CI]

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment point	Mean (SD) physical component score (PCS) at baseline	Mean (SD) PCS at follow- up	Mean (SD) change from baseline in PCS	Mean (SD) mental component score (MCS) at baseline	Mean (SD) MCS at follow- up	Mean (SD) change from baseline in MCS
ATTEST ⁷⁴	PBO + MTX	Day 197	NR	NR	4 ^f	NR	NR	1 ^f
	IFX + MTX	Day 197	NR	NR	7 ^f	NR	NR	4 ^f
	ABT + MTX	Day 197	NR	NR	8 ^f	NR	NR	5 ^f
AMPLE ¹⁴⁷	ABT s.c. + MTX	1 year	NR	NR	9.37	NR	NR	3.92
	ADA + MTX	1 year	NR	NR	8.84	NR	NR	3.62
ADACTA ⁵⁸	TCZ 8 mg/kg i.v. every 4 weeks + s.c. PBO ADA	24 weeks	NR	NR	9.2	NR	NR	7.9
	ADA 40 mg s.c. every 2 weeks + i.v. PBO TCZ	24 weeks	NR	NR	7.6	NR	NR	5.0 ^a

Table 377: 0-100 SF-36 components scores: Population 2/3 biologic head-to-head RCTs

a = P<0.05 b = P<0.001 c = Median (5th/95th percentile range) d = Mean change from baseline (SE) e = Adjusted mean change from baseline f = Estimated from graphical data g = significant in a mixed-model repeated measures analysis h = Mean [95% CI]

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment point	Mean (SD) change from baseline in physical functioning (PF) score	Mean (SD) change from baseline in role- physical (RP) score	Mean (SD) change from baseline in bodily pain (BP) score	Mean (SD) change from baseline in general health (GH) score	Mean (SD) change from baseline in vitality (VT) score	Mean (SD) change from baseline in social functioning (SF) score	Mean (SD) change from baseline in role- emotional (RE) score	Mean (SD) change from baseline in mental health (MH) score
AMPLE ⁶⁶	ABT s.c. + MTX	1 year	7.92	8.87	10.67	5.44	5.84	7.33	6	4.21
	ADA + MTX	1 year	7.81	7.91	10.65	5.26	5.51	6.5	5.84	3.86

Table 378: 0-100 SF-36 domains scores – mean change from baseline: Population 2/3 biologic head-to-head RCTs

Table 379: 0-100 EQ-5D utility score: Population 2/3 biologic head-to-head RCTs

Trial name /	Treatment arms for which	Assessment	Mean (SD) EQ5D	Mean (SD) EQ5D	Mean (SD) change from	
Author, year	data extraction performed	point	score at baseline (0-1)	score at follow-up (0-1)	baseline in EQ5D score (0-1)	
RED-SEA ¹¹⁴	ADA n=60	12 months	0.52 (0.06–0.66)	0.59 (0.52–0.69)	0.07(NR)	
	ETN n=60	12 months	0.52 (0.06–0.69)	0.59 (0.24–0.73)	0.07(NR)	

 $^{a} = P < 0.05$ $^{b} = P < 0.001$

 $c = Median (5^{th}/95^{th} percentile range)$

^a = Meatah (5.795 percentite range)
 ^d = Mean change from baseline (SE)
 ^e = Adjusted mean change from baseline
 ^f = Estimated from graphical data
 ^g = significant in a mixed-model repeated measures analysis
 ^h = Mean [95% CI]

Trial name / Author, year	Treatment arms for which data extraction performed	Assessmen t point	Mean (SD) physical componen t score (PCS) at baseline	Mean (SD) PCS at follow -up	Mean (SD) change from baseline in PCS	% change from baseline in PCS	Mean (SD) mental componen t score (MCS) at baseline	Mean (SD) MCS at follow -up	Mean (SD) change from baseline in MCS	% change from baseline in MCS
AIM ^{61,62}	MTX + PBO	1 year	30.7 (7.5)	35 ^f	4.3(NR)	NR	40.8 (11.2)	46 ^f	5.2(NR)	NR
	ABT + PBO	1 year	30.6 (7.3)	40 ^{b,f}	9.4(NR)	NR	41.8 (11.4)	49 ^{a,f}	7.2(NR)	NR
CERTAIN ⁷⁹ Clinicaltrials.go	PBO + cDMARDs	24 weeks	NR	NR	1.7 (5.6)	NR	NR	NR	0.5 (9.6)	NR
v (NCT00674362)	CTZ + cDMARDs	24 weeks	NR	NR	6.0 (7.50)	NR	NR	NR	4.0 (9.77)	NR
APPEAL 68	MTX + DMARD (SSZ, HCQ or LEF)	16 weeks	30.1	37.3	7.2(NR)	22.8 improvemen t	42.4	47.8	5.4(NR)	13.3 improvemen t
	ETN + MTX	16 weeks	30.5	40.4 ^b	9.9(NR)	31.4 ^b improvemen t	42.9	50.2 ª	7.3(NR)	17.5 ^a improvemen t
GO- FORWARD ⁹²	PBO + MTX	Week 24	NR	NR	2.54 (8.06) improvemen t	NR	NR	NR	0.75 (9.68) improvemen t	NR
	GOL 50 mg + MTX	Week 24	NR	NR	8.28 (8.33) ^b improvemen t	NR	NR	NR	1.83 (10.87) improvemen t	NR
ATTRACT ²⁰⁰	PBO i.v. + MTX	54 week	NR	NR	NR	NR	NR	NR	NR	9 improvemen t
	IFX i.v. mon	54 week	NR	NR	NR	NR	NR	NR	NR	34 ^b

Table 380: 0-100 SF-36 components scores: Population 2/3 RCTs of biologic vs. DMARD(s) or PBO

Trial name / Author, year	Treatment arms for which data extraction performed	Assessmen t point	Mean (SD) physical componen t score (PCS) at baseline	Mean (SD) PCS at follow -up	Mean (SD) change from baseline in PCS	% change from baseline in PCS	Mean (SD) mental componen t score (MCS) at baseline	Mean (SD) MCS at follow -up	Mean (SD) change from baseline in MCS	% change from baseline in MCS
										improvemen t
TOWARD ¹²¹	PBO + cDMARDs	24 weeks	NR	NR	4.1 improvemen t	NR	NR	NR	2.3 improvemen t	NR
	TCZ 8 mg/kg i.v. + DMARDs	24 weeks	NR	NR	8.9 ^b improvemen t	NR	NR	NR	5.3 ^b improvemen t	NR
TACIT ¹²⁰	Combinatio n cDMARDs	6 months	28.4 (6.8)	32.6 [30.7, 34.4] ^h	-4.2 [-6.2, - 2.1] ^h	NR	43.4 (12.4)	47.0 [44.6, 49.4] ^h	-3.6 [-6.1, - 1.1] ^h	NR
	TNFi + DMARD	6 months	27.3 (7.0)	34.9 [32.9, 36.9] ^h	-7.6 [-9.5, - 5.8] ^{b,h}	NR	40.7 (12.3)	45.0 [42.4, 47.6] ^h	-4.3 [-7.2, - 1.4] ^h	NR

 $a^{a} = P < 0.05$ $b^{b} = P < 0.001$

^c = P<0.001
 ^c = Median (5th/95th percentile range)
 ^d = Mean change from baseline (SE)
 ^e = Adjusted mean change from baseline
 ^f = Estimated from graphical data
 ^g = significant in a mixed-model repeated measures analysis
 ^h = Mean [95% CI]

Trial name / Author, year	Treat ment arms for whic h data extra ction perfo rmed	Assess ment point	Mean (SD) physical function ing (PF) score at baseline	Mea n (SD) PF scor e at follo w- up	Mean (SD) role- physi cal (RP) score at baseli ne	Mea n (SD) RP scor e at follo w- up	Mean (SD) bodil y pain (BP) score at baseli ne	Mea n (SD) BP scor e at follo w- up	Mean (SD) gener al healt h (GH) score at baseli ne	Mea n (SD) GH scor e at follo w- up	Mean (SD) vitalit y (VT) score at baseli ne	Mea n (SD) VT scor e at follo w- up	Mean (SD) social function ing (SF) score at baseline	Mea n (SD) SF scor e at follo w- up	Mean (SD) role- emotio nal (RE) score at baselin e	Mea n (SD) RE scor e at follo w- up	Mean (SD) ment al healt h (MH) score at baseli ne	Mea n (SD) MH scor e at follo w- up
Durez 2004 ⁸⁶	MP + MTX	14 weeks	27 (26)	24 (26)	13 (28)	35 (41)	26 (16)	32 (24)	26 (19)	29 (22)	27 (20)	29 (22)	44 (16)	40 (25)	22 (39)	39 (47)	45 (21)	45 (22)
	IFX + MTX	14 weeks	36 (22)	55 (23) a	42 (48)	45 (42)	35 (23)	52 (16)	40 (16)	50 (16) a	31 (25)	45 (20)	53 (30)	66 (22) a	58 (47)	67 (42)	52 (25)	60 (23)
TACIT ¹²⁰	Comb inatio n cDM ARD s	6 months	30.1 (22.6)	36.7 [31.3 , 42.2]	14.9 (30.1)	36.2 [28.0 , 44.3]	28.1 (16.3) [25.0,	41.2 [37.4 , 45.1]	35.8 (18.2)	40.9 [37.1 , 44.8]	30.3 (21.4)	36.8 [32.5 , 41.2] h	50.2 (25.2)	61.6 [56.4 , 66.8]	43.9 (44.9)	58.3 [49.3 , 67.3]	61.9 (20.2)	68.1 [64.2 , 72.0]
	TNFi + DMA RD	6 months	24.6 (21.0)	40.0 [34.4 , 45.5]	12.4 (26.1)	37.6 [29.2 , 46.1]	26.3 (17.8)	45.5 [40.9 , 50.0]	31.4 (16.8)	44.1 [39.9 , 48.3]	26.6 (19.0)	40.4 [35.9 , 44.9]	42.1 (25.3)	58.9 [53.6 , 64.3]	35.3 (44.9)	50.9 [41.7 , 60.1]	58.8 (23.1)	65.8 [61.4 , 70.2]

Table 381: 0-100 SF-36 domains scores – baseline and follow-up: Population 2/3 RCTs of biologic vs. DMARD(s) or PBO

 $^{b} = P < 0.001$

c = Median (5th/95th percentile range)d = Mean change from baseline (SE)e = Adjusted mean change from baselinef = Estimated from graphical dataf

^g = significant in a mixed-model repeated measures analysis

 $^{h} = Mean [95\% CI]$

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment point	Mean (SD) change from baseline in physical functioning (PF) score	Mean (SD) change from baseline in role- physical (RP) score	Mean (SD) change from baseline in bodily pain (BP) score	Mean (SD) change from baseline in general health (GH) score	Mean (SD) change from baseline in vitality (VT) score	Mean (SD) change from baseline in social functioning (SF) score	Mean (SD) change from baseline in role- emotional (RE) score	Mean (SD) change from baseline in mental health (MH) score
CERTAIN ⁷⁹ Clinicaltrials.gov	PBO + cDMARDs	24 weeks	0.4 (8.90)	1.7 (7.81)	2.8 (8.50)	0.9 (8.06)	0.6 (8.41)	0.8 (8.89)	-0.2 (12.33)	1.2 (7.72)
(NCT00674362)	CTZ + cDMARDs	24 weeks	5.1 (7.36)	4.7 (9.77)	8.0 (8.70)	5.0 (7.59)	6.4 (8.74)	4.3 (10.21)	3.2 (13.74)	5.2 (8.43)
TACIT ¹²⁰	Combination cDMARDs	6 months	-6.58 [-12.2, -0.9] ^h	-21.3 [- 30.7, - 11.8] ^h	-13.1 [- 17.5, - 8.7] ^h	-5.2 [- 9.3, -1.1] h	6.5 [- 11.3, - 1.7] ^h	-11.4 [-16.6, -6.1] ^h	-14.4 [- 25.1, -3.6] ^h	-6.2 [- 10.6, - 1.8] ^h
	TNFi + DMARD	6 months	-15.4 [-20.8, -10.1] ^h	-25.2 [- 33.6, - 16.9] ^h	-19.2 [- 24.1, - 14.3] ^h	-12.7 [- 17.1, - 8.3] ^h	-13.8 [- 18.4, - 9.2] ^h	-16.8 [-22.8, -10.9] ^h	-15.6 [- 26.8, -4.3] ^h	-7.0 [- 12.4, - 1.6] ^h

Table 382: 0-100 SF-36 domains scores – mean change from baseline: Population 2/3 RCTs of biologic vs. DMARD(s) or PBO

 $^{b} = P < 0.001$

 $c^{c} = Median (5^{th}/95^{th} percentile range)$ $d^{d} = Mean change from baseline (SE)$

 e^{e} = Adjusted mean change from baseline f^{f} = Estimated from graphical data

 a^{g} = significant in a mixed-model repeated measures analysis b^{h} = Mean [95% CI]

Table 383: 0-100 EQ5D: Population 2/3 RCTs of biologic vs. DMARD(s) or PBO

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment point	Mean (SD) EQ5D score at baseline (0-1)	Mean (SD) EQ5D score at follow-up (0-1)	Mean (SD) change from baseline in EQ5D score (0-1)	Mean (SD) change from baseline in EQ5D VAS (0-100)			
ADORE ^{59,60}	ETNmon	16 weeks	NR	NR	0.1883 (0.33)	19.76 (27.24)			
	ETN+MTX	16 weeks	NR	NR	0.2399 (0.32)	21.00 (26.61)			
TACIT ¹²⁰	Combination cDMARDs	6 months	0.39 (0.31)	0.53 [0.48, 0.59] ^h	-0.14 [-0.20,-0.08] ^h	NR			
	TNFi + DMARD	6 months	0.35 (0.31)	0.52 [0.46, 0.58] ^h	-0.17 [-0.23,-0.11] ^h	NR			
$a^{a} = P < 0.05$ $b^{b} = P < 0.001$ $c^{c} = Median (5t^{h}/95^{th} percentile range)$ $d^{d} = Mean change from baseline (SE)$ $e^{e} = Adjusted mean change from baseline$ $f^{f} = Estimated from graphical data$ $g^{g} = significant in a mixed-model repeated measures analysis$ $h^{b} = Mean [95\% CI]$									

Table 384: 0-100 EQ5D domains scores – mean change form baseline: Population 2/3 RCTs of biologic vs. DMARD(s) or PBO

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment point	Mean (SD) change from baseline in usual activities (0-1)	Mean (SD) change from baseline in self- care (0-1)	Mean (SD) change from baseline in pain / discomfort (0- 1)	Mean (SD) change from baseline in mobility (0-1)	Mean (SD) change from baseline in anxiety / depression (0- 1)
ADORE ⁵⁹	ETNmon	16 weeks	0.3077 (0.61)	0.1731 (0.55)	0.3718 (0.62)	0.3077 (0.50)	0.2323 (0.59)
	ETN+MTX	16 weeks	0.2867 (0.55)	0.3533 (0.55) ^a	0.4400 (0.65)	0.2318 (0.52)	0.24 (0.65)

a = P < 0.05

Table 385: 0-100 EuroQol VAS scores: Population 2/3 RCTs of biologic vs. DMARD(s) or PBO

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment point	Mean (SD) baseline score	Mean % change
ETN309 ⁸⁹	SSZ+PBO	24 weeks	44.6 (19.0)	20.1
	ETN+PBO	24 weeks	45.5 (21.3)	64.6 ^{a (vs. SSZ)}
	ETN+SSZ	24 weeks	43.1 (22.4)	67.6 ^{a (vs. SSZ)}

a = P < 0.05

Trial name / Author, year	Treatment arms for which data extraction performed	RCT/ LTE phase	Assessment time point	Discontinuation due to adverse event(s), nN (%)	Number of patients experiencing 1 or more adverse	Number of patients experiencing 1 or more serious adverse event, nN (%)
					event, nN, (%)	
GUEPARD ⁹³	Initial MTX 12 weeks, then step- up therapy in both groups based on DAS28	RCT	52 weeks	NR	NR	5/32 (16) five patients were hospitalised for the following reasons: one for vasculitis with revision of diagnosis to Sharp syndrome (Week 6), one for hepatitis secondary to MTX (Week 4), one for a hip prosthesis operation (Week 12), one for weight loss (Week 36) and one for haemopthysis (Week 32).
	Initial ADA + MTX 12 weeks, then step-up therapy in both groups based on DAS28	RCT	52 weeks	NR	NR	5/33 (15) one had hepatitis (Week 6), the other had MTX pneumonia (Week 6) and the last had acoustic neuroma (Week 10) plus two malignancy
HIT HARD ⁹⁴	PBO + MTX	RCT	24 weeks	4/85 (4.7)	NR	NR
	ADA + MTX	RCT	24 weeks	2/87 (2.3)	NR	NR
HIT HARD ⁹⁴	PBO + MTX for 24 weeks followed by OL MTX for 24 weeks	LTE	48 weeks	7/85 (8.2)	NR	22/85 (25.8) 4 serious infections (2 urosepsis, 1 pneumonia), 1 stroke, 1 diplopia, 1 paresthesia, 3 caardiac disorders (1 bypass surgery, 1 claudication, 1 myocarditis), 1 reactive depression, 3 solid malignant tumours (1 prostate, 2 cervix), 1 peripheral artery angioplasty, 1 shoulder impingment syndrome, 1 prolapsed lumbar disc, 1 fracture, 3 arthritis flare, 1 nephrolithiasis
	ADA + MTX for 24 weeks followed by OL	LTE	48 weeks	4/87 (4.6)	NR	12/87 (13.8) 3 serious infections (1 bronchitis, 2 abscess), 1 concussion, 1 syncope, 1 benign neoplasm

 Table 386:
 Adverse events and discontinuations due to adverse events: Population 1 RCTs of biologic interventions vs. DMARD(s) or PBO

Trial name / Author, year	Treatment arms for which data extraction performed	RCT/ LTE phase	Assessment time point	Discontinuation due to adverse event(s), nN (%)	Number of patients experiencing 1 or more adverse event, nN, (%)	Number of patients experiencing 1 or more serious adverse event, nN (%)
	MTX for 24 weeks					(prostate), 1 subileus, 1 gastric haemorrhage, 1 varicose veins, 1 vasculitis, 1 coxarthrosis, 1 fracture.
OPERA ¹⁰⁷	PBO +MTX + steroid	RCT	12 months	1/91 (1.1)	NR	 10/91 (11.0) 2 malignancies (1 urothelial carcinoma, 1 basocellular carcinoma), 3 serious infections (1 pneumonia, 1 bronchitis, 1 dental abscess), 2 fivefold increased serum alanine aminotransferase, 1 disease exacerbation, 1 leucopoenia, 1 polyneuropathia, 1 peptic ulcer, 1 coronary bypass, 1 hip fracture, 1 coxarthrosis. 1 patient who terminated due to non-compliance at 6 months died due to pneumonia 4 months later.
	ADA + MTX + steroid	RCT	12 months	2/89 (2.2)	NR	 14/89 (15.7) 3 malignancies (1 small cell lung carcinoma, 1 myelodysplastic syndrome, 1 basocellular carcinoma), 3 serious infections (1 empyema, 1 pneumonia, 1 bronchitis), 1 suspected but unconfirmed infectious arthritis, 1 local subcutaneous atrophy, 1 blurred vision, 1 acute myocardial infarction, 1 tachicardia, 1 gonarthrosis
OPTIMA ¹⁰⁸	PBO + MTX	RCT	26 weeks	16/517 (3)	NR Infections in 36.4%.	NR 6 serious infections
	ADA + MTX	RCT	26 weeks	21/515 (4)	NR	NR 2 malignancies (1 malignant melanoma in situ, 1 squamous cell carcinoma), 13 serious infections, 1 case of lupus-like syndrome, no lymphoma or

Trial name / Author, year	Treatment arms for which data extraction	RCT/ LTE phase	Assessment time point	Discontinuation due to adverse event(s), nN (%)	Number of patients experiencing 1	Number of patients experiencing 1 or more serious adverse event, nN (%)
	performed				or more adverse event, nN, (%)	
						demyelinating disease.
PREMIER ¹⁰⁹	PBO + MTX	RCT	2 years	19/257 (7.4)	245/257 (95.3)	7 serious infections (2 pneumonia, 1 septic arthritis, 1 sinusitis, 1 abscess, 1 bacteremia, 1 parotitis), 4 malignancies (lymphoma, melanoma, prostate, breast)
	ADA monotherapy + PBO	RCT	2 years	26/274 (9.5)	262/274 (95.6)	3 serious infections (1 pneumonia, 1 cellulitis, 1 septic arthritis), 1 lupus-like reaction, 4 malignancies (breast, colon, multiple myeloma, metastatic cancer with unknown primary site)
	ADA + MTX	RCT	2 years	32/268 (11.9)	262/268 (97.8)	9 serious infections (3 pulmonary infections (inc. 1 plaural TB)), 1 sinus infection, 1 wound infection, 1 septic arthritis, 1 infected hygroma, 1 cellulitis, 1 urinary tract infection), 2 malignancies (1 ovarian, 1 prostate)
PREMIER ¹⁰⁹	PBO + MTX to OL ADA monotherapy	LTE	5 years	7.7%	NR	2/497 (0.4)During open-label period:3.3 serious infections per 100 person years
	ADA monotherapy + PBO to OL ADA monotherapy	LTE	5 years	10.7%	NR	2 TB, 1 lymphoma, 1 non-melanoma skin cancer, 3 breast cancer, 2 bladder cancer, 1 malignant melanoma, 1 tongue neoplasm, 1 pancreatic neoplasm, 1 lung cancer, 1 gastric cancer, 1 colon
	ADA + MTX to OL ADA monotherapy	LTE	5 years	14.2%	NR	cancer. No lupus-like syndrome or demyelinating disease.
COMET ⁸¹ ⁸²	PBO + MTX	RCT period 1, 52 weeks	52 weeks	34/268 (12.7)	246/268 (91.8)	34/268 (12.7) %s NR if less than 1% Cardiac 2 (1%) Eye n=1

Trial name /	Treatment arms	RCT/	Assessment	Discontinuation	Number of	Number of patients experiencing 1 or more sorious adverse event $nN(9/2)$
Author, year	extraction	nhase	time point	event(s), nN (%)	experiencing 1	serious auverse event, mv (76)
	performed	phase			or more adverse	
	P				event, nN, (%)	
						Gastrointestinal 4 (1%)
						General and administration site n=1
						Infection 8 (3%)
						Injury, poisoning, and procedural complications 4
						(1%)
						Laboratory values n=1
						Musculoskeletal and connective tissue 9 (3%)
						Nervous system n=1
						Psychiatric n=1
						Renal and urinary n=1
						Respiratory, thoracic, and mediastinal 1
						Surgical and medical procedures 2 (1%)
						Vascular 2 (1%)
						Malignancy n=4
	ETN + MTX	RCT	52 weeks	28/274 (10.2)	247/274 (90.2)	33/274 (12.0)
		period				Cardiac 2 (1%))
		1, 52				Ear and labyrinth 1
		weeks				Gastrointestinal 1
						General and administration site $2(1\%)$
						Hepatobiliary 3 (1%)
						Infection 5 (2%)
						Injury, poisoning, and procedural complications 3
						(1%)
						Laboratory values 1
						Metabolic and nutritional 2 (1%)
						Musculoskeletal and connective tissue 4 (1%)
						Nervous system 4 (1%)
						Psychiatric 1
						Renal and urinary 1

Trial name / Author, year	Treatment arms for which data extraction performed	RCT/ LTE phase	Assessment time point	Discontinuation due to adverse event(s), nN (%)	Number of patients experiencing 1 or more adverse	Number of patients experiencing 1 or more serious adverse event, nN (%)
	-				event, nN, (%)	
						Respiratory, thoracic, and mediastinal 3 (1%) Skin and subcutaneous tissue 1 Surgical and medical procedures 1 Vascular 1 Malignancy n=4
COMET Emery 2010 ⁸²	MTX in year 1 MTX in year 2	RCT period 2	weeks 52- 104	NR	79/99 (79.8)	12/99 (12.1) 1 death 3 malignancies remainder serious infections
	MTX year 1 ETN+MTX in year 2	RCT period 2	weeks 52- 104	NR	71/90 (78.9)	11/90 (12.2) 5 malignancies remainder serious infections
	ETN+MTX in year 1 ETN+MTX in year 2	RCT period 2	weeks 52- 104	NR	91/111 (82.0)	8/111 (7.2) serious infections
	ETN+MTX in year 1 ETN in year 2	RCT period 2	weeks 52- 104	NR	89/111 (80.2)	10/111 (9.0) 1 malignancy rest serious infections
ERA ¹⁴¹	PBO + MTX	RCT	12 months	22/217 (10)	NR	NR 2 malignancies (bladder cancer, colon cancer). Infections requiring hospitalisation/intravenous antibiotics in <3%
	ETN + PBO	RCT	12 months	10/207 (5)	NR	NR 3malignancies (carcinoid lung cancer, Hodgkin's disease and prostate cancer) Infections requiring hospitalisation/intravenous antibiotics in <3%

Trial name / Author, year	Treatment arms for which data extraction performed	RCT/ LTE phase	Assessment time point	Discontinuation due to adverse event(s), nN (%)	Number of patients experiencing 1 or more adverse	Number of patients experiencing 1 or more serious adverse event, nN (%)
ERA ¹⁴¹	PBO + MTX	LTE	2 years	27/217 (12)	NR	NR 9 patients had infections requiring hospitalisation/intravenous antibiotics 3 malignancies
	ETN + PBO	LTE	2 years	15/207 (7)	NR	NR 7 patients had infections requiring hospitalisation/intravenous antibiotics 4 malignancies
GO-	PBO + MTX	RCT	24 weeks	2/160 (1.3)	116/160 (72.5)	11/160 (6.9) (NR for extracted treatment arm)
BEFORE ⁹⁰	GOL + MTX	RCT	24 weeks	6/158 (3.8)	129/158 (81.6)	10/185 (5.4) (NR for extracted treatment arm)
GO-BEFORE	PBO + MTX	LTE	Week 104	NR	NR	N/A
146	GOL + MTX	LTE	Week 104	NR	NR	13.7% (NR)
ASPIRE ⁷¹	PBO + MTX	RCT	54 weeks	9/298 (3.0)	NR	2/291 (0.7) (myocardial infarction)
	IFX + MTX	RCT	54 weeks	34/373 (9.1)	NR	16/372 (4.3) (pneumonia, myocardial infarction, asthma, 3 TB, 2 infusion reactions)
Durez 2007 ¹⁴²	MTX	RCT	52 weeks	0/14	0/14	0/14
	MP+ MTX	RCT	52 weeks	0/15	0/15	0/15
	IFX + MTX	RCT	52 weeks	1/15 (6.7)	1/15 (6.7)	1/15 (6.7) 1 case of MTX-related pneumonitis
Quinn 2005 ¹¹⁰	PBO + MTX	LTE	104 weeks	0/10	NR	NR
	IFX + MTX	LTE	104 weeks	1/10 (10)	NR	NR 1 cutaneous vasculitis (after single injection; withdrawn)

Trial name / Author,	Treatment arms for which data extraction	RCT/ LTE	Assessment time point	Discontinuation due to adverse	Number of patients	Number of patients experiencing 1 or more serious adverse event, nN (%)
year	performed	pnase		event(s), mix (%)	more adverse	
					event, nN, (%)	
ATTEST ⁷⁴	PBO+MTX	RCT	Day 197	1/110 (0.9)	92/110 (83.6)	13/110 (11.8) (type NR)
	IFX + MTX	RCT	Day 197	8/165 (4.8)	140/165 (84.8)	19/165 (11.5) (type NR)
	ABT + MTX	RCT	Day 197	2/156 (1.3)	129/156 (82.7)	8/156 (5.1) (type NR)
ATTEST ⁷⁴	1) PBO+MTX	RCT	Day 365	-	-	-
	2) IFX + MTX	RCT	Day 365	12/165 (7.3)	154/165 (93.3)	30/165 (18.2) (type NR)
	3) ABT + MTX	RCT	Day 365	5/156 (3.2)	139/156 (89.1)	15/156 (9.6) (type NR)
AMPLE ⁶⁶	ABT s.c.	RCT	1 year	11/318 (3.5)	280/318 (88.1)	32/318 (10.1)
						7 serious infections (3 pneumonia, 2 urinary
						tract infection, 1 gastroenteritis, 1 helicobacter
						gastritis), 5 malignancies (2 squamous cell
						carcinoma of skin, 1 lymphoma, 1 prostate
						cancer, 1 squamous cell carcinoma of lung), 1
						psoriasis, 1 erythema nodosum, 1
						leukocytoclastic vasculitis, 2 Raynaud's
						phenomenon, 1 cutaneous lymphocytic
						vasculitis, 1 episcleritis, 1 Sjogren's syndrome
	ADA	RCT	1 year	20/328 (6.1)	283/328 (86.3)	30/328 (9.1)
						9 serious infections (2 pneumonia, 3 bacterial
						arthritis, 1 chest wall abscess, 1 diverticulitis, 1
						meningitis, 1 staphylococcal bursitis), 4
						malignancies (2 basal cell carcinoma, 1 small
						cell lung cancer, 1 transitional cell carcinoma),
						1 psoriasis, 1 erythema nodosum, 1 Raynaud's
114						phenomenon, 1 anti-dsDNA seropositivity
REDSEA ¹¹⁴	ADA + cDMARDs	RCT	12 months	10/60 (16.7)	NR	6/60 (10)
						There were two deaths,
						both occurring in patients allocated

 Table 387:
 Adverse events and discontinuations due to adverse events: Population 2/3 head to head biologic RCTs

Trial name / Author,	Treatment arms for which data extraction	RCT/ LTE	Assessment time point	Discontinuation due to adverse	Number of patients	Number of patients experiencing 1 or more serious adverse event, nN (%)
year	performed	phase		event(s), nN (%)	experiencing I or	
					more adverse $(9/)$	
	ETN50+cDMARDs	RCT	12months	12/60 (20)	event, nN, (%)	adalimumab and resulting from ischaemic heart disease, one occurred a week after drug withdrawal other events possibly related to therapy were acute cholecystitis (adalimumab) 1 ovarian cancer 7/60 (11.6) n=1 diagnosed with heart failure 2 weeks after drug withdrawal: an event believed to be possibly related to the treatment events possibly related to therapy
						a patient hospitalised with chest symptoms 1 acute myeloid leukaemia group not specified Other serious adverse events included hospitalisation for: a ruptured popliteal cyst; chest symptoms; syncope; suspected femoral fracture; angioedema and urticaria; stillbirth from pregnancy while on treatment, and cellulitis.
ADACTA ³⁸	TCZ + s.c. PBO	RCT	24 weeks	9/163 (5.5)	133/162 (82.1)	19/162 (12) (including infections, 2 myocardial infarction/acute coronary

Trial name / Author, year	Treatment arms for which data extraction performed	RCT/ LTE phase	Assessment time point	Discontinuation due to adverse event(s), nN (%)	Number of patients experiencing 1 or more adverse event, nN, (%)	Number of patients experiencing 1 or more serious adverse event, nN (%)
						syndrome, 1 stroke, 1 cancer)
	ADA + i.v. PBO	RCT	24 weeks	10/163 (6.1)	134/162 (82.7)	16/162 (10) (including infections, 2 myocardial infarction/acute coronary syndrome, 1 stroke, 1 cancer, 1 hypersensitivity reaction)

				Di di di		
Trial name /	Treatment arms for which	RCI7 LTE	Assessment	Discontinuation	Number of	Number of patients experiencing 1
Author, year	data extraction performed	phase	time point	due to adverse	patients	or more serious adverse event, nN
				event(s), nN (%)	experiencing 1	(%)
					or more	
					adverse event,	
					nN, (%)	
$\operatorname{AIM}^{61,62}$	PBO + MTX	RCT	12 months	1.8	184/219 (84.0)	26/219 (11.9)
						Related to study drug $n=1$ (0.5%)
						Discontinuations due to serious
						adverse events $3(1.4)$
						Musculoskeletal and connective
						tissue disorders 10 (4.6)
						Infections 5 (2.3)
						Nervous system disorders 4 (1.8)
						Cardiac disorders) 2 (0.9)
						Neoplasms (benign, malignant, and
						unspecified) 2 (0.9)
	ABT i.v.+ MTX	RCT	12 months	4.2	378/433 (87.3)	65/433(15.0)
						Related to study drug 15 (3.5)
						Discontinuations due to serious
						adverse events 10 (2.3)
						Musculoskeletal and connective
						tissue disorders 20 (4.6)
						Infections 17 (3.9)
						Nervous system disorders 6 (1.4)
						Cardiac disorders 4 (0.9))
						Neoplasms (benign, malignant, and
						unspecified) 4 (0.9)
AIM ⁶⁴	ABT i.v.+ MTX 2 years	LTE	2 years	38/593 (6.4)	550/593 (92.6)	149/593 (25.1)
	or					"Excluding worsening of arthritis,
	MTX+PBO 1 year then					the most frequent
	ABTi.v.+ MTX 1 year					SAEs were osteoarthritis,

 Table 388:
 Adverse events and discontinuations due to adverse events: Population 2/3 RCTs of biologic interventions vs. DMARD(s) or PBO

Trial name / Author, year	Treatment arms for which data extraction performed	RCT/ LTE phase	Assessment time point	Discontinuation due to adverse	Number of patients	Number of patients experiencing 1 or more serious adverse event, nN
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1	- I	event(s), nN (%)	experiencing 1	(%)
					or more	
					adverse event,	
					nN, (%)	
						pneumonia, basal cell carcinoma,
						and chest pain, all of which occurred $in > 0.5\%$ of
						III >0.5% 01
						period"
AIM ⁶⁵	ABTi.v.+ MTX 2 years	LTE	3 years	n=55	569/593 (96)	NR
	or					
	MTX+PBO 1 year then					
. ~ ~72	ABTi.v.+ MTX 1 year					
ASSET ⁷²	PBO + MTX	RCT	4 months	0/23	14/23 (60.9)	2/23 (8.7)
						1 atrial fibrillation, 1 study drug
		PCT	1 months	0/27	20/27(74.1)	0/27
	ADT I.V. + WTA	KC1	4 monuis	0/27	20/27 (74.1)	0/27
ASSET ⁷²	ABT i.v. + MTX	LTE	1 year	0/49	41/49 (83.7)	6/49 (12.2)
						1 pneumonia, 1 hyperthyroidism and
						post-operative wound infection (in
						same patient), I study drug overdose
						and coronary artery disease (in same
						worsening of RA 1 depression
AUGUST II ⁷⁶	PBO + MTX	38 week	38 weeks	2 /76 (2.6)	38/76 (50)	NR
		follow-up				
		of 26 week				
		RCT				
		treatment				
	ADA + MTX	38 week	38 weeks	2/79 (2.5)	50 /79(63)	NR

Trial name /	Treatment arms for which	RCT/ LTE	Assessment	Discontinuation	Number of	Number of patients experiencing 1
Author, year	data extraction performed	phase	time point	due to adverse	patients	or more serious adverse event, nN
				event(s), nN (%)	experiencing 1	(%)
					or more	
					adverse event,	
		follow up			IIIN, (70)	
		of 26 week				
		PCT				
		treatment				
CHANGE ⁸⁰	PBO	RCT	24 weeks	4/87 (4 6)	71/87 (81.6)	8/87 (9.2)
CHINGE	ADA monotherapy	RCT	24 weeks	$\frac{4}{9}(4,0)$	90/91 (98.9)	17/91 (18 7)
	71D77 monotilerapy	KC1	24 WEEKS	12/)1(13.2)	<i>J</i> 0/ <i>J</i> 1 (<i>J</i> 0. <i>J</i>)	1 death
						others not specified
DE019 ⁸⁴	PBO + MTX	RCT	52 weeks	NR	NR/200 (90 5)	NR
DECTY		nor	52 WOORS		1111200 (5010)	2 malignancies
						others not specified
	ADA+MTX	RCT	52 weeks	NR	NR	NR
ASSURE ⁷³	PBO + cDMARDs	RCT	1 year	18/418 (4.3)	360/418 (86.1)	51/418 (12.2)
			2			7 serious infections, 16 neoplasms
						and the following serious infections:
						4 respiratory, 1 dermatologic, 1
						urinary, 1 gastrointestinal, 1
						gynaecologic, 2 opportunistic)
	ABT + cDMARDs	RCT	1 year	43/856 (5.0)	768/856 (89.7)	100/856 (11.7)
						22 serious infections, 27 neoplasms
						and the following serious infections:
						9 respiratory, 5 dermatologic, 4
117						urinary, 2 gastrointestinal)
STAR ¹¹⁷	PBO + cDMARDs	RCT	24 weeks	8/318 (2.5)	263/318 (82.7)	22/318 (6.9)
				(of which 1		n=6 serious infections
				considered non-		others not specified
				treatment related)		severe or life-threatening AEs

Trial name / Author, year	Treatment arms for which data extraction performed	RCT/ LTE phase	Assessment time point	Discontinuation due to adverse event(s), nN (%)	Number of patients experiencing 1 or more adverse event, nN, (%)	Number of patients experiencing 1 or more serious adverse event, nN (%)
	ADA+cDMARDs(STAR ¹¹⁷) n=318	RCT	24 weeks	9 /318 (2.8)	275/318 (86.5)	49/318 (15.4) 17/318 (5.3) n=4serious infections 1 death 1 malignancy others not specified severe or life-threatening AEs 38/318 (11.9)
van de Putte	PBO s.c.	RCT	26 weeks	1/110 (0.9)	105/110 (95.5)	16/110 (14.5%)
2004 ¹²²	ADA mon	RCT	26 weeks	6/113 (5.3)	NR	11.5% (nN NR)
ARMADA ^{69 70}	PBO + MTX	RCT	24 weeks	2/62 (3.2)	NR	NR
	ADA+MTX	RCT	24 weeks	0/67	NR	NR
Kim 2007 ⁹⁹	PBO + MTX	RCT	24 weeks	NR	82.5% (possibly related to study drug 28.6%)	6/63 (9.5) nr
	ADA+MTX	RCT	24 weeks	NR	84.6% (possibly related to study drug 26.2%)	7/65 (10.7) The number of serious AEs (SAEs) reported was comparable between the adalimumab group and the placebo group . Three of the seven SAEs reported in the adalimumab group were of infectious aetiology (2 pneumonia and 1 disseminated tuberculosis), one was

Trial name /	Treatment arms for which	RCT/ LTE	Assessment	Discontinuation	Number of	Number of patients experiencing 1
Author, year	data extraction performed	phase	time point	due to adverse	patients	or more serious adverse event, nN
				event(s), nN (%)	experiencing 1	(%)
					or more	
					adverse event,	
					nN, (%)	
						a complication due to the SAE of
						pneumonia (acute respiratory
						distress syndrome), and the other
						was vasovagal
						attack.
						One death in the adalimumab
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						treatment group
CERTAIN	PBO + cDMARDs	RCT	24 weeks	NR	67.3% (n/N	7.1%
					NR)	Serious infections in 1.0%
	CTZ + DMARDs	RCT	24 weeks	NR	68.8%	5.2%
						Serious infections in 5.2%
ADORE ^{39,00}	ETN mon	RCT	16 weeks	13/159 (8.2)	100/159 (62.9)	8/159 (5.0)
						NR
						These events represented various
						organ systems and did not indicate
						clustering of any single event. None
						of the serious adverse events were
						considered to be related to ETN or
						MTX, with the exception of three
						events in two patients (one patient
						from each treatment group). One
						case of dizziness and one case of
						blurred vision in the same patient
						were considered to be related to
						ETN, although these were not
						considered by the investigator to be
						due to demyelinating disease. One

Trial name /	Treatment arms for which	RCT/ LTE	Assessment	Discontinuation	Number of	Number of patients experiencing 1
Author, year	data extraction performed	phase	time point	due to adverse	patients	or more serious adverse event, nN
				event(s), nN (%)	experiencing 1	(%)
					or more	
					nN, (%)	
						case of
						dyspnoea was considered to be
						related to ETN plus MTX
						treatment."
ADORE ⁵⁹	ETN+MTX	RCT	16 weeks	9/155 (5.8)	109/155 (70.3)	7/155 (4.5)
CREATE IIb ⁹⁶	DMARD+PBO	RCT	24 weeks	9.2%	NR	NR
	n=65					
	ETN50 + DMARD n=64	RCT	24 weeks	3.1%	NR	NR
ETN309° ⁹	SSZ+PBO	RCT	24 weeks	due to SAE	NR	NR
				1/50	non-infectious	non-infectious SAEs
					AEs	1/50 (2%)
		DOT	24 1		29/50 (58)	ND
	EIN + PBO	RCT	24 weeks	due to SAE	NR	NR
				1/103	non-infectious	non-infectious SAEs
					AES $74/102(71.8)$	3/103 (2.9)
		DCT	24	due to CAE	/4/105 (/1.8)	ND
	EIN + SSZ	KCI	24 weeks	due to SAE	III non infactious	INK
				1/101		5/101 (5)
					ALS $72/101 (71.3)$	5/101 (5)
FTN309 ⁸⁹	SS7_PBO	RCT	2 vears	NR	NR	2/50 (4)
LINGO	5527100	KC1	2 years		non-infectious	"There was no clustering of SAF In
					AFs	the 2 years of the study 23 patients
					TEAE	receiving the combination 27
					32/50 (64)	receiving etanercent
						and two receiving SSZ had one or
						more SAE. Non-infectious SAE

Trial name /	Treatment arms for which	RCT/ LTE	Assessment	Discontinuation	Number of	Number of patients experiencing 1
Author, year	data extraction performed	phase	time point	due to adverse	patients	or more serious adverse event, nN
				event(s), nN (%)	experiencing 1	(%)
					or more	
					adverse event,	
					nN, (%)	
						were significantly greater in patients
						receiving
						etanercept (20.8% for the
						combination and 20.4% for
						etanercept alone) compared with 4%
						for patients receiving SSZ"
	ETN + PBO	RCT	2 years	NR	NR	27/103 (26.2)
					non-infectious	
					AEs	
					90/103 (87.4)	
	ETN + SSZ	RCT	2 years	NR	NR	23/101 (22.8)
					non-infectious	
					AEs	
144					80/101 (79.2)	
JESMR ¹⁴⁴	ETN monotherapy	RCT	52 weeks	4/71 (5.6)	NR	2/71 (2.8)
						2 bone fractures
	ETN + MTX	RCT	52 weeks	1/76 (13.1)	NR	7/76 (9.2)
						3 bone fractures, 1 congestive heart
						failure, 1 cellulitis (in same patient
						as one of the fractures), 1 herpes
						zoster, 1 brain haemorrhage, 1
101						mammary carcinoma
Lan 2004 ¹⁰¹	PBO+MTX	RCT	12 weeks	1/29 (3.4)	NR	NR
						1 bronchiolitis obliterans
	ETN+MTX	RCT	12 weeks	1/29 (3.4)	NR	NR
					Most frequently	1 viral pneumonia
					occurring AEs	

Trial name / Author year	Treatment arms for which data extraction performed	RCT/ LTE	Assessment	Discontinuation due to adverse	Number of natients	Number of patients experiencing 1 or more serious adverse event nN
riutior, year	unit extraction performed	phase	thic point	event(s), nN (%)	experiencing 1	(%)
					or more	
					adverse event,	
					nN, (%)	
					in line with SPC	
LARA ¹⁰²	MTX + DMARD	RCT	24 weeks	NR	97/142 (68.3)	2/142 (1.4)
						NR
	ETN50+MTX	RCT	24 weeks	NR	193/281 (68.7)	10/281 (3.6)
111						NR
RACAT ¹¹¹	MTX + SSZ + HCQ on treatment analysis n=222 (some patients exposed to both treatments throughout trial)	RCT including cross-over	48 weeks	12/222 (5.4)	170/222 (76.6)	25/222 (11.3) some patients counted in more than one event, n= Cardiac disorders 4 Gastrointestinal disorders 5 Infections and infestations 4 Renal and urinary disorders 1 Respiratory, thoracic and mediastinal disorders 4 Surgical and medical procedures 3 Vascular disorders 3 Other (events occurring fewer than 3 times) 9
	ETN50 + MTX on treatment analysis n=219 (some patients exposed to both treatments throughout trial)	RCT including cross-over	48 weeks	5/219 (2.3)	165/219 (75.3)	26/219 (11.9) some patients counted in more than one event, n= Cardiac disorders 1 Gastrointestinal disorders 4 Infections and infestations 12 Renal and urinary disorders 3 Respiratory, thoracic and

Trial name /	Treatment arms for which	RCT/ LTE	Assessment	Discontinuation	Number of	Number of patients experiencing 1
Author, year	data extraction performed	phase	time point	due to adverse	patients	or more serious adverse event, nN
				event(s), nN (%)	experiencing 1	(%)
					or more	
					nN, (%)	
						mediastinal disorders 1
						Surgical and medical procedures 5
						Vascular disorders 4
						Other (events occurring fewer than 3
		D.CTT				times) 9
Weinblatt 1999 ¹²⁴	PBO + MTX	RCT	24 weeks	1/30 (3.3)	NR	NR
	ETN + MTX	RCT	24 weeks	2/59 (3.4)	NR	NR
APPEAL 67,68	MTX + DMARD (SSZ, HCQ	RCT	16 weeks	8/103 (7.8)	79/103 (77)	3/103 (3)
	or LEF)					1 infection/infestation, 2 increased
						alanine aminotransferase
	ETN + MTX	RCT	16 weeks	3/197 (1.5)	134/197 (68)	6/197 (3)
						1 cardiac disorder, 1 gastrointestinal
						disorder, 1 general disorder, 3
						infections and infestations, 2
						poisoning and procedural
		DOT	24 1	ND		complications
GO-FORTH ²⁴	PBO + MTX	RCT	24 weeks	NR	6//88 (/6.1)	
		DCT	24	ND	70/96(91.4)	1 intervertebral disc protrusion
	GOL + MIX	KUI	24 weeks	NK	/0/80 (81.4)	2/80 (2.5) 1 ilous 1 hone neonlasm (horderline
						or low malignancy potential)
GO-	PBO + MTX	RCT	24 weeks	5/133 (3.8)	89/134 (66 4)	5/134(3.7) (type NR)
FORWARD ⁹²	GOL + MTX	RCT	24 weeks	2/89 (2 3)	87/212	9/212
			21 00000	2,09 (2.3)	(41.0)	(4.2) (type NR)
GO-	PBO + MTX	RCT	52 weeks	8/133 (6.0)	98/133 (73.7)	6/133 (4.5) (type NR)

Trial name / Author, year	Treatment arms for which data extraction performed	RCT/ LTE phase	Assessment time point	Discontinuation due to adverse event(s), nN (%)	Number of patients experiencing 1 or more adverse event, nN, (%)	Number of patients experiencing 1 or more serious adverse event, nN (%)
FORWARD 92	GOL + MTX	RCT	52 weeks	7/212 (3.3)	167/212 (78.8)	17/212 (8.0) (type NR)
Kay 2008 ⁹⁸	IFX + MTX (PBO group crossed over to IFX at week 20)	RCT	52 weeks	3/25 (12.0)	16/25 (64.0)	3/25 (12.0) (type NR)
	GOL + MTX		52 weeks	4/37 (10.8)	34/37 (91.9)	7/37 (18.9) (type NR)
Abe 2006 ⁵⁶	PBO + MTX	RCT	14 weeks	1/47 (2.1)	NR	1/47 (2.1) (type NR for extracted arm)
	IFX + MTX	RCT	14 weeks	1/49 (2.0)	NR	0
Abe 2006 ⁵⁶	PBO group crossover to IFX	LTE	To week 36 of LTE	9/41 (22.0)	NR	6/41 (14.6) (type NR for extracted arm)
	IFX + MTX	LTE	To week 36 of LTE	4/49 (8.2)	NR	2/49 (4.1) (type NR for extracted arm)
ATTRACT ¹⁴⁹	PBO + MTX	RCT	54 weeks	7/88 (8.0)	94%	18/86 (21) (type NR)
	IFX + MTX	RCT	54 weeks	5/86 (5.8)	NR	10/88 (11) (type NR)
ATTRACT ³²⁸	PBO + MTX	LTE	102 weeks	NR	NR	28/NR(33) (type NR)
	IFX + MTX	LTE	102 weeks	NR	NR	29/NR (33) (type NR)
START ¹¹⁸	PBO + MTX	RCT	22 weeks	5/361 (1.4)	239/361 (66.2)	27/361 (7.5) 1 fever, 1 osteoarthritis, 4 rheumatoid arthritis
	IFX + MTX	RCT	22 weeks	0/360	251/360 (69.7)	28/360 (7.8) 2 pneumonia, 1 cellulitis, 1 chest pain, 2 osteoarthritis, 1 cardiac failure, 1 myocardial infarction, 2 uterine fibroid, 1 rheumatoid arthritis
START ¹¹⁸	IFX + MTX	LTE	54 weeks	NR	211/244 (86.5)	39/244 (16.0)
Trial name /	Treatment arms for which	RCT/ LTE	Assessment	Discontinuation	Number of	Number of patients experiencing 1
---------------------------	---------------------------	----------	------------	------------------	----------------	-------------------------------------
Author, year	data extraction performed	phase	time point	due to adverse	patients	or more serious adverse event, nN
				event(s), nN (%)	experiencing 1	(%)
					or more	
					adverse event,	
					nin, (%)	5 mouranial active TD 1 abaaaa
						2 pyelonephritis
Swefot ¹¹⁹	SSZ + HCQ + MTX	RCT	24 months	22/130 (17.0)	NR/130 (45)	SAEs=1 (1) (generalised symptoms)
	IFX + MTX	RCT	24 months	19/128 (14.8)	NR/128 (38)	SAEs=2 (2) (persistent fever and
107						generalised symptoms)
Zhang 2006 ¹²⁷	PBO + MTX	RCT	18 weeks	4/86 (4.7)	48/86 (55.8)	NR
	IFX + MTX	RCT	18 weeks	6/87 (6.9)	57/87 (65.5)	NR
ACT-RAY ¹⁵⁵	TCZ + oral PBO	RCT	52 weeks	NR	228/276 (82.6)	26/276 (9.4)
	TCZ + MTX	RCT	52 weeks	NR	NR/277 (81.9)	24/277 (8.7)
Nishimoto	PBO i.v.	RCT	12 weeks	4/53 (7.5)	NR/53 (56)	2/53 (3.8) (type NR)
$2004^{106}$	TCZ	RCT	12 weeks	2/55 (3.6)	NR/55 (51)	NR for TCZ 8 mg/kg
STREAM	PBO i.v.	LTE	To year 5	-	-	-
(LTE of	TCZ	LTE	To year 5	32/143 (22.4)	NR	77/143 (53.8) (including joint
Nishimoto						surgery N=20 (most common),
2004) 329						pneumonia N=9, herpes zoster N=7,
						tendon rupture N=5, humerus
						fracture N=4, acute bronchitis N=2)
SAMURA ¹¹⁵ I	cDMARDs	RCT	52 weeks	5/145 (3.5)	NR/145 (82)	NR/145 (13)
						only serious infections listed, not
						other SAEs
						8 serious
						infections were reported: 3 (2.1%)
						patients with gastroenteritis,
						2 (1.4%) with pneumonia, and 1
						(0.7%) each with upper
						respiratory tract infection, herpes

Trial name / Author, year	Treatment arms for which data extraction performed	RCT/ LTE phase	Assessment time point	Discontinuation due to adverse event(s), nN (%)	Number of patients experiencing 1 or more adverse event, nN, (%)	Number of patients experiencing 1 or more serious adverse event, nN (%)
	TCZ	RCT	52 weeks	17/157 (10.8)	NR/157 (89)	zoster and sepsis NR/157 (18) only serious infections listed, not other SAEs 12 serious infections were reported: 3 (1.9%) patients with pneumonia, 2 (1.3%) with upper respiratory tract infection, 2 (1.3%) with cellulitis, 1 (0.6%) each with gastroenteritis, herpes zoster, herpes simplex, perianal abscess
SATORI ¹¹⁶	PBO i.v. + MTX	RCT	24 weeks	3/64 (4.7)	46/64 (71.9) (104 AEs)	3/64 (4.7) (1 pneumonia, 1 spinal compression fracture, 1 femoral neck fracture)
	TCZ + PBO capsules	RCT	24 weeks	2/61 (3.3)	56/61 (91.8%) (211 AEs)	4/61 (6.6) (1 pneumonia, 1 infectious arthritis, 1 colonic polyp, 1 headache)
TOWARD ¹²¹	PBO + stable cDMARDs	RCT	24 weeks	8/414 (1.9)	253/414 (61.1)	18/414 (4.3) (related SAE=6 (1.4) type NR)
	TCZ + stable DMARDs	RCT	24 weeks	31/802 (3.9)	584/802 (72.8)	54/802 (6.7) (related SAE=23 (2.9) type NR)
TACIT ¹²⁰	1) Combination cDMARDs	RCT	6 months	10/104 (9.6)	NR	8/104 (7.7) 2 cardiovascular, 3 genitourinary, 1 haematological, 2 respiratory
	2) TNFi + DMARD	RCT	6 months	6/101 (5.9)	NR	6/101 (5.9)

Trial name / Author, year	Treatment arms for which data extraction performed	RCT/ LTE phase	Assessment time point	Discontinuation due to adverse event(s), nN (%)	Number of patients experiencing 1 or more adverse event, nN, (%)	Number of patients experiencing 1 or more serious adverse event, nN (%)
						1 cardiovascular, 2 digestive, 1 endocrine/metabolic, 1 nervous system, 1 respiratory
TACIT ¹²⁰	1) Combination cDMARDs	LTE (after switching)	12 months	NR	NR	10/104 (9.6) 2 cardiovascular, 3 genitourinary, 1 haematological, 1 nervous system, 3 respiratory
	2) TNFi + DMARD	LTE (after switching)	12 months	NR	NR	18/101 (17.8) 2 cardiovascular, 4 digestive, 1 ear, nose and throat, 1 endocrine/metabolic, 1 genitourinary, 1 haematological, 1 musculoskeletal, 2 nervous system, 3 respiratory, 2 skin

Trial name / Author, year	Treatment arms for which data extraction performed	RCT/ LTE phase	Assessment time point	Number of patients experiencing 1 or more infection (nN) (%)	Number of patients experiencing 1 or more serious infection nN (%)	Number of patients experiencing any infection requiring antibiotics nN (%)	Number of patients experiencing 1 or more malignancy nN (%)	Number of patients experiencing 1 or more injection-site reaction (s.c. administration) nN (%)	Number of patients experiencing 1 or more infusion-related reaction (i.v. administration) nN (%)
GUEPARD ⁹³	Initial MTX 12 weeks, then step-up therapy in both groups based on DAS28	RCT	52 weeks	NR	1/32 (3)	NR	0	NR	NA
	Initial ADA+MTX 12 weeks, then step-up therapy in both groups based on DAS28	RCT	52 weeks	NR	2/33 (6)	NR	2/33 (6)	NR	NA
HIT HARD ⁹⁴	MTX + PBO for 24 weeks followed by OL MTX for 24 weeks	LTE	48 weeks	10/85 (11.8)	4/85 (4.7)	NR	3/85 (3.5)	4/85 (4.7)	NR
	ADA + MTX for 24	LTE	48 weeks	16/87 (18.4)	3/87 (3.4)	NR	0/87	14/87 (16.1)	NR

 Table 389:
 Specific categories of adverse events: Population 1 RCTs of biologic interventions vs. DMARD(s) or PBO

Trial name / Author, year	Treatment arms for which data extraction performed	RCT/ LTE phase	Assessment time point	Number of patients experiencing 1 or more infection (nN) (%)	Number of patients experiencing 1 or more serious infection nN (%)	Number of patients experiencing any infection requiring antibiotics nN (%)	Number of patients experiencing 1 or more malignancy nN (%)	Number of patients experiencing 1 or more injection-site reaction (s.c. administration) nN (%)	Number of patients experiencing 1 or more infusion-related reaction (i.v. administration) nN (%)
	weeks followed by OL MTX for 24 weeks								
OPERA ¹⁰⁷	PBO + MTX + steroid	RCT	12 months	NR	3/91 (3.3)	NR	2/91 (2.2)	NR	NR
	ADA + MTX + steroid	RCT	12 months	NR	3/89 (3.4)	NR	3/89 (3.4)	NR	NR
PREMIER ¹⁰⁹	ADA (all patients who received $\geq 1$ dose)	LTE	5 years	NR	3.3 events per 100 patient- years (nN NR)	NR	11/497 (2.2)	NR	NR
COMET ⁸¹	PBO + MTX	RCT period 1, 52 weeks	52 weeks	8/268 (3.0)	NR	NR	4/268 (1.5)	NR	NR
	ETN+MTX	RCT period 1, 52 weeks	52 weeks	5/274 (1.8)	NR	NR	4/274 (1.5)	NR	NR
COMET ⁸²	MTX in year 1 MTX in year 2	RCT period 2	Weeks 52- 104	NR	2/99 (2.0%)	NR	3/99 (3.0%)	NR	NR

Trial name / Author, year	Treatment arms for which data extraction performed	RCT/ LTE phase	Assessment time point	Number of patients experiencing 1 or more infection (nN) (%)	Number of patients experiencing 1 or more serious infection nN (%)	Number of patients experiencing any infection requiring antibiotics nN (%)	Number of patients experiencing 1 or more malignancy nN (%)	Number of patients experiencing 1 or more injection-site reaction (s.c. administration) nN (%)	Number of patients experiencing 1 or more infusion-related reaction (i.v. administration) nN (%)
COMET ⁸¹	MTX year 1 ETN+MTX in year 2	RCT period 2	Weeks 52- 104	NR	1/90 (1.1)	NR	5/90 (5.6)	NR	NR
COMET ⁸¹	ETN+MTX in year 1 ETN+MTX in year 2	RCT period 2	Weeks 52- 104	NR	1/111 (0.9)	NR	0 (0)	NR	NR
COMET ⁸¹	ETN+MTX in year 1 ETN in year 2	RCT period 2	Weeks 52- 104	NR	2/111 (1.8)	NR	1/111 (0.9)	NR	NR
ERA ¹⁴¹	PBO + MTX	RCT	12 months	NR	NR	<3%	2/217 (0.9)	16/217 (7.4)	NR
	ETN + PBO	RCT	12 months	NR	NR	<3%	3/207 (1.4)	77/207 (37.2)	NR
ERA ¹⁴¹	PBO + MTX	LTE	2 years	NR	9/217 (4.1)	NR	3/217 (1.4)	19/217 (8.8)	NR
	ETN + PBO	LTE	2 years	NR	7/207 (3.4)	NR	4/207 (1.9)	81/207 (39.1)	NR
GO- BEFORE ⁹⁰	PBO + MTX	RCT	24 weeks	52/160 (32.5)	3/160 (1.9)	NR	2/160 (1.3)	3/160 (1.9)	NA
	GOL +	RCT	24 weeks	54/158 (34.2)	2/158 (1.3)	NR	1/158 (0.6)	7/158 (4.4)	NA

Trial name / Author, year	Treatment arms for which data extraction performed	RCT/ LTE phase	Assessment time point	Number of patients experiencing 1 or more infection (nN) (%)	Number of patients experiencing 1 or more serious infection nN (%)	Number of patients experiencing any infection requiring antibiotics nN (%)	Number of patients experiencing 1 or more malignancy nN (%)	Number of patients experiencing 1 or more injection-site reaction (s.c. administration) nN (%)	Number of patients experiencing 1 or more infusion-related reaction (i.v. administration) nN (%)
	MTX								
GO- BEFORE ¹⁴⁶	PBO + MTX	LTE	Week 104	NR	NR	NR	2 (no N provided, assumed N=160)	NR	NR
	GOL + MTX	LTE	Week 104	NR	5.5%	NR	6 (no N provided, assumed N=158)	NR	NR
ASPIRE ⁷¹	PBO i.v. + MTX	RCT	54 weeks	NR	21/372 (5.6)	NR	0	N/A	20/291 (6.9)
	IFX + MTX	RCT	54 weeks	NR	6/291 (2.1) ^a	NR	0	N/A	79/372 (21.2) (2 classed as serious)
Durez	MTX	RCT	52 weeks	14/14 (100)	0/14	NR	NR	NR	NR
2007 ¹⁴²	MTX + MP	RCT	52 weeks	12/15 (80)	0/15	NR	NR	NR	NR
	IFX + MTX	RCT	52 weeks	12/15 (80)	1/15 (6.7)	NR	NR	NR	NR
Quinn 2005 ¹¹⁰	PBO + MTX	LTE	104 weeks	NR	NR	NR	NR	NR	0/10
	IFX + MTX	LTE	104 weeks	NR	NR	NR	NR	NR	1/10 (10%)

Trial name / Author, year	Treatment arms for which data extraction performed	RCT/ LTE phase	Assessment time point	Number of patients experiencing 1 or more infection nN (%)	Number of patients experiencing 1 or more serious infection nN (%)	Number of patients experiencing any infection requiring antibiotics nN (%)	Number of patients experiencing 1 or more malignancy nN (%)	Number of patients experiencing 1 or more injection-site reaction (s.c. administration) nN (%)	Number of patients experiencing 1 or more infusion-related reaction (i.v. administration) n/N (%)
ATTEST ⁷⁴	PBO+MTX	RCT	Day 197	NR	3/110 (2.7)	NR	1/110 (0.9)	N/A	10.0%
	IFX + MTX	RCT	Day 197	NR	7/165 (4.2)	NR	2/165 (1.2)	N/A	18.2%
	ABT + MTX	RCT	Day 197	NR	2/156 (1.3)	NR	1/156 (0.6)	N/A	5.1%
ATTEST ⁷⁴	PBO+MTX	RCT	Day 365	-	-	-	-	-	-
	IFX + MTX	RCT	Day 365	NR	14/165 (8.5)	NR	2/165 (1.2)	N/A	41/165 (24.8)
	ABT + MTX	RCT	Day 365	NR	3/156 (1.9)	NR	1/156 (0.6)	N/A	11/156 (7.1)
AMPLE ⁶⁶	ABT s.c.	RCT	2 years	63.2%	7/318 (2.2)	NR	5/318 (1.6)	12/318 (3.8)	NA
	ADA	RCT	2 years	61.3%	9/328 (2.7)	NR	4/328 (1.2)	30/328 (9.1)	NA
REDSEA ¹¹⁴	ADA + cDMARDs	RCT	12 months	NR	NR	NR	1/60 (1.7)	9/60 (15)	NA
	ETN50+cDMARDs	RCT	12 months	NR	NR	NR	1/60 (1.7)	19/60 (31.7)	NA
ADACTA ⁵⁸	TCZ + s.c. PBO	RCT	24 weeks	77/162 (47.5)	5/162 (3.1)	NR	1/162	NA	NR
	ADA + i.v. PBO	RCT	24 weeks	68/162 (42.0)	5/162 (3.1)	NR	1/162	NR	NA
ADACTA ⁵⁸	TCZ	LTE	To year 5	NR	25/143 (17.5) (pneumonia, herpes zoster, acute bronchitis, pyelonephritis)	NR	4/143 (2.8) (bladder cancer, breast cancer, large intestine carcinoma, intraductal papilloma).	NA	NR

 Table 390:
 Specific categories of adverse events: Population 2/3 head to head biologic RCTs

Trial name / Author, year	Treatment arms for which data extraction performed	RCT/ LTE phase	Assessmen t time point	Number of patients experiencin g 1 or more infection nN (%)	Number of patients experiencing 1 or more serious infection nN, (%)	Number of patients experiencin g any infection requiring antibiotics nN (%)	Number of patients experiencing 1 or more malignancy nN (%)	Number of patients experiencing 1 or more injection-site reaction (s.c. administration ) nN (%)	Number of patients experiencing 1 or more infusion- related reaction (i.v. administration ) nN (%)
AIM ⁶²	PBO + MTX	RCT	12 months	NR	5/219 (2.3)	NR	NR	NR	Acute infusional adverse events 37/219 (16.9)
	ABT i.v.+ MTX	RCT	12 months	NR	17/433 (3.9)	NR	NR	NR	Acute infusional adverse events 38/433(8.8)
AIM ⁶⁴	ABT i.v.+ MTX 2 years or MTX + PBO 1 year then ABT i.v.+ MTX 1 year	LTE	2 years	400/593 (67.5)	43/593 (7.3)	NR	NR	NR	NR
ASSET ⁷²	PBO + MTX	RCT	4 months	6/23 (26.1)	0/23	NR	0/23	NA	Acute infusion events: 4/23 (17.4) Peri-infusional events: 5/23 (21.7)

 Table 391:
 Specific categories of adverse events: Population 2/3 RCTs of biologic interventions vs. DMARD(s) or PBO

Trial name / Author, year	Treatment arms for which data extraction performed	RCT/ LTE phase	Assessmen t time point	Number of patients experiencin g 1 or more infection nN (%)	Number of patients experiencing 1 or more serious infection nN, (%)	Number of patients experiencin g any infection requiring antibiotics nN (%)	Number of patients experiencing 1 or more malignancy nN (%)	Number of patients experiencing 1 or more injection-site reaction (s.c. administration ) nN (%)	Number of patients experiencing 1 or more infusion- related reaction (i.v. administration ) nN (%)
	ABT i.v. + MTX	RCT	4 months	10/27 (37.0)	0/27	NR	0/27	NA	Acute infusion events: 0/27 Peri-infusional events: 4/27 (14.8)
ASSET ⁷²	ABT i.v. + MTX (OLE)	LTE	1 year	26/49 (53.1)	1/49 (2.0)	NR	0/49	NA	Acute infusion events: 2/49 (4.1) Peri-infusional events: 6/49 (12.2)
ASSURE ⁷³	PBO + cDMARDs	RCT	1 year	224/418 (53.6)	7/418 (1.7)	NR	NR	NR	NR
	ABT + cDMARDs	RCT	1 year	470/856 (54.9)	22/856 (2.6)	NR	NR	NR	NR
AUGUST II ⁷⁶	PBO + MTX	38 week follow-up of 26 week RCT treatment	38 weeks	NR	1/76 (1.3)	NR	NR	NR	NA
	ADA +	38 week	38 weeks	INK	5/19(3.8)	INK	INK	INK	INA

Trial name / Author, year	Treatment arms for which data extraction performed	RCT/ LTE phase	Assessmen t time point	Number of patients experiencin g 1 or more infection nN (%)	Number of patients experiencing 1 or more serious infection nN, (%)	Number of patients experiencin g any infection requiring antibiotics nN (%)	Number of patients experiencing 1 or more malignancy nN (%)	Number of patients experiencing 1 or more injection-site reaction (s.c. administration ) nN (%)	Number of patients experiencing 1 or more infusion- related reaction (i.v. administration ) nN (%)
	MTX	follow-up of 26 week RCT treatment							
CHANGE ⁸⁰	РВО	RCT	24 weeks	32/87 (36.8)	1/87 (1.1)	NR	2/87 (2.3)	2/87 (2.3)	NR
	ADA monotherap y	RCT	24 weeks	41/91 (45.1)	6/91 (6.6)	NR	0	28/91 (30.8)	NR
DE019 ⁸⁴	PBO + MTX	RCT	52 weeks	Upper respiratory tract infection 13.5% Infection 4.5%	NR	NR	0	n/200 (24%)	NR
	ADA + MTX	RCT	52 weeks	Upper respiratory tract infection 19.8%	NR	NR	Across both ADA groups, Four adalimumab- treated patients	n/207 (26%)	NR

Trial name / Author, year	Treatment arms for which data extraction performed	RCT/ LTE phase	Assessmen t time point	Number of patients experiencin g 1 or more infection nN (%)	Number of patients experiencing 1 or more serious infection nN, (%)	Number of patients experiencin g any infection requiring antibiotics nN (%)	Number of patients experiencing 1 or more malignancy nN (%)	Number of patients experiencing 1 or more injection-site reaction (s.c. administration ) nN (%)	Number of patients experiencing 1 or more infusion- related reaction (i.v. administration ) nN (%)
				Infection 7.2%			developed non- skin cancers, including non- Hodgkin's lymphoma, adenocarcinom a, testicular seminoma, and breast cancer (not stated which ADA group)		
STAR ¹¹⁷	PBO + cDMARDs	RCT	24 weeks	157/318 (49.4)	6/318 (1.9)	NR	0	37 (11.6%)	NA
	ADA + cDMARDs	RCT	24 weeks	166 (52.2%)	4 (1.3%)	NR	1/318 (0.3)	62 (19.5%) ^a	NA
van de Putte	PBO s.c.	RCT	26 weeks	NR	NR	NR	1/110 (0.9)	1/110 (0.9)	NA
2004 ¹²²	ADA monotherap y	RCT	26 weeks	NR	NR	NR	4/434 (0.9) (of all 4 ADA groups)	11/113 (9.7)	NA
ARMADA ^{69,7}	PBO + MTX	RCT	24 weeks	any infection NR	NR	NR	NR	pain 3.2% reaction 0%	NA

Trial name / Author, year	Treatment arms for which data extraction performed	RCT/ LTE phase	Assessmen t time point	Number of patients experiencin g 1 or more infection nN (%)	Number of patients experiencing 1 or more serious infection nN, (%)	Number of patients experiencin g any infection requiring antibiotics nN (%)	Number of patients experiencing 1 or more malignancy nN (%)	Number of patients experiencing 1 or more injection-site reaction (s.c. administration ) nN (%)	Number of patients experiencing 1 or more infusion- related reaction (i.v. administration ) nN (%)
	(n=62)			upper respiratory tract infection 9.7%					
	ADA + MTX (n=67)	RCT	24 weeks	any infection NR upper respiratory tract infection 14.9%	NR	NR	NR	pain 10.4% reaction 1.5%	NA
Kim 2007 ⁹⁹	PBO + MTX	RCT	24 weeks	n/63 (34.9)	NR	NR	0	NR	NR
	ADA + MTX	RCT	24 weeks	n/65 (36.9)	NR	NR	0	NR	NR
CERTAIN ⁷⁹	PBO + cDMARDs	RCT	24 weeks	NR	(n/N NR) 1.0%	NR	NR	NR	NR
	CTZ + DMARDs	RCT	24 weeks	NR	(n/N NR) 2.1%	NR	NR	NR	NR
ADORE ^{59,60}	ETN monotherap	RCT	16 weeks	39/159 (24.5)	2/159 (1.3)	NR	NR	NR	NR
	ETN +	RCT	16 weeks	50/155	1/155 (0.7)	NR	NR	NR	NR

Trial name / Author, year	Treatment arms for which data extraction performed	RCT/ LTE phase	Assessmen t time point	Number of patients experiencin g 1 or more infection nN (%)	Number of patients experiencing 1 or more serious infection nN, (%)	Number of patients experiencin g any infection requiring antibiotics nN (%)	Number of patients experiencing 1 or more malignancy nN (%)	Number of patients experiencing 1 or more injection-site reaction (s.c. administration ) nN (%)	Number of patients experiencing 1 or more infusion- related reaction (i.v. administration ) nN (%)
	MTX			(32.3)					
CREATE IIb ⁹⁶	PBO + DMARD	RCT	24 weeks	NR	0/65	NR	NR	NR	NR
	ETN50 + DMARD	RCT	24 weeks	NR	0/64	NR	NR	NR	NR
ETN309 ⁸⁹	SSZ + PBO	RCT	24 weeks	13/50 (26)	0	NR	0	1/50 (2)	NR
	ETN + PBO	RCT	24 weeks	47/103 (45.6) ^{a vs. SSZ}	2/103 (1.9)	NR	2/103 (1.9)	33/103 (32.0) a vs. SSZ	NR
	ETN + SSZ	RCT	24 weeks	31/101 (30.7) a vs. SSZ, a vs. ETN+PBO	0	NR	0	16/101 (15.8) ^a vs. SSZ a vs. ETN+PBO	NR
ETN309 ⁸⁹	SSZ + PBO	RCT	2 years	21/50 (42.0)	NR	NR	NR	2/50 (4.0)	NR
	ETN + PBO	RCT	2 years	76/103 (73.8) a vs. SSZ	NR	NR	NR	34/103 (33.0) a vs. SSZ	NR
	ETN + SSZ	RCT	2 years	60/101 (59.4) a vs. ETN+PBO	NR	NR	NR	21/101(20.8) ^a vs. SSZ	NR
JESMR ¹⁴⁴	ETN monotherap y	RCT	52 weeks	19/71 (26.8)	0/71	NR	NR	13/71 (18.3)	NR

Trial name / Author, year	Treatment arms for which data extraction performed	RCT/ LTE phase	Assessmen t time point	Number of patients experiencin g 1 or more infection nN (%)	Number of patients experiencing 1 or more serious infection nN, (%)	Number of patients experiencin g any infection requiring antibiotics nN (%)	Number of patients experiencing 1 or more malignancy nN (%)	Number of patients experiencing 1 or more injection-site reaction (s.c. administration ) nN (%)	Number of patients experiencing 1 or more infusion- related reaction (i.v. administration ) nN (%)
	ETN + MTX	RCT	52 weeks	21/76 (27.6)	2/76 (2.6)	NR	NR	7/76 (9.2)	NR
Lan 2004 ¹⁰¹	PBO + MTX	RCT	12 weeks	NR	NR	NR	NR	0/29	NR
	ETN + MTX	RCT	12 weeks	NR	NR	NR	NR	1/29 (3.5)	NR
LARA ¹⁰²	MTX + DMARD	RCT	24 weeks	31/142 (21.8)	0	NR	NR	NR	NR
	ETN50 + MTX	RCT	24 weeks	107/281 (38.1%) ^a	5/281 (1.8)	NR	NR	NR	NR
Moreland 1999 ¹⁰⁴	РВО	RCT	6 months	NR	NR	NR	NR	n/80 (13)	NR
Mathias 2000 ¹⁰⁵ data from Moreland 1999	ETN+PBO	RCT	6 months	NR	NR	NR	NR	n/78 (49) ^b	NR
RACAT ¹¹¹	MTX + SSZ + HCQ on treatment analysis n=222	RCT including cross- over	48 weeks	56/222 (25.2)	4/222 (1.8)	NR	NR	NR	NR

Trial name / Author, year	Treatment arms for which data extraction performed	RCT/ LTE phase	Assessmen t time point	Number of patients experiencin g 1 or more infection nN (%)	Number of patients experiencing 1 or more serious infection nN, (%)	Number of patients experiencin g any infection requiring antibiotics nN (%)	Number of patients experiencing 1 or more malignancy nN (%)	Number of patients experiencing 1 or more injection-site reaction (s.c. administration ) nN (%)	Number of patients experiencing 1 or more infusion- related reaction (i.v. administration ) nN (%)
	(some patients exposed to both treatments throughout trial)								
	ETN50 + MTX on treatment analysis n=219 (some patients exposed to both treatments throughout trial)	RCT including cross- over	48 weeks	82/219 (37.4)	9/219 (4.1)	NR	NR	NR	NR
Wajdula 2000 ¹²³	PBO	RCT	12 weeks	NR	NR	NR	1/105 (1.0)	NR	NR
	ETN	RCT	12 weeks	NR	NR	NR	0/111	NR	NR

Trial name / Author, year	Treatment arms for which data extraction performed	RCT/ LTE phase	Assessmen t time point	Number of patients experiencin g 1 or more infection nN (%)	Number of patients experiencing 1 or more serious infection nN, (%)	Number of patients experiencin g any infection requiring antibiotics nN (%)	Number of patients experiencing 1 or more malignancy nN (%)	Number of patients experiencing 1 or more injection-site reaction (s.c. administration ) nN (%)	Number of patients experiencing 1 or more infusion- related reaction (i.v. administration ) nN (%)
Weinblatt	PBO + MTX	RCT	24 weeks	n/30 (63)	NR	NR	NR	n/30 (7)	NR
	ETN + MTX	RCT	24 weeks	n/59 (51)	NR	NR	NR	n/59 (42)	NR
Kremer 2003 (LTE of Weinblatt 1999) ¹²⁵	ETN + MTX or MTX + PBO followed by ETN + MTX n=79	LTE	3 year LTE	NR	4/79 (5.1) required hospitalisatio n	NR	3/79 (3.8)	NR	NR
GO- FORTH ⁹¹	PBO + MTX	RCT	24 weeks	39/88 (44.3)	0/88	NR	0/88	7/88 (8.0)	NA
	GOL + MTX	RCT	24 weeks	36/86 (41.9)	0/86	NR	0/86	8/86 (9.3)	NA
GO- FORWARD ⁹	PBO + MTX	RCT	24 weeks	37/134 (27.6)	1/134 (0.7) (UTI)	NR	1/134 (0.7) (basal cell cancer)	4/134 (3.0)	NA

Trial name / Author, year	Treatment arms for which data extraction performed	RCT/ LTE phase	Assessmen t time point	Number of patients experiencin g 1 or more infection nN (%)	Number of patients experiencing 1 or more serious infection nN, (%)	Number of patients experiencin g any infection requiring antibiotics nN (%)	Number of patients experiencing 1 or more malignancy nN (%)	Number of patients experiencing 1 or more injection-site reaction (s.c. administration ) nN (%)	Number of patients experiencing 1 or more infusion- related reaction (i.v. administration ) nN (%)
	GOL + MTX	RCT	24 weeks	34/212 (16.0)	2/212 (0.9) (1 cellulitis, 1 s.c. abscess)	NR	0	5/212 (2.4)	NA
GO- FORWARD ⁹	PBO + MTX	RCT	52 weeks	42/133 (31.6)	1/133 (0.8)	NR	2/133 (1.5)	4/133 (3.0)	NA
	GOL + MTX	RCT	52 weeks	98/212 (46.2)	4/212 (1.9)	NR	3/212 (1.4)	10/212 (4.7)	NA
Kay 2008 ⁹⁸	IFX + MTX (PBO group crossed over to IFX at week 20	RCT	52 weeks	9/25 (36.0)	1/25 (4.0)	NR	0/25	NA	NR
	GOL + MTX	RCT	52 weeks	23/37 (62.2)	1/37 (2.7)	NR	1/37 (2.7)	6/37 (16.2)	NA
Abe 2006 ⁵⁶	PBO + MTX	RCT	14 weeks	17/47 (36.2)	NR Pneumonia = 0	NR	NR	N/A	17/47 (36.2)

Trial name / Author, year	Treatment arms for which data extraction performed	RCT/ LTE phase	Assessmen t time point	Number of patients experiencin g 1 or more infection nN (%)	Number of patients experiencing 1 or more serious infection nN, (%)	Number of patients experiencin g any infection requiring antibiotics nN (%)	Number of patients experiencing 1 or more malignancy nN (%)	Number of patients experiencing 1 or more injection-site reaction (s.c. administration ) nN (%)	Number of patients experiencing 1 or more infusion- related reaction (i.v. administration ) nN (%)
	IFX + MTX	RCT	14 weeks	22/49 (44.9)	NR Pneumonia = 1 (2.0)	NR	NR	N/A	23/49 (46.9)
Abe 2006 ⁵⁶	PBO group crossover to IFX	LTE	To week 36 of LTE	22/41 (53.7)	NR	NR	NR	N/A	17/41 (41.5)
	IFX + MTX	LTE	To week 36 of LTE	31/49 (63.3)	NR	NR	NR	N/A	33/49 (67.3)
ATTRACT ⁷⁵ Lipsky <i>et al.</i> , 2000 ¹⁴⁹	PBO i.v. + MTX	RCT	54 weeks	NR	7/86 (8.1)	35%	0	NA	(Serious infusion reactions) 0
	IFX + MTX	RCT	54 weeks	NR	2/88 (2.3)	NR	0	NA	0
ATTRACT ⁷⁵ Maini <i>et al.</i> ,	PBO i.v. + MTX	LTE	102 weeks	NR	11/NR (13)	NR	1/NR (1)	NA	Serious infusion reactions = 0
2004 328	IFX + MTX	LTE	102 weeks	NR	10/NR (11)	NR	1/NR (1)	NA	Serious infusion reactions = 0
Durez 2004 ⁸⁶	MP + MTX	RCT	14 weeks (N unclear)	NR	0/NR	NR	NR	N/A	0/NR
	IFX + MTX		14 weeks (N unclear)	NR	0/NR	NR	NR	N/A	0/NR

Trial name / Author, year	Treatment arms for which data extraction performed	RCT/ LTE phase	Assessmen t time point	Number of patients experiencin g 1 or more infection nN (%)	Number of patients experiencing 1 or more serious infection nN, (%)	Number of patients experiencin g any infection requiring antibiotics nN (%)	Number of patients experiencing 1 or more malignancy nN (%)	Number of patients experiencing 1 or more injection-site reaction (s.c. administration ) nN (%)	Number of patients experiencing 1 or more infusion- related reaction (i.v. administration ) nN (%)
START ¹¹⁸	PBO + MTX	RCT	22 weeks	38/361 (10.5) (upper respiratory tract infection)	6/361 (1.7)		0/361		Serious infusion reactions: 1/361 (0.3)
	IFX + MTX	RCT	22 weeks	35/360 (9.7) (upper respiratory tract infection)	6/360 (1.7)		2/360 (0.6)		Serious infusion reactions: 0/360
START ¹¹⁸	IFX + MTX (not dose escalated)	LTE	54 weeks	119/244 (49%)	11/244 (4.5)		1/244 (0.4)		Serious infusion reactions: 2/244 (0.8)
Swefot ¹¹⁹	SSZ + HCQ + MTX	RCT	24 months	AEs=1/130 (1)	NR	NR	AEs=0	NR	NR
	IFX + MTX	RCT	24 months	AEs=8/128 (6)	NR	NR	AEs=1 /128 (1)	NR	NR
ACT-RAY ¹⁵⁵	TCZ + oral PBO	RCT	52 weeks	NR	9/276 (3.3)	NR	NR	NA	NR
	TCZ + MTX	RCT	52 weeks	NR	10/277 (3.6)	NR	NR	NA	NR
Nishimoto	РВО	RCT	12 weeks	NR	NR	NR	NR	NA	15%

Trial name / Author, year	Treatment arms for which data extraction performed	RCT/ LTE phase	Assessmen t time point	Number of patients experiencin g 1 or more infection nN (%)	Number of patients experiencing 1 or more serious infection nN, (%)	Number of patients experiencin g any infection requiring antibiotics nN (%)	Number of patients experiencing 1 or more malignancy nN (%)	Number of patients experiencing 1 or more injection-site reaction (s.c. administration ) nN (%)	Number of patients experiencing 1 or more infusion- related reaction (i.v. administration ) nN (%)
$2004^{106}$	TCZ	RCT	12 weeks	NR	NR	NR	NR	NA	16%
STREAM	PBO	LTE	To year 5	-	-	-	-	-	-
³²⁹ (LTE of Nishimoto 2004)	TCZ	LTE	To year 5	NR	25/143 (17.5)	NR	4/143 (2.8) (bladder cancer, breast cancer, large intestine carcinoma, intraductal papilloma).	NA	NR
SAMURAI ¹¹⁵	cDMARDs	RCT	52 weeks	NR	8/145 (5.5)	NR	0/145	NR	NA
	TCZ	RCT	52 weeks	NR	12/157 (7.6)	NR	3/157 (1.9)	NR	11/157 (7.0)
SATORI	PBO + MTX	RCT	24 weeks	NR	NR	NR	NR	NA	NR
	TCZ + PBO capsules	RCT	24 weeks	NR	NR	NR	NR	NA	7/61 (11.5)
TOWARD ¹²¹	PBO i.v. + stable cDMARDs	RCT	24 weeks	131/414 (31.6)	8/414 (1.9)	NR	NR	NA	NR
	TCZ + stable	RCT	24 weeks	300/802 (37.4)	22/802 (2.7)	NR	NR	NA	NR

Trial name / Author, year	Treatment arms for which data extraction performed	RCT/ LTE phase	Assessmen t time point	Number of patients experiencin g 1 or more infection nN (%)	Number of patients experiencing 1 or more serious infection nN, (%)	Number of patients experiencin g any infection requiring antibiotics nN (%)	Number of patients experiencing 1 or more malignancy nN (%)	Number of patients experiencing 1 or more injection-site reaction (s.c. administration ) nN (%)	Number of patients experiencing 1 or more infusion- related reaction (i.v. administration ) nN (%)
TACIT ¹²⁰	DMARDs Combinatio n cDMARDs	LTE (after switching	12 months	NR	NR	NR	NR	1/104 (0.16)	NR
	TNFi + DMARD	) LTE (after switching )	12 months	NR	NR	NR	NR	5/101 (1.08)	NR

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	Deaths (nN)	Cause of death	Considered by investigators/adjudicators to be related to study drug?
GUEPARD ⁹³	Initial MTX 12 weeks, then step-up therapy in both groups based on DAS28	1 year	0/32	NA	NA
	Initial ADA+MTX 12 weeks, then step-up therapy in both groups based on DAS28RACAT	1 year	0/33	NA	NA
HIT HARD ⁹⁴	MTX + PBO for 24 weeks followed by OL MTX for 24 weeks	48 weeks	0/85	NA	NA
	ADA + MTX for 24 weeks followed by OL MTX for 24 weeks	48 weeks	0/87	NA	NA
OPERA ¹⁰⁷	MTX + PBO + steroid	12 months	1/91 (1.1%)	Pneumonia 4 months after terminating the study	NR
	ADA + MTX + steroid	12 months	0/89	NA	NA
PREMIER ¹⁰⁹	MTX + PBO	2 years	1/257 (0.4%)	Pneumonia	NR
	ADA mon + PBO	2 years	4/274 (1.5%)	1 COPD/pulmonary disease and pulmonary hypertension sudden death; 1 metastatic liver cancer (unknown primary); 1 metastatic colon cancer; 1 liver failure (pre- existing cirrhosis)	NR
	ADA + MTX	2 years	1/268 (0.4%)	Ovarian cancer	NR
PREMIER ¹⁰⁹	MTX + PBO to OL ADA mon	5 years LTE	0.6% (n/N NR)	NR	NR

 Table 392: Number of deaths: Population 1 RCTs biologic vs. cDMARD(s) or PBO

Trial name / Author, vear	Treatment arms for which data extraction	Assessment time point	Deaths (nN)	Cause of death	Considered by investigators/adjudicators to be
	performed				related to study drug?
	ADA mon + PBO to OL ADA mon	5 years LTE	0.6% (n/N NR)	NR	NR
	ADA + MTX to OL ADA mon	5 years LTE	1.1% (n/N NR)	NR	NR
COMET ⁸³	MTX in year 1 MTX in year 2	2 years	1/99	Pneumonia and adenocarcinoma of the lungs with metastasis	NR
	MTX year 1 ETN+MTX in year 2	2 years	0	NA	NA
	ETN+MTX in year 1 ETN+MTX in year 2	2 years	0	NA	NA
	ETN+MTX in year 1 ETN in year 2	2 years	1/111	Pneumonia	NR
ERA ¹⁴¹	MTX + PBO	12 months	0/217 (0%)	NA	NA
	ETN + PBO	12 months	1/207 (0.5%)	Non-infectious complications resulting from dissection of a pre-existing aortic aneurysm	NR
ERA ¹⁴¹	MTX + PBO	2 years	0/217 (0%)	NA	NA
	ETN + PBO	2 years	1/207 (0.5%)	See above	NA
GO-BEFORE	PBO + MTX	RCT 24	0	NA	NA

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	Deaths (nN)	Cause of death	Considered by investigators/adjudicators to be related to study drug?
		weeks			
	GOL + MTX	RCT 24 weeks	1	Suicide	NR
GO- BEFORE ¹⁴⁶	PBO + MTX	LTE 104 weeks	0	NA	NA
	GOL + MTX	LTE 104 weeks	4/159 (2.5%)	1 hypoglycaemic coma, 1 lung cancer, 1 septic shock, 1 probable non-small cell lung cancer	NR
ASPIRE ⁷¹	PBO i.v. + MTX	RCT 54 weeks	2	1 due to respiratory failure attributed to MTX-related drug toxicity, 1 due to upper gastrointestinal bleed	NR
	IFX + MTX	RCT 54 weeks	1	Cardiac arrest	NR
Durez 2007 ¹⁴²	MTX	52 weeks	0/14	NA	NA
	MTX + MP	52 weeks	0/15	NA	NA
	IFX + MTX	52 weeks	0/15	NA	NA

Trial name / Author, year	Treatment arms for which data	Assessment time point	Deaths (nN)	Cause of death	Considered by investigators/adjudicators to be related to study drug?
	extraction performed				
ATTEST ⁷⁴	PBO+MTX	RCT day 197	0	NA	NA
	IFX + MTX	RCT day 197	1/165	Cerebrovascular accident	NR
	ABT + MTX	RCT day 197	1/156	Fibrosarcoma	NR
ATTEST ⁷⁴	PBO+MTX	RCT day 365	No further	NA	NA
			deaths		
	IFX + MTX	RCT day 365	1	Patient with peritoneal TB,	NR
			additional	death due to septic shock	
			death	following surgery	
	ABT + MTX	RCT day 365	No further	NA	NA
			deaths		
AMPLE ⁶⁶	ABT s.c.	1 year	1/318	Sudden cardiac arrest	No
	ADA	1 year	0/328	NA	NA
REDSEA ¹¹⁴	ADA + cDMARDs	12 months	2/60	Both ischaemic heart	NR
				disease	
	ETN50 + cDMARDs	12 months	0/60	NA	NA
ADACTA ⁵⁸	TCZ + oral PBO	24 weeks	2/162	1 sudden death, 1 illicit	Overdose considered by study team unrelated to study
				drug overdose	drug. Sudden death considered by study team to be
					possibly related to study drug (unautopsied).
	ADA + i.v. PBO	24 weeks	0	NA	NA

 Table 393: Number of deaths: Population 2/3 head to head biologic RCTs

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	Deaths (nN)	Cause of death	Considered by investigators/adjudicators to be related to study drug?
AIM ^{61,62}	MTX + PBO	12 months	1/219	Pneumonia, sepsis, and multiorgan failure.	NR
	ABT i.v .+ MTX	12 months	1/433	History of tuberculosis, asbestos exposure, and pulmonary fibrosis, died of bronchopneumonia, pulmonary aspergillosis, and septicemia	NR
AIM ⁶⁵	ABT i.v.+ MTX 2 years or MTX+PBO 1 year then ABT i.v.+ MTX 1 year	LTE 3 years	9/593 during LTE	Myocardial ischaemia with postprocedural complications, lobar pneumonia, lung cancer, pneumonia/sepsis, malignant melanoma, aortic aneurysm, 3 cases of cardiac arrest.	NR
ASSET ⁷²	PBO + MTX	4 months	0/23	NA	NA
	ABT i.v.+ MTX	4 months	0/27	NA	NA
ASSET ⁷²	ABT i.v.+ MTX	1 year LTE	0/49	NA	NA
ASSURE ⁷³	PBO + cDMARDs	1 year	4/418 (1.0%)	Congestive heart failure, cardiopulmonary arrest, cardiac arrest, pneumonia	Three no, one possibly
	ABT + cDMARDs	1 year	5/856 (0.6%)	Hypertensive heart disease, coronary atherosclerosis/acute ischaemic cardiopathy, central atherosclerosis/advanced coronary atherosclerosis with focal stenosis,	Four no, one can't tell (unautopsied)

Table 394: Number of deaths: Population 2/3 RCTs biologic vs. cDMARD(s) or PBO

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	Deaths (nN)	Cause of death	Considered by investigators/adjudicators to be related to study drug?
				cardiac arrest	
AUGUST II ⁷⁶	MTX+PBO	38 week follow-up of 26week RCT treatment	0/76	NA	NA
	ADA+MTX	38 week follow-up of 26week RCT treatment	0/79	NA	NA
CHANGE ⁸⁰	PBO	24 weeks	0/87	NA	NA
	ADA mon	24 weeks	1/91 (1.1%)	Interstitial lung disease and lung infection	Considered possibly related to treatment
DE019 ⁸⁴	MTX+PBO	52 weeks	0/200	NA	NA
	ADA+MTX	52 weeks	2/207	1 related to multiple fractures and 1 related to urosepsis	NR
STAR ¹¹⁷	PBO + cDMARDs	24 weeks	0/318	NA	NA
	ADA + cDMARDs	24 weeks	1/318 (0.3%)	Secondary streptococcal A superinfection	NR
van de Putte	PBO s.c.	26 weeks	1	Complications of bowel obstruction	All stated by authors to be
2004 ¹²²	ADA mon	26 weeks	3 in ADA group (dose not specified)	Metastatic adenocarcinoma, cholangiocarcinoma, and myocardial infarction	unrelated or unlikely to be related to study drug.
ARMADA ⁶⁹	MTX + PBO	24 weeks	0/62	NA	NA
	ADA + MTX	24 weeks	0/67	NA	NA

Trial name /	Treatment arms	Assessment	Deaths (nN)	Cause of death	Considered by
Author, year	extraction	time point			investigators/adjudicators to be related to study drug?
	performed				
ARMADA ⁷⁰	ADA + MTX	4 years LTE	6/262	congestive heart failure, acute myocardial insufficiency, aortic aneurysm previously treated surgically, cerebrovascular accident, intracranial haemorrhage, acute kidney failure	NR
Kim 2007 ⁹⁹	MTX+PBO	24weeks	0/63	NA	NA
	ADA+MTX		1/65	Acute respiratory distress syndrome	NR
ADORE ^{59,60}	ETN mon	16 weeks	0/159	NA	NA
ADORE ⁵⁹	ETN+MTX	16 weeks	3/155	Cardiac arrhythmia that occurred 1 month after the patient discontinued study drugs, second due to cardiac arrest and third due to massive cerebral haemorrhage	All considered to be unrelated to study drugs by the investigator
CREATE IIb ⁹⁶	DMARD + PBO	24 weeks	0/65	NA	NA
FTN309 ⁸⁹	$SS7 \pm PRO$	24 weeks	0/04		ΝΔ
2111307	ETN + PBO	24 weeks	0/103	NA	NA
	ETN + SSZ	24 weeks	0/101	NA	NA
RACAT ¹¹¹	MTX + SSZ + HCQ on treatment	48 weeks	0/222	NA	NA

Trial name / Author, year	Treatment arms for which data extraction	Assessment time point	Deaths (nN)	Cause of death	Considered by investigators/adjudicators to be related to study drug?
	analysis n=222 (some patients				
	exposed to both treatments throughout trial)				
	ETN50 + MTX on treatment analysis n=219 (some patients exposed to both treatments throughout trial)	48 weeks	n=1 (0.5%) originally randomised and received MTX+SSZ+HCQ, switched to ETN50+MTX	Pneumonia	NR
Weinblatt 1999 ¹²⁵	PBO + MTX	24 weeks (and 30 days after treatment)	0/30	NA	NA
Weinblatt 1999 ¹²⁵	ETN 25mg twice weekly + MTX	24 weeks (and 30 days after treatment)	0/59	NA	NA
Weinblatt 1999 ¹²⁵	ETN+MTX or MTX+PBO followed by ETN+MTX	3 year LTE	1/79	myocardial infarction	NR
APPEAL 67,68	MTX + DMARD (SSZ, HCQ or LEF)	16 weeks	0/103	NA	NA
	ETN + MTX	16 weeks (study RCT endpoint)	1/197 (0.5%)	Gastrointestinal haemorrhage thought to be result of NSAID therapy following accidental fall and pelvic	No

Trial name / Author, year	Treatment arms for which data	Assessment time point	Deaths (nN)	Cause of death	Considered by investigators/adjudicators to
	extraction				be related to study drug?
	performed			fractura	
CO EODTU ⁹¹		24	0/99	NA	NI A
GO-FORTH	PBO + MTX	24 weeks	0/86	NA NA	
	GOL + MIX	24 weeks	0/80	NA	
GO-	PBO + MTX	24 weeks	0/133	NA	NA
FORWARD ²⁻	GOL + MTX	24 weeks	0/89 (1 death in unlicensed GOL 100 mg every 4 weeks arm (ileus, aspiration pneumonia and death from sepsis)	NA	NA
Kay 2008 ⁹⁸	PBO + MTX (crossover to IFX + MTX at week 20)	52 weeks	0/35	NA	NA
	GOL + MTX	52 weeks	0/35	NA	NA
Abe 2006 ⁵⁶	PBO + MTX	14 weeks	0/47	NA	NA
	IFX + MTX	14 weeks	0/49 (2 deaths but not in 3 mg/kg extracted dose (both due to pneumonia))	NR	NR
Abe 2006 ⁵⁶	PBO group crossover to IFX	To week 36 of LTE	NA	NA	NA
	IFX + MTX	To week 36 of LTE	0/129	NA	NA
ATTRACT ³²⁸	PBO + MTX	LTE 102 weeks	4/88 (4.5)	Left ventricle rupture resulting in cardiopulmonary arrest, intestinal	Judged to be unrelated to study drug

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	Deaths (nN)	Cause of death	Considered by investigators/adjudicators to be related to study drug?
				gangrene, arrhythmia and cardiopulmonary failure	
	IFX + MTX	LTE 102 weeks	3/86 (3.5)	Not reported separately for extracted arm	NR
START ¹¹⁸	PBO + MTX	22 weeks	1/361	Septic shock	NR
	IFX + MTX	22 weeks	0/360	NÂ	NA
Swefot ¹⁵⁰	SSZ + HCQ + MTX	24 months	0/130	Ν	NA
	IFX + MTX	24 months	1/128 (0.8)	Complications of acute myeloid leukaemia	NR
ACT-RAY ⁵⁷	TCZ + oral PBO	To week 52	2/276 (0.7)	Causes of death in 4 patients: sepsis, septic shock preceded by scrotal abscess, skin necrosis, acute renal failure and congestive heart failure, myocardial infarction, and sepsis with meningitis.	NR
	TCZ + MTX	To week 52	2/277 (0.7)	NR	NR
Nishimoto	PBO	12 weeks	0/53	NA	NA
2004 ¹⁰⁶	TCZ	12 weeks	1/55 (1.8)	Due to reactivation of chronic Epstein Barr virus and consequent haemophagocytosis syndrome 61 days after single dose of TCZ 8 mg/kg i.v.	NR
TOWARD ¹²¹	PBO i.v. + stable cDMARDs	24 weeks	2/413 (0.5)	Pneumonia, intestinal obstruction	NR
	TCZ + stable DMARDs	24 weeks	2/803 (0.3)	Haemorrhagic stroke, postprocedural complications from triple coronary artery bypass graft	NR
TACIT ¹²⁰	Combination cDMARDs	6 months	0/104	NA	NA

Trial name / Author, year	Treatment arms for which data extraction performed	Assessment time point	Deaths (nN)	Cause of death	Considered by investigators/adjudicators to be related to study drug?
	TNFi + DMARD	6 months	0/101	NA	NA
TACIT ¹²⁰	Combination cDMARDs	12 months (LTE endpoint – after switching)	0/104	NA	NA
	TNFi + DMARD	12 months (LTE endpoint – after switching)	1/101	Pneumonia and multiple organ failure	NR