For public - ACiC information redacted

Ribociclib in combination with an aromatase inhibitor for previously untreated advanced or metastatic hormone receptor-positive, HER2negative breast cancer

1st Appraisal Committee meeting Cost effectiveness Committee A

Lead team: Brian Shine

<u>ERG</u>: Kleijnen Systematic Reviews (KSR) Ltd. in collaboration with Erasmus University Rotterdam (EUR) and Maastricht University <u>NICE technical team</u>: Marcela Haasova and Joanna Richardson

5th July 2017

Preview: cost-effectiveness issues

- 1. Is the assumption that any gain in PFS is 100% translated into OS gain in the base-case appropriate?
- 2. Is the PFS local assessment from January 2017 data cut-off appropriate for the modelling?
 - What is the most suitable distribution for PFS modelling?
- 3. Does the committee accept the relatively high utility value for *PFS1*, compared with previous appraisals in the same disease area?
- 4. Is the choice of second line treatments appropriate?
- 5. Is BOLERO-2 representative of HR+/HER2- ABC patients who progressed on ribociclib with letrozole or letrozole monotherapy?
 - Is modelling of OS, PFS and TDD in *PFS2* appropriate?
- 6. Is the drug acquisition costs estimate in *Progression* of £2,000 per month appropriate?
- 7. The company has provided a comparison of the inputs and ICERs for ribociclib and the palbociclib appraisal, what is the committee's view of this comparison?

Company: model structure

Individual patient based state-transition model (life time horizon of 40 years):

<u> PFS1</u>

- ribociclib & letrozole compared with letrozole
- TTD and PFS are modelled independently
- IPD from MONALEESA-2
- base-case: PFS gain = OS gain
- patients cannot move to *Progression* directly <u>PFS2</u>
- everolimus & exemestane, exemestane monotherapy, or capecitabine therapy
- IPD from BOLERO-2: placebo controlled RCT of everolimus & exemestane in postmenopausal women with ER+/HER2- ABC with recurrence/progression on nonsteroidal Als or to treat advanced disease (or both)

Progression

- subsequent therapies not modelled directly
- cost of £2,000 per month assumed <u>Death</u>: absorbing state

ERG: model structure

<u> PFS1</u>

- OS is modelled indirectly, and is a function of the time spent in each of the alive health states (*PFS1*, *PFS2* and *Progression*).
- 100% translation of PFS gain into OS gain is not plausible
 - ERG: ratio close to PALOMA-1 trial of 38.5% is more plausible

<u> PFS2</u>

- assumed that only second-line treatment affected the prognosis of patients after they progressed from first-line treatment
- second-line treatments based on clinical opinion & differ by treatment arm
 scenario with same treatments modelled in both arms explored
- Is BOLERO-2 representative of HR+/HER2- ABC patients who progressed on ribociclib with letrozole or letrozole monotherapy?
 - baseline characteristics of MONALEESA-2 and BOLERO-2 comparable, but proportion of Asian people 8% and 20% respectively

Progression

- - Company:
 - ERG: no confirmation of the results with real world data derived from registries in UK clinical practice provided

Key: HR+, hormone receptor-positive; HER2-, human epidermal growth factor receptor 2-negative; PFS, progression free survival.

Company: *PFS1* state (I)

PFS modelling: January 2016 cut-off

- Letrozole: statistical fit
- Ribociclib:

similar

= best and second best

- comparison of parametric survival models and KM data of letrozole monotherapy from PALOMA-2, LEA and ALLIANCE trials conducted to explore the plausibility of long-term extrapolation
 was chosen for PFS extrapolation
- The same distribution chosen when PFS updated to January 2017 data

TTD modelling: January 2016 data

- Ribociclib: AIC & BIC: Gompertz distribution is the best fit
 - Exponential distribution deemed better clinical fit and used in base-case
- Letrozole: AIC & BIC: log-normal distribution is the best fit
 - Exponential distribution used in base-case

Proportion of deaths among PFS events:

- Pooled data from MONALEESA-2 and PALOMA-2 used.
- Result were updated using January 2017 data:
 - Letrozole:
 - CDK4/6 inhibitors (ribociclib & palbociclib):

Key: AIC, Akaike information criterion; BIC, Bayesian information criterion; KM, Kaplan–Meier; PFS, progression free survival.

Company: *PFS1* state (II) Predicted and observed PFS

Modelled PFS extrapolation against the observed KM: MONALEESA-2 local assessment January 2017 cut-off

ERG: PFS1 state

PFS Modelling

log-log cumulative hazard plots were not approximating straight lines: ERG considers piecewise or more flexible models more plausible

•	
•	

TTD data

- were not updated using 2017 data.
- The ERG could not assess the impact of using 2017 data to model TDD.
- However, changing PFS inputs from January 2016 to January 2017 had a great impact on the model.

TTD modelling

 TTD and PFS modelled independently but same random numbers used to simulate PFS and TTD time to events (TTD < PFS, but TTD can = PFS in many cases. Joint TTD & PFS analysis would be more robust.

Clinical evidence *PFS2* state: BOLERO-2

BOLERO-2				
Design	Placebo-controlled phase 3 RCT (randomised on visceral metastasis and sensitivity to endocrine therapy)			
Location	Multinational			
Population	N=724; postmenopausal women with HR+/HER2- advanced breast cancer refractory to letrozole or anastrozole			
Intervention and comparator	 <u>Everolimus 10 mg/day with exemestane 25 mg/day</u> <u>Placebo with exemestane 25 mg/day</u> 			
Outcomes:	 Primary: <u>PFS based on local assessment</u>: data cut-off December 2011 (no data for PFS collected after this date). <u>TTD and OS</u> (latest data cut-off is October 2013) 			

Key: EORTC QLQ-C30, European Organization for Research and Treatment of Cancer Quality of Life Questionnaire; HER2-, human epidermal growth factor receptor 2-negative; HR+, hormone receptor-positive; OS, overall survival; PFS, progression free survival; TTD, time to disease discontinuation.

BOLERO-2: PFS, OS and TDD

OS and TTD data: October 2013 cut-off, PFS data: December 2011 cut-off

Everolimus & exemestane BOLERO-2 Exemestane monotherapy BOLERO-2

- TTD and PFS in both arms are relatively similar.
- But slight inconsistency at the end of the curves (where PFS crosses TTD) due to early censoring of PFS; attributable to different cut-off dates

Key: OS, overall survival; PFS, progression free survival; TTD, time to disease discontinuation.

Company: PFS2 state

Time to treatment discontinuation is a proxy for disease progression:

- <u>Everolimus</u>:
 - Parametric models fitted to BOLERO-2 KM data, AIC & BIC: log-logistic and log-normal are the best fit & Weibull as in TA421 used in base-case
- Exemestane monotherapy:
- <u>Chemotherapy</u>:
 - Inverse HR of 0.30 (95% CI: 0.17 0.52) from Li et al. 2015 was applied to curve for everolimus and exemestane

Time to death from treatment discontinuation (post-discontinuation survival curve) estimates the time patients spend in progressive disease (including both *PFS2* off treatment and *Progression*).

- Everolimus and exemestane pooled: Weibull used in base-case
- <u>Chemotherapy</u>
 - mean post-discontinuation survival estimated as the difference between the mean OS (estimated using an HR) and the mean TTD (estimated using an HR) from Li et al. 2015

ERG: *PFS2* state (I)

Second line treatments

- CG81 recommends anthracyclines and then docetaxel, but based on clinical opinion capecitabine modelled
 - The ERG is still unclear how the proportions were estimated
 - no confirmation of clinical expert's opinions with real world data from UK registries or audits provided
- Choice of second line do not depend only on first-line therapy
- Could have used follow-up treatments from MONALEESA-2

BOLERO-2

- No systematic review conducted to identify studies of second-line treatments in HR+/HER- ABC patients
 - The ERG is unsure if the BOLERO-2 trial and Li et al. 2015 were the only relevant studies to inform *PFS2*
- Results with no adjustments used, as BOLERO-2 was conducted in MONALEESA-2 population upon their disease progression

Proportion of deaths

• Company calculated probabilities in a similar way as in *PFS1*, but probabilities depend on many patient characteristics, not only on treatments received

Key: HER2-, human epidermal growth factor receptor 2-negative; HR+, hormone receptor-positive; PFS, progression free survival.

ERG: PFS2 state (II)

TTD as a proxy for PFS

- Time spent in *PFS2* may be underestimated because of a gap between TTD and PFS curves of the everolimus and exemestane arm in BOLERO-2
- The ERG question plausibility of this assumption for chemotherapy
- TTD modelling: proportional hazard assumption violated, but survival of:
- exemestane monotherapy is modelled by applying HR from BOLERO-2 to everolimus arm TTD and
- chemotherapy by adjusted HR of chemotherapy versus "everolimus-based therapy" form Li et al. 2015 (the adjustments & comparator not explained)

Pooled post treatment discontinuation survival

- from BOLERO-2 used as a proxy for the post progression survival
- BOLERO-2 TTD data seems smaller than PFS potentially overestimating survival
- Weibull shape parameter from BOLERO-2 used to model post progression survival for chemotherapy
 - The ERG changed the way chemotherapy post-progression survival times are sampled so the scale parameter is no longer needed

Company: utilities

Health state	Mean estimate	Standard error	Source	Justification
PFS1 on treatment PFS1 off				
PFS2 – on treatment	0.774	Assumed to be 20% around the mean	Lloyd et al. 2006 BOLERO- 2 adjusted	EQ-5D sourced directly from NICE TA421
	dec	Chemotherapy crement of -0.113	Derived from Peasgood et al.	Publication; chemotherapy versus endocrine therapy
PD	0.5052	Assumed: 20% around mean	Lloyd et al 2006	accepted in NICE TA915

PFS1:

data derived directly from MONALEESA-2

Key: AEs, adverse events; PD, progressed disease; PF, progression-free.

ERG: utilities

PFS1: from MONALEESA-2 EQ5D-5L

- the mean utility of seems high
- The utility of women aged 60 and 65 is 0.81 and 0.78 respectively (
 Description (
 Descript

utilities were derived from 3L instrument, and 5L values for matched states are higher.

- ID915 palbociclib: pre-progression state utility was 0.72 (PALOMA 2 EQ-5D data), and post-progression value of 0.51 (Lloyds 2006).
- The 5L instrument shifts mean utility scores towards full health.

Utilities in PFS2: 0.774

- the company did not used utility for PD because
- using PD utility from MONALEESA-2
 ICER (including PAS)
- Same utility for everolimus and exemestane assumed (0.774). Using separate utilities respectively the company's base case ICER (including PAS)

ERG: costs and AE

Wastage cost

- the costs for the unused tablets in the last treatment cycle for letrozole, ribociclib, exemestane, everolimus and capecitabine not included
 - The ERG incorporated expected approximate wastage costs in its base-case to include all relevant cost

<u>AE</u>

 Company: neutropenia (grade 3/4) was reported in approximately patients. It was not included in the economic model because:

 In addition, grade 3/4 leukopenia (21.0% versus 0.6%) and back pain (2.1% versus 0.3%) were not included in model with no explanation.

<u>3rd-line cost (in Progression state)</u>

- a monthly cost of £2,000 based on clinical expert opinion assumed
 - details on how this cost estimate had been derived were not provided.
 - ERG believes the inflation adjusted estimate from TA239 of £1,140 to be a more plausible

of

ERG: Sensitivity analysis of company's original base case with initial PAS

ERG changes

- 1. fixing programming errors and using 2017 data
- 2. incorporating wastage costs
- 3. using 3rd-line inflation adjusted costs from TA239 (£1,140)
- 4. changing modelling of post-treatment discontinuation survival after secondline chemotherapy
- 5. OS surrogacy based on PALOMA-1 (ratio of 38.5%)

	Ribociclib		letrozole a	lone	laar	
Scenario analyses	Total	Total	Total	Total	QALYs	ICER
	COSIS	QALYS	COSIS	QALYS		
Company base-case January 2017 PFS					0.90	
ERG preferred base-case					0.53	
1: ERG + Weibull function for					0.41	
PFS1 and TTD						
2a: ERG + 3rd-line costs = £0					0.53	
2b: ERG +3rd-line costs = £2,000 per month					0.53	
4: ERG + company Full OS surrogacy					0.89	

Key: ICER, Incremental Cost-Effectiveness Ratio; OS, overall survival; PFS, progression-free survival; TTD, time to treatment discontinuation. QALYs, Quality-Adjusted Life Year.

ERG: Clinical outcomes from the model January 2017 PFS data

January 2017	Clinical tr	Model result		
January 2017	Median	Mean	Median	Mean
Ribociclib				
First-line progression-		Not reached,		
free survival (PFS1)		not reported		
Overall survival	Not reached, not	Not reached,		
	reported	not reported		
Letrozole				
First-line progression-		Not reached,		
free survival (PFS1)		not reported		
Overall survival		Not reached,		
		not reported		

Company: revised base case

- Changes to company base case in addition to fixing errors and using 2017 PFS data (change 1 in ERG analyses):
 - enhanced PAS
 - including the costs of wastage (change 2 in ERG analyses)
 - changing the modelling of the post-treatment discontinuation survival after chemotherapy (change 4 in ERG analyses)
- The following ERG changes were not accepted:
 - Cost of 3rd line therapy based on TA239 (£1,140; change 3 in ERG analyses)
 - PFS-OS surrogacy based on PALOMA-1 (ratio of 38.5%; change 5 in ERG analyses)
 - scenario analyses with the above changes suggested by ERG presented

Company: revised base case with enhanced PAS

	Total costs (£)	Total LYG	Total QALYs	Inc. costs	Inc. LYG	Inc. QALYs	ICER
January 2017 c	ut-off						
Letrozole				-	-	-	-
Ribociclib						0.89	

Probabilistic analyses

	Total costs (£)	Total LYG	Total QALYs	Inc. costs	Inc. LYG	Inc. QALYs	ICER
January 2016 cut-off							
Letrozole				-	-	-	-
Ribociclib						0.88	

The probability of ribociclib being cost-effective at £30,000/QALY is

Key: ICER, incremental cost-effectiveness ratio; LYG, life years gained; QALYs, quality-adjusted life years.

Company: one-way sensitivity analyses with enhanced PAS

Company: scenario analyses including enhanced PAS

	Ribociclib		Letrozol	e alone	loor	Inor	
Scenarios	Total costs	Total QALYs	Total costs	Total QALYs	costs	QALYs	ICER
0. Base-case*						0.89	
(0 + 1) adding ERG post- progression costs						0.89	
(0 + 2) ERG PFS-OS ratio						0.53	
(0 + 3) £1,500 3 rd line costs						0.89	
(0 to 2) Base-case and ERG post-progression costs and PFS-OS ratio						0.53	
Is the same as ERG's base-case							
(0 + 2 + 3) Base-case, ERG PFS-OS ratio and £1,500 3 rd line costs: all ERG's						0.53	
changes but 3 rd line costs							

Key: ICER, incremental cost-effectiveness ratio; OS, overall survival; PFS, progression-free survival QALYs, quality-adjusted life years.

ERG: scenario analyses with enhanced PAS

	Ribociclib)	letrozole a	lone	laar		
Scenario analyses	Total	Total	Total	Total	INCL. OALYS	ICER	
	costs	QALYs	costs	QALYs	QALIS		
New CS base-case					0.89		
a) CS + 3rd line cost from TA421					0.89		
b) CS + PALOMA-1 OS surrogacy					0.53		
• ERG base-case (CS + a & b)					0.53		
• ERG PSA					0.53		
1: Weibull for PFS1 and TTD					0.41		
2a: 3rd-line costs = £0					0.53		
2b: 3rd-line costs = £2,000					0.53		
3: ribo cost from cycle 11							
based on mean costs of					0.53		
cycles 11 to 26							
4: Full OS surrogacy					0.89		
5: 1 & 4					0.74		
6: similar second-line					0.50		
treatments					0.50		
7: PFS1 utility = 0.72					0.44		

Key: ICER, Incremental Cost-Effectiveness Ratio; OS, overall survival; PFS, progression-free survival; TTD, time to treatment discontinuation. QALYs, 22 Quality-Adjusted Life Year .

Company- End of life criteria

This submission does not meet the criteria for end-of-life as the life expectancy for patients with newly diagnosed HR+/HER2- advanced breast cancer is greater than 24 months.

Equality

• No equality issues were raised.

Company: differences between ribociclib and palbociclib NICE appraisals (Pre-consultation models and no PAS)

	Ribociclib ID1026	Palbociclib ID915
Model	IPD simulation State-transition model:	Partitioned survival Markov model:
	<i>PFS1</i> (on and off treatment) – 1 st line treatment,	Pre-Progression (1 st line treatment), Post-
	PFS2 – 2 nd line treatment, Progression – post	<i>Progression</i> including tunnel states for 2 nd ,
	second line progression treatments, Death	3 rd , 4 th treatments and BSC, <i>Death</i>
PFS	MONALEESA-2 clinical trial	PALOMA-2 clinical trial
OS	<i>PFS2:</i> everolimus + exemestane & exemestane monotherapy from BOLERO-2 IPD, and HR from Li et al. 2015 used for chemotherapy	PALOMA-1 clinical trial data (base case analysis)
	<i>Progression:</i> Modelled based upon BOLERO-2 OS IPD data, Hazard Ratio applied Li et al. 2015	
HRQoL	PFS1: MONALEESA-2 clinical trial – EQ-5D-L	PALOMA-2 – EQ-5D
	<i>PFS2</i> : Lloyd et al. 2006 & BOLERO-2 adjusted <i>PD</i> : Lloyd 2006	<i>PD</i> : Lloyd 2006
Utilities	<i>PFS2: 0.774; Progression</i> : 0.5052	PFS: 0.72*
	Chemotherapy disutility: -0.113	Post-Progression: 0.4492 (all lines)
AE	Grade 3 and 4 AEs from MONALEESA-2	Only neutropenia
LYG		3.79 palbo & 3.02 let: difference: 0.77
QALYs	difference: 0.96	2.40 palbo & 1.77 let: difference: 0.63
Total costs		Palbociclib: 116,696 & Letrozole: £21,843
ICER		£150.869

Cost-effectiveness issues

- 1. Is the assumption that any gain in PFS is 100% translated into OS gain in the base-case appropriate?
- 2. Is the PFS local assessment from January 2017 data cut-off appropriate for the modelling?
 - What is the most suitable distribution for PFS modelling?
- 3. Does the committee accept the relatively high utility value for *PFS1*, compared with previous appraisals in the same disease area?
- 4. Is the choice of second line treatments appropriate?
- 5. Is BOLERO-2 representative of HR+/HER2- ABC patients who progressed on ribociclib with letrozole or letrozole monotherapy?
 - Is modelling of OS, PFS and TDD in *PFS2* appropriate?
- 6. Is the drug acquisition costs estimate in *Progression* of £2,000 per month appropriate?
- 7. The company has provided a comparison of the inputs and ICERs for ribociclib and the palbociclib appraisal, what is the committee's view of this comparison?