

Sodium zirconium cyclosilicate (SZC) for treating hyperkalaemia

2nd appraisal committee meeting

26 March 2019

Committee B

Chair: Amanda Adler

NICE National Institute for Health and Care Excellence

Lead team: Mona Johnson, Chris O'Regan and Nigel Westwood

ERG: ScHARR

NICE technical team: Mary Hughes, Alan Lamb, Ross Dent

Company: AstraZeneca

© NICE 2018. All rights reserved. Subject to notice of rights. The content in this publication is owned by multiple parties and may not be re-used without the permission of the relevant copyright owner.

Preview of key issues

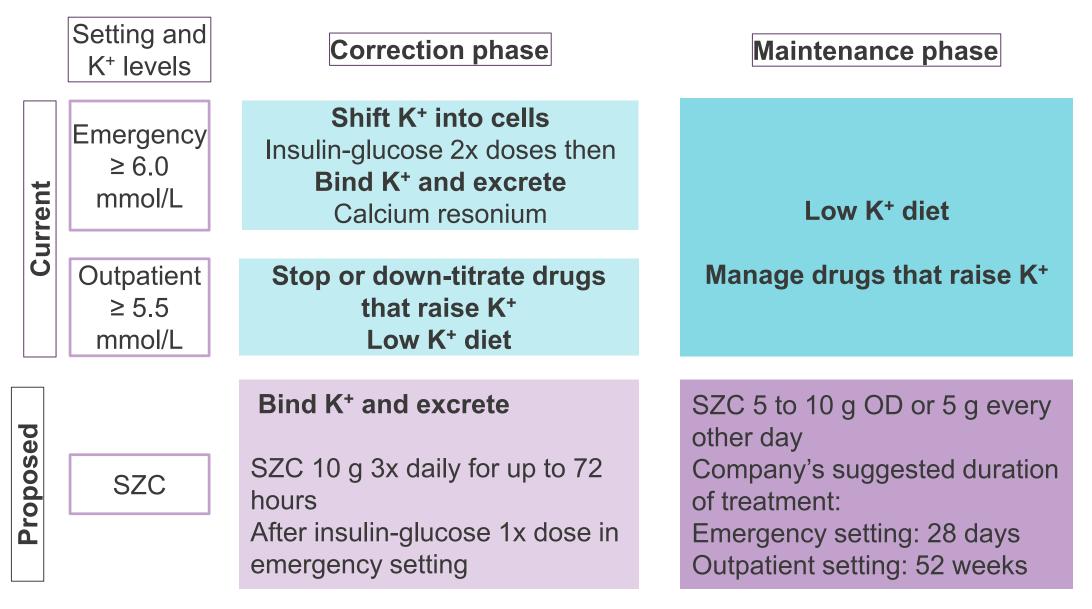
- 1. Trials don't show increased length of life or quality of life; company claims both
- 2. Positioning in clinical practice:
 - 1. outpatient setting
 - 2. emergency setting
- 3. Comparing SZC and standard care: 'new' trial 'ZS003'
- 4. SZC in emergency setting: new subgroup analyses
- 5. SZC in outpatient setting efficacy across co-morbidities
 - Yet, different treatment threshold by co-morbidity
- 6. Proportion of patients treated with SZC who resume RAASi: new analyses
- 7. Epidemiological relationship between serum K⁺ and outcomes: new systematic literature review, company continue to include in model
- 8. Relationship between renin-angiotensin-aldosterone system inhibitor RAASi use and long term outcomes: new targeted literature review
- 9. New utility values for CKD
- 10. Updated company base case, new company scenario analyses, new ERG exploratory analyses

Hyperkalaemia - high blood levels of potassium

- Serum potassium (K⁺) normal range 3.5 to 5.0 mmol/L definitions of normal to high vary; many have upper range of normal at 5.5 mmol/L
 - company defines hyperkalaemia as >5.0 mmol/L
- Severe hyperkalaemia can cause irregular heart beat, cardiac arrest and death
- Risk factors for hyperkalaemia include:
 - diseases: chronic kidney disease, heart failure
 - Medicines for high blood pressure and heart failure:
 - o renin-angiotensin aldosterone system inhibitors (**RAASi**) including:
 - angiotensin-converting enzyme (ACE) inhibitors
 - angiotensin II receptor blockers (ARB)
 - direct renin inhibitors (e.g. aliskerin)
 - aldosterone-receptor antagonists (e.g. spironolactone)
 - $\circ~$ other potassium-sparing diuretics
 - o beta-blockers

Sodium zirconium cyclosilicate (SZC), Lokelma

marketing authorisation does not define hyperkalaemia; population is broad

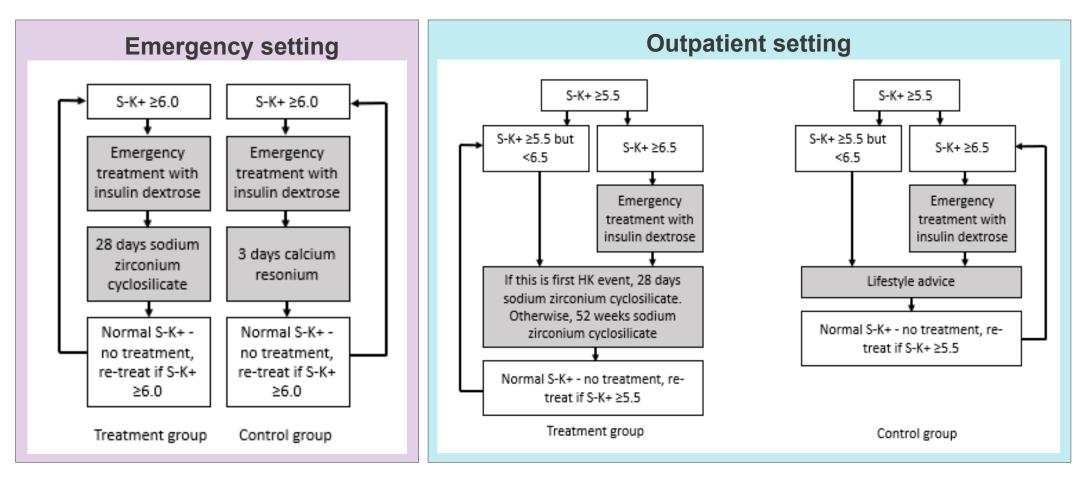

Marketing authorisation	"For the treatment of hyperkalaemia"
Administration & dose	5 g or 10 g sachet - powder for oral suspension Correction phase : 10 g, 3 times daily, max duration 72 hours Maintenance phase : 5 g once daily can be up titrated to 10 g once daily or down titrated to 5 g once every other day to maintain normal potassium levels
Special warnings and precautions for use	 Monitor serum potassium (K⁺) when clinically indicated, and after changes to medicines that affect serum K⁺ (e.g. RAASi or diuretics) and after titrating SZC dose Hypokalaemia – may require dose titration/discontinuation May be opaque to X-rays Risk of intestinal perforation currently unknown but has been reported with polymers that act in the GI tract

• What is considered hyperkalaemia that requires treatment?

- Why would this differ, or not, by etiology?

Treatment pathway

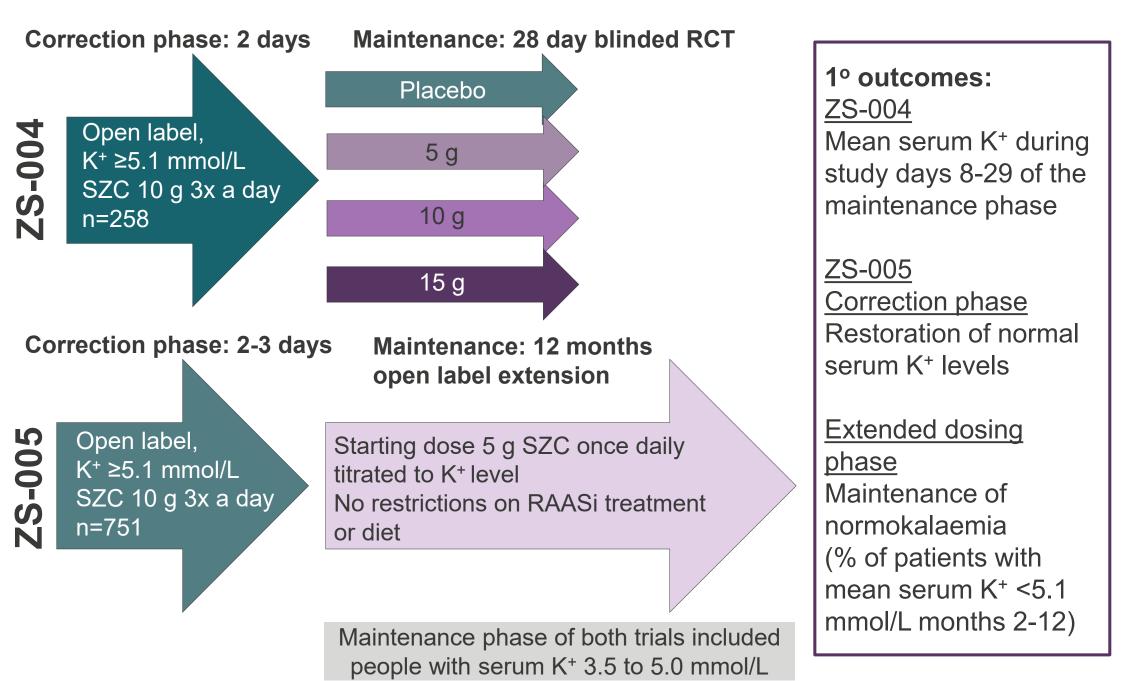
Company: SZC will be used in emergency + outpatient setting



Decision problem: population and comparators

population in submission narrower than marketing authorisation

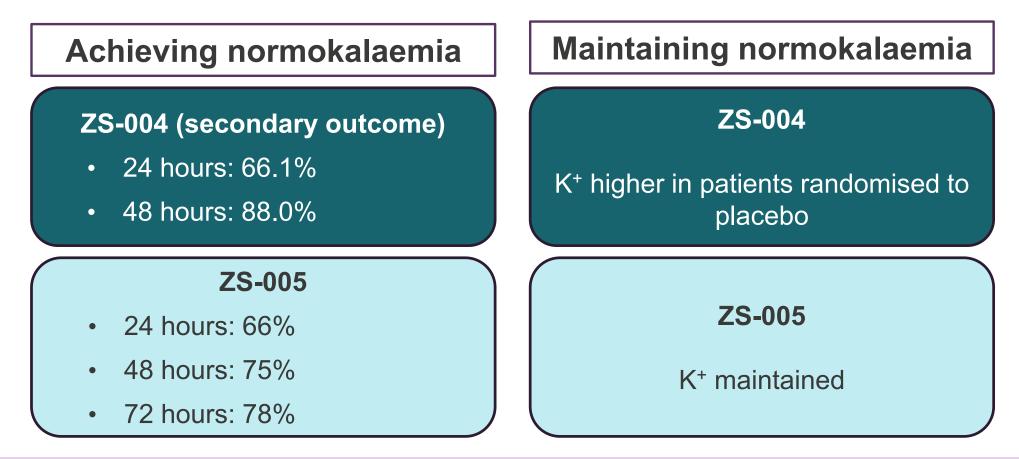
	NICE scope	Company	Comment
Population	Adults with ↑ K⁺	Adults with ↑ K ⁺ and chronic kidney disease (stage 3–5) or heart failure	Company defined ↑ K⁺ as ≥ 5.0 mmol/l in trials
Comparator	 Standard care: low K⁺ diet +/- agents to reduce K⁺ levels 	Emergency setting: calcium resonium (after insulin-glucose) repeat insulin-glucose Outpatient setting: None	Company did not present data for calcium resonium because published evidence is 'not for dose used in UK'
Outcomes	 Serum K⁺ Time to normalisation Adverse effects of treatment Use of RAASi therapy Mortality Health-related 	 Serum K⁺ Time to normalisation Adverse effects of treatment Use of RAASi therapy Mortality Health-related quality of life 	
	 Health-related quality of life 		6


Treatment pathway and comparators in model - emergency and outpatient setting scenarios

Time horizon in model: 52 weeks Duration of SZC treatment: 28 days **Time horizon in model:** Lifetime **Duration of SZC treatment:** 52 weeks (or 28 days if first event)

2 trials ZS-004+ZS-005

Comparators: Correction phase: none. Maintenance phase: 1 trial for 28 days only


Baseline characteristics in ZS-004 & ZS-005

Company proposed treating \geq 5.5 mmol/l 1st meeting, \geq 6.0 this meeting, but only for CKD

Characteristic	ZS-004 SZC 10 g (correction)	ZS-005 Overall SZC group
	(n=258)	(n=751)
Age, mean (SD)	64.0 (12.7)	63.6 (13.03)
Serum potassium basel	ine in mmol/L, n (%)	
<5.5	119 (46.1)	287 (38.2)
5.5 to <6.0	100 (38.8)	338 (45.0)
≥6.0	39 (15.1)	126 (16.8)
eGFR at baseline, n (%)		
<60 mL/min	179 (69.4)	552 (73.5)
≥ 60 mL/min	72 (27.9)	190 (25.3)
Comorbidities, n (%)		
Chronic kidney disease	169 (65.5)	513 (58.3)
Heart failure	94 (36.4)	285 (37.9)
Diabetes mellitus	170 (65.9)	471 (62.7)
Use of RAASi medication, n (%)	180 (69.8)	383 (51.0)

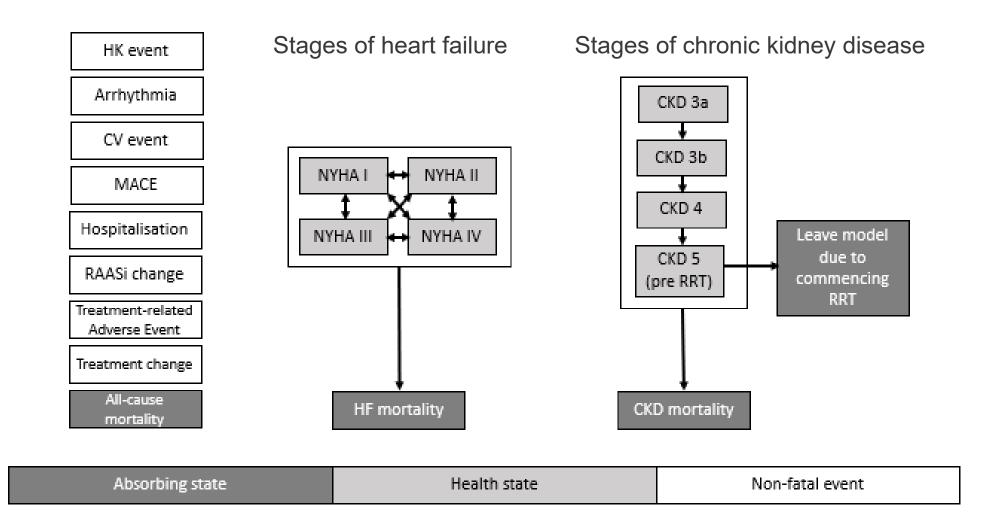
Trials excluded people on dialysis (although included CKD 5) and people with high arrhythmic risk

Results – not limited to population of interest

ERG overall conclusions on evidence for clinical effectiveness:

No direct evidence for:

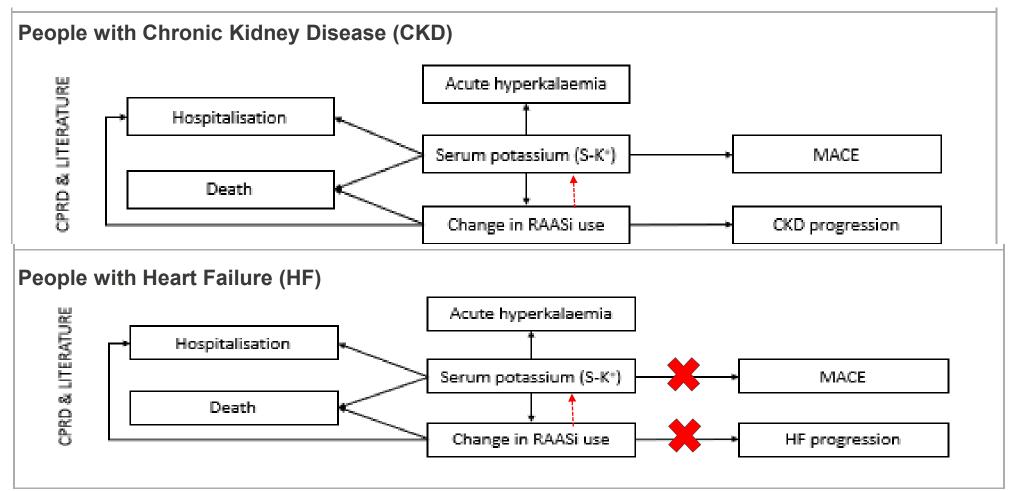
- SZC as plausible alternative for dietary modification or versus any active comparator (no narrative or formal data synthesis in the systematic review to compare SZC versus anything)
- SZC efficacy or safety in acutely unwell patients


Evidence versus company's modelling

- Trials do not show that SZC improve length of life or quality of life
- Company proposes that drug improves both in its model
 - People with high K⁺ die sooner than people with normal K⁺
 - Source: epidemiological data
 - association is U-shaped
 - Affects: length of life
 - People with high K⁺ more likely to have further CV events or be hospitalised
 - Source: epidemiological data
 - Affects: length of life, quality of life
 - People with hyperkalaemia more likely to stop RAASi and stopping RAASi shortens life and increases risk of progression of CKD/HF
 - Source: epidemiological data
 - N.b. starting RAASi based on RCTs
 - Affects: length of life, quality of life

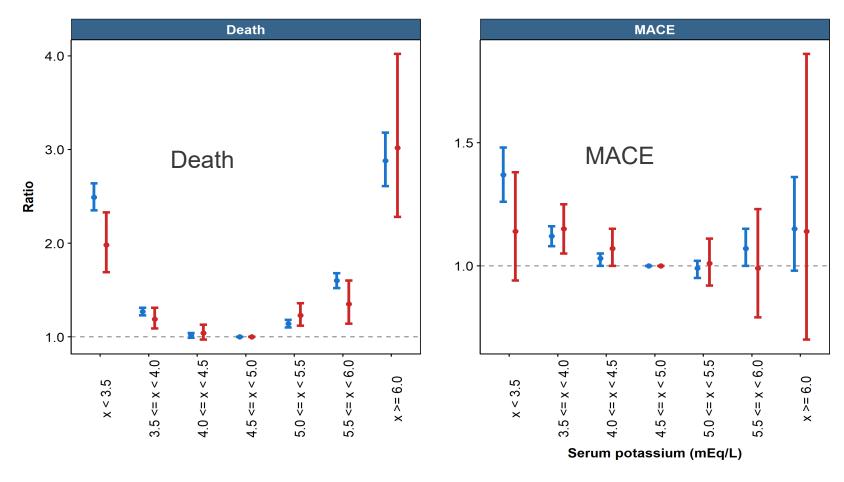
Clinical: ACD conclusions and key uncertainties

Clinical need + practice	Managing emergency life-threatening hyperkalaemia differs from persistently raised non-life-threatening hyperkalaemia		
	Lowering K ⁺ might allow continuing RAASi; unclear benefits in CKD 4; NICE for CKD stopping RAASi at K ⁺ 6.0 mmol/L		
Population	Not everyone with serum K ⁺ >5.5 mmol/L (proposed by company) needs active treatment		
	Trial include $K^+ \ge 5.0 \text{ mmol/L}$ who would not be treated in NHS		
	Trial excludes dialysis patients and emergency use		
Comparator	SZC unlikely to replace a low-potassium diet Calcium resonium not well tolerated		
Trial design	No comparator for correction period; no hard outcomes		
Trial outcome	In maintenance phase SZC maintains K ⁺ No evidence that SZC prolongs survival		
Corrective phase	Not relevant to how \uparrow K ⁺ treated in NHS as an emergency		
Maintenance phase	Company assumes people responding to SZC (serum K ⁺ 3.5-5.0 mmol) continue to have SZC; In NHS practice people with K ⁺ in normal range do not receive treatment		


Company's model structure

Abbreviations: HK, hyperkalaemia; CV, cardiovascular; MACE, Major Adverse Cardiac Event; RAASi, Renin Angiotensin Aldosterone System inhibitor; NYHA, New York Health Association; HF, heart failure; CKD chronic kidney disease; RRT, renal replacement therapy

Company uses trial K⁺ changes linked to observational data from literature for association between K⁺ and outcomes, and association between changes in RAASi and outcomes


Relationships in model from original company submission

Note: Updated model also includes association between change in RAASi use and serum K⁺ level (red arrows) and for people with HF removes the associations between serum K⁺ and MACE and change in RAASi use and HF progression (red crosses)

Epidemiological association between K⁺ + outcomes

- UK Clinical Practice Research Datalink: incidence rate ratios for mortality and MACE by K⁺ in CKD (blue) and CHF (red)
- AstraZeneca funded
- Reference for analysis K⁺ 4.5 to 4.9 mmol/l
- Elevated risk of death at values 3.5 to 3.9 mmol/l and ≥5.0 mmol/L

Reference: Qin et al. 2017, Qin et al. 2017, McEwan et al. 2017 - CKD - HF

Cost: ACD conclusions and key uncertainties

Model did not address	Did not reflect people actively treated in NHS		
problem	No randomised data for starting vs. not starting SZC		
Observational data -	No systematic review		
relationship between K ⁺ and death	Residual confounding likely - 'unmeasured or unknown'		
	Observational association between K ⁺ and death does not necessarily mean that lowering K ⁺ prolongs life		
	Lower K ⁺ (but within 'normal range') associated with increased risk of death		
Observational data - relationship between stopping RAASi and death	Residual confounding likely		
Interventional relationship between stopping RAASi and outcomes	Trials starting RAASi not necessarily generalisable to stopping treatment n.b. stopping RAASi improves K ⁺		
Costs	Company excluded outpatient follow-up after hospital treatment for ↑ K ⁺		
Model	Did not address stopping RAASi for other than \uparrow K ⁺		

Responses to ACD

Responses received from:

- Company (AstraZeneca)
- British Society for Heart Failure
- Pumping Marvellous
- Renal Association

Themes of comments from consultees:

- Need to consider subgroups separately (people with heart failure and chronic kidney disease)
- Distinct needs of people with heart failure and hyperkalaemia not addressed at 1st meeting
- For people with heart failure, benefits of treatment dependent on whether prognostic indication for RAASi
- When treatments with SZC should be started: managing episodes of hyperkalaemia vs. managing underlying condition to maintain RAASi use

Positioning of SZC in chronic setting

Consultation comments

Company

- CKD (New): K⁺ threshold for treatment increased to \geq 6.0 mmol/L from \geq 5.5 mmol/L
- HF (**unchanged**): K⁺ threshold for treatment ≥5.5 mmol/L
 - lower threshold for treating in heart failure
 - serum K⁺ levels can rise faster in heart failure than chronic kidney disease

Renal Association

Clinicians would use K⁺ binders at serum K⁺ >5.5 to prevent reaching >6 mmol/L

British Society for Heart Failure

- SZC might be of value for a narrow cohort of patients with HF and reduced ejection fraction (HFREF) with hyperkalaemia to facilitate using RAASi and prevent hyperkalaemia (serum K⁺ >6.0 mmol/L)
 - RAASi are disease-modifying in HFREF

ERG: valid attempt by company to better represent NHS clinical practice

- Why 5.5 mmol/mol? What evidence exists for different thresholds of treatment by comorbidity?
- How are RAASi disease modifying in HFREF?
- Is there a group of people for whom there are particular benefits?

Comparative data: SZC vs standard care

ACD :

- Comparators in emergency setting: calcium resonium + managing RAASi; in outpatient setting, low potassium diet and decreasing or stopping RAASi
- Company provided no data for above in NHS
- No control group for correction phase in trial not known what would have happened with standard care

Company response:

- Few data on calcium resonium or low K⁺ diet, non-compliance means they are limited as comparators
- New: company presents an existing randomised trial ZS003 it did not previously present for SZC vs. placebo in correction phase (next slide)
 - in original submission, company assumed effectiveness of SZC in correction phase equivalent to standard care (benefit from SZC modelled in maintenance phase only)

ZS003 reduction in serum K⁺: correction phase

K⁺ 5.0 to 6.5 mmol/L. Dose-ranging study 2-DAY 12-DAY CORRECTION MAINTENANCE PHASE PHASE Dose Dose (OD) (TDS) н SZC 1.25 a Placebo SZC 2.5 g Placebo SZC 1.25 g C 1.25 a Placebo SZC 2.5 g SZC 2.5 q Placebo SZC 5 g SZC 5 g Placebo SZC 10 g SZC 10 g

Randomisation

	Placebo (n=158)	SZC 5g (n=157)	SZC 10g (n=143)
Baseline K ⁺ (mmol/L)			
48h reduction, ITT pop.			
Adjusted 48h reduction,			
baseline K⁺ ≥5.5,<6.0			
Adjusted 48h reduction,			
baseline K⁺ ≥6.0			

Company adjusted values to match ZS004 baseline serum K⁺: Used in model

Why did company only now include this trial?

Company: "not generalisable to UK clinical management of patients with hyperkalaemia and CKD or HF due to [~75%] having baseline serum K⁺ below 5.5 mmol/L"

ERG comments:

- Questions whether placebo represents NHS standard care
- Baseline characteristics not generalisable to NHS
- K⁺ levels not reported for subgroup of patients used to estimate comparative efficacy
- Only 1 i-STAT measurement of K⁺ in trial reduces reliability of results
- In modelling, more appropriate to assume that decline in serum K⁺ with placebo continues for 3rd day (a company scenario analysis)

Baseline characteristics in ZS-003, ZS-004 and ZS-005

Characteristic	ZS-003 Placebo (n=158)	ZS-004 SZC 10 g (correction phase) (n=258)	ZS-005 Overall SZC group (n=751)
Age, mean (SD)	65.6 (12.2)	64.0 (12.7)	63.6 (13.03)
Serum K ⁺ baseline	e in mmol/L, n (%)		
<5.5	117 (74.1)	119 (46.1)	287 (38.2)
5.5 to <6.0	Remaining 41 patients	100 (38.8)	338 (45.0)
≥6.0	had serum K ⁺ 5.6 to 6.5	39 (15.1)	126 (16.8)
eGFR at baseline,	n (%)		
<60 mL/min	120 (75.9)	179 (69.4)	552 (73.5)
≥ 60 mL/min	38 (24.1)	72 (27.9)	190 (25.3)
Comorbidities, n (%)		
Chronic kidney disease	9(60.8)	169 (65.5)	513 (58.3)
Heart failure	66 (41.8)	94 (36.4)	285 (37.9)
Diabetes mellitus	96 (60.8)	170 (65.9)	471 (62.7)
Use of RAASi medication, n (%)	101 (63.9)	180 (69.8)	383 (51.0)

Trials excluded people on dialysis (although included CKD 5) and people with high arrhythmic risk.

Positioning of SZC in emergency setting

Consultation comments:

ACD: [Committee] should consider SZC in emergency treatment setting . . . comparators were calcium resonium and management of RAASi

Company

- Unchanged from original submission: Serum K⁺ ≥6.0
- Patients would be treated with insulin dextrose then SZC to maintain normal K⁺ levels → prevent need for repeat insulin dextrose

British Society for Heart Failure

- Acute management primarily involves treatment such as calcium gluconate, insulin dextrose and calcium resonium. Novel potassium binders may
 - complement/add to current options, for example if calcium resonium was not tolerated
 - allow the patient to be managed safely at home \rightarrow preventing hospitalisation

Renal Association

• [SZC] not intended for acute management of patients with K⁺ >6.0

Company: subgroup from ZS004 that would be treated as emergency

ACD: submission not relevant to how hyperkalaemia is treated in the NHS as an emergency... because this population was not included in the trials

Company:

- Identified 8 patients with 'life threatening' hyperkalaemia (K⁺ ≥6.5)
- patients had K⁺ <5.5 after 48 h
- Median time to normalisation (serum K⁺ ≤5.0) in ITT group (baseline serum K⁺ >5.1) was 2.2 h

ERG comments:

- Analysis based on small numbers \rightarrow considerable uncertainty within results
- Comparative reduction associated with insulin dextrose unknown

Abbreviations: K⁺, potassium; SD, standard deviation

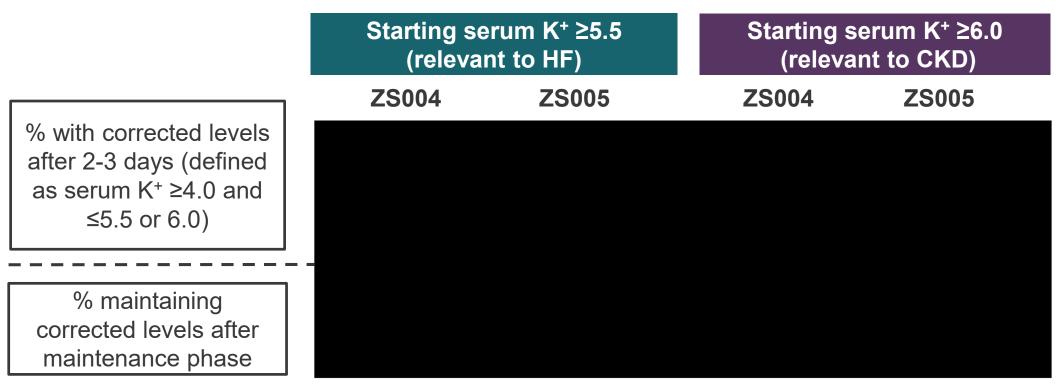
Company: subgroup confidence intervals overlap → no difference in SZC treatment effect by co-morbid condition

ZS-004 maintenance phase: mean difference in serum K⁺ on days 8–29 in SZC 10g vs placebo

ZS-005 maintenance phase: prop. patients with serum K⁺ ≤5.1 on days 85–365 by comorbidity

ERG comments:

- Confidence intervals for CKD vs no CKD don't (or barely) overlap
- Suggests greater effect for people with CKD compared to without CKD
- Important because although separate cost effectiveness analyses for HF and CKD presented, these are based on **pooled efficacy data** for whole population
 - \rightarrow reduction in serum K+ for people with HF may be less than estimated by company


• Has committee seen evidence of interaction by subgroup?

Company new data:

% of people with serum K⁺ dropping below threshold for RAASi treatment

ACD: a key outcome would be the proportion whose serum K⁺ dropped below 6.0 mmol/L

- **New** post-hoc analysis of data from ZS-004 and ZS-005 (not split by underlying condition)
- Majority of patients with serum K⁺ above RAASi threshold drop below after SZC treatment

ERG: small numbers with serum K⁺ >6.0 mmol/L \rightarrow considerable uncertainty in results

• How does the company use this in its modelling?

Abbreviations: K⁺, potassium; RAASi, renin-angiotensin-aldosterone system inhibitor.

Stopping RAASi may be beneficial in CKD stage 4 NIHR/MRC funded trial – investigating effect of stopping RAASi on renal function

STOP-ACEi

STOP-ACEi is a national multi-centre randomised controlled trial of Angiotensin Converting Enzyme inhibitor (ACEi) / Angiotensin Receptor Blocker (ARB) withdrawal in advanced renal disease.

Trial details

Full Title: Multi-centre Randomised Controlled Trial of Angiotensin Converting Enzyme inhibitor (ACEi) / Angiotensin Receptor Blocker (ARB) withdrawal in advanced renal disease

Short Title: The STOP-ACEi Trial

Aim of the study: To test the hypothesis that stopping treatment with ACEi, ARB or a combination of both, compared with continuing on these treatments, improves or stabilises renal function in patients with progressive stage 4 or 5 Chronic Kidney Disease (CKD).

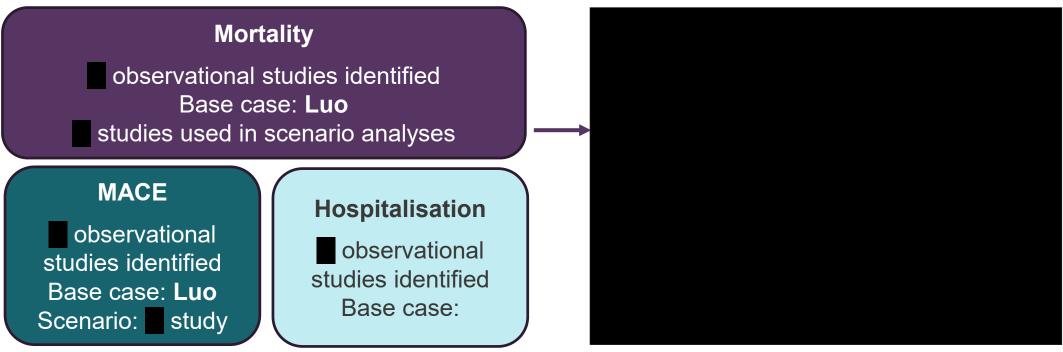
Study design: Open-label randomised controlled trial (RCT).

Relationship: serum K⁺ and long term outcomes

ACD: trial results show SZC may lower serum K⁺ but benefit to patients is unclear

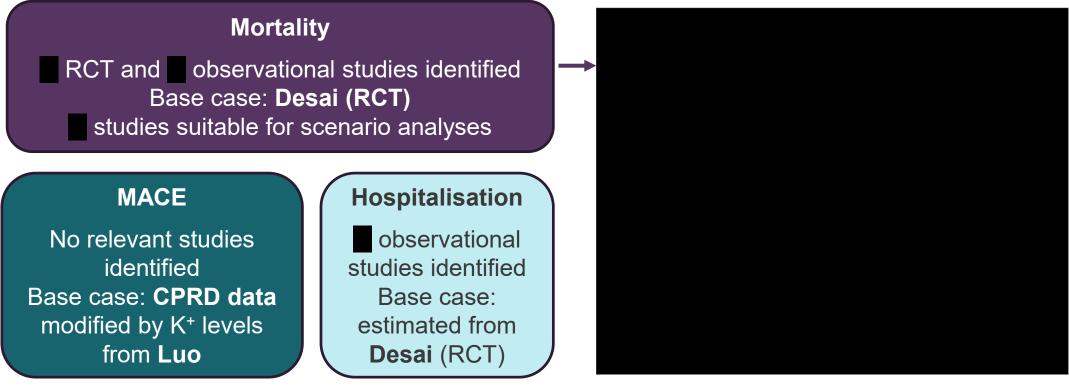
- Company provided evidence from a single observational study showing an association between serum K+ levels and death but did not provide a systematic review of the evidence
- Causal relationships cannot be guaranteed by observational data
- The extent to which the company took confounding variables into account was unclear

Consultation comments:


Company:

• New: systematic review (see next slides)

Renal Association:


• "The many recurrent and unnecessary hospitalisations that are associated with hyperkalaemia in patients with CKD and/or heart failure ... are associated with major cost, morbidity and mortality."

Company: relationship between K⁺ and outcomes – new systematic review for CKD, no meta-analysis

- All studies show U-shaped relationship" death, hospitalisation or MACE
- Uses Luo base case (**unchanged** from original base case). US-claims data base
- From Luo: 'Although efforts were taken to adjust for many plausible influential variables, confounding by unconsidered factors is possible'
- From Luo: 'Because this is an observational study, associations do not necessarily allow for causal interpretation.'
- Company scenario analyses: using other studies or adjusting risk ratio by ± 20%
- Company does not present scenario assuming no causal link between K⁺ and outcomes

Company: relationship between serum K⁺ and long term outcomes – new systematic review for HF

- U-shaped association
- Desai (new) and CPRD/Luo (unchanged) used in base case
- Company scenario analyses: using other studies or adjusting risk ratio by ± 20%
 Why did the company choose Desai?

Abbreviations: K⁺, potassium; CPRD, clinical practice research datalink; HF, heart failure MACE, major adverse cardiovascular events

ERG: relationship between serum K⁺ and outcomes

- Observational AZ-sponsored study in patients with HF (Nunez et al.) shows that patients who move from a hyperkaelaemia to normokalaemia have 'improved survival outcomes'
- From Nunez '...the question of causality arises as to whether risk associated with low or high potassium levels is the result of harm related to disruption of potassium homeostasis or rather the result of confounding factors associated with or having led to serum potassium changes.'
- Accompanying editorial highlights:
 - need to "be careful to assert a general causal relationship between hyperkalaemia and clinical outcomes across the entire spectrum of hyperkalaemia"
- Company 'RCT evidence exists for the relationship between S-K and outcomes in HF patients'
 - n.b. this appears to be an observational analysis of a trial
- Exploratory analysis: no causal link between serum K⁺ and outcomes
- It as the committee seen evidence to change committee's conclusion that the observational study used by company to support SZC extending life may have residual confounding?
- If this association is 'causal', has the committee seen evidence robust evidence that lowering potassium improves survival?

Relationship: RAASi use and long term outcomes Consultation comments

ACD: unclear whether benefits of starting a RAASi are same as the risks of stopping a RAASi to manage serum K⁺ levels because patients may change to another antihypertensive drug.

Company

- Not always appropriate to switch from RAASi therapy to another antihypertensive or one with similar benefits.
- **New:** review (see next slides)

Renal Association

• [SCZ would] facilitate safer use of ACE-I and ARB, necessary treatments for patients with CKD and/or heart failure

Pumping Marvelous Foundation

• The value of SZC to people with heart failure is ... managing their condition to ensure they maintain their triple therapy

Relationship: RAASi use and long term outcomes New tageted review CKD

	Company response	Model
Effect on outcomes	 Identified 2 observational studies of impact of down-titrating/ stopping RAASi on outcomes: supported the results of Xie et al. NMA used in original submission Effect of RAASi discontinuation on survival appears to be at least as large as the benefit of starting RAASi 	 Base case unchanged: Odds ratios (Xie) comparing RAASi to placebo New scenario analyses: Odds ratios (Xie) comparing RAASi with
Effect on CKD progression	 Evidence that RAASi reduces proteinuria and that delayed disease progression is dose-dependent 	 other active antihypertensive RAASi assumed to have no effect on outcomes

ERG comments:

- No trial evidence to show differential effect on RAASi treatment after using SZC,
- No evidence that using SZC does not impact on the effectiveness of RAASi
- Company approach and range of scenario analyses appropriate
- Given conclusions in ACD that alternative RAASi are available in event of hyperkalaemia, believes committee would prefer scenario comparing with other active antihypertensives rather than placebo

Relationship: RAASi use and long term outcomes new targeted review HF

	Company response	Model
Effect on mortality/ CV events/ hospitalisation	 Identified 3 studies on the effect of RAASi down-titration or discontinuation on outcomes that support original company submission Effect of RAASi discontinuation appears to be at least as large as RAASi initiation 	 Base case unchanged New scenario: Odds ratios for hospitalisation
Effect on HF progression	 Meta analysis of aldosterone agonists from 14 RCTs showed improvements in ejection fraction and NYHA class 	 from Xie RAASi assumed to have no effect on outcomes

ERG comments:

- No trial evidence to show differential effect on RAASi treatment due to SZC use, or evidence that using SZC does not impact on the effectiveness of RAASi
- Company approach and range of scenario analyses appropriate
- For CKD does the committee prefer to use odds ratios compared to placebo or an alternative antihypertensive?

Company: new utility estimates for CKD

Company:

- Identified 2 studies with EQ-5D data for people with CKD and chose study based on patients in Europe in updated model (Erikksson et al, 2016)
- Replaces values used in the original company submission based on HUI-3 from Gorodetskaya et al.

ERG:

- Company used data for patients without anaemia only whereas majority of data were collected in patients with anaemia
- ERG have estimated alternative values assuming independence between anaemia and CKD stage and performing a weighted average due to a lack of granular data

CKD stage	Company	ERG
3a/b	0.85	0.80
4	0.81	0.74
5 (pre renal replacement therapy)	0.74	0.71

Company revised base case assumptions

Assumption	Original submission	Revised base case	Rationale for change	
Threshold K ⁺ for treatment –outpatients	≥ 5.5 mmol/L regardless of underlying condition	 ≥6.0 mmol/L for CKD ≥5.5 mmol/L for HF 	Reflects NHS practice	
Source of data for standard care in correction phase	in ZS004/005 ZS003		Source of comparative data	
Association K ⁺ with mortality/MACE: CKD	Luo et al	Luo et al	Unchanged	
Association K ⁺ mortality/ hospitalisation: HF	Krogager et al, Luo et al	Desai et al	Relevant for HF population	
Quality of life Gorodetskaya et a		Eriksson et al	EQ-5D	
RAASi effect on K ⁺	Not modelled	↓ by 0.115/0.23 mmol/L reduce/stop RAASi	As ERG assumption	
Time horizon emergency setting	Life time	52 weeks	As ERG assumption	
Costs of changing RAASi dose	Some dose changes happen as inpatient	Dose changes happen as outpatients	As ERG assumption	
Stop RAASi on SZC	No stopping RAASi on SZC irrespective of K ⁺	Stop RAASi for 12 weeks if serum K ⁺ >6.0	As ERG assumption	

Other ERG comments on modelling

Company assumes (based on clinical expert opinion):

- All patients with serum K⁺ >6.0 mmol/L stop RAASi for 12 weeks
- For people with serum K⁺ 5.5 to 6.0 mmol/L:
 - 20% on standard care stop RAASi, 80% downtitrate
 - All on SZC continue RAASi
- Restarting RAASi depends on whether on SZC or standard care
 - 100% on SZC restart RAASi in 12 weeks vs. 49.7% on standard care

ERG believes it is plausible that rates are equal in both arms \rightarrow conducted exploratory analysis setting RAASi discontinuation/down titration and reinitiation equal across both arms

Company: revised base case results

	Emergency setting					
	CKD HF					
	Δ Costs Δ QALYs ICER			∆ Costs	Δ	ICER
	(£)			(£)	QALYs	
Revised base case	-4,079	0.007	Dominates	-3,536	0.009	Dominates

		Outpatient setting								
Revised base case		8,249	0.71	11,644	14,860	0.82	18,158			
Key scenario analysis around company revised base case										
Placebo rate of serum K ⁺ decline continues over 3 days		11,362	0.57	19,815	13,928	0.64	21,729			
Xie RAASi	OR: mortality	10,006	0.79	12,703	-	-	-			
vs. active	OR: CV event	8,532	0.71	12,066	-	-	-			
control	OR: hospitalisation	-	-	-	14,937	0.82	18,253			
RAASi: no effect on outcomes		7,054	0.63	11,173	12,575	0.50	25,208			

Company:

- scenario analyses show results robust to range of assumptions
- SZC remains cost-effective in scenario assuming no effect of RAASi on clinical outcomes (i.e. the potential benefits of SZC in enabling RAASi-use are not translated to clinical benefits)

Abbreviations: K⁺, potassium; RAASi, renin-angiotensin-aldosterone system inhibitor; OR, odds ratio 37

ERG exploratory analyses

	Outpatient setting									
	CKD			HF						
	Δ Costs (£)	Δ QALYs	ICER (£)	Δ Costs (£)	Δ QALYs	ICER (£)				
Company revised base case	8,249	0.71	11,644	14,860	0.82	18,158				
ERG exploratory analyses around company revised base case										
1) Rate of serum K ⁺ decline for placebo from ZS-003 continues over 3 days	11,362	0.573	19,815	13,928	0.641	21,729				
2) Setting RAASi discontinuation and down-titration rates in SZC arm equal to standard care	1,397	0.443	3,155	12,293	0.634	19,385				
3) OR for RAASi from Xie compared with active treatment	10,302	0.786	13,102	-	-	-				
4) ERG utility values for CKD	8,249	0.654	12,605	-	-	-				
5) Serum K ⁺ : No effect on outcomes	3,369	0.088	38,287	11,732	0.106	111,035				
ERG alternative base case combining 1 to 4	5,282	0.307	17,179	11,531	0.475	24,291				

Emergency setting SZC dominates standard care in all ERG analyses

Summary of ERG conclusions

Cost effectiveness analyses in outpatient setting relatively unbiased but considerable uncertainty within the decision problem

• Further limitations in emergency setting as no trials have been done

Uncertainties that prohibit the ERG forming a definitive ICER include:

- No trial comparing SZC and **current standard care** in NHS in either correction phase OR maintenance phase for either emergency or outpatient setting
 - approach to populating model reasonable but relatively small numbers in some subgroups → considerable uncertainty
- No trial to demonstrate the impact of SZC on hard clinical endpoints
 - guidelines recognise that high serum K⁺ levels should be reduced indicating that clinicians believe high levels of serum K⁺ warrant intervention
- Data suggests a potentially better treatment effect of SZC for patients with CKD
 - this would result in worse treatment effects in the HF patients
- No evidence that SZC enables patients to initiate, re-initiate or increase RAASi therapy and maintain optimum serum K⁺ levels