

Single Technology Appraisal

Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis [ID1521]

Committee Papers

© National Institute for Health and Care Excellence 2020. All rights reserved. See Notice of Rights. The content in this publication is owned by multiple parties and may not be re-used without the permission of the relevant copyright owner.

NATIONAL INSTITUTE FOR HEALTH AND CARE EXCELLENCE

SINGLE TECHNOLOGY APPRAISAL

Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis [ID1521]

Contents:

The following documents are made available to consultees and commentators:

The final scope and final stakeholder list are available on the NICE website.

- 1. Company submission summary from Biogen
- 2. <u>Clarification questions and company responses</u>
- 3. Patient group, professional group and NHS organisation submission from:
 - a. <u>MS Society</u>
 - b. <u>MS Trust</u>
 - c. <u>Association of British Neurologists (ABN)</u> The Royal College of Physicians has endorsed the ABN statement
- Expert personal perspectives from:
 a. <u>Mrs Lotty Brown- patient expert, nominated by the MS Trust</u>
- 5. <u>Evidence Review Group report prepared by Warwick Evidence</u> <u>The Evidence Review Group was updated after the factual accuracy check</u>
- 6. <u>Evidence Review Group report factual accuracy check</u>

Post-technical engagement documents

- 7. Technical engagement response from company
- 8. <u>Technical engagement responses from experts:</u>
 a. <u>Dr Declan Chard clinical expert, nominated by the MS Trust</u>
- 9. <u>Technical engagement responses from consultees and commentators:</u>
 - a. <u>MS Society</u>
 - b. <u>MS Trust</u>
 - c. Association of British Neurologists (ABN)
 - d. <u>Novartis</u>
- 10. <u>Evidence Review Group critique of company response to technical</u> engagement prepared by Warwick Evidence

© National Institute for Health and Care Excellence 2020. All rights reserved. See Notice of Rights. The content in this publication is owned by multiple parties and may not be re-used without the permission of the relevant copyright owner.

11. Final Technical Report

Any information supplied to NICE which has been marked as confidential, has been redacted. All personal information has also been redacted.

© National Institute for Health and Care Excellence 2020. All rights reserved. See Notice of Rights. The content in this publication is owned by multiple parties and may not be re-used without the permission of the relevant copyright owner.

NATIONAL INSTITUTE FOR HEALTH AND CARE EXCELLENCE

Single technology appraisal

Peginterferon beta-1a for treating relapsingremitting multiple sclerosis [ID 1521]

Document B

Company evidence submission

Submitted by Biogen Idec

June 2019

File name	Version	Contains confidential information	Date
ID1521_Peginterferon beta-1a for RRMS_Document B_26 July 19 [redacted]	1.1	No	26 July 2019

Company evidence submission template for peginterferon beta-1a for treating relapsingremitting multiple sclerosis

© Biogen (2019). All rights reserved

Contents

B.1	Decision problem, description of the technology, and clinical care pathway	12
B.1.1	Decision problem	
B.1.2	Description of the technology being appraised	
B.1.3	Health condition and position of the technology in the treatment	
	pathway	18
B.1.3.1	Disease overview	18
B.1.3.2	Burden of multiple sclerosis	25
B.1.3.3	Treatments for relapsing multiple sclerosis	27
B.1.3.4	Pegylated interferon β-1a for RRMS	32
B.1.4	Equality considerations	33
B.2	Clinical effectiveness	34
B.2.1	Identification and selection of relevant studies	36
B.2.2	List of relevant clinical-effectiveness evidence	36
B.2.3	Summary of methodology of the relevant clinical-effectiveness evidence	30
B.2.3.1	ADVANCE	
B.2.3.1 B.2.3.2		
B.2.4	Statistical analysis and definition of study groups in the relevant	++
D.2.7	clinical-effectiveness evidence	47
B.2.5	Quality assessment of the relevant clinical-effectiveness evidence	49
B.2.6	Clinical-effectiveness results of the relevant trials	49
B.2.6.1	Annualised relapse rate (ARR) at 1 year	49
B.2.6.2	Risk of confirmed disability progression	50
B.2.6.3	MRI outcomes	53
B.2.7	Subgroup analysis	59
B.2.7.1	ARR at 1 year	
B.2.7.2	Post hoc analysis of ADVANCE	60
B.2.8	Meta-analysis	65
B.2.9	Indirect and mixed-treatment comparisons	65
B.2.9.1	Study selection	65
B.2.9.2	Methods	66
B.2.9.3	Results	
B.2.9.4	Additional comparator efficacy studies	
B.2.9.5	Summary of comparative efficacy and safety profile	
B.2.10	Adverse reactions	93
B.2.10.1	Introduction	
B.2.10.2	ADVANCE	
B.2.10.3	ATTAIN	
B.2.10.4	ALLOW	
B.2.10.5	COMPARE	
B.2.11	Ongoing studies	
B.2.12	Innovation	
B.2.13	Interpretation of clinical efficacy and safety profile evidence	
B.2.13.1	Efficacy	
B.2.13.2	Safety profile	103

B.3	Cost-effectiveness	104
B.3.1	Published cost-effectiveness studies	104
B.3.2	Economic analysis	112
B.3.2.1	Patient population	112
B.3.2.2	Model structure	112
B.3.2.3	Intervention technology and comparators	118
B.3.3	Clinical parameters and variables	118
B.3.3.1	Derivation of clinical outcomes	118
B.3.3.2	Calculation of patient disposition over time	122
B.3.3.3	Treatment effects on disability progression and relapse frequency	126
B.3.4	Measurement and valuation of health effects	
B.3.4.1	Health-related quality-of-life data from clinical trials	128
B.3.4.2	Mapping	128
B.3.4.3	Health-related quality-of-life studies	128
B.3.4.4	Adverse Events	135
B.3.4.5	Health-related quality-of-life data used in the cost-effectiveness analysis	138
B.3.5	Cost and healthcare resource use identification, measurement and valuation	140
B.3.5.1	Intervention and comparators' costs and resource use	140
B.3.5.2	Costs and resource use associated with the health states	142
B.3.5.3	Adverse reaction unit costs and resource use	146
B.3.5.4	Miscellaneous unit costs and resource use	147
B.3.6	Summary of base-case analysis inputs and assumptions	147
B.3.6.1	Summary of base-case analysis inputs	147
B.3.6.2	Assumptions	148
B.3.7	Base-case results	150
B.3.7.1	Base-case incremental cost-effectiveness analysis results	150
B.3.8	Sensitivity analyses	153
B.3.8.1	Probabilistic sensitivity analysis	153
B.3.8.2	Deterministic sensitivity analysis	165
B.3.8.3	Scenario analysis	177
B.3.8.4	Summary of sensitivity analyses results	182
B.3.9	Subgroup analysis	182
B.3.10	Validation	182
B.3.10.1	Validation of cost-effectiveness analysis	182
B.3.11	Interpretation and conclusions of economic evidence	182
B.3.11.1	Concluding remarks of the economic evaluation	183
B.4	References	184

Tables

Table 1.	The decision problem	13
Table 2.	Technology being appraised	17
Table 3.	Outcome measures commonly used in MS studies	21
Table 4.	Clinical-effectiveness evidence: ADVANCE	37
Table 5.	Clinical-effectiveness evidence: ATTAIN	38
Table 6.	Study methodology: ADVANCE	39
Table 7.	Patient demographics and baseline characteristics, ADVANCE, intent-to-treat population.	42
Table 8.	Study methodology and key results: ATTAIN	44
Table 9.	Baseline characteristics: ATTAIN (continuous treatment groups)	
Table 10.	Summary of statistical analyses	47
Table 11.	Primary efficacy outcome: ARR at year 1	49
Table 12.	Secondary efficacy outcome: number of new or newly enlarging T2 lesions at year 1	54
Table 13.	Summary of tertiary MRI efficacy outcomes at 1 year in ADVANCE	55
Table 14.	Summary of tertiary MRI end points for all patients over 2 years in ADVANCE	56
Table 15.	Studies excluded from key analyses	68
Table 16.	Final inclusion in the mixed-treatment comparison for the overall relapsing- remitting multiple sclerosis population	69
Table 17.	Baseline characteristics of participants in the randomised controlled trials across randomised groups	70
Table 18.	Key efficacy and safety outcomes of pegIFNβ-1a relative to all other treatments	91
Table 19.	Summary of adverse events in ADVANCE	
Table 20.	Patients positive for IFN-neutralising antibodies at 1 and 2 years in ADVANCE	95
Table 21.	Summary of flu-like symptoms at 1 and 2 years in ADVANCE	95
Table 22.	Adverse events in years 3 to 6 in patients in pegIFNβ-1a treatment groups ^a	98
Table 23.	Summary list of published cost-effectiveness studies	105
Table 24.	Baseline EDSS distribution	112
Table 25.	Features of the economic analysis in this submission	114
Table 26.	Features of the economic analysis in this submission versus the previous NICE technology appraisals	115
Table 27.	Comparison of London, Ontario, and British Columbia ¹⁷⁴ data sets	119
Table 28.	British Columbia transition probability matrix (≥ 28 years)	120
Table 29.	London, Ontario natural history transition probabilities from RRMS to SPMS	121
Table 30.	London, Ontario SPMS natural history transition probability matrix	121
Table 31.	RRMS and SPMS natural history ARRs: UK MS survey and Patzold (1982)	122
Table 32.	Annual risk of treatment discontinuation (all-cause discontinuation)	124
Table 33.	Relative risks for MS mortality	
Table 34.	MTC: CDP HR versus placebo at 3 and 6 months	
Table 35.	Treatment waning - proportion of CDP treatment effect by year	
Table 36.	Rate ratio on ARRs versus placebo	
Table 37.	Summary list of published HRQOL studies	129
Table 38.	Disutility and duration associated with serious adverse events and non-serious adverse events	136
Table 39.	Utility by EDSS level stratified by relapse versus no relapse and RRMS versus SPMS	139
Table 40.	Caregiver utility decrements by EDSS level stratified by RRMS versus SPMS	139
Table 41.	Annual Treatment-related costs for each treatment (2018 values)	141
Table 42.	Annual disease management costs by EDSS level	143

Table 43.	Disease management costs by EDSS level (2016/2017 values)	146
Table 44.	Summary of variables applied in the economic model	147
Table 45.	Key assumptions within the economic model	148
Table 46.	Base-case results – deterministic analysis – full incremental analysis	152
Table 47.	Base-case results – probabilistic analysis	154
Table 48.	Description of the scenario analysis	177
Table 49.	Scenario analysis results	178

Figures

Figure 1.	Mean utility (EQ-5D) by disease severity (EDSS score)	26
Figure 2.	NHS England: treatment algorithm for multiple sclerosis disease-modifying therapies	30
Figure 3.	Annualised relapse rate by year	
Figure 4.	Secondary efficacy outcome: risk of CDP3M at year 1	
Figure 5.	Secondary efficacy outcome: risk of CDP6M at year 2	
Figure 6.	CDP6M over ATTAIN	
Figure 7.	Mean number of MRI lesions by year: (a) mean number of new T1 lesions; (b) adjusted mean number of new or newly enlarging T2 lesions; (c) mean number of Gd+ lesions	58
Figure 8.	ARR (INEC-confirmed relapses) at 1 year—rate ratio and 95% CI by baseline disease characteristics subgroup: pegIFNβ-1a Q2W vs. placebo	59
Figure 9.	Evolution of NET2 or Gd+ lesions detected at weeks 24 and 48 into black holes at 2 years: a) NET2 lesions; b) Gd+ lesions	61
Figure 10.	Proportion of patients with NET2- or Gd+-to-black hole evolution at 2 years	62
Figure 11.	ARR at 2 years in patients with and without black hole evolution	62
Figure 12.	CDP over 2 years in patients with and without black hole evolution	63
Figure 13.	Patients who achieved (a) clinical NEDA, (b) MRI NEDA, and (c) overall NEDA over 4 years (cumulative)	64
Figure 14.	Overall network for annualised relapse rate	78
Figure 15.	Annualised relapse rate of pegIFNβ-1a relative to all other treatments	79
Figure 16.	Overall network for disability progression confirmed after three months (CDP3M)	80
Figure 17.	Disability progression confirmed after 3 months (CDP3M) for pegIFNβ-1a 125 mcg Q2W relative to all other treatments	81
Figure 18.	Overall network for disability progression confirmed after 6 months (CDP6M)	82
Figure 19.	Disability progression confirmed after 6 months (CDP6M) for pegIFNβ-1a 125 mcg Q2W relative to all other treatments	83
Figure 20.	CDP3M or CDP6M at 2 years with SC pegIFNβ-1a and IM IFNβ-1a before and after matching baseline characteristics	84
Figure 21.	Confirmed relapse at 2 years with SC pegIFNβ-1a and IM IFNβ-1a before and after matching baseline characteristics	85
Figure 22.	ARR at 2 years with SC pegIFNβ-1a and IM IFNβ-1a before and after matching baseline characteristics	85
Figure 23.	ARR in matched patients treated with pegIFNβ-1a or GA	86
Figure 24.	Clinical NEDA, MRI NEDA, and overall NEDA over 2 years in matched patients treated with pegIFN β -1a or GA	86
Figure 25.	Comparison of ARR over 2 years with pegIFNβ-1a and IFNβ-1a 44 mcg before and after matching baseline characteristics	88
Figure 26.	Comparison of the percentages of patients who were relapse free over 2 years with pegIFN β -1a and IFN β -1a 44 mcg before and after matching baseline characteristics	88
Figure 27.	Comparison of CDP6M over 2 years with pegIFNβ-1a and IFNβ-1a 44 mcg before and after matching baseline characteristics	
Figure 28.	Summary of clinical NEDA analysis over 2 years' treatment with pegIFN β -1a and IFN β -1a 44 mcg	
Figure 29.	Mitigating flu-like symptoms	
Figure 30.	Strategies to prevent and manage injection-site reactions associated with self- injectable DMTs for MS	
Figure 31.	Switch DMT by reason for pegIFN β -1a discontinuation in (A) newly diagnosed, and (B) non-newly diagnosed patients	

Figure 32.	Estimated proportions of newly diagnosed and non-newly diagnosed patients free of relapses at 2 years	101
Figure 33.	Structure of the Markov cohort model	
Figure 34.	PegIFNβ-1a versus alemtuzumab: PSA results over 50 years	155
Figure 35.	PegIFNβ-1a versus alemtuzumab: cost-effectiveness acceptability curve	
Figure 36.	PegIFNβ-1a versus genGA 20: PSA results over 50 years	
Figure 37.	PegIFNβ-1a versus genGA 20: cost-effectiveness acceptability curve	156
Figure 38.	PegIFNβ-1a versus genGA 40: PSA results over 50 years	157
Figure 39.	PegIFNβ-1a versus genGA 40: cost-effectiveness acceptability curve	157
Figure 40.	PegIFNβ-1a versus GA 20: PSA results over 50 years	158
Figure 41.	PegIFNβ-1a versus GA 20: cost-effectiveness acceptability curve	158
Figure 42.	PegIFNβ-1a versus GA 40: PSA results over 50 years	159
Figure 43.	PegIFNβ-1a versus GA 40: cost-effectiveness acceptability curve	159
Figure 44.	PegIFNβ-1a versus IFNβ-1a 44: PSA results over 50 years	
Figure 45.	PegIFNβ-1a versus SC IFNβ-1a 44: cost-effectiveness acceptability curve	160
Figure 46.	PegIFNβ-1a versus IM IFNβ-1a 30: PSA results over 50 years	161
Figure 47.	PegIFNβ-1a versus IM IFNβ-1a 30: cost-effectiveness acceptability curve	161
Figure 48.	PegIFNβ-1a versus teriflunomide: PSA results over 50 years	162
Figure 49.	PegIFNβ-1a versus teriflunomide: cost-effectiveness acceptability curve	162
Figure 50.	PegIFNβ-1a versus DMF: PSA results over 50 years	163
Figure 51.	PegIFNβ-1a versus DMF: cost-effectiveness acceptability curve	163
Figure 52.	PegIFNβ-1a versus ocrelizumab: PSA results over 50 years	
Figure 53.	PegIFNβ-1a versus ocrelizumab: cost-effectiveness acceptability curve	164
Figure 54.	PegIFN β -1a versus alemtuzumab: ICER results of the OWSA (base case: £1,155, PegIFN β -1a dominated)	167
Figure 55.	PegIFN β -1a versus genGA 20: ICER results of the OWSA (base case £-11,647, PegIFN β -1a dominates)	168
Figure 56.	PegIFNβ-1a versus genGA 40: ICER results of the OWSA (base case −£15,004, PegIFNβ-1a dominates)	169
Figure 57.	PegIFN β -1a versus GA 20: ICER results of the OWSA (base case –£15,291 PegIFN β -1a dominates)	170
Figure 58.	PegIFN β -1a versus GA 40: ICER results of the OWSA (base case –£19,086, PegIFN β -1a dominates)	171
Figure 59.	PegIFNβ-1a versus IFNβ-1a 44: ICER results of the OWSA (base case -£114,329 PegIFNβ-1a dominates)	172
Figure 60.	PegIFNβ-1a versus IM IFNβ-1a 30: ICER results of the OWSA (base case -£44,272 PegIFNβ-1a dominates)	173
Figure 61.	PegIFNβ-1a versus teriflunomide: ICER results of the OWSA (base case $-$ £39,846, PegIFNβ-1a dominates)	174
Figure 62.	PegIFN β -1a versus DMF: ICER results of the OWSA (base case: –£80,002, PegIFN β -1a dominates)	175
Figure 63.	PegIFNβ-1a versus ocrelizumab: ICER results of the OWSA (base case: £131,776, pegIFNβ-1a LCLE)	176

Abbreviations

9-HPT	9-Hole Peg Test	
ABN	Association of British Neurology	
ADR	adverse drug reaction	
AE	adverse event	
ALZ	alemtuzumab	
ARR	nualised relapse rate	
ARR-ST	annualised relapse rate requiring steroids	
AWMSG	All Wales Medicines Strategy Group	
BBB	blood-brain barrier	
BCMS	British Columbia Multiple Sclerosis	
вн	black hole	
BID	twice daily	
BNF	British National Formulary	
BOI	burden of illness	
BSC	best supportive care	
CDP	confirmed disability progression	
CDP3M	confirmed disability progression sustained for 3 months	
CDP6M	confirmed disability progression sustained for 6 months	
CDW	confirmed disability worsening	
CHMP	Committee for Medicinal Products for Human Use	
CI	fidence interval	
CIS	clinically isolated syndrome	
CNS	central nervous system	
CRF	case report form	
Crl	credible interval	
CSF	cerebral spinal fluid	
DCZ	daclizumab	
DES	discrete event simulation	
DIS	dissemination in space	
DIT	dissemination in time	
DMF	dimethyl fumarate	
DMT	disease-modifying therapy	
	Expanded Disability Status Scale	
EDSS	Expanded Disability Status Scale	
EDSS EMA	Expanded Disability Status Scale European Medicines Agency	

FNG	fingolimod	
FS	functional system	
GA	glatiramer acetate	
Gd+	gadolinium enhancing	
genGA	generic glatiramer acetate	
HCHS	Hospital and Community Health Services	
HR	hazard ratio	
HRQOL	health-related quality-of-life	
HTA	health technology assessment	
ICER	incremental cost-effectiveness ratio	
ID	identification	
IFN	interferon	
IFNβ-1a	interferon β-1a	
IFNβ-1b	interferon β-1b	
IM	intramuscular	
INEC	Independent Neurology Education Committee	
IQR	interquartile range	
ISPOR	International Society of Pharmacoeconomics and Outcomes Research	
ITT	intent to treat	
IV	intravenous	
JAGS	Just Another Gibbs Sampler	
JCV	ohn Cunningham virus	
LCLE	ess costly, less effective	
LY	life-year	
MedDRA	Medical Dictionary for Regulatory Activities	
MRI	magnetic resonance imaging	
MS	multiple sclerosis	
MSFC	multiple sclerosis functional composite	
MSIS-29	Multiple Sclerosis Impact Scale 29	
MTA	multiple technology appraisal	
MTC	mixed-treatment comparison	
NA	not available	
N/A	not applicable	
NEDA	no evidence of disease activity	
NET2	T2-weighted	
NHS	National Health Service	
NICE	National Institute for Health and Care Excellence	

NR	not reported	
NS	not significant	
NTZ	natalizumab	
OR	odds ratio	
OWSA	one-way sensitivity analysis	
PASAT-3	Paced Audio Serial Addition Test 3	
Pbo	placebo	
PEG	polyethylene glycolated	
pegIFNβ-1a	pegylated interferon β-1a	
PICOS	populations, interventions, comparators, outcomes, and study designs of interest	
PML	progressive multifocal leukoencephalopathy	
POP	Plegridy Observational Programme	
PPMS	primary-progressive multiple sclerosis	
PSA	probabilistic sensitivity analysis	
PSS	Personal Social Services	
PSSRU	Personal Social Services Research Unit	
Q24W	every 24 weeks	
Q2W	every 2 weeks	
Q4W	every 4 weeks	
QAD	every other day	
QALY	quality-adjusted life year	
QD	once daily	
QOL	quality-of-life	
QW	once weekly	
RDC	remote data capture	
RES	rapidly evolving severe	
RR	relapse rate	
RRMS	relapsing-remitting multiple sclerosis	
RSS	Risk Sharing Scheme	
SAE	serious adverse event	
SAG	scientific advisory group	
SC	subcutaneous	
SD	standard deviation	
SE	standard error	
SF-12	SF-12 Health Survey	
SF-36	SF-36 Health Survey	
SF-6D	SF-6D Health Survey	

SLR	systematic literature review	
SMC	Scottish Medicines Consortium	
SmPC	summary of product characteristics	
SMR	standardised mortality ratio	
SOT	suboptimally treated	
SPMS	secondary-progressive multiple sclerosis	
STA	single technology appraisal	
T25FW	Timed 25-Foot Walk	
ТА	technology appraisal	
TID	three times daily	
TIW	three times weekly	
UK	United Kingdom	
US	United States	
VAS	visual analog scale	

B.1 Decision problem, description of the technology, and clinical care pathway

B.1.1 Decision problem

The objective of this appraisal is to assess the clinical and cost-effectiveness of pegylated interferon β -1a (pegIFN β -1a, Plegridy[®]) within its marketing authorisation for the treatment of adults with relapsing-remitting multiple sclerosis (RRMS).

PegIFNβ-1a is a new molecular entity containing IFNβ-1a that received European marketing authorisation for the treatment of RRMS in 2014.¹ PegIFNβ-1a is currently commissioned across the United Kingdom (UK), following positive recommendations from the Scottish Medicines Consortium (SMC), All Wales Medicines Strategy Group (AWMSG) and a commissioning policy in England²⁻⁴ with over 1,500 patients currently receiving therapy.

PegIFNβ-1a has been previously assessed by National Institute for Health and Care Excellence (NICE) in the interferon β (IFN) and glatiramer acetate (GA) multiple technological appraisal (NICE TA527), where the initial assessment group report found pegIFNβ-1a to be the most clinically and cost-effective IFN.⁵ However, given the comparator technologies were all participants in the UK MS Risk Sharing Scheme (RSS), a 10-year observational study initiated in 2002 to assess the impact of disease-modifying therapies (DMTs) on disability progression in RRMS patients, this was ultimately used as the primary evidence base for economic modelling and decision making. Under the RSS scheme, the then-licensed formulations of intramuscular (IM) IFNβ-1a 30 (Avonex[®]), subcutaneous (SC) IFNβ-1a (Rebif®), SC IFNβ-1b (Betaferon®), and GA (Copaxone®) were provided to patients with multiple sclerosis (MS) under an agreement that the clinical benefit of each drug would be regularly assessed against target outcomes agreed with the manufacturers. The price for each drug would be scaled, as necessary, to reach a target level of cost-effectiveness, set at the start of the scheme as £36,000 per quality-adjusted life-year (QALY). As part of the RSS, patients meeting the criteria for treatment were enrolled in a cohort and monitored regularly for evidence of disability progression and treatment benefit. Analysis of the 10-year data of this clinical cohort compared disease progression against a historical comparator and suggested that the DMTs included in the RSS reduced disability progression overall and did so to the agreed level of cost-effectiveness.

The outcome of NICE TA527 was a positive recommendation for IM IFN β -1a (Avonex[®] and Rebif[®]), IFN β -1b (Extavia[®]), and GA (Copaxone[®]) for people with RRMS. IFN β -1b (Betaferon[®]), although included in the RSS and the same compound as Extavia, was not recommended based on the grounds of cost-effectiveness.

PegIFN β -1a, on the other hand, is a new chemical entity and was licensed in 2014; therefore, it was not part of the RSS. On the basis of this as well as the committee's decision to use the RSS (which pegIFN β -1a was never part of) as the primary source for evidence base in the multiple technology appraisal (MTA), NICE were unable to provide any recommendation for pegIFN β -1a at the time and instead referred pegIFN β -1a for an independent single technology appraisal (STA).

The decision problem as per the final NICE scope for this STA is presented in Table 1.

	Final scope issued by NICE	Decision problem addressed in the company submission	Rationale if different from the final NICE scope
Population	People with relapsing-remitting multiple sclerosis	People with RRMS that is not highly active or rapidly evolving severe	PegIFNβ-1a is currently recommended within the NHS England DMT algorithm as a first-line therapy, and not in the highly active MS or rapidly evolving severe subpopulations.
			People with MS can only be classified as highly active RRMS if they have disease activity despite previous treatment. ^{a,6}
			A key exclusion criterion in the pivotal pegIFNβ-1a phase 3 study (ADVANCE) was previous treatment with IFN for more than 4 weeks; subjects had to have discontinued IFN treatment 6 months prior to the start of the study. Subjects also had to have discontinued glatiramer acetate treatment 4 weeks prior to study start. Subjects previously treated with fingolimod or natalizumab were excluded. The majority of the subjects (83%) in the ADVANCE study were MS treatment-naive.
			The remaining 17% of subjects were previously treated across three treatment groups; the most common pre- study medications were glatiramer acetate (5% of subjects), corticosteroids (4%), and IFN β -1b (1%) and azathioprine (1%). Thus, there are limited data available to assess the efficacy of pegIFN β -1a in the highly active subgroup.
			The EPAR also confirms that only patients with RRMS were included in the studies; they were mildly affected at baseline and mostly naive to MS medication. The CHMF considered lack of data in patients with high disease activity.

Final scope issued by NICE	Decision problem addressed in the company submission	Rationale if different from the final NICE scope
		Biogen also believe that pegIFNβ-1a should not be assessed in the rapidly evolving severe sub-population ^b as it is highly unlikely to be used in this population in clinical practice
PegIFNβ-1a	As per scope	N/A
 For people with RRMS: Alemtuzumab Dimethyl fumarate Teriflunomide IFNβ Glatiramer acetate Ocrelizumab (only if alemtuzumab is contraindicated or otherwise unsuitable) For people with rapidly evolving severe RRMS: Alemtuzumab Cladribine Natalizumab Ocrelizumab (only if alemtuzumab is contraindicated or otherwise unsuitable) For people with rapidly evolving severe RRMS: Alemtuzumab Cladribine Natalizumab Ocrelizumab (only if alemtuzumab is contraindicated or otherwise unsuitable) For people with highly active RRMS despite previous treatment: Alemtuzumab 	 For people with RRMS: Alemtuzumab^c Dimethyl fumarate Teriflunomide IFNβ Glatiramer acetate Ocrelizumab (only if alemtuzumab is contraindicated or otherwise unsuitable)^d 	As described above, the comparators included in the submission are for people with RRMS that is not highly active or rapidly evolving severe. ^C The EMA has applied a temporary restriction to alemtuzumab due following new reports of immune-mediated conditions (caused by the body's defence system not working properly) and problems with the heart and blood vessels with the medicine, including fatal cases. Under this temporary restriction, alemtuzumab should only be initiated in adults with RRMS that is highly active despite a full and adequate course of treatment with at least two other DMTs, or in adults with highly active RRMS where all other DMTs are contraindicated or otherwise unsuitable. We have included alemtuzumab in all MTC and economic analyses due to the timing of the final scope and the article 20 procedure, however results should be interpreted with the above restriction in mind. ^d Given the NICE recommendation for ocrelizumab is for relapsing forms of MS (only if alemtuzumab is contraindicated or otherwise unsuitable), it is unclear what the impact of the alemtuzumab restriction will have on
	PegIFNβ-1a For people with RRMS: • Alemtuzumab • Dimethyl fumarate • Teriflunomide • IFNβ • Glatiramer acetate • Ocrelizumab (only if alemtuzumab is contraindicated or otherwise unsuitable) For people with rapidly evolving severe RRMS: • Alemtuzumab • Cladribine • Natalizumab • Ocrelizumab (only if alemtuzumab is contraindicated or otherwise unsuitable) For people with highly active RRMS despite previous treatment:	Principal Scope Issued by NICE the company submission PegIFNβ-1a As per scope For people with RRMS: For people with RRMS: • Alemtuzumab • Alemtuzumab° • Dimethyl fumarate • Dimethyl fumarate • Teriflunomide • IFNβ • Glatiramer acetate • Ocrelizumab (only if alemtuzumab is contraindicated or otherwise unsuitable) For people with rapidly evolving severe RRMS: • Alemtuzumab • Alemtuzumab • Ocrelizumab (only if alemtuzumab is contraindicated or otherwise unsuitable) ^d • Ocrelizumab (only if alemtuzumab is contraindicated or otherwise unsuitable) • otherwise unsuitable) ^d For people with highly active RRMS despite previous treatment: • Alemtuzumab • Alemtuzumab • Alemtuzumab

	Final scope issued by NICE	Decision problem addressed in the company submission	Rationale if different from the final NICE scope
	 Ocrelizumab (only if alemtuzumab is contraindicated or otherwise unsuitable) 		prescribing ocrelizumab and whether this is a relevant comparator for pegIFNβ-1a.
Outcomes	 The outcome measures to be considered include: Relapse rate Severity of relapse Disability (e.g., EDSS) Symptoms of MS (such as fatigue, cognition and visual disturbance) Freedom from disease activity (e.g., lesions on MRI scans) Mortality Adverse effects of treatment HRQOL 	As per scope	Some outcomes (severity of relapse, symptoms, and freedom from disease activity) could not be assessed in an MTC due to lack of comparative data or heterogenous definitions or scales.
Economic analysis	 Cost-effectiveness of treatments should be expressed in terms of incremental cost per quality- adjusted life-year. Time horizon for estimating clinical and cost- effectiveness should be sufficiently long to reflect any differences in costs or outcomes between the technologies being compared. 	As per scope	A number of comparators have confidential commercial agreements in place. Results are therefore presented using list prices only and should therefore be interpreted with caution.

	Final scope issued by NICE	Decision problem addressed in the company submission	Rationale if different from the final NICE scope
	 Costs will be considered from an NHS and Personal Social Services perspective. The availability of any commercial arrangements for the intervention or comparator technologies will be taken into account. 		
Subgroups to be considered	 If the evidence allows, the following subgroups of people will be considered: People who could not tolerate previous treatment 	Due to lack of evidence this subgroup is not included in the submission.	Biogen believes the subgroup "people who could not tolerate previous treatment" is relevant in clinical practice. However, most clinical trials generally have exposure to previous DMTs within a specified time frame (or any exposure at all) as an exclusion criterion.

CHMP = Committee for Medicinal Products for Human Use; DMT = disease-modifying therapy; EDSS = expanded disability status scale; EMA = European Medicines Agency; EPAR = European Public Assessment Report; Gd+ = gadolinium enhancing; HRQOL = health-related quality-of-life; IFN = interferon; MRI = magnetic resonance imaging; MS = multiple sclerosis; MTC = mixed-treatment comparison; NHS = National Health Service; NICE = National Institute for Health and Care Excellence; RRMS = relapsing-remitting multiple sclerosis.

^a Defined as failure to respond to at least 1 year of treatment with a DMT and either, \geq 1 relapse in the previous year with either \geq 9 T2 lesions and/or \geq 1 Gd+ lesion, or unchanged or increased relapse rate, or ongoing severe relapse compared with the previous year.⁶

^b Defined as one or more disabling relapses in 1 year, and with ≥ 1 Gd+ lesion or a significant increase in T2 lesion load compared with a previous recent MRI.⁶

B.1.2 Description of the technology being appraised

Table 2 presents the technology being appraised. The European public assessment report can be found in Appendix C.

Table Z. Technology being	Fable 2. Technology being appraised		
UK-approved name and brand	Plegridy [®] (pegylated interferon β-1a)		
name	Referred to as PegIFN β -1a throughout this document		
Mechanism of action	While the mechanism of action is not fully understood, pegIFN β -1a is thought to reduce disease activity in MS by a similar mechanism to that of non-pegIFN β -1a; it binds to the type I IFN receptor on the surface of cells eliciting a cascade of intracellular events, leading to the regulation of IFN- responsive gene expression. ¹		
	PegIFNβ-1a is the first and only DMT in MS to leverage the benefits of pegylation, a modification with the ability to enhance product exposure whilst maintaining an acceptable safety profile. Pegylation of IFN creates a new molecular entity, that increases the circulation time of IFN, facilitating less frequent dosing, providing more continuous drug exposure and allowing treatment-free weeks. In addition, pegylation decreases immunogenicity, ^{9,10} which is associated with reduced incidence of neutralising antibodies. ¹¹ The incidence of neutralising antibodies has been linked to treatment waning. ^{12,13}		
Marketing authorisation/CE mark status	PegIFNβ-1a received EMA marketing authorisation on 17 July 2014.		
Indications and any restriction(s) as described in the SmPC	PegIFN β -1a is indicated in adult patients for the treatment of RRMS.		
Method of administration and dosage	Subcutaneous pegIFNβ-1a (Plegridy [®]) is available as a 0.5 mL prefilled syringe/autoinjector containing 63/94/125 μg of pegIFNβ-1a with bis-[monomethoxy polyethylene glycol].		
	The recommended dosage of Plegridy [®] is 125 μ g administered subcutaneously Q2W by self-injection. It is generally recommended that patients start treatment with 63 μ g at dose 1, increasing to 94 μ g at dose 2, and to the full dose of 125 μ g at dose 3. The full dose is then administered Q2W thereafter.		
Additional tests or investigations	None		
List price and average cost of a course of treatment	List price: Standard Q2W pack, 2 injections, £654 Standard Q2W pack, 6 injections, £1,962		
	Annual cost: £8,502 per annum		
Patient access scheme (if applicable)	No patient access scheme is included in the submission.		

Table 2. Technology being appraised

DMT = disease-modifying therapy; EMA = European Medicines Agency; IFN = interferon; MS = multiple sclerosis; pegIFN β -1a = pegylated interferon β -1a; Q2W = every 2 weeks; RRMS = relapsing-remitting multiple sclerosis; SmPC = summary of product characteristics; UK = United Kingdom.

B.1.3 Health condition and position of the technology in the treatment pathway

B.1.3.1 Disease overview

Multiple sclerosis is a chronic, progressive, lifelong disease with no cure, characterised by localised areas of inflammation, demyelination, and axonal degeneration.^{14,15} It affects the central nervous system (CNS) and results in the accumulation of irreversible disability. The underlying cause of MS is currently unknown, but it is thought that a complex relationship between genetic and environmental factors result in an autoimmune reaction, in which immune cell subsets in the CNS are activated and recruited, producing the hallmarks of MS pathology.¹⁶⁻¹⁸ There is also evidence suggesting that smoking, obesity during adolescence, and Epstein-Barr virus infection may be associated with an increased risk of developing MS.¹⁹⁻²⁵

B.1.3.1.1 Types of MS

MS can develop and progress into one of three major forms:

- 1. *Relapsing-remitting multiple sclerosis (RRMS):* a form of MS that affects approximately 85% of the people at the time of diagnosis. It is characterised by periods of remission followed by relapses (which may or may not result in residual disability).
- 2. Secondary-progressive multiple sclerosis (SPMS): a period of steady progression of neurological damage with or without relapses. Most patients with RRMS will eventually develop SPMS.
- 3. *Primary-progressive multiple sclerosis (PPMS):* unlike RRMS, PPMS is characterised by gradual disability progression from the onset with no obvious relapses or remissions.

This appraisal assesses the evidence of pegIFN β -1a for RRMS, which compromises approximately 85% of the overall MS population.

B.1.3.1.2 Epidemiology

Multiple sclerosis is the leading cause of non-traumatic CNS morbidity and mortality in young and middle-aged adults, and generally manifests between the ages of 25 and 35.²⁶⁻²⁸ Multiple sclerosis is two to three times more common in women than in men.²⁹ Approximately 110,000 people in the UK have MS, with an estimated 90,500 people with MS in England (164 per 100,000), 4,300 in Wales (138 per 100,000), 3,200 in Northern Ireland (175 per 100,000) and 11,300 in Scotland (209 per 100,000).²⁹ The incidence of MS in the UK is approximately 5,000 newly diagnosed patients per year.²⁹

The chronic and progressively debilitating nature of MS, combined with the young age at diagnosis, mean that these patients pose a substantial burden to the healthcare system and society.

B.1.3.1.3 Pathophysiology

Multiple sclerosis is recognised as having neurodegenerative and inflammatory processes, although the exact pathophysiology of either is not fully understood. There is strong evidence of an auto-reactive inflammatory response resulting from the activation of T-helper cells against antigens in the CNS. A subsequent inflammatory cascade results in a disruption to the blood-brain barrier (BBB), allowing for increased migration of activated immune cells, cytokines, and chemokines into the CNS. Once in the CNS, these inflammatory mediators lead the damage to myelin and oligodendrocytes; the latter responsible for maintenance and reparation of myelin.^{16,30-32} Demyelination and axonal

Company evidence submission template for peginterferon beta-1a for treating relapsingremitting multiple sclerosis

© Biogen (2019). All rights reserved

degeneration disrupt the ability of neurons to conduct electrical impulses in the brain and spinal cord, causing lesions in the brain, spinal cord, and optic nerve.¹⁶

Recent studies have suggested both neuroinflammation and neurodegeneration may occur simultaneously and perhaps independently, rather than sequentially.³³

B.1.3.1.4 Presentation

Clinical symptoms

The clinical symptoms of MS vary from patient to patient, as well as within patients over time; ranging from clinically asymptomatic earlier on in the disease to significant disability in an aggressive form of the disease.³⁴ The symptoms of MS can be generally categorised as primary (caused by the pathologic state), secondary (complications of primary symptoms), or tertiary (caused by the disease's impact on daily life).¹⁴ Some of the most common presenting symptoms experienced by patients with MS are sensory dysfunction (40% of patients), motor problems (39% of patients), visual disturbances (30% of patients), balance problems (24% of patients), pain (15% of patients), and cognitive problems (10% of patients). Later in the disease course, cognitive problems are the most common symptoms affecting 40%-70% of patients with MS.³⁵

Due to the unpredictable nature of MS it is impossible to anticipate when symptoms will occur; however, factors such as infections, heat, sleep deprivation, stress, malnutrition, anaemia, concurrent organ dysfunction, exertion, and childbirth are perceived to aggravate symptoms or lead to a new relapse.¹⁴

Imaging features

Magnetic resonance imaging (MRI) was added to the diagnostic criteria (see Section B.1.3.1.5) for MS in 2001 and rapidly has become a primary tool for characterising MS severity and progression, as well as a tool used to evaluate treatment response and prognosis and to perform pharmacovigilance surveillance

In patients with active MS, the disruption of the BBB allows acute lesions (sites of active inflammation) to be enhanced after administration of a contrast media, whereas chronic lesions are generally non-enhancing. Therefore, MRI can highlight sites of active inflammation within the CNS.

It is important to note that even in the absence of clinical symptoms described above. MRI scans will also highlight sites of irreversible axonal loss (black holes [BHs]).

MRI and the type of lesions found are described below³⁶:

- T2 lesions are typically chronic, and may be inactive or active; these are considered to reflect the dissemination of disease over time.³⁷
- T1 lesions are believed to show reversible oedema and demyelination, as well as irreversible demyelination if persisting more than 6 months (chronic BHs).³⁷
- Gd+ lesions indicate the number/volume of lesions with active inflammation.³⁷
- Chronic black holes (BHs) developed from acute MRI lesions indicate severe and irreversible tissue injury and axonal damage. These can be used to measure the neuroprotective effect of DMTs.³⁸

The characteristic MRI lesion is a cerebral or spinal plaque with high T2 signal (lesion), representing a region of demyelination with axonal preservation.

B.1.3.1.5 Diagnostic criteria

The criteria for a diagnosis of MS are known as the McDonald criteria and were last updated in 2017 with the addition of cerebrospinal fluid (CSF) analysis to investigate the presence of oligoclonal bands in order to demonstrate dissemination in time (DIT) (please see Appendix L for more detail).³⁹

The diagnosis of MS is primary clinical (relapses), with supportive roles for neuroimaging (MRI) and laboratory (oligoclonal bands). The fundamental requirement for a diagnosis of MS is the requirement of DIT and dissemination in space (DIS). Historically, the diagnosis of MS has required two or more relapses over a period of time, with two or more objective MRI lesions. However, advances in clinical practice and the updated McDonald criteria (see Appendix L) enable the diagnosis of MS after a single attack (relapse), as long as DIS is satisfied (e.g., by using MRI to identify the development of lesions in distinct anatomical locations within the CNS), as well as DIT (e.g., by using oligoclonal bands as evidence of development of new CNS lesions over time).

The 2005 McDonald criteria 1 to 4 are used to define patients with RRMS in trials for pegIFN β -1a and they are defined as follows⁷:

- 1. Two or more relapses, two or more objective lesions
- 2. Two or more relapses, one objective lesion, and DIS by MRI or positive CSF, and two or more MRI lesions consistent with MS or further clinical attack involving different sites
- 3. One relapse, two or more objective lesions, and DIT by MRI or second clinical attack
- 4. One (mono-symptomatic) relapse, one objective lesion, DIS by MRI or positive CSF and two or more MRI lesions consistent with MS, and DIT by MRI or second clinical attack.

B.1.3.1.6 Prognosis and disease monitoring

RRMS is typically preceded by clinically isolated syndrome (defined as a first clinical episode with features suggestive of MS lasting \geq 24 hours), and if left untreated, most patients with RRMS (50%-60%) will develop SPMS within 15 to 20 years after disease onset.^{40,41} One of the goals of the 2017 McDonald criteria was to facilitate earlier diagnosis of RRMS.^{39,41}

Risk factors for disease progression

Multiple sclerosis is a heterogeneous disease, and risk factors generally vary between individuals. However, observational data have found that male sex, older age of onset, progressive stage of MS at onset, and a higher MRI activity tend to be associated with a poor prognosis and faster progression. Modifiable risk factors include smoking, exposure to infectious diseases, discontinuation of DMTs; all of which are associated with increased progression.

Disease activity can be measured using a variety of direct and indirect methods and outcomes, including relapse frequency, level of disability, and lesion burden. Therefore, improvements or changes in these can be used to evaluate the efficacy of treatments. Table 3 summarises outcome measures commonly used in MS.

Outcome	Relevance to clinical practice	Definition/scales
Clinical		•
Disability progression	Patients with RRMS will accumulate disability as their disease progresses. ⁴² Therefore, disease progression can be measured using disability severity scales such as the EDSS or MSFC. Treatment differences in relapse reduction and T2 lesion measures may be predictive of EDSS disability progression. ⁴³	EDSS: an ordinal scale derived from neurological examination findings ranging from 0-10 driven primarily by ambulation assessment, with lower scores indicating a better outcome. ⁴⁴ EDSS scale is heavily weighted on morbidity but does not capture cognitive disability.
		CDP, also referred to as CDW ⁴⁵ defined as worsening of \geq 1.0 point in EDSS score from baseline (or 1.5 points if baseline EDSS is 0) sustained over 12 weeks (12-week CDP, or 3-month CDP), or 24 weeks (24-week CDP, or 6-month CDP).
		MSFC: three tests, the T25FW, 9-HPT, and PASAT-3, assessing ambulation, upper extremity function, and cognitive function, respectively. ⁴⁶ The MSFC is less heavily weighted towards ambulation than the EDSS.
Relapses	The level of disease activity in patients with RRMS can be directly measured by the frequency at which they experience relapses, that contribute to demyelination and accumulating disability. ⁴⁷ Therefore, reducing the rate of relapses is pivotal to the efficacy of an MS treatment, and consequent patient benefits.	Clinical relapses are defined as new or recurrent neurological symptoms not associated with fever or infection, lasting for at least 24 hours; at least 30 days are required between relapses to be considered as separate events. ⁴⁸
Relapses requiring IV steroids	Patients who require IV steroid therapy for relapse may be considered as those with affected functional abilities to the greater extent. Relapses requiring IV steroids may correlate with more severe relapses. ⁴⁵	Relapses requiring IV steroids: relapses treated with IV steroids according to treating doctor. ⁴⁵

Table 3. Outcome measures commonly used in MS studies

Outcome	Relevance to clinical practice	Definition/scales
	show the degree of MS disease activity. These are indicative of inflammation and myelin destruction, and contribute to accumulating disability. MRI may be predictive of future disease course, and it is expected that compound techniques (combining	T2 lesions are typically chronic, and may be inactive or active; these are considered to reflect the dissemination of disease over time. ³⁷ These can be measured using MRI.
		T1 lesions are believed to show reversible oedema and demyelination, as well as irreversible demyelination ("BHs"). ³⁷ These can be measured using MRI.
		Gd+ lesions indicate the number/volume of lesions with active inflammation. ³⁷ These can be measured using MRI.
	Chronic BHs develop from acute MRI lesions and indicate severe tissue injury. These can be used to measure the neuroprotective effect of DMTs and can be measured by MRI. ³⁸	
No evidence of disease activity (NEDA)	The absence of disease activity is the ultimate goal of MS treatment. ⁴⁹ NEDA at year 2 is considered a good predictor of long-term disease stability. ³³	Overall NEDA indicates disease stability that compromises no new relapses, no disability progression, and no new or enlarging MRI lesions. Clinical NEDA is defined as no evidence of relapses and onset of CDP, while MRI NEDA is defined as no evidence of Gd+ lesions and no new/newly enlarging T2 lesions. ³⁸

Outcome	Relevance to clinical practice	Definition/scales	
Patient-reported	Patient-reported outcomes		
Quality-of-life (QOL)	QOL is an important measure of patients' perceptions of their own condition. Questionnaires can be used to measure the impact of MS upon patients' activities of daily living, and improvements in these scores can reflect significant benefits to the patient. ⁵⁰	SF-12: condensed 12-question version of the SF-36 questionnaire. SF-12 measures QOL in eight subscales: physical functioning, role limitations due to physical problems, bodily pain, general health, vitality, social functioning, role limitations due to emotional problems, and mental health. ⁵¹	
		EQ-5D ⁵² : standardised instrument with two components, the EQ-5D descriptive system and the EQ-5D VAS. The descriptive system allows the subject to state that they have either "no problems", "some problems", or "severe problems" for five dimensions of health; mobility, self-care, usual activities, pain/discomfort, and anxiety/depression. The EQ-5D VAS is a 20-cm scale from 0 to 100 where 0 represents "worst imaginable health state" and 100 represents "best imaginable health state".	
		VAS: a commonly used generic scale where patients may indicate their pain or QOL on a 0-10 cm or 0-100 mm scale. ⁵³	
		MSIS-29: an MS-specific QOL questionnaire that combines a patient perspective with psychometric methods measuring both the physical and psychological impact of MS from the patient's perspective. ⁵⁰	

9-HPT = 9-Hole Peg Test; BH = black hole; CDP = confirmed disability progression; CDW = confirmed disability worsening; CNS = central nervous system; DMT = Disease-modifying therapy; EDSS = Expanded Disability Status Scale; Gd+ = gadolinium enhancing; IV = intravenous; MRI = magnetic resonance imaging; MS = multiple sclerosis; MSIS-29 = Multiple Sclerosis Impact Scale 29; MSFC = Multiple Sclerosis Functional Composite; NEDA = no evidence of disease activity; PASAT-3 = Paced Audio Serial Addition Test 3; QOL = quality-of-life; RRMS = relapsing-remitting multiple sclerosis; SF-12 = SF-12 Health Survey; SF-36 = SF-36 Health Survey; T25FW = Timed 25-Foot Walk; VAS = visual analogue scale.

Measurement of disability

The Expanded Disability Status Scale (EDSS) is the standard measure used in clinical practice (as well as economic evaluation models) to measure disease progression in MS. The EDSS quantifies disability in eight functional systems, specifically focusing on pyramidal, cerebellar brain stem, sensory, bowel and bladder, and cerebral/mental function. An EDSS score of 0.0 would indicate normal neurology with no impairment, an EDSS of 4.0 would suggest full ambulation without aid despite disability, an EDSS of 6.0 would suggest ambulation needing support (cane, crutch) to walk 100 m, and EDSS of 7.0 would suggest wheelchair confinement.^{54,55}

Disability progression

A longitudinal cohort study by Leray et al. (2010)⁴² suggested that MS may be characterised by two distinct phases: phase 1 lasting from diagnosis until irreversible EDSS 3 and phase 2 lasting from EDSS 3 until EDSS 6. Disability progression in phase 1 did not influence phase 2, and as in previous studies, increased relapse during the first 2 years of MS only influenced time in phase 1. Relapses after EDSS 3 were not associated with continued disability progression. Previously characterised risk factors of sex, age of onset, and relapse history were not related to disability progression in phase 2.⁴² These data are in line with previous studies suggesting that while rates of relapse early in disease predicts disease progression, relapses later in RRMS or during SPMS may not significantly predict or influence disability progression.^{56,57}

Impact of relapses on disability progression

The risk of accumulating disability from disease onset increases proportionally with relapse frequency in year 1 and 2 after disease onset⁵⁶; there is a strong association between the time to reach mild or severe disability (EDSS 3.0 and 6.0, respectively) and the number of relapses experienced by patients in these first 2 years since diagnosis.⁵⁸

Relapses can significantly contribute to disability progression, with 42% of patients experiencing a permanent residual deficit of ≥ 0.5 EDSS points following a relapse.⁴⁷ Consequently, patients could reach mild disability, after which progression to severe disability occurs in 6 to 9 years, following just six relapses.⁴²

A typical MS relapse may last for 4 to 6 weeks or up to several months, during which time patients may be unable to work or perform activities of daily living.⁵⁹ Therefore, it is vital that relapses are controlled to delay disability progression and to allow patients to avoid disability accumulation for as long as possible.

Impact of ongoing MRI activity on disability progression

Even in the absence of relapses, ongoing MRI activity indicates that pathological inflammatory activity continues to occur despite a lack of clinical symptoms.⁵⁴

Ongoing MRI activity contributes to disability progression, with a significant relationship between the number of T2 lesions at disease onset and the number of patients with EDSS > 3.0 and EDSS \geq 6.0 at 20 years.⁵⁵ MRI activity indicates active inflammation within the CNS (T2 and Gd+ lesions), can occur up to 10 times more frequently than clinical relapses, and is more indicative of poor prognosis. MRI activity may be predictive of disease progression, with patients developing SPMS at 20 years tending to have larger baseline T2 lesion volumes and a greater increase in lesion volume, particularly over the first 5 years after disease onset.^{54,55}

B.1.3.2 Burden of multiple sclerosis

B.1.3.2.1 Impact on the patient and care giver

Due to the lack of a cure for MS, the disease poses a significant personal burden for patients and caregivers. Patients are generally diagnosed at a young age, and MS negatively influences their autonomy, independence, dignity, and life planning.³³ The accumulation of physical and mental disabilities associated with MS, along with a range of unpredictable symptoms, can have a devastating effect on patients, impacting both their physical and cognitive functioning and quality-of-life (QOL).⁶⁰ Patients with MS have been shown to have worse QOL scores than patients with epilepsy, diabetes, recent myocardial infarction, or hypertension.^{61,62}

Physical dysfunction/disability

Physical disability accumulates over time, and it is estimated that untreated patients with MS will become unable to walk 100 m unaided (EDSS 6.0) after a median of 16 to 17 years from disease onset.^{44,63-66}

Mobility impairment has a considerable impact on patients' lives; even a mild loss of mobility has a significant effect on employment⁶⁷ and walking impairment is also associated with a loss of independence and limitations in daily functioning.⁶⁸

Cognitive dysfunction

Patients with MS face increasing levels of mental disability as their disease progresses, and approximately 43% to 71% of patients with MS experience cognitive dysfunction.⁶⁹⁻⁷¹

Fatigue

Fatigue is one of the most common symptoms of MS and is reported by up to 95% of patients. In MS, fatigue results in an overwhelming sense of tiredness, which often occurs after very little activity.⁷² Many patients regard fatigue as among the worst symptoms of MS, regardless of neurologic impairment.^{73,74}

Mortality

While MS does not directly result in death, up to 50% of mortality in patients may be caused by MS-related complications.⁷⁵ The life expectancy of patients with MS was estimated to be 5 to 7 years lower than that of the general population.⁷⁶

In a UK cohort study, patients with MS were shown to have a significant 1.7-fold increased risk of all-cause mortality compared with the general population.⁷⁷

Quality-of-life

QOL (EQ-5D) scores decline with increasing EDSS scores (Figure 1)78

Patients with MS have worse QOL scores than patients with epilepsy, diabetes, recent myocardial infarction, and hypertension.^{61,62} This is apparent even in the early stages of the disease, with patients with mild MS reporting scores approximately 30% lower than in the general population.⁷⁹

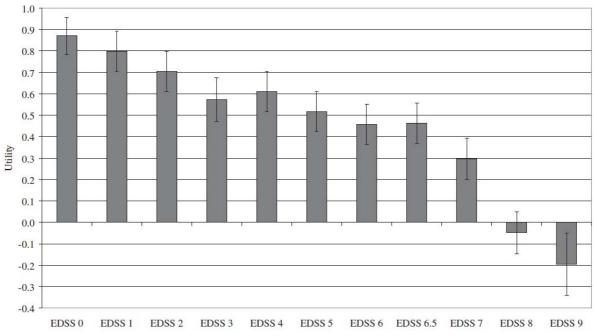


Figure 1. Mean utility (EQ-5D) by disease severity (EDSS score)

EDSS = Expanded Disability Status Scale. Source: Orme et al. (2007)⁷⁸

B.1.3.2.2 Societal and healthcare burden

Multiple sclerosis is associated with a significant economic burden.^{80,81} Patients develop MS at a young age, and healthcare costs and levels of disability increase over time. Patients may also require hospital admission during severe exacerbations.⁶⁰

Using values from TA320 (inflated 7% using the Hospital and Community Health Services [HCHS] index in the Personal Social Services Research Unit [PSSRU] from 2011/2012 to 2017/2018), which were originally derived from the 2005 UK MS Survey of 2,048 patients, states that the annual cost for patients with RRMS per EDSS state that fall under the National Health Service (NHS) and Personal Social Services (PSS) perspective were £965 for EDSS 0, £4,025 for EDSS 3, £11,621 for EDSS 7, and £22,648 for EDSS 9.⁸²

Costs of treating MS-related relapses have been reported as £2,168 (also inflated 7% from 2011/2012 to 2017/2018 values using the HCHS index from PSSRU).^{82,83} Therefore, preventing disability progression and relapses through effective management of MS is likely to reduce costs associated with the disease.

While the direct healthcare costs associated with interventions, diagnosis, and monitoring are lifelong and substantial,⁶⁰ much of the cost burden of MS falls on the social care system and wider society, with indirect costs contributing significantly to the total reported costs associated with MS. Although these indirect costs are not currently captured as a cost to the NHS, they are substantial and increase with increasing disability levels.⁸⁰ With the ongoing and potential further integration of health and social care,^{84,85} these indirect costs are likely to become increasingly relevant to calculations of cost-effectiveness considered by NICE.

One of the key indirect costs associated with MS is the accumulating disability resulting in many patients being forced to give up work and needing assistive care as their condition progresses.^{60,80,86-88} The UK component of a multinational study on the burden of MS found that 44.3% of patients with MS were forced to retire early,⁸⁰ while 10.8% of patients with MS were forced to change their type of work, and 10.9% were forced to change their working

hours as a result of the disease.⁸⁰ The proportion of patients in employment was 28.2%, with only 5.5% of patients working full time.⁸⁰ Work capacity also decreased significantly with increasing disease severity, with employment rates in patients aged < 65 years diminishing to approximately 11.0% at an EDSS score of 6.5 compared with employment rates of 82.0% in patients with EDSS 0 (if employment is assumed to be unaffected during the very early stages of MS).⁸⁰

A study conducted in Wales found that the strongest predictors of patients with MS remaining in employment were lower disability level, shorter disease duration, and more years of education.⁸⁹

Relapse frequency also has a negative impact on a patient's ability to work. A crosssectional survey reported that patients with MS who experienced \geq 1 relapse in the previous year were absent from work for 15 days during those 12 months, compared with 5 days absenteeism in patients with clinically stable disease.⁵⁹

B.1.3.3 Treatments for relapsing multiple sclerosis

B.1.3.3.1 Disease-modifying therapies

MS is an unpredictable, heterogeneous disease, the course of which can be influenced by factors such as sex, relapse frequency, type of relapse, MRI lesion load, and spinal cord involvement. There is currently no cure for MS. The goal of treatment in RRMS is to decrease the frequency and severity of relapses, diminish the accumulation of lesions as observed on brain and spinal MRI scans, slow the accumulation of physical and mental disability, and maintain or improve patient QOL.⁴⁹ Disease-modifying therapies (DMTs) are the mainstay for the treatment of RRMS, and have been shown to be effective in reducing relapse rates (RRs), MRI lesions, and disability. There is considerable evidence that initiating a DMT as early as possible is beneficial in the management of patients with MS.

The availability of a number of DMTs allows treatment to be tailored to each patient's need in terms of efficacy, safety profile, and administration preferences. Thus, it is important to have shared conversations between clinicians and patients to determine the most appropriate treatment choice for each individual. The following should be discussed with patients during their discussions:

- Possible outcomes of MS with no, inadequate, or suboptimal response, and potential next steps
- Benefits of early treatment
- Treatment goals of minimising disease activity while optimising the safety profile
- Potential benefits and risks of DMTs
- Patient management of disease through living a brain-healthy lifestyle and making informed, shared decisions about treatment
- Limitations in the current understanding of MS and DMTs

In order to meet the clinical and individual needs for each patient, it is essential that the full range of DMTs are available to prescribe; in line with the UK Association of British Neurology (ABN) guidelines 2015.⁵⁴

Recent advances in therapy for MS have raised questions regarding the selection of the appropriate patients for treatments and, if switching treatments, the most appropriate sequencing of therapies. Most patients require a change in therapy over the course of their disease, and achieving treatment goals requires careful planning. MS is a chronic, progressive, lifelong disease, and therapeutic needs may change across a lifetime. Patients

Company evidence submission template for peginterferon beta-1a for treating relapsingremitting multiple sclerosis

© Biogen (2019). All rights reserved

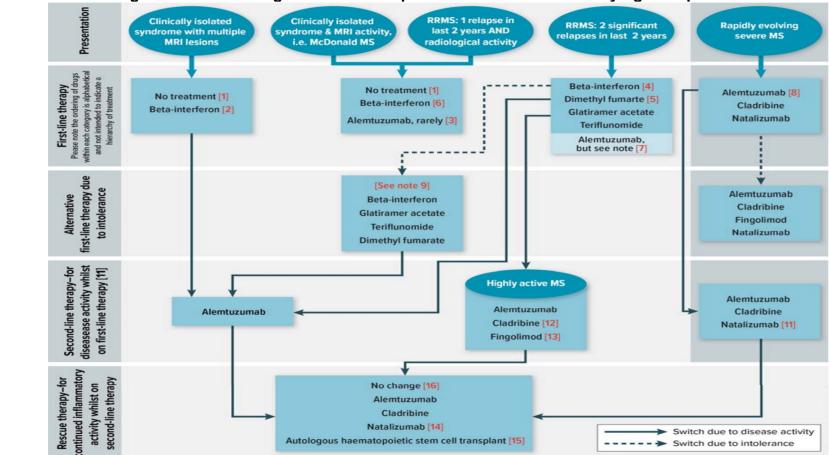
may require multiple DMTs over the course of their disease. Therefore, DMT sequencing planning is important for individual patients to maximise disease control and minimise the risks associated with DMTs; consideration should be given to the mechanism of action, pharmacokinetics, and pharmacodynamic properties of each therapy. In addition to clinical efficacy, safety profile, and administrative burden, reversibility of the immune system effects and flexibility to switch should also be key factors when selecting a DMT. This particularly important now as newer treatments become available. The approach selected for a patient should provide optimal levels of disease management without limiting future therapeutic options.^{90,91}

B.1.3.3.2 NICE guidance and clinical guidelines

Current clinical practice in England and Wales is driven by NICE guidance. The key guidelines and technology appraisals in RRMS are as follows:

- Related guidelines and pathways:
 - Multiple sclerosis in adults (2014). NICE guideline 186 (currently under review). <u>https://www.nice.org.uk/Guidance/CG186⁹²</u>
 - Multiple sclerosis (2014) NICE pathway. <u>https://pathways.nice.org.uk/pathways/multiple-sclerosis</u>⁹³
- Related NICE technology appraisals:
 - TA533: Ocrelizumab for treating relapsing-remitting multiple sclerosis (July 2018). <u>https://www.nice.org.uk/guidance/TA533</u>⁹⁴
 - TA527: Beta interferons and glatiramer acetate for treating multiple sclerosis (2018). <u>https://www.nice.org.uk/guidance/TA527</u>⁵
 - TA493: Cladribine tablets for treating relapsing-remitting multiple sclerosis (2017). <u>https://www.nice.org.uk/guidance/TA493</u>95
 - TA320: Dimethyl fumarate for treating relapsing-remitting multiple sclerosis (2014).<u>https://www.nice.org.uk/Guidance/TA320</u>⁸²
 - TA312: Alemtuzumab for treating relapsing-remitting multiple sclerosis (2014). <u>https://www.nice.org.uk/Guidance/TA312⁹⁶</u>
 - TA303: Teriflunomide for treating relapsing-remitting multiple sclerosis (2014). <u>https://www.nice.org.uk/Guidance/TA303</u>97
 - TA254: Fingolimod for the treatment of highly active relapsing-remitting multiple sclerosis (2012). <u>https://www.nice.org.uk/Guidance/TA254</u>98
 - TA127: Natalizumab for the treatment of adults with highly active relapsingremitting multiple sclerosis (2007). <u>https://www.nice.org.uk/Guidance/TA127</u>⁹⁹

B.1.3.3.3 Treatment guidelines


The ABN published clinical guidelines for MS in 2015, which discuss the treatment pathway of patients with RRMS.⁵⁴ These guidelines recommend that all patients with active RRMS are considered for treatment, and that treatment should be initiated as early as possible in eligible patients. Neurologists should discuss the risks, benefits, and monitoring requirements of DMTs with patients, as well as other factors that are personally important to patients, such as work and family. Clinicians should take into account patient views when selecting a treatment.⁵⁴

The ABN divides DMTs into two categories based on efficacy:

- Category 1 drugs of moderate efficacy: IFNβ-1a 30 μg, IFNβ-1a 22 μg, IFNβ-1a 44 μg, IFNβ-1b 250 μg, pegIFNβ-1a, GA, teriflunomide 14 mg, dimethyl fumarate (DMF) 240 mg, fingolimod 0.5 mg
- Category 2 drugs of high efficacy: alemtuzumab 12 mg, natalizumab 300 mg, ocrelizumab 600 mg, cladribine 10 mg (The latter two got their marketing authorisation after ABN guidelines were published and thus do not officially have a category, but are likely to be category 2 based on their marketing authorisation efficacy data.)

B.1.3.3.4 Treatment pathway

Figure 2 summarises the treatment algorithm for MS DMTs outlined by NHS England.

Beta-interferon = IFNβ-1a (Avonex[®], Rebif[®]), IFNβ-1b (Extavia[®]), and pegIFNβ-1a (Plegridy[®]); CIS = clinically isolated syndrome; DMT = disease-modifying therapy; EMA = European Medicines Agency; GA = glatiramer acetate; IFN = interferon; JCV = John Cunningham virus; MRI = magnetic resonance imaging; MS = multiple sclerosis; NHS = National Health Service; NICE = National Institute for Health and Care Excellence; PML = progressive multifocal leukoencephalopathy; RES = rapidly evolving severe; RRMS = relapsing-remitting multiple sclerosis; UK = United Kingdom. Notes:

1. Trials of first-line therapies in people with CIS at high risk of conversion have NOT shown a convincing long-term effect on the accumulation of disability. Therefore, it is reasonable to opt for no treatment in many patients in this situation.

2. Under 2014 NHS England guidance, IFNβ may be offered for patients within 12 months of a clinically significant CIS when MRI evidence predicts a high likelihood of recurrent episodes (i.e., development of MS).

3. In exceptional circumstances, clinical or radiological markers may indicate a poor prognosis for rapidly developing permanent disability even after just one clinical episode, in which case, alemtuzumab may be considered. Doctors and patients should weigh up the considerable risks and burden of monitoring associated with this drug, against the potential benefit.

4. For RRMS (that is not RES), IFN β , GA, and teriflunomide are effective and safe.

5. There is some evidence that dimethyl fumarate may be more effective at suppressing relapses than IFNβ, GA, and teriflunomide.

6. NHS England (2014) policy allowed the use of IFNβ in "patients with only a single major relapse in the preceding 2 years but combined with MRI evidence of continuing disease activity".

7. For RRMS (that is not RES), alemtuzumab is an option that may be considered, but we note it is considerably more high risk than the other options. It should be used only when the patient and MS specialists accept the significant risks and burden of monitoring.

8. Alemtuzumab and cladribine may be considered by some patients and clinicians as a safer option than natalizumab when JCV serology is high-index positive.

9. If a patient satisfies the eligibility criteria for a first-line therapy, and then is relapse-free on a drug to which he/she becomes intolerant, they may be switched to another DMT even though their relapses may now fall outside the eligibility window.

10. NHS England (2014) policy states that fingolimod can be used as an alternative to natalizumab for those patients receiving natalizumab who are at high risk of developing PML as defined by: (i) JCV exposure indicated by anti-JCV antibody positive status, (ii) receiving an immunosuppressant prior to receiving natalizumab, or (iii) natalizumab treatment duration of > 2 years. If patients develop a severe adverse effect to natalizumab (e.g., anaphylaxis), and they have not previously received fingolimod, then it may be appropriate to use fingolimod.

11. Definition of disease activity: treatment failure may be indicated by either clinical or radiological relapse-related changes, after significant exposure to the treating drug, with changes indicating a poor prognosis for future disability. For instance, alemtuzumab is specifically licensed for "active disease defined by clinical or imaging features".

12. For cladribine, NICE specifically defined treatment failure as "1 relapse in the previous year and MRI evidence of disease activity".

13. Under previous guidance, fingolimod may be given if patients have an unchanged or increased relapse rate or ongoing severe relapses compared with the previous year despite treatment with IFNβ or GA. This is now extended to include disease activity on teriflunomide and dimethyl fumarate.

14. The risk of PML on natalizumab is likely to be increased after alemtuzumab or cladribine, given the prolonged lymphopenia induced by these drugs. But, where the patient is negative for JCV serology, this may be appropriate.

15. Autologous haematopoietic stem treatment for autoimmunity is commissioned at specialised centres and is currently being offered to some people with MS in parts of the UK. But there is not yet an adequate controlled trial of its efficacy relative to other potent therapies. We recommend that it is made available equitably to all people with MS, but we propose that it should only be considered for people with relapsing disease (not progressive) who have failed high-activity licensed DMTs and are prepared to accept the significant risks of the procedure. We recommend that this treatment is offered only by units with expertise both in the management of aggressive MS and the use of autologous haematopoietic stem treatment.

16. After considering all these options, it may be appropriate to continue the second-line therapy, despite evidence of disease activity. Source: Dias et al. (2013)¹⁰⁰

B.1.3.3.5 Interferons

Interferons are the most widely used DMTs. They have a proven track record of efficacy, a favourable safety profile, and have been used successfully for over 16 years.¹⁰¹⁻¹⁰⁴ There are currently five IFN β s licensed in the market for the treatment of RRMS; two IFN β -1a (Avonex[®], Rebif[®]), two IFN β -1b (Extavia[®], Betaferon[®]), and only one pegIFN β -1a (Plegridy[®]). Due to their track record of efficacy and favourable safety profile, IFNs and GA are commonly used first line. In general, they offer approximately a 30% reduction in ARR, with IFN β -1a also providing significant reductions in disability progression.^{101-103,105-109} IFN β -1b and GA (Copaxone[®]) have not been shown to decrease the risk of disability progression versus placebo significantly in their pivotal clinical trials.^{101,105,108-110}

All IFNs are recombinant forms of natural IFN, which is a 166 amino-acid glycoprotein that is produced by most body cells in response to a viral infection. Interferon β -1a are structurally indistinguishable from natural IFN, whereas IFN β -1b are non-glycosylated forms that carry two structural changes compared with natural IFN. PegIFN β -1a is a pegylated IFN β -1a.

Depending on the formulation, there are marked differences in the dose regimen of the different preparations (ranging from once daily [GA 20 mg] to once every 2 weeks [Q2W] [pegIFN β -1a]), however, there are no marked differences from a safety profile. More frequent injections have been correlated with poor patient compliance resulting in reduced efficacy and poorer outcomes.¹¹¹

Frequent DMT dosing has been shown to negatively affect adherence, which may impact clinical and economic outcomes by increasing a patient's risk of disease activity and MS-related costs.¹¹¹⁻¹¹⁴ It has been estimated that up to 25% of RRMS patients are non-adherent to their DMT and the most commonly reported reasons for non-adherence are forgetting to administer the injection (50.2%; including but not limited to: tiredness of taking medication [20.4%]), injection-related reactions (32.0%; fatigue [14.5%], flu-like symptoms [12.9%], pain at injection site [11.7%], inconvenient dosing schedule [9.5%]).¹¹⁵

Non-adherent RRMS patients are more likely to have a relapse or severe relapse, require more MS-related hospitalisations and emergency department visits, thereby, increasing healthcare costs.^{113,116} These patients demonstrate worse QOL, physical, mental and emotional well-being compared with patients who are adherent to their DMT.^{113,117} In addition, patients with higher adherence may experience lower EDSS scores and are more likely to be employed than patients with lower adherence.¹¹⁷ The burden of frequent injections may also result in patients stopping therapy, with 16% to 18% of patients reporting treatment burden as the main reason for stopping their IFN, especially when it requires once-daily administration.¹¹⁸

B.1.3.4 Pegylated interferon β-1a for RRMS

PegIFN β -1a is the first pegylated IFN for the treatment of RRMS, with a convenient dosing Q2W. IFNs have had a proven track record of efficacy and a favourable safety profile in the treatment of RRMS for almost two decades.

Pegylation of IFN creates a new molecular entity with an increased biological half-life, resulting in less frequent administration. Pegylation has also shown to decrease immunogenicity (neutralising antibodies), which may have an impact on efficacy.

B.1.3.4.1 Mechanism of action

As with the other IFNs, the mechanism of action for $pegIFN\beta$ -1a is not fully understood, but is likely to involve a number of complex pathways, including:

- Increasing production of anti-inflammatory cytokines (interleukin-10)/decreasing production of pro-inflammatory cytokines (interleukin-7 and osteopontin): Inflammation is one of the main factors involved in MS; therefore, these effects are likely to reduce disease activity.
- Preventing leukocyte migration across the BBB¹¹⁹: In MS, there is an increase of leukocyte migration across the BBB (due to its increased permeability) into the CNS.^{119,120} Interferon treatment decreases the serum levels of adhesion molecules that regulate the interaction of T cells with endothelial cells, while increasing the levels of tissue inhibitors. These mechanisms help to oppose disruption of the migration of activated leukocytes across the BBB.¹¹⁹
- Assisting in CNS repair and recovery: Interferon treatment promotes nerve growth factor expression, which increases tissue repair and neuroprotection.¹¹⁹
- Increasing production of natural killer cells: Natural killer cells are primary producers of anti-inflammatory cytokines and may also control adaptive immune responses.¹¹⁹ Therefore, increased production of natural killer cells may counter the inflammation observed in the CNS of patients with MS.

B.1.3.4.2 Pegylation

Pegylation was achieved by attaching a 20 kDa methoxy-PEG-O-2-methyl-propionaldehyde group to the N-terminus of IFN β -1a, forming a shield-like structure around the protein, which protects from proteolysis (pegylation); this site is not critical to the biological activity of IFN β -1a. Pegylation has been shown to modify the pharmacokinetics of a drug as well as decrease neutralising antibodies and has been used for over 40 years. More than 10 products are available that use this technique in disease areas such as hepatitis, kidney disease, and cancer.

The potential benefits of pegIFN β -1a (pegylation) compared with other IFNs and GA drugs include the following:

- Less frequent and lower dosing: PegIFNβ-1a has a prolonged circulation time in comparison to other IFNs and GA, which results in reduced frequency of administration (Q2W).
- Improved stability: PegIFNβ-1a does not require cold chain and can be kept at room temperature for 30 days.
- Reduced immunogenicity: Pegylation can decrease drug immunogenicity by shielding antigenic determinants, which may result in a lower incidence of neutralising antibodies. This could potentially have an impact on efficacy.^{121,122}

B.1.4 Equality considerations

No equity issues are foreseen.

B.2 Clinical effectiveness

ADVANCE – Year 1 results: pegIFNβ-1a Q2W vs. placebo

- PegIFNβ-1a Q2W significantly reduced the frequency and severity of relapses at 1 year. Compared with placebo at 1 year, patients had a relative:
 - 36% reduction in annualised relapse rate (ARR); rate ratio, 0.644 (95% confidence interval [CI], 0.500-0.831; P = 0.0007)
 - 39% reduction in the proportion of patients relapsed
 - 34% reduction in the proportion of relapses requiring intravenous (IV) steroids
- Patients treated with pegIFNβ-1a Q2W had a 44% lower rate of MS-related hospitalisations, compared with placebo.
- Patients treated with pegIFNβ-1a Q2W were 38% less likely to experience confirmed disability progression sustained for 3 months (CDP3M) and 54% less likely to experience confirmed disability progression sustained for 6 months (CDP6M) (post hoc analysis), compared with placebo.
- Patients treated with pegIFNβ-1a Q2W who experienced a relapse were 30% less likely to experience CDP following the relapse.
- Among patients who experienced disability progression following a relapse, pegIFNβ-1a patients were significantly more likely to recover completely; the likelihood of disability progression in the 180 days following a relapse was reduced by 56%, compared with placebo.
- PegIFNβ-1a Q2W patients had 67% fewer new/newly enlarging T2 lesions, 67% fewer new active lesions, 86% fewer Gd+ lesions, and 53% fewer T1 lesions compared with placebo.
- PegIFNβ-1a Q2W patients were significantly more likely to demonstrate no evidence of disease activity (NEDA) compared with placebo, based on clinical (80.3% vs. 69.9%; *P* = 0.0013) and radiological criteria (62.6% vs. 41.2%; *P* < 0.0001), or combination of both (34.8% vs. 14.7%; *P* < 0.0001).

ADVANCE – Year 2 results: PegIFNβ-1a Q2W vs. delayed treatment

- In year 2 of ADVANCE, patients were switched from placebo to pegIFNβ-1a Q2W (delayed treatment arm), whereas patients initially randomised to pegIFNβ-1a Q2W continued the same treatment:
- Patients who continued treatment with pegIFNβ-1a had a further reduction in the adjusted ARR at year 2:
 - 37% reduction in the adjusted ARR compared with delayed treatment; rate ratio, 0.630 (95% CI, 0.499-0.794; P < 0.0001)
 - 39% reduction in the proportion of patients relapsed
- Patients who continued with pegIFNβ-1a Q2W were 37% less likely to experience CDP3M when compared with delayed treatment; hazard ratio (HR), 0.63 (95% CI, 0.43-0.94; P = 0.0223).

ATTAIN

In the continuous pegIFN β -1a Q2W treatment:

 The long-term results from the ATTAIN study demonstrated sustained efficacy of pegIFNβ-1a Q2W over 6 years.

- The adjusted ARR, relapses requiring IV steroids, and hospitalisation rate decreased year-after-year and remained lower versus first-year period with placebo control in the ADVANCE study.
- Low numbers of MRI lesions shown at year 1 continued to be low over 4 years of pegIFNβ-1a Q2W treatment (mean number of Gd+ lesions: 0.2-0.3, new/newly enlarging T2 lesions: 1.6-1.7, new T1 lesions: 0.7-0.8).
- Consistent with year 1 findings in the ADVANCE study, the proportion of patients with NEDA was maintained at a high level in each year during years 2 to 4 (> 80% based on clinical criteria, > 60% based MRI criteria, and > 50% for combination of both).

In the continuous versus delayed initiation of pegIFN β -1a Q2W:

- The delayed pegIFNβ-1a Q2W group (i.e., patients who switched from placebo to pegIFNβ-1a Q2W after year 1 in the ADVANCE study) experienced treatment effects similar to those of the continuous pegIFNβ-1a Q2W group in terms of low RRs and hospitalisation rates, but results were numerically lower (worse) in the delayed group than in the continuous group.
- Both groups experienced a similar trend towards a reduced risk of 24-week CDP over up to 5 years of treatment
- Mean changes of Multiple Sclerosis Impact Scale 29 (MSIS-29) psychological subscale, SF-12 Health Survey (SF-12) mental component score, and EQ-5D visual analog scale (VAS) demonstrated a slight improvement in QOL over up to 6 years, irrespective of the time of pegIFNβ-1a Q2W initiation (early or delayed by 1 year).

Subgroup/post hoc analysis from ADVANCE

- Subgroup analysis suggested that the efficacy of pegIFNβ-1a was similar in all patients regardless of their sex, age, body weight, geographical region, or disease status at the initiation of treatment.
- A post hoc analysis of the ADVANCE study evaluating chronic BH development over 2 years found fewer BHs developed at week 48 from new or enlarging T2weighted (NET2) lesions (0.44 vs. 0.99; 56% reduction, *P* < 0.0001) and from new Gd+ lesions (0.09 vs. 0.19; 53% reduction, *P* = 0.0003) in Q2W continuous treatment patients than in the delayed treatment group.

B.2.1 Identification and selection of relevant studies

See Appendix D for full details of the process and methods used to identify and select the clinical evidence relevant to the technology being appraised.

B.2.2 List of relevant clinical-effectiveness evidence

Only one relevant randomised controlled trial was identified in the clinical systematic review that evaluated clinical effectiveness of pegIFN β -1a in adult patients with RRMS. This was the pivotal phase III trial, ADVANCE, which compared dosing pegIFN β -1a Q2W and every 4 weeks (Q4W) with placebo over 1 year and demonstrated the efficacy and safety profile of pegIFN β -1a Q2W. In the second year of ADVANCE, patients originally randomised to receive placebo were re-randomised to receive pegIFN β -1a Q2W or Q4W; therefore, comparisons were made between the group of patients who received pegIFN β -1a Q2W or Q4W treatment continuously versus those for whom treatment was delayed.¹¹

Based on mechanistic considerations, it may be assumed that pegIFN β -1a is at least as effective as currently available IFN β s, so a superiority study against an active comparator was not deemed scientifically appropriate. A formal non-inferiority study versus an active comparator was considered but, following scientific advice and regulatory guidance, this option was not adopted because the number of patients required to characterise the relative efficacy of pegIFN β -1a and a comparator with sufficient confidence was deemed to be too large to be feasible and realistic.⁷

In view of the potential ethical concerns at the time of study conceptualisation, a placebocontrolled design was chosen for this study. Given the number of treatment options for patients with RRMS that were available at the time, it was decided that a 1-year placebocontrolled phase with a second year to demonstrate the longer-term safety profile and efficacy of pegIFNβ-1a was most appropriate ethically. Given that IFNs have been used for over 16 years and have a well-established efficacy and safety profile^{101-104,108}, pegIFNβ-1a was able to proceed directly to phase III testing following phase I studies. All evidence from ADVANCE is taken from the year 1 clinical study report,⁷ the ADVANCE primary publication,¹¹ or the final data tables for the data over 2 years.^{7,123} Table 4 summarises the study design of ADVANCE.

Study	ADVANCE ^{11,123}		
Study design	Multicentre, randomised, double-blind, placebo-controlled, ^a phase III study		
Population	Adults aged 18-65 yea	rs (inclusive) with RRMS, I	EDSS ≤ 5.0
Intervention(s) and comparator(s)	 Year 1: SC pegIFNβ-1a Q2W (n = 512) SC pegIFNβ-1a Q4W (n = 500) Placebo (n = 500) At the end of year 1, all placebo patients were randomised to active treatment: Continued SC pegIFNβ-1a Q2W (n = 438) Continued SC pegIFNβ-1a Q4W (n = 438) Switched to SC pegIFNβ-1a Q2W (n = 228) 		
Of under law with		IFNβ-1a Q4W (n = 228)	
Study length	96 weeks (year 1: 48 w	veeks; year 2: 48 weeks)	1
Indicate if trial supports application for marketing authorisation	Yes	Indicate if trial used in the economic model	Yes
Rationale for use/non-use in the model	Pivotal phase III, randomised controlled trial for clinical efficacy data		
Reported outcomes specified in the decision problem	 Relapse rate Severity of relapse Disability (e.g., EDSS, CDP3M, and CDP6M) Symptoms of MS (such as fatigue, cognition, and visual disturbance – visual function test, MS functional component, etc.) Freedom from disease activity (for example lesions on MRI scans) Mortality Adverse effects of treatment HRQOL 		
All other reported outcomes	 Brain atrophy Magnetisation transfer ratio ARR-ST MS-related hospitalisation Treatment discontinuation Life-years Direct cost outcomes quiring steroids; CDP3M = confirmed disability progression sustained for 3 months; 		

Table 4. Clinical-effectiveness evidence: ADVANCE

ARR-ST = annualised relapse rate requiring steroids; CDP3M = confirmed disability progression sustained for 3 months; CDP6M = confirmed disability progression sustained for 6 months; EDSS = Expanded Disability Status Scale; HRQOL = health-related quality-of-life; pegIFN β -1a = pegylated interferon β -1a; MRI = magnetic resonance imaging; MS = multiple sclerosis; Q2W = every 2 weeks; Q4W = every 4 weeks; RRMS = relapsing-remitting multiple sclerosis; SC = subcutaneous.

Outcomes marked in **bold** are incorporated into the model

^a Year 1 only.

Source: Calabresi et al. (2014)¹¹

ATTAIN is a 2-year extension study for ADVANCE which supplements data from ADVANCE (Table 5) (the study was deemed complete when the last patient reached week 96 assessment, hence for some patients data up to 6 years are available). ATTAIN was not used to populate the economic model which is based on ADVANCE but is included in Sections B.2.2 to B.2.6 as it provides supplementary evidence for the long-term efficacy and safety profile of pegIFNβ-1 α 125 µg up to 6 years.¹²⁴

Table 5. Cliffical-effectiveness evidence. ATTAIN			
Study	ATTAIN (2-year extension of ADVANCE) ¹²⁴		
Study design	A dose-frequency blinded extension study of ADVANCE		
Population	Patients who completed 2 years in ADVANCE		
Intervention(s) and comparator(s)	pegIFNβ-1a Q2W (n = 376) pegIFNβ-1a Q4W (n = 354)		
Study length	2 years (completed when the last patients reach the week 96 assessment)		
Indicate if trial supports application for marketing authorisation	No		
Indicate if trial used in the economic model	No		
Rationale for use/non-use in the model	Not applicable		
Reported outcomes specified in the decision problem	 Adverse effects of treatment Mortality Relapse rate Severity of relapse Disability (e.g., EDSS CDP6M) Freedom from disease activity (for example lesions on MRI scans) 		
All other reported outcomes	Immunogenicity		

Table 5. Clinical-effectiveness evidence: ATTAIN

CDP6M = confirmed disability progression sustained for 6 months; EDSS = Expanded Disability Status Scale; MRI = magnetic resonance imaging; pegIFNβ-1a = pegylated interferon β -1a; Q2W = every 2 weeks; Q4W = every 4 weeks. Source: Newsome et al. (2018)¹²⁴

B.2.3 Summary of methodology of the relevant clinicaleffectiveness evidence

B.2.3.1 ADVANCE

B.2.3.1.1 Methodology

ADVANCE was an international, multicentre, randomised, double-blind, parallel-group, placebo-controlled study (year 1). The methods for the ADVANCE study are summarised in Table 6. Patients were randomised in a 1:1:1 ratio to receive either SC pegIFN β -1a 125 mcg Q2W or Q4W, or placebo. All randomisation took place using a centralised, interactive voice/web recognition system and was stratified by site.¹¹

ADVANCE was double-blind for patients in the first year, while assessors performing clinical assessments were blind throughout. All patients and study staff were blinded to the patient's randomised treatment assignment. To ensure treatment blinding within the first year, each patient received one injection of pegIFN β -1a or placebo Q2W. In the second year, all patients were permitted to know they were receiving pegIFN β -1a treatment but remained blinded to the treatment frequency (Q2W or Q4W).¹¹

Table 6. Study methodology: ADVANCE			
Study	ADVANCE		
Location	26 countries		
Trial design	An international, multicentre, phase III, randomised, 2-year double-blind study, assessing the efficacy of two pegIFNβ-1a treatment regimens in adults with RRMS. Patients were randomised in a 1:1:1 ratio to receive either pegIFNβ-1a Q2W or Q4W, or placebo. A 1-year placebo-controlled treatment period was followed by a second year of treatment, during which all patients initially allocated to placebo were re-randomised to receive either pegIFNβ-1a Q2W or Q4W.		
	To ensure treatment blinding within the first year, each patient received one injection of pegIFN β -1a or placebo Q2W. At the end of year 1, patients randomised to placebo were re-randomised to pegIFN β -1a (Q2W or Q4W). In year 2, all patients were permitted to know that they were receiving pegIFN β -1a treatment but were to remain blinded to the treatment frequency (Q2W or Q4W).		
Objectives	Year 1		
	To determine the safety profile and efficacy of two different treatment regimens of pegIFN β -1a (Q2W and Q4W) in adult patients with RRMS at 1 year in terms of reducing ARR, reducing the proportion of patients who relapsed, slowing disability progression, and reducing the total number of new or newly enlarging T2 hyperintense lesions on brain MRI scans.		
	Year 2		
	To determine the maintenance of efficacy and the safety profile, tolerability, and immunogenicity of pegIFN β -1a over a 2-year treatment period.		
Settings and locations where the data were collected	183 neurology practices, including hospitals, academic medical centres, and private practices, in 26 countries.		

Study	ADVANCE
Study Interventions	 Year 1 In year 1, patients were randomised in a 1:1:1 ratio to receive either: PegIFNβ-1a Q2W (n = 512) PegIFNβ-1a Q4W (alternate injections of placebo and pegIFNβ-1a Q2W) (n = 500) Placebo (n = 500) Year 2 In year 2, the delayed treatment group (those who received placebo in year 1) were re-randomised in a 1:1 ratio to receive pegIFNβ-1a Q2W (n = 228) or Q4W (n = 228). Patients who received pegIFNβ-1a Q2W or Q4W in year 1 remained on
Key inclusion criteria	 their assigned treatment regimen in year 2 (Q4W, n = 438; Q2W, n = 438). Aged 18-65 years at time of informed consent Confirmed diagnosis of relapsing MS, as defined by McDonald criteria 1 through 4 EDSS score 0.0-5.0 ≥ 2 relapses within the last 3 years with ≥ 1 of these in the last 12 months prior to randomisation Able and willing to practice effective contraception during the study and for 3 months after the last dose of study treatment
Key exclusion criteria	 Medical history Relapse within 50 days prior to randomisation and/or not stabilised from a previous relapse Primary progressive, secondary-progressive, or progressive relapsing MS Known allergy to any component of the pegIFNβ-1a formulation History of hypersensitivity or intolerance to paracetamol, ibuprofen, naproxen, or aspirin that would preclude use of at least one of these during the study Treatment history Prior treatment with interferon could not exceed 4 weeks, and patients must have discontinued interferon treatment 6 months prior to day 1 of the study (baseline) Previous treatment with pegIFNβ-1a, total lymphoid irradiation, cladribine, T-cell or T-cell receptor vaccination, fingolimod, any therapeutic monoclonal antibody (including natalizumab), or GA within 4 weeks prior to randomisation

Study	ADVANCE
Efficacy	Year 1
outcomes	Primary efficacy outcome:
	 ARR at 1 year
	Secondary efficacy outcomes:
	 Proportion of patients relapsed at 1 year
	 CDP3M at 1 year, and post hoc analysis of CDP6M at 6 months that was defined as a ≥ 1.0-point increase on the EDSS from baseline EDSS ≥ 1.0 that was sustained for 3 or 6 months, or a ≥ 1.5-point increase on the EDSS from baseline EDSS = 0.0 that was sustained for 3 or 6 months
	 Number of new or newly enlarging T2 hyperintense lesions at 1 year
	Year 2
	Secondary/tertiary end points included the following key clinical and MRI measures:
	• ARR
	 Proportion of patients relapsed
	 Disability progression (CDP3M and CDP6M)
	 Mean number of new or newly enlarging T2 hyperintense lesions and Gd+ lesions
Pre-planned subgroups	 ARR between patients who withdrew before the end of year 1 and those who completed year 1.
	 Baseline EDSS (EDSS < 4.0 vs. EDSS ≥ 4.0)
	 Age at baseline (< 40 vs. ≥ 40 years)*
	■ Sex*
	Region
	 Baseline weight*
	 Baseline number of relapses in the 3 years prior to study entry
	 Time since most recent pre-study relapse (months) (≤ 4 vs. > 4 months)
	Baseline McDonald criteria
	Prior MS treatment
	 Baseline Gd+ lesions*
	 Baseline T2 lesion volume elapse rate; CDP3M = confirmed disability progression sustained at 3 months; CDP6M = confirmed

disability progression sustained at 6 months EDSS = Expanded Disability Status Scale; GA = glatiramer acetate; Gd+ = gadolinium enhancing; MRI = magnetic resonance imaging; McDonald criteria 1-4 = see Section B.2.3.1.2; MS = multiple sclerosis; pegIFNβ-1a = pegylated interferon; Q2W = every 2 weeks; Q4W = every 4 weeks; RRMS = relapsingremitting multiple sclerosis; SC = subcutaneous.

Note: Relapses were defined as new or recurrent neurologic symptoms not associated with fever or infection, lasting \geq 24 hours, and accompanied by new objective neurological findings upon examination by a neurologist. Relapses were required to be confirmed by an independent committee consisting of 8 blinded neurologists with expertise in MS (3 neurologists were voting members, with 1 substitute member at any one time). New or recurrent neurologic symptoms that occurred < 30 days following the onset of a protocol-defined relapse were considered part of the same relapse (i.e., if 2 relapses had onset days that were \leq 29 days apart, they were counted only as 1 relapse, and the onset date used in the analysis was the onset date of the first relapse).¹¹

the first relapse).¹¹
* Due to the number of outcomes and subgroups, only those which were felt to be relevant will be presented. Therefore, results for those subgroups marked with an asterisk (*) will not be presented.

Sources: Calabresi et al. (2014)¹¹; Biogen Idec Inc (2013)⁷; Kieseier et al. (2015)¹²³.

B.2.3.1.2 Baseline characteristics

In the intent-to-treat (ITT) population, the three treatment groups were generally wellbalanced with respect to baseline demographics (Table 7). ADVANCE was conducted in mainly treatment-naive patients (approximately 83% overall) with mild to moderate disease.¹²⁵⁻¹²⁷ The majority of patients were women (71%), < 40 years old (62%), and white (82%). In total, 14 patients were enrolled in the UK.^{7,11}

The three treatment groups were also similar regarding proportions of patients meeting the 2005 McDonald criteria 1 to 4 at screening (please see Section B.1.3.1.5 for more detail), baseline EDSS scores, relapse history, and MS disease history. Most patients (88%) were diagnosed with MS based on McDonald criterion 1. EDSS scores at baseline were similar (0.0-5.5 across treatment groups). One patient (< 1%) had scores greater than the protocol-specified upper limit of 5.0. Most patients (84%) had an EDSS < 4 at baseline, and 16% of patients had a baseline EDSS $\geq 4.^{7.11}$ The McDonald criteria are defined as follows⁷:

- 1. Two or more relapses, two or more objective lesions.
- 2. Two or more relapses, one objective lesion, and DIS by MRI or positive CSF and two or more MRI lesions consistent with MS or further clinical attack involving different site.
- 3. One relapse, two or more objective lesions, and DIT by MRI or second clinical attack.
- 4. One (mono-symptomatic) relapse, one objective lesion, DIS by MRI or positive CSF and two or more MRI lesions consistent with MS, and DIT by MRI or second clinical attack.

During the 12 months before the start of the study, most patients (53%) had one relapse, 40% of patients had two relapses, and 6% of patients had three or more relapses. The mean number of relapses that occurred during this period was 1.5. During the 3 years prior to study entry, the mean number of relapses was 2.5. The mean time since the most recent relapse was 5.0 months. The mean time since the occurrence of the first symptoms of MS was 6.6 years, with a wide range of individual subject values (0-40 years). The mean time since MS diagnosis was 3.6 years (0-40 years).^{7,11}

Characteristic		PegIFNβ-1a Q2W (N = 512)	Placebo (N = 500)	PegIFNβ-1a Q4W (N = 500)
Age, mean ± SD		36.9 ± 9.8	36.6 ± 9.8	36.4 ± 9.9
Female, n (%)		361 (71)	358 (72)	352 (70)
Race, n (%)	White	416 (81)	412 (82)	409 (82)
	Asian	59 (12)	56 (11)	56 (11)
	Other	33 (6)	29 (6)	32 (6)
	Black	3 (< 1)	3 (< 1)	1 (< 1)
	Not reported	1 (< 1)	0	2 (< 1)

Table 7.Patient demographics and baseline characteristics, ADVANCE,
intent-to-treat population

Characteristic		PegIFNβ-1a Q2W (N = 512)	Placebo (N = 500)	PegIFNβ-1a Q4W (N = 500)
Region, n (%)	India	58 (11)	56 (11)	56 (11)
	North America	19 (4)	17 (3)	16 (3)
	Western Europe	41 (8)	38 (8)	39 (8)
	Eastern Europe	355 (69)	354 (71)	355 (71)
	Rest of world	39 (8)	35 (7)	34 (7)
Height (cm), mean ± SI)	167.8 ± 9.55	167.5 ± 9.11	167.6 ± 9.17
Weight (kg), mean ± SI)	69.57 ± 17.38	69.19 ± 16.16	68.32 ± 14.63
Body mass index (kg/m	²), mean ± SD	24.59 ± 5.10	24.61 ± 4.90	24.25 ± 4.53
EDSS score	Mean ± SD	2.47 ± 1.25	2.44 ± 1.18	2.48 ± 1.24
	< 4, %	83	86	83
	≥4, %	17	14	17
Relapses in previous ye	ear, mean ± SD	1.6 ± 0.7	1.6 ± 0.7	1.5 ± 0.6
Relapses in previous 3	years, mean ± SD	2.6 ± 1.0	2.6 ± 1.0	2.5 ± 0.8
Time since MS diagnos	is, years ± SD	4.0 ± 5.1	3.5 ± 4.63	3.4 ± 4.3
McDonald criteria	1			
	2			
	3			
	4			
Prior MS treatment,	Any	89 (17)	86 (17)	85 (17)
n (%) ^a	GA	27 (5)	24 (5)	28 (6)
	IFNβ-1b	8 (2)	6 (1)	5 (1)
	IFNβ-1a	4 (< 1)	5 (1)	6 (1)
	Other	58 (11)	58 (12)	56 (11)
Number of lesions,	T2	48.7 ± 36.83	50.6 ± 35.65	51.4 ± 35.99
mean± SD	T1			
	Gd+	1.2 ± 3.44	1.6 ± 3.81	1.8 ± 5.38

EDSS = Expanded Disability Status Scale; GA = glatiramer acetate; MS = multiple sclerosis; peglFNβ-1a = pegylated interferon; Q2W = every 2 weeks; Q4W = every 4 weeks; SD = standard deviation. Note: PeglFNβ-1a Q4W greyed out as peglFNβ-1a Q2W is currently the only licensed dose and the focus of this submission. ^a Patients may have received more than one therapy. Sources: Calabresi et al. (2014)¹¹; Biogen Idec Inc (2013)⁷

B.2.3.2 ATTAIN

B.2.3.2.1 Methodology

ATTAIN was a dose-blinded extension of ADVANCE, in which patients received the same dosing regimen that they received in year 2 of ADVANCE. ATTAIN was completed in guarter 4, 2015.^{124,128}

Table 8 summarises the methodology and results of ATTAIN.

Study	ATTAIN
Location	26 countries
Trial design	A phase IIIb, multicentre, parallel-group, dose-frequency blinded, 2-year extension of ADVANCE.
	When the last patient reached 96 weeks, the ATTAIN study was considered complete; therefore, some patients received treatment for up to 6 years.
	A protocol amendment changed ATTAIN to an open-label study where all ongoing patients on pegIFN β -1a Q4W dosing were switched to Q2W dosing; the original dosing schedules remained blinded.
Objectives	To evaluate the long-term efficacy and safety profile of pegIFN β -1a (2 years in ADVANCE and 2 years in ATTAIN; 5-year and 6-year data also presented).
Settings and locations where the data were collected	183 neurology practices, including hospitals, academic medical centres, and private practices, in 26 countries.
Interventions	Patients received one of the following treatment regimens depending on their treatment assignment in year 2 in ADVANCE:
	 PegIFNβ-1a Q2W (n = 740; 512 received continuous treatment, and 228 received treatment beginning in year 2).
	 PegIFNβ-1a Q4W (n = 728; 500 received continuous treatment, and 228 received treatment beginning in year 2).
	 Following implementation of the protocol amendment, all ongoing patients on pegIFNβ-1a Q4W were switched to Q2W for the remainder of the study
Eligibility	Inclusion:
criteria for participants	Diagnosis of RRMS as defined by the 2005 McDonald criteria, age 18-65 years, a score of 0.0-5.0 on the EDSS, and at least two clinically documented relapses in the previous 3 years, of which at least one occurred within 12 months of screening visit.
	Exclusion:
	Progressive forms of MS, prespecified laboratory abnormalities, and previous treatment with IFNs for MS for more than 4 weeks, or discontinuation of treatment less than 6 months before baseline visit.

 Table 8.
 Study methodology and key results: ATTAIN

Study	ATTAIN
Outcomes assessed	Primary outcomes:
a3303300	Incidence of AEs.Incidence of SAEs.
	 Number of patients discontinued due to AEs.
	 Laboratory abnormalities.
	Secondary outcomes:
	 ARR and proportion of patients relapsed.
	 Proportion of patients with CDP sustained for 6 months over 3 years.
	 Mean numbers of Gd+ lesions, new or newly enlarging T2 lesions, and new T1 hypointense lesions.
Pre-planned subgroups	Not reported

AE = adverse event; ARR = annualised relapse rate; BH = black hole; CDP = confirmed disability progression;

EDSS = Expanded Disability Status Scale; Gd+ = gadolinium enhancing; IFN = interferon; MS = multiple sclerosis; pegIFNβ-1a = pegylated interferon; Q2W, every 2 weeks; Q4W, every 4 weeks; RRMS = relapsing-remitting multiple sclerosis; SAE = serious adverse event; SC, subcutaneous.

Note: Definition of relapses is the same as described in the ADVANCE study (Table 6).

Sources: Newsome et al. (2018)¹²⁴

B.2.3.2.2 Baseline characteristics

In total, 1,076 patients took part in the ATTAIN study, of whom 376 received continuous pegIFN β -1a Q2W, 354 received continuous pegIFN β -1a Q4W from year 1 of ADVANCE, 171 received delayed treatment with pegIFN β -1a Q2W, and 175 received delayed treatment with pegIFN β -1a Q4W.^{124,128}

When the last patient reached 96 weeks, the ATTAIN study was considered complete; therefore, some patients received treatment for up to 6 years. The mean duration of exposure (for all patients who received active treatment during the study) was 149.9 weeks (range 2-278). Due to the limited number of patients completing 6 years, some of the outcomes reported are over 5 years.

Patient demographic and baseline characteristics were generally balanced across treatment arms (Table 9).

Characteristic	pegIFNβ-1a Q2W (n = 376)	pegIFNβ-1a Q4W (n = 354)
Age, years	39.0 (9.73)	38.1 (9.91)
Gender, % female	72	71
Time since first MS symptoms, years	8.5 (6.27)	8.1 (6.11)
Mean EDSS score	2.39 (1.34)	2.41 (1.37) ^a
Number of T2 lesions	5.8 (12.23) ^b	14.8 (23.39)°
Volume of T2 lesions, cm ³	10.51 (12.58)	11.30 (13.37)
Number of T1 hypointense lesions	29.1 (28.98)	29.0 (31.06)
Number of Gd+ lesions	0.2 (1.18) ^d	0.6 (1.74) ^e

EDSS = Expanded Disability Status Scale; Gd+ = gadolinium enhancing; MS = multiple sclerosis; pegIFNβ-1a = pegylated interferon; Q2W = every 2 weeks; Q4W = every 4 weeks; SC = subcutaneous.

Note: PegIFN β -1a Q4W greyed out as pegIFN β -1a Q2W is currently the only licensed dose and the focus of this submission. ^a n = 352.

^b n = 374.

° n = 353.

^d n = 375.

^e n = 353.

Sources: Newsome et al. (2018)¹²⁴; Biogen Idec Inc (2016)¹²⁸

B.2.4 Statistical analysis and definition of study groups in the relevant clinical-effectiveness evidence

Table 10 presents a summary of the statistical analysis and definition of study groups for the ADVANCE and ATTAIN trials.¹¹

Trial	Hypothesis objective	Statistical analysis	Sample size, power calculation	Data management, patient withdrawals
ADVANCE	That treatment with pegIFNβ- 1a would result in a statistically significant reduction in ARR at 48 weeks, compared with placebo.	The primary end point was analysed using negative binomial regression, adjusted for baseline EDSS score (< 4 vs. \ge 4), baseline age (< 40 vs. \ge 40 years), and baseline relapse rate (number of relapses in 3 years prior to study entry divided by 3). A sequential closed testing procedure was used to control the type I error rate. For the primary end point, the pegIFN β -1a Q2W group was compared with placebo; if the difference between the pegIFN β -1a Q2W group vs. placebo was statistically significant ($P \le 0.05$), the comparison of pegIFN β -1a Q4W group vs. placebo could also be performed and considered statistically significant if $P \le 0.05$; however, if statistical significance was not achieved with the pegIFN β -1a Q2W group vs. placebo, the comparison of the pegIFN β -1a Q4W group vs. placebo was not considered statistically significant, regardless of P value. Five sensitivity analyses (three prespecified and two post hoc) of ARR at year 1 were performed; these differed from the primary analysis by using: • The per protocol population (prespecified) • Poisson regression model (prespecified), all relapses recorded on the unscheduled relapse assessment CRF (prespecified)	The sample size calculation was based on the type I error rate of 0.05 and a dropout rate of 10%. It was assumed that the treatment effect for pegIFN β -1a would be a 32% reduction from placebo in ARR at year 1. A sample size of 420 per treatment group was initially planned to provide approximately 90%, 87%, and 85% power for a year 1 placebo ARR of 0.6, 0.55, or 0.5, respectively. It was specified that the pooled year 1 ARR would be monitored and that the placebo year 1 ARR would be estimated by back-calculating from the pooled ARR and the assumed treatment effect. If the placebo year 1 ARR was estimated to be lower than 0.5, the sample size could increase for the study. As a result of this monitoring, the sample size was increased from 420 to 500 subjects per group.	Data management was performed by Biogen Idec personnel and a Functional Service Provider (Client Associated Businesses, Inc.) using the web-based Oracle® Clinical RDC onsite version 4.5 data management system. Relapses that occurred after patients received any alternative approved MS treatments such as chronic immunosuppressant therapy or other immunomodulatory treatments were excluded from the analyses of relapse rate, and the patient's time on study was censored at the time the alternative MS medication was started. If patients withdrew from the study or switched to an alternative MS medication before 1 year, the total number of days was defined as the number of days from the date of

 Table 10.
 Summary of statistical analyses

Trial	Hypothesis objective	Statistical analysis	Sample size, power calculation	Data management, patient withdrawals
		 Protocol-defined objective relapses recorded on the unscheduled relapse assessment CRF (post hoc) Baseline Gd+ lesion (presence vs. absence) as a covariate in the model (post hoc) 		the first dose to the last date on study or last date prior to the switch.
ATTAIN	The incidence of AEs, SAEs, discontinuations of study treatment due to an AE, and laboratory abnormalities.	All summary analyses of AEs were based on the principle of treatment emergence. In a given data set, an event was considered to be treatment emergent if it had an onset date on or after the date of first study treatment, or if it was present before the start of study treatment and subsequently worsened. In general, AEs were analysed based on incidence, defined as the proportion of patients who had at least one occurrence of an event out of the number of patients in the relevant safety analysis population. The MedDRA Version 18.0 was used to code and group AEs by system organ class and preferred term.	The safety population was the ATTAIN intent to treat population and was defined as all patients who received at least one dose of treatment while enrolled in ATTAIN. The Q2W continuously dosed analysis group included only those patients who received pegIFNβ-1a Q2W from the start of ADVANCE; it did not include patients who switched to Q2W dosing at the time of the protocol amendment.	Data management was performed by Biogen personnel and a Functional Service Provider (Client Associated Businesses, Inc.) using the onsite web-based Oracle [®] Clinical RDC, version 4.5, data management system.

AE = adverse event; ARR = annualised relapse rate; CRF = case report form; EDSS = Expanded Disability Status Scale; MedDRA = Medical Dictionary for Regulatory Activities; MS = multiple sclerosis; pegIFNβ-1a = pegylated interferon β-1a; Q2W = every-2-weeks; Q4W = every-4-weeks; RDC = Remote Data Capture; SAE = serious adverse event. Sources: Calabresi et al. (2014)¹¹; Newsome et al. (2018)¹²⁴; Biogen Idec Inc (2013)⁷; Biogen Idec Inc (2016)¹²⁸

B.2.5 Quality assessment of the relevant clinicaleffectiveness evidence

The quality assessment conducted for ADVANCE using the established risk-of-bias tools recommended for HTA submissions found that there was a low risk of bias reported across all risk-of-bias items assessed. Please see Appendix D for further detail.

B.2.6 Clinical-effectiveness results of the relevant trials

The primary, secondary, and some of the tertiary end points for the ADVANCE study are presented in this section (further end points presented in Appendix L). The primary outcomes for the ATTAIN study were safety outcomes, summarised in Section B.2.3.2, with secondary outcomes of efficacy. Results for pegIFN β -1a Q4W are presented here in some tables and figures; however, only pegIFN β -1a Q2W is discussed in detail as this is the only licensed posology.

B.2.6.1 Annualised relapse rate (ARR) at 1 year

B.2.6.1.1 ADVANCE

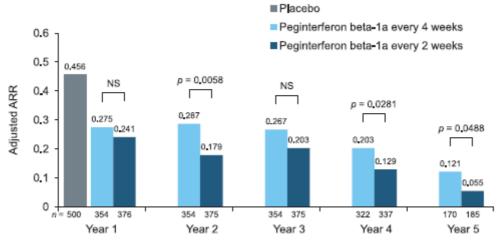
During year 1, 116 (23%) patients receiving pegIFN β -1a Q2W experienced an Independent Neurology Education Committee (INEC)-confirmed relapse, compared with 181 (36%) placebo patients. ARR at 1 year was significantly reduced by 35.6% (rate ratio 0.644; 95% CI, 0.500-0.831; *P* = 0.0007) following treatment with pegIFN β -1a Q2W, compared with placebo (Table 11). Analyses of the per patient RRs were consistent with the analysis of ARR at year 1. A reduction in the ARR is an important treatment goal as relapses indicate an acute worsening of neurological function that substantially impairs QOL in patients with RRMS and relapses are thought to be associated with development of residual deficits ¹¹

Table 11. Thindry enleacy outcome: Arrivat year 1				
	PegIFNβ-1a Q2W	Placebo	PegIFNβ-1a Q4W	
	N = 512	N = 500	N = 500	
ARR (95% CI)	0.256 (0.206-0.318)	0.397 (0.328-0.481)	0.288 (0.234-0.355)	
Rate ratio vs. placebo (95% CI)	0.644 (0.500-0.831)	-	0.725 (0.565-0.930)	
P vs. placebo	0.0007	-	0.0114	

Table 11. Primary efficacy outcome: ARR at year 1

ARR = annualised relapse rate; CI = confidence interval; pegIFN β = pegylated interferon β ; Q2W = every 2 weeks; Q4W = every 4 weeks.

Notes: Bold text indicates a significant difference for pegIFN β -1a Q2W versus placebo. PegIFN β -1a Q4W greyed out as pegIFN β -1a Q2W is currently the only licensed dose and the focus of this submission. Source: Calabresi et al. (2014)¹¹


Sensitivity analysis

Five sensitivity analyses (three prespecified and two post hoc) of the ARR at year 1 were performed as described in Table 10 in Section B.2.4. The results of all five analyses were consistent with the primary efficacy results, showing that pegIFN β -1a Q2W resulted in statistically significant reductions in the ARR compared with placebo, ranging from 33.8% to 38%.⁷

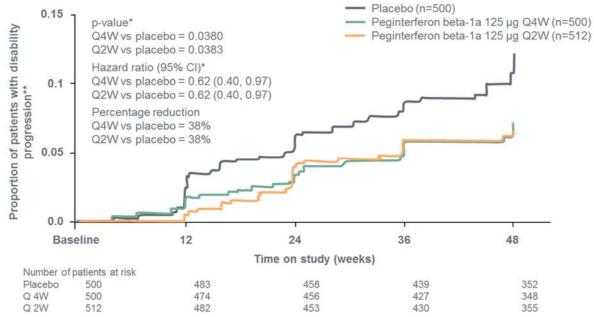
B.2.6.1.2 ATTAIN

ARR

The ARR for pegIFN β -1a Q2W remained low and was maintained throughout years 1 to 5 in ATTAIN. In fact, the adjusted ARRs were generally reduced year-over-year in the Q2W group, with the difference compared with the Q4W groups being statistically significant in years 2, 4, and 5. Thus, it would seem reasonable to assume that if the placebo arm was continued, pegIFN β -1a Q2W would have also potentially resulted in a significantly lower ARR compared with placebo.¹²⁴ The difference between the Q2W and Q4W groups was statistically significant in years 2, 4, and 5 (Figure 3).

Figure 3. Annualised relapse rate by year

ARR = annualised relapse rate; NS = not significant. Source: Newsome et al. (2018)¹²⁴


B.2.6.2 Risk of confirmed disability progression

B.2.6.2.1 Risk of CDP3M

ADVANCE

Year 1

In the ITT population, pegIFN β -1a Q2W significantly reduced the risk of CDP3M at year 1 compared with placebo by 38% (estimated proportion of patients who progressed for Q2W vs. placebo: 0.068 vs. 0.105), resulting in an HR of 0.62 (95% CI, 0.40-0.97; *P* = 0.0383) (Figure 4). This demonstrates that patients can achieve lower EDSS scores when given pegIFN β -1a Q2W treatment compared with placebo and therefore less disability.¹¹

Figure 4. Secondary efficacy outcome: risk of CDP3M at year 1

pegIFN β -1a = pegylated interferon β -1a; CDP3M = confirmed disability progression sustained at 3-months; CI = confidence interval; EDSS = Expanded Disability Status Scale; HR = hazard ratio; Q2W = every 2 weeks; Q4W = every 4 weeks. * *P* value and HR (active/placebo) are based on a Cox proportional hazards model, with adjustment for baseline EDSS and age (< 40 vs. ≥ 40). Source: Calabresi et al. (2014)¹¹

Year 2

After year 1, patients receiving placebo were re-randomised to pegIFN β -1a Q2W or Q4W for year 2, and patients receiving pegIFN β -1a Q2W and Q4W in year 1 remained on the same dosing regimen for year 2.

Early initiation of pegIFN β -1a Q2W significantly reduced the CDP3M over 2 years by 37% when compared with delayed treatment (HR, 0.63; 95% CI, 0.43-0.94; *P* = 0.0223).

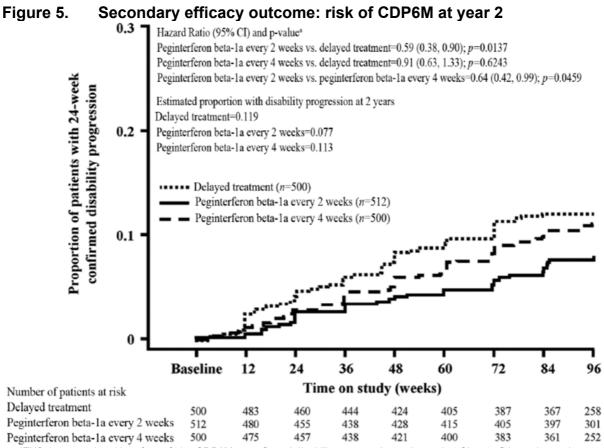
ATTAIN

The long-term analysis found that the risk of CDP3M remained low over 5 years of treatment with pegIFN β -1a Q2W. The Q2W dose continued to be associated with low risk of CDP3M (15.3%).¹²⁸

B.2.6.2.2 Risk of CDP6M

ADVANCE

Year 1

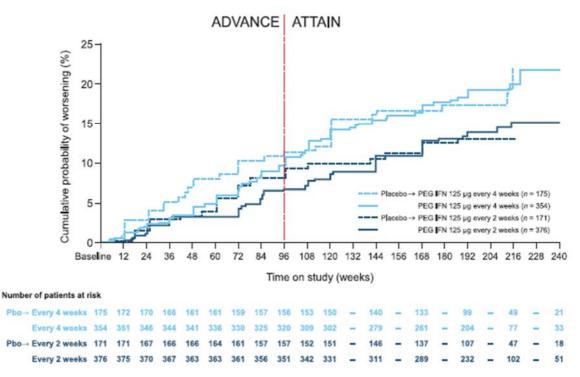

In a post hoc analysis, pegIFN β -1a Q2W significantly reduced the risk of CDP6M at year 1 compared with placebo by 54%, resulting in an HR of 0.46 (95% CI, 0.26-0.81; P = 0.0069).^{11,123}

Year 2

In the ITT population, early initiation of pegIFN β -1a Q2W significantly reduced the risk of CDP6M by 41% compared with delayed treatment (estimated proportion of patients who progressed for Q2W vs. delayed treatment: 0.077 vs. 0.119), resulting in an HR of 0.59 (95% CI, 0.38-0.90; *P* = 0.0137) (Figure 5).

Company evidence submission template for peginterferon beta-1a for treating relapsingremitting multiple sclerosis

© Biogen (2019). All rights reserved



peg[FN β -1a = pegylated interferon β -1a; CDP6M = confirmed disability progression at 6 months; CI = confidence interval; EDSS = Expanded Disability Status Scale; HR = hazard ratio; Q2W = every 2 weeks; Q4W = every 4 weeks. ^a *P* value and HR (active/delayed treatment) are based on a Cox proportional hazards model, with adjustment for baseline EDSS and age (< 40 vs. \geq 40). Source: Kieseier et al. (2015)¹²³

ATTAIN - Proportion of patients with CDP6M over 5 years

Over 5 years, there was a trend towards a reduced risk of CDP6M in patients receiving continuous or delayed pegIFN β -1a Q2W (13% and 15%, respectively) (Figure 6).¹²⁴

CDP6M = confirmed disability progression at 6-months; Pbo = placebo; PEG IFN = pegylated interferon. Source: Newsome et al. (2018)¹²⁴

B.2.6.3 MRI outcomes

B.2.6.3.1 ADVANCE

Number of new or newly enlarging T2 hyperintense lesions at year 1

Patients treated with pegIFN β -1a Q2W had low numbers of new or newly enlarging T2 lesions at 1 year and achieved a statistically significant reduction in the number of new or newly enlarging T2 lesions compared with placebo at year 1 (Table 12). The adjusted lesion mean ratio was 0.33 (95% CI, 0.27-0.40; P < 0.0001) for pegIFN β -1a Q2W versus placebo, representing a reduction of 67% in the number of T2 lesions over 1 year. Lesions detected in NET2 sequences represent a range of histopathological MS events and indicate the "footprint" of inflammatory events or remyelination and can determine the total number of lesions (cumulative "burden of disease"). A reduction in the number of T2 lesions can indicate a reduction of the accumulated burden of focal inflammatory disease in patients with MS.¹¹

12 lesions at year 1				
	PeglFNβ-1a Q2W N = 512	Placebo N = 500	PegIFNβ-1a Q4W N = 500	
Ν	457	476	462	
Mean± SD	4.1± 8.55	13.3± 19.51	9.2± 15.84	
Adjusted mean ^a	3.6	10.9	7.9	
Lesion mean ratio (95% CI) ^a	0.33 (0.27-0.40)	-	0.72 (0.60-0.87)	
<i>P</i> value ^a	< 0.0001	-	0.0008	

Table 12.Secondary efficacy outcome: number of new or newly enlarging
T2 lesions at year 1

CI = confidence interval; pegIFN β -1a = pegylated interferon β -1a; Q2W = every 2 weeks; Q4W = every 4 weeks; SD = standard deviation.

Notes: Bold text indicates a significant difference for pegIFN β -1a Q2W vs. placebo. PegIFN β -1a Q4W greyed out as pegIFN β -1a Q2W is currently the only licensed dose and the focus of this submission.

^a Adjusted mean, lesion mean ratio (95% CI) and *P* value for comparison between the active and placebo groups, based on negative binomial regression, adjusted for region and baseline T2 lesion number. Source: Calabresi et al. (2014)¹¹; Biogen Idec Inc (2013)⁷; ¹

The results of sensitivity analyses were consistent with the primary analysis, showing that pegIFN β -1a Q2W resulted in a statistically significant reduction in the number of new or newly enlarging T2 hyperintense lesions at 1 year compared with placebo, ranging from 67% to 68%.⁷ The number of new or newly enlarging T2 hyperintense lesions at year 2 are presented in Table 14.

Tertiary MRI end points at 1 year

Table 13 summarises tertiary MRI outcomes at year 1. PegIFN β -1a Q2W was significantly better than placebo for all outcomes at 1 year (except for brain atrophy), with a reduced number of lesions and reduced volume lesions reported versus placebo. In particular, pegIFN β -1a Q2W patients had 86% and 53% fewer new active Gd+ and T1 lesions, respectively, at 1 year compared with placebo.⁷ The results for brain atrophy are as expected due to the short treatment duration and in the view of the potential effect of pseudoatrophy (shrinkage of the brain after cessation of inflammation) during the first year of treatment.¹¹

lable 13. Summ	ary of tertiary MR	enicacy outcor	nes at i ye	
Outcome		PegIFNβ-1a Q2W N = 512	Placebo N = 500	PegIFNβ-1a Q4W N = 500
	Adjusted mean	3.7	11.2	7.3
No. new active	% reduction	67%	-	-
lesions	Lesion mean ratio (95% CI)	0.33 (0.27-0.40)	-	0.65 (0.54-0.79)
	Р	< 0.0001	-	< 0.0001
	Adjusted mean	3.6	10.9	
	% reduction	67%	-	-
No. new T2 lesions and volume change	Lesion mean ratio (95% CI)	0.33 (0.27-0.40)	-	
(cm ³)	Р	< 0.0001		
	Volume change from baseline ± SD	-0.26 ± 1.66624	0.77 ± 2.52	0.06 ± 2.02
	Р	< 0.0001	-	< 0.0001
	Mean ± SD	0.2 ± 0.96	1.4 ± 3.69	0.9 ± 3.31
	% reduction vs. placebo	86%	-	36%
No. Gd+ lesions and volume change (cm ³)	Р	< 0.0001	-	0.0738
J	Volume change from baseline ± SD	-0.13 ± 0.45	0.06 ± 1.25	-0.13 ± 0.76
	Р	< 0.0001	-	< 0.0001
	Mean ± SD	1.8 ± 4.37	3.8 ± 6.78	3.1 ± 6.29
	% reduction vs. placebo	53%	-	18%
No. T1 lesions and volume change (cm ³)	Р	< 0.0001	-	0.0815
	Volume change from baseline ± SD	0.32 ± 0.96	0.54 ± 1.14	0.57 ± 1.72
	Р	< 0.0001	-	0.1795
Brain atrophy	% change from baseline, mean ± SD	-0.72 ± 0.75	- 0.62 ± 0.90	-0.67 ± 0.83
	Р	0.0841	-	0.3747
Magnetisation transfer ratio	% change from baseline, mean ± SD	-0.13 ± 1.61	- 0.38 ± 1.61	-0.43 ± 1.57
	Р	0.0438	-	0.6873

 Table 13.
 Summary of tertiary MRI efficacy outcomes at 1 year in ADVANCE

CI = confidence interval; Gd+ = gadolinium enhancing; pegIFN β -1a = pegylated interferon β -1a; Q2W, every 2 weeks; Q4W, every 4 weeks; SD = standard deviation.

Notes: Bold text indicates a significant difference for pegIFN β -1a Q2W vs. placebo. PegIFN β -1a Q4W greyed out as pegIFN β -1a Q2W is currently the only licensed dose and the focus of this submission. Source:¹¹

Tertiary MRI end points over 2 years

Table 14 summarises tertiary MRI outcomes for all patients over 2 years (ITT population).^{7,123} The number of new or newly enlarging T2 lesions was further reduced in year 2 compared with year 1 in the continuous pegIFN β -1a groups compared with the delayed treatment group, with greater reductions observed for pegIFN β -1a Q2W than for pegIFN β -1a Q4W. Statistically significant reductions in the number of Gd+ lesions over 2 years were also observed in the Q2W group versus the placebo + pegIFN β -1a Q2W or Q4W group (delayed treatment group). These reductions in T2 lesions and Gd+ lesions can indicate a reduction in the presence of active inflammation which contributes to many of the complications associated with MS.^{11,123}

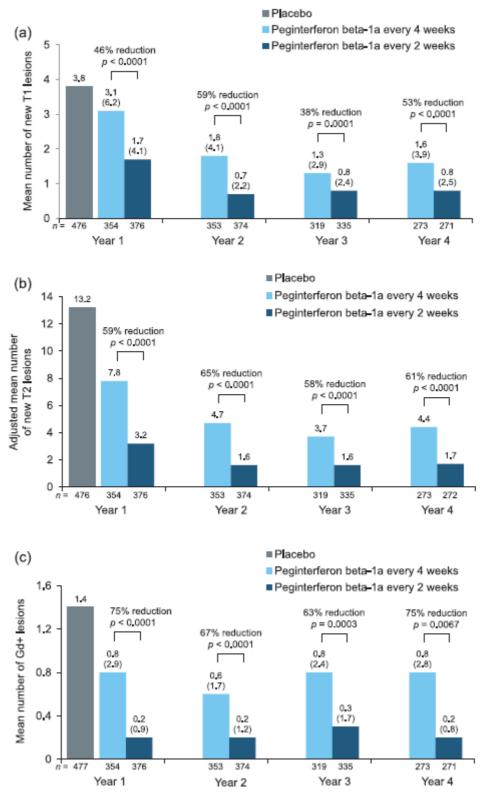
r	ADVANCE	1	1	
		PegIFNβ-1a Q2W (N = 512)	Placebo + pegIFNβ-1a Q2W or Q4W (N = 500)	PegIFNβ-1a Q4W (N = 500)
	Adjusted mean	5.0	14.8	12.5
	Mean ratio vs. delayed treatment (95% CI)	0.33 (0.27-0.41)	-	0.84 (0.69-1.03)
No. T2 lesions	<i>P</i> vs. delayed treatment	< 0.0001	-	0.0973
	Mean ratio vs. Q4W (95% CI)	0.40 (0.32-0.49)	-	-
	Pvs. Q4W	< 0.0001	-	-
	Mean ± SD	0.2 ± 1.15	0.5 ± 1.58	0.7 ± 2.31
	% reduction vs. delayed treatment	60	-	40
No. Gd+ lesions	<i>P</i> vs. delayed treatment	0.0002	-	0.2169
	% reduction vs. Q4W	71	-	-
	Pvs. Q4W	< 0.0001	-	-
	Mean ± SD	2.3 ± 5.48	5.6 ± 9.35	4.9 ± 9.29
	% reduction vs. delayed treatment	59	-	12
No. T1 lesions	<i>P</i> vs. delayed treatment	< 0.0001	-	0.1056
	% reduction vs. Q4W	53	-	-
	Pvs. Q4W	< 0.0001	-	-

Table 14. Summary of tertiary MRI end points for all patients over 2 years in ADVANCE

CI = confidence interval; Gd+ = gadolinium enhancing; pegIFN β -1a = pegylated interferon β -1a; Q2W = every 2 weeks; Q4W = every 4 weeks; SD = standard deviation.

Sources: Kieseier et al. (2015)¹²³; Biogen Idec Inc (2013)⁷

Notes: Bold text indicates a significant difference for pegIFNβ-1a Q2W vs. placebo. PegIFNβ-1a Q4W greyed out as pegIFNβ-1a Q2W is currently the only licensed dose and the focus of this submission.


B.2.6.3.2 ATTAIN

MRI outcomes

The mean number of MRI lesions continued to be significantly lower in the pegIFN β -1a Q2W treatment group compared with the Q4W group over the course of the ATTAIN study. In year 4, patients treated with pegIFN β -1a Q2W displayed 53% fewer new T1 lesions (*P* < 0.0001), 61% fewer new or newly enlarging T2 lesions (*P* < 0.0001), and 75% fewer Gd+ lesions (*P* = 0.0067) compared with patients treated Q4W (Figure 7).¹²⁴

The mean numbers of new T1 lesions (1.7 at year 1; 0.7 at year 2; 0.8 at year 3; 0.8 at year 4), new or newly enlarging T2 lesions (3.9 at year 1; 1.9 at year 2; 2 at year 3; 1.9 at year 4), and Gd+ lesions (0.2 at year 1; 0.2 at year 2; 0.3 at year 3; 0.2 at year 4) continued to be low with pegIFN β -1a Q2W in each study year.

Figure 7. Mean number of MRI lesions by year: (a) mean number of new T1 lesions; (b) adjusted mean number of new or newly enlarging T2 lesions; (c) mean number of Gd+ lesions

Gd+ = gadolinium enhancing; MRI = magnetic resonance imaging. Source: Newsome et al. (2018)¹²⁴

Company evidence submission template for peginterferon beta-1a for treating relapsingremitting multiple sclerosis

© Biogen (2019). All rights reserved

B.2.7 Subgroup analysis


Prespecified subgroup analyses were performed for the ADVANCE study and are described in Section B.2.3.2.⁷

Results are presented in Appendix E and were generally consistent with those for the overall population.⁷

B.2.7.1 ARR at 1 year

The ARR across the prespecified subgroups were similar. There were some differences in the point estimates for the ARR for pegIFN β -1a Q2W compared with placebo among the subgroups, but there was a considerable overlap in the CIs. This suggests that the efficacy of pegIFN β -1a was similar in all patients regardless of their sex, age, body weight, geographical region, or disease status at the initiation of treatment (Figure 8).⁷

Figure 8. ARR (INEC-confirmed relapses) at 1 year—rate ratio and 95% CI by baseline disease characteristics subgroup: pegIFNβ-1a Q2W vs. placebo

CI = confidence interval; EDSS = Expanded Disability Status Scale; Gd+ = gadolinium enhancing; INEC = Independent Neurology Education Committee; MS = multiple sclerosis; pegIFN β -1a = pegylated interferon β -1a; Q2W = every 2 weeks. Note: Rate ratio (active/placebo) and (95% CI) based on negative binomial regression model, adjusted for baseline EDSS (< 4 v s. > = 4), baseline relapse rate, baseline age (< 40 v s. > = 40), except for the subgroup factor of interest. Source: Biogen Idec Inc (2013)⁷

Company evidence submission template for peginterferon beta-1a for treating relapsingremitting multiple sclerosis

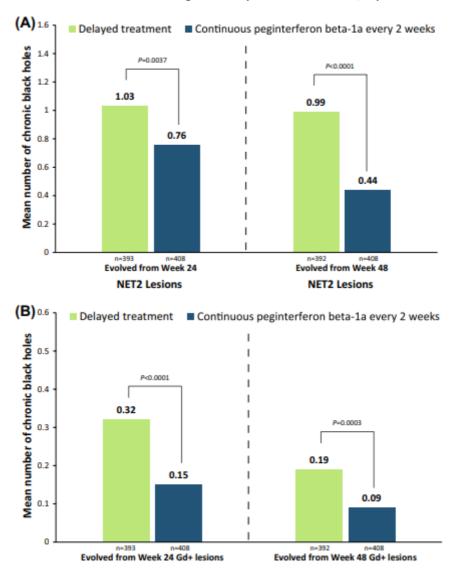
© Biogen (2019). All rights reserved

B.2.7.2 Post hoc analysis of ADVANCE

A post hoc analysis was performed for the ADVANCE study to evaluate the correlation of clinical outcomes with the evolution of acute lesions into chronic BHs and the effect of pegIFN β -1a on the development of chronic BHs.^{38,129}

Chronic BHs are an indication of irreversible tissue injury and axonal loss. They are used as a marker of therapeutic outcomes in patients with RRMS as the number of chronic BHs that develop from acute MRI lesions can be used to quantify the neuroprotective effects of MS therapy. Patients who do not develop BHs from T2 lesions and Gd+ lesions have less clinical disease activity than those patients who do. A lower risk of BH development from acute MRI lesions is beneficial for patients with RRMS as there will be less potential for irreversible tissue damage to occur.^{38,129}

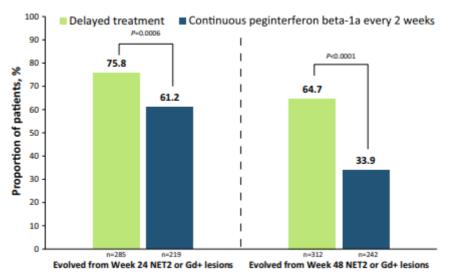
Another post hoc analysis assessed NEDA status during the ADVANCE and ATTAIN studies and explored clinical outcomes (including ARR and CDP) among patients stratified by NEDA achievement at year 2. NEDA is a composite measurement, incorporating clinical and MRI elements of disease activity to evaluate sensitively the therapeutic efficacy of treatments for RRMS.¹³⁰


B.2.7.2.1 Black hole conversion

There were significantly fewer BHs at year 2, converted from the NET2 lesions present during year 1, in patients receiving continuous treatment with pegIFN β -1a Q2W versus those receiving delayed treatment: 0.99 in the delayed treatment group versus 0.44 in the continuous treatment group, a 56% reduction (*P* < 0.0001) (Figure 9).

Similarly, there were also significantly fewer BHs at year 2, converted from Gd+ lesions present during year 1, in patients receiving continuous treatment with pegIFN β -1a Q2W versus those receiving delayed treatment: 0.19 in the delayed treatment group versus 0.09 in the continuous treatment group, a 53% reduction (*P* = 0.0003).¹²⁹

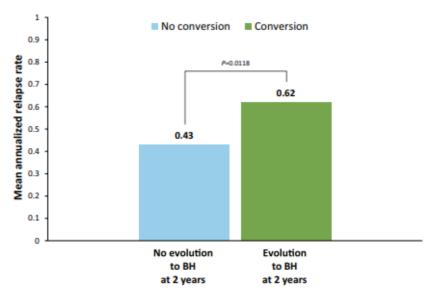
The proportion of patients who had BHs at year 2, converted from either the NET2 lesions or the Gd+ lesions present during year 1, was significantly lower in the patients receiving continuous treatment with pegIFN β -1a Q2W versus those receiving delayed treatment: 64.7% in the delayed treatment group versus 33.9% in the continuous treatment group, a 48% reduction (*P* < 0.0001) (Figure 10).


Figure 9. Evolution of NET2 or Gd+ lesions detected at weeks 24 and 48 into black holes at 2 years: a) NET2 lesions; b) Gd+ lesions

Adjusted mean and *P* value for comparison between the delayed and continuous Q2W treatment, based on negative binomial regression; adjusted for age, sex, baseline EDSS score, and number of NET2 or Gd+ lesions at week 24 or 48 compared with baseline.

EDSS = Expanded Disability Status Scale; Gd+ = gadolinium enhancing; NET2 = new/newly enlarging T2. Source:Arnold et al. (2017)¹²⁹

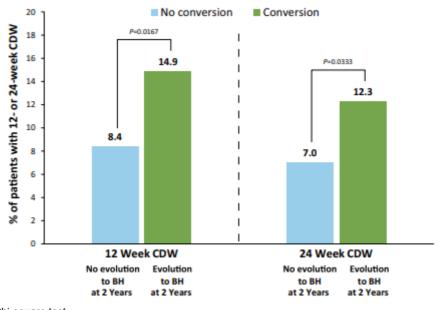
Figure 10. Proportion of patients with NET2- or Gd+-to-black hole evolution at 2 years



The proportions of patients with at least one Gd+ or NET2 lesion at week 24 or 48 that evolved to a black hole at week 96 were compared using a two-sample Chi-square test for difference in treatment arms. Gd+ = gadolinium enhancing, NET2 + new/newly enlarging T2. Source: Arnold et al. $(2017)^{129}$

B.2.7.2.2 Clinical outcomes by BH conversion

For patients with either NET2 or Gd+ lesions at week 24 (n = 760 for all treatment groups), 71.7% (n = 760) of patients had lesions that developed into BHs. The mean ARR at 2 years was significantly higher in patients who had BH evolution (0.62 vs. 0.43; P = 0.0118), than in patients without (Figure 11). In addition, a significantly higher proportion of patients with BH evolution at 2 years had both relapsed (38.0 vs. 27.9%; P = 0.0088) and changed EDSS score from baseline (0.13 vs. -0.01; P = 0.0392).¹²⁹


Figure 11. ARR at 2 years in patients with and without black hole evolution

P value is from Wilcoxon rank sum test ARR = annualised relapse rate; BH = black hole. Source: Arnold et al. $(2017)^{129}$

A significantly higher proportion of patients who developed BHs at 96 weeks had CDP3M (14.9 vs. 8.4%; P = 0.0167) or CDP6M (12.3 vs. 7.0%; P = 0.0333) over 2 years (Figure 12).

Figure 12. CDP over 2 years in patients with and without black hole evolution

P value is from Chi-square test.

BH = black hole; $CD\dot{W}$ = confirmed disability worsening. Source: Arnold et al. (2017)¹²⁹

B.2.7.2.3 NEDA status in patients treated with pegIFNβ-1a

Evidence has suggested that NEDA is a more sensitive measure of treatment efficacy than more traditional efficacy end points and it has been proposed as the main aim of treatment for neurologists. NEDA is composed of MRI parameters and is defined as no evidence of relapses, no onset of CDP, and no active MRI lesions. Achievement of NEDA, MRI NEDA, or overall NEDA was calculated cumulatively or year by year over 4 years. The analysis found that significantly more patients treated with pegIFNβ-1a Q2W (60.6%) than Q4W (50.6%) achieved NEDA (P = 0.0063) and MRI NEDA (28.3% vs. 15.8%, P = 0.0005) through year 4 and overall NEDA through year 3 (20.9% vs. 13.9%, P = 0.0160) (Figure 13). In the Q2W group, 15.8% of patients maintained overall NEDA over 4 years. These data support the sustained efficacy of pegIFNβ-1a Q2W as it continues to provide significant improvement in clinical and MRI end points though 4 years of treatment.¹³⁰

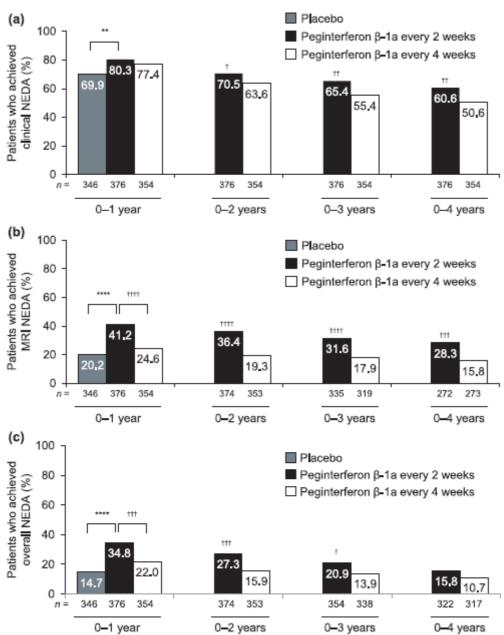


Figure 13. Patients who achieved (a) clinical NEDA, (b) MRI NEDA, and (c) overall NEDA over 4 years (cumulative)

MRI = magnetic resonance imaging; NEDA = no evidence of disease activity. ** P < 0.01.

**** P < 0.0001 for peginterferon β-1a every 2 weeks versus placebo.

† *P* < 0.05.

†† *P* < 0.01.

††† *P* < 0.001.

++++ P < 0.0001 for pegIFNβ-1a β-1a every 2 weeks versus pegIFNβ-1a every 4 weeks. Source: Arnold et al. (2018)¹³⁰

B.2.8 Meta-analysis

A meta-analysis requires two or more studies that contain the intervention of interest. Therefore, a meta-analysis was not possible, as only one study included pegIFN β -1a.

B.2.9 Indirect and mixed-treatment comparisons

- The clinical systematic review identified 27 studies that were eligible for inclusion in the analysis of at least one outcome.
- PegIFNβ-1a 125 mcg Q2W reduced the ARR relative to IM IFNβ-1a 30 mcg, teriflunomide, and placebo; however, only the difference versus <u>placebo</u> was statistically significant.
 - − The ARR was similar (RR, ≥ 0.9 and ≤ 1.1) for patients treated with pegIFNβ-1a relative to IFNβ-1a 44 mcg, IFNβ-1b, GA 20 mg, and GA 40 mg.
 - There was an increase in the ARR for patients treated with pegIFNβ-1a compared with DMF and a statistically significant increase for alemtuzumab and ocrelizumab.
- PegIFNβ-1a reduced the CDP3M relative to IM IFNβ-1a 30 mcg, IFNβ-1b, GA 20 mg, and placebo; however, only the difference versus placebo was statistically significant
 - The CDP3M was similar (RR, ≥ 0.9 and ≤ 1.1) for patients treated with pegIFNβ-1a relative to IFNβ-1a 44 mcg, IFNβ-1a 22 mcg, teriflunomide, and DMF
 - There was an increase in the CDP3M for patients treated with pegIFNβ-1a compared with alemtuzumab and ocrelizumab (not statistically significant)
- PegIFNβ-1a reduced the CDP6M relative to IM IFNβ-1a 30 mcg, IFNβ-1a 44 mcg, IFNβ-1b, GA 20 mg, DMF, teriflunomide, and placebo; however, only the difference versus placebo was statistically significant.
 - There was an increase in the CDP6M for patients treated with pegIFNβ-1a compared with alemtuzumab 12 mg once daily and ocrelizumab.
- Sensitivity analysis combined studies with a range of follow-up times to analyse CDP3M and CDP6M.
 - These sensitivity analyses identified that CDP6M was statistically significantly improved for pegIFNβ-1a compared with placebo; no further statistically significant differences were observed in comparison with any other treatments.
- Due to the lack of relevant studies no mixed-treatment comparisons (MTCs) could be performed for relapse severity, NEDA, mortality or safety outcomes. Please see Appendix L for further details.

B.2.9.1 Study selection

The systematic review detailed in Appendix D was used to identify studies included in the MTC for the treatment under consideration (pegIFN β -1a) and relevant comparators. Only DMTs with a positive reimbursement decision for patients with RRMS that was not highly active or rapidly evolving severe (RES) by NICE were included in the MTC (i.e., natalizumab, daclizumab, fingolimod, and cladribine were excluded).¹³¹ Of note, daclizumab was withdrawn from the market in March 2018 after safety concerns. However, it was initially included in the systematic review as it was still in use when the review was first conducted.

B.2.9.2 Methods

Mixed-treatment comparison was performed using a Bayesian approach using the gemtc package.¹³² All Bayesian MTC models used in this report were carried out based on the recommendations of the NICE Decision Support Unit.¹³³ The gemtc package implements the models recommended by the NICE Decision Support Unit using Just Another Gibbs Sampler (JAGS) to provide the underlying Markov Chain Monte Carlo simulations. A burn-in of 50,000 simulations was used, followed by an additional run of 50,000 simulations to obtain parameter estimates. Model convergence was assessed using the Brooks-Gelman-Rubin statistic,¹³⁴ and if there were any doubts about convergence of the estimates, additional simulations were run. Model fit was assessed using residual deviance and the Deviance Information Criterion. The primary analysis used random-effects models. A sensitivity analysis using fixed effect models was also performed. Data were extracted for all outcomes identified in Appendix D; however, MTC and supporting analyses will focus on the following key outcomes:

- ARR was analysed based on MTC of treatment differences using the rate ratio as the effect estimate. The RR is an annualised measure; therefore, we considered it reasonable to combine data across multiple time points for this outcome. For the primary analysis of ARR, we pooled data from studies that reported randomised outcome data for follow-up periods greater than 11 months (see protocol modifications).
- CDP3M and CDP6M were typically reported as an HR for the risk of experiencing disability progression. The analysis for this outcome was based on MTC of treatment differences using the HR as the effect estimate at 24 months follow-up.
- To achieve a comparison with pegIFNβ-1a, a key comparator for this systematic literature review (SLR), 11-month data from ADVANCE and 18- and 24-month data for comparator treatments were pooled for CDP3M and CDP6M outcomes. This limited the accuracy of the comparison but without combining data from different time points, comparative effectiveness would not be possible.
- All other outcomes (including relapses requiring hospitalisation, relapses requiring IV corticosteroids, mortality, NEDA, symptoms of MS [cognition, fatigue, and visual impairment], QOL, any adverse event [AE], any serious adverse event [SAE], treatment discontinuation due to any cause, or treatment discontinuation due to AE) were informed by 12-month follow-up data alone.
- There was some variation in the follow-up time between studies. Several studies reported 1-year outcomes after 48 weeks (11 months) of follow-up. Therefore, any study where 1-year outcomes were reported at ≥ 11 months and ≤ 13 months was considered for potential inclusion in the analysis of 12-month outcomes. The actual follow-up period for 2-year outcomes ranged from 96 weeks (22.2 months) to 108 weeks (24.9 months). Therefore, any study where 2-year outcomes were reported at ≥ 22 months and ≤ 25 months was considered for potential inclusion in the analysis of 24-month outcomes.
- Any SAE was analysed as a dichotomous outcome based on the proportion of patients who experienced at least one event after 24 months follow-up using odds ratios (ORs) as the effect measure. We analysed SAE excluding MS relapses where data were available and performed sensitivity analyses of SAE, including MS relapses. Any AE was reported as a narrative synthesis as heterogeneity in study design, and AE reporting was too great to allow pooling of data in an MTC.
- Treatment discontinuation due to any cause was analysed as a dichotomous outcome based on the proportion of patients who discontinued after 24 months

follow-up using ORs as the effect measure. However, only studies of 12 months follow-up were included in the network analysing treatment discontinuation. Treatment discontinuation due to AE was reported as a narrative synthesis, as heterogeneity in study design and AE reporting was too great to allow pooling of data in an MTC.

The OR (for dichotomous outcomes), HR (for time-to-event outcomes), rate ratios (for rate outcomes) are reported with either 95% credible intervals (CrI, Bayesian methods) or 95% CI (frequentist methods).

B.2.9.3 Results

The selection of studies for inclusion in the final MTC was conducted in two stages. In the first stage studies were selected for inclusion in the systematic review based on the PICOS criteria. These studies were then considered for inclusion in the analysis based on the similarity criteria (trials should be similar for moderators of relative treatment effect). As described in Section B.2.1, 32 studies were considered for inclusion in the MTC.

Seven studies that did not report relevant outcome data at either 12 months or 24 months were included in the systematic review (CombiRx,¹³⁵⁻¹³⁸ TENERE,¹³⁹ TOWER¹⁴⁰). It was decided after a protocol modification in May 2015 to consider time points other than 12 or 24 months for ARR, as this is an annualised measure expressed as relapses per patientyear. Four studies reported ARR data at time points other than 12 or 24 months (CAMMS223, 36 months; CombiRx, 36 months; TENERE, ~14-15 months; TOWER, ~18-19 months). These studies were consequently considered for inclusion in the analysis of ARR but were not considered for any other outcomes. One study (CAMMS223) also reported ARR at 36 months follow-up, which allowed this study to be considered for inclusion in the combined analysis of ARR (in addition to other outcomes). Two additional studies (EVIDENCE, TOWER) providing 11 months or 18 months of data, respectively, were further considered for inclusion in the base-case analysis for CDP3M and CDP6M.

Two studies^{136,137} also failed to report all of the necessary values required as inputs to a MTC or enough information to be able to calculate the required values for at least one outcome.

There was some heterogeneity between studies in the disease duration of the patient populations. There is no clear basis on which to set a threshold for the inclusion/exclusion of studies in the analysis based on disease duration. Any choice of threshold would be arbitrary, and alternative choices may substantially affect the results; therefore, we did not exclude any studies based on clinical heterogeneity. Following the assessment of study similarity and clinical heterogeneity, there were 31 studies eligible for inclusion in the analysis of ARR and 30 studies eligible for inclusion in the analysis of other outcomes.

Ultimately, there were five studies that could not be incorporated in any analysis and were not considered further in this review (Table 15). This resulted in a total of 23 studies that could be considered for inclusion in the analysis of ARR, and 27 studies that could be considered for inclusion in the analysis of other outcomes (Table 16). Table 17 presents baseline characteristics of the patient population in the included trials.

The results for ARR, CDP3M, and CDP6M are presented in this section and results for all other outcomes are presented in Appendix L. Appendix L also presents the run analysis code used in the meta-analysis for each outcome.

Table 15. Olddies excluded ironi key analyses			
Study ID Reason for exclusion from analysis			
Crentsil 2012	No relevant outcome data at 12 or 24 months		
	Conference abstract only. No outcome data. Follow-up unclear		
GLOW	Only reported data for any AE excluding SAE. Not comparable to other studies reporting SAE		
Mokhber 2014	No relevant outcome data at 12 or 24 months		
	Only reported EDSS at baseline and follow-up		
Mokhber 2015	No relevant outcome data at 12 or 24 months		
O'Connor 2006	No relevant outcome data at 12 or 24 months		
	Core study was only 36 weeks. Extension study maintained randomisation up to 7 years		

 Table 15.
 Studies excluded from key analyses

AE = adverse event; EDSS = Expanded Disability Status Scale; ID = identification; SAE = serious adverse event.

Study ID	ARR	CDP3M	CDP6M
ADVANCE	✓	√a	√a
APEX	xb	×b	×b
BEYOND	✓	✓	×b
Boiko 2017	xb	×b	×b
Bornstein 1987	✓	×b	×b
BRAVO	✓	✓	✓
Calabrese 2012	✓	×b	×b
CAMMS223	✓	✓	✓
CARE MS I	✓	×b	✓
CARE MS II	 ✓ 	×b	✓
CombiRx	 ✓ 	×b	×b
CONFIRM	✓	✓	✓
Copolymer I	✓	×b	×b
DEFINE	✓	\checkmark	✓
Etemadifar 2006	×c	×b	×b
EVIDENCE	 ✓ 	√a	√a
GALA	 ✓ 	×b	×b
IFNB MS	 ✓ 	×b	×b
INCOMIN	 ✓ 	×b	×b
MSCRG	 ✓ 	×b	×b
OPERA I	 ✓ 	✓	✓
OPERA II	 ✓ 	✓	✓
PRISMS	×b	✓	✓
REGARD	✓	×b	×b
TEMSO	✓	✓	×b
TENERE	✓	×b	×b
TOWER	✓	√c	√c

Table 16. Final inclusion in the mixed-treatment comparison for the overall relapsing-remitting multiple sclerosis population

ARR = annualised relapse rate; CDP3M = confirmed disability progression sustained for 3 months; CDP6M = confirmed disability progression sustained for 6 months.

^a Included with 11 or 18 months of follow-up.

^b This outcome was not reported by the indicated study. ^c Data were not reported in the appropriate patient population.

Study ID	Treatment	Total N	No. males (%) No. females (%)	Mean age in years (SD)	Mean EDSS score (SD)	Mean duration of disease in years (SD)	Mean no. relapses in previous year (SD)
ADVANCE	pegIFNβ-1a 125 mcg Q2W	512	151 (29) 361 (71)	36.9 (9.8)	2.47 (1.26)	6.9 (6.6) (first MS symptoms)	1.6 (0.67)
	pegIFNβ-1a 125 mcg Q4W	500	148 (30) 352 (70)	36.4 (9.9)	2.48 (1.24)	6.5 (6.1) (first MS symptoms)	1.5 (0.62)
	Placebo	500	142 (29) 358 (71)	36.3 (9.7)	2.44 (1.18)	6.3 (6.3) (first MS symptoms)	1.6 (0.67)
APEX	Dimethyl fumarate 240 mg BID	56	NR	NR	NR	NR	NR
	Placebo	58	NR	NR	NR	NR	NR
BEYOND	GA 20 mg QD	448	142 (32) 306 (68)	35.2 (NR) Median (IQR) = 35 (27-43)	2.28 (NR) Median (IQR) = 2 (1.5-3)	5.1 (NR) Median (IQR) = 3 (1-7) (MS diagnosis)	1.6 (NR) Median (IQR) = 1 (1-2)
	IFNβ-1b 250 mcg QAD	897	270 (30) 627 (70)	35.8 (NR) Median (IQR) = 35 (28-43)	2.35 (NR) Median (IQR = 2 (1.5-3)	5.3 (NR) Median (IQR) = 3 (1-7) (MS diagnosis)	1.6 (NR) Median (IQR) = 1 (1-2)
	IFNβ-1b 500 mcg QAD	899	270 (30) 629 (70)	35.9 (NR) Median (IQR) = 36 (28-43)	2.33 (NR) Median (IQR = 2 (1.5-3)	5.4 (NR) Median (IQR) = 3 (1-8) (MS diagnosis)	1.6 (NR) Median (IQR) = 1 (1-2)

 Table 17.
 Baseline characteristics of participants in the randomised controlled trials across randomised groups

			No. males (%)				
Study ID	Treatment	Total N	No. females (%)	Mean age in years (SD)	Mean EDSS score (SD)	Mean duration of disease in years (SD)	Mean no. relapses in previous year (SD)
Boiko 2017	GA 20 mg QD(Copaxone, Teva) ^a	61	NR	NR	NR	Median = 3.0 (range: 1.0- 21.0) (MS symptoms)	1.28 (95% Cl, 1.12-1.44)
	GA 20 mg QD (Timexon, Biocad) ^a	61	NR	NR	NR	Median = 5.0 (range: 0.0- 37.0) (MS symptoms)	1.28 (95% Cl, 1.15-1.40)
	Placebo	28	NR	NR	NR	Median = 4.0 (range: 2.0- 18.0) (MS symptoms)	1.21 (95% Cl, 1.05-1.38)
Bornstein 1987	GA 20 mg QD	25	11 (44) 14 (56)	30 (NR)	NR	4.9 (NR) (unclear)	2 years: 3.8 (unclear average)
	Placebo	25	10 (40) 15 (60)	31 (NR)	NR	6.1 (NR) (unclear)	2 years: 3.9 (unclear average)
BRAVO	IFNβ-1a 30 mcg QW	447	140 (31.3) 307 (68.7)	Median (IQR) = 38.5 (30.3-45.9)	Median (IQR) = 2.5 (1.5-3.5)	Median (IQR) = 1.4 (0.3-4.7) (MS diagnosis)	Median (IQR) = 1 (1-2)
	Laquinimod 0.6 mg QD	434	152 (35) 282 (65)	Median (IQR) = 36.7 (29.6-44)	Median (IQR) = 2.5 (1.5-3.5)	Median (IQR) = 1.2 (0.3-3.8) (MS diagnosis)	Median (IQR) = 1 (1-2)
	Placebo	450	129 (28.7) 321 (71.3)	Median (IQR) = 37.5 (30.3-45.4)	Median (IQR) = 2.5 (1.5-3.5)	Median (IQR) = 1.2 (0.3-4) (MS diagnosis)	Median (IQR) = 1 (1-2)
Calabrese 2012	GA 20 mg QD	48	13 (27.1) 35 (72.9)	38.9 (10.2)	Mean (range) = 2.1 (1- 5)	Mean (range) = 5.5 (0-9) (unclear)	NR
	IFNβ-1a 30 mcg QW	47	15 (32) 32 (68)	34.8 (9.6)	Mean (range) = 1.9 (1- 5)	Mean (range) = 5.3 (0-8) (unclear)	NR
	IFNβ-1a 44 mcg TIW	46	14 (30.5) 32 (69.5)	35.9 (9.1)	Mean (range) = 1.9 (1- 5)	Mean (range) = 5.7 (0-9) (unclear)	NR

		Total			Mean EDSS score	Mean duration of disease	Mean no. relapses in
Study ID CAMMS223	Treatment Alemtuzumab 12 mg QD	N 112	(%) 39 (35.5) 71 (64.5)	Mean age in years (SD) 31.9 (8) Median (range) = 31 (18-49)	(SD) 2 (0.73) median (range) = 2 (0-3)	in years (SD) NR	previous year (SD) NR
	Alemtuzumab 24 mg QD	110	40 (35.7) 72 (64.3)	32.2 (8.8) Median (range) = 31 (18-54)	2 (0.73) Median (range) = 2 (0-3.5)	NR	NR
	IFNβ-1a 44 mcg TIW	111	40 (36) 71 (64)	32.8 (8.8) Median (range) = 31 (18-60)	1.9 (0.81) Median (range) = 2 (0-3.5)	NR	NR
CARE MS I	Alemtuzumab 12 mg QD	376	132 (35) 243 (65)	33 (8)	2 (0.8) Median (range) = 2 (0- 4)	2.1 (1.4) Median (range) = 1.7 (0.1- 5.2) (first MS symptoms)	1.8 (0.8) Median (range) = 2 (0-5)
	IFNβ-1a 44 mcg TIW	187	65 (35) 122 (65)	33.2 (8.5)	2 (0.8) Median (range) = 2 (0- 3.5)	2 (1.3) Median (range) = 1.5 (0.2-5) (first MS symptoms)	1.8 (0.8) Median (range) = 2 (0-5) 2 years: Mean (SD) = 2.4 (0.85)
CARE MS II	Alemtuzumab 12 mg QD	426	145 (34) 281 (66)	34.8 (8.36)	2.7 (1.26) Median (range) = 2.5 (0- 6.5)	4.5 (2.68) Median (range) = 3.8 (0.2- 14.4) (first MS symptoms)	1.7 (0.86) Median (range) = 1 (0-5)
	Alemtuzumab 24 mg QD	170	49 (29) 120 (71)	35.1 (8.4)	2.7 (1.17) Median (range) = 2.5 (0- 6)	4.3 (2.77) Median (range) = 3.7 (0.2- 16.9) (first MS symptoms)	1.6 (0.86) Median (range) = 1 (0-6)
	IFNβ-1a 44 mcg TIW	202	71 (35) 131 (65)	35.8 (8.77)	2.7 (1.21) Median (range) = 2.5 (0- 6)	4.7 (2.86) Median (range) = 4.1 (0.4- 10.1) (first MS symptoms)	1.5 (0.75) Median (range) = 1 (0-4)

Study ID	Treatment	Total N	No. males (%) No. females (%)	Mean age in years (SD)	Mean EDSS score (SD)	Mean duration of disease in years (SD)	Mean no. relapses in previous year (SD)
CombiRx	IFNβ-1a 30 mcg QW	250	77 (30.8) 173 (69.2)	37.6 (10.2)	2.0 (1.2)	1.4 (4.0) (first MS symptoms)	1.7 (0.9)
	GA 20 mg QD	259	74 (28.6) 185 (71.4)	39 (9.5)	1.9 (1.2)	1 (2.9) (first MS symptoms)	1.6 (0.7)
CONFIRM	DMF 240 mg BID	359	114 (32) 245 (68)	37.8 (9.4)	2.56 (1.2)	4.9 (5.1) (MS diagnosis)	1.3 (0.6)
	DMF 240 mg TID	345	95 (28) 250 (72)	37.8 (9.4)	2.52 (1.19)	4.6 (5.2) (MS diagnosis)	1.4 (0.7)
	GA 20 mg QD	350	103 (29) 247 (71)	36.7 (9.1)	2.57 (1.22)	4.4 (4.7) (MS diagnosis)	1.4 (0.6)
	Placebo	363	112 (31) 251 (69)	36.9 (9.2)	2.59 (1.17)	4.8 (5) (MS diagnosis)	1.4 (0.8)
Copolymer I Study	GA 20 mg QD	125	37 (29.6) 88 (70.4)	34.6 (6)	2.8 (1.2)	7.3 (4.9) (unclear)	2 years: mean (SD) = 2.9 (1.3)
	Placebo	126	30 (23.8) 96 (76.2)	34.3 (6.5)	2.4 (1.3)	6.6 (5.1) (unclear)	2 years: mean (SD) = 2.9 (1.1)
DEFINE	DMF 240 mg BID	410	114 (28) 296 (72)	38.1 (9.1)	2.4 (1.29)	5.6 (5.4) (MS diagnosis)	1.3 (0.7)
	DMF 240 mg TID	416	110 (26) 306 (74)	38.8 (8.8)	2.36 (1.19)	5.1 (5.3) (MS diagnosis)	1.3 (0.6)
	Placebo	408	102 (25) 306 (75)	38.5 (9.1)	2.48 (1.24)	5.8 (5.8) (MS diagnosis)	1.3 (0.7)

Study ID	Treatment	Total N	No. males (%) No. females (%)	Mean age in years (SD)	Mean EDSS score (SD)	Mean duration of disease in years (SD)	Mean no. relapses in previous year (SD)
Etemadifar 2006	IFNβ-1a 30 mcg QW	30	6 (20) 24 (80)	28.1 (1.2)	1.9 (1.1)	2.9 (2.3) (unclear)	2 (0.8)
	IFNβ-1a 44 mcg TIW	30	7 (23) 23 (77)	27.4 (1.2)	2.1 (1)	3 (2.2) (unclear)	2.4 (1)
	IFNβ-1b 250 mcg QAD	30	9 (30) 21 (70)	29.9 (1.4)	1.9 (0.7)	3.7 (2.3) (unclear)	2.2 (0.7)
EVIDENCE	IFNβ-1a 30 mcg QW	338	86 (25.4) 252 (74.6)	Mean (range) = 37.4 (18-55)	2.3 (NR) Median (range) = 2 (NR)	6.7 (NR) Median (range) = 4.1 (NR) (unclear)	2 years: mean (SD) = 2.6 (NR) 2 years: Median (range) = 2 (NR)
	IFNβ-1a 44 mcg TIW	339	85 (25.1) 254 (74.9)	Mean (range) = 38.3 (18-55)	2.3 (NR) Median (range) = 2 (NR-NR)	6.5 (NR) Median (range) = 4 (NR- NR) (unclear)	2 years: mean (SD) = 2.6 (NR) 2 years: median (range) = 2 (NR)
GALA	GA 40 mg	943	302 (32) 641 (68)	37.4 (9.4)	2.8 (1.2)	7.7 (6.7) (1st MS symptoms)	1.3 (0.6)
	Placebo	461	148 (32.1) 313 (67.9)	38.1 (9.2)	2.7 (1.2)	7.6 (6.4) (first MS symptoms)	1.3 (0.6)
IFNB MS study	IFNβ-1b 50 mcg QAD	125	40 (32) 85 (68)	Mean (SE) = 35.3 (0.7)	Mean (SE) = 2.9 (0.1)	Mean (SE) = 4.7 (0.4) (MS diagnosis)	2 years: mean (SE) = 3.3 (0.1)
	IFNβ-1b 250 mcg QAD	124	38 (30.6) 86 (69.4)	Mean (SE) = 35.2 (0.6)	Mean (SE) = 3 (0.1)	Mean (SE) = 4.7 (0.4) (MS diagnosis)	2 years: mean (SE) = 3.4 (0.2)
	Placebo	123	35 (28.5) 88 (71.5)	Mean (SE) = 36 (0.6)	Mean (SE) = 2.8 (0.1)	Mean (SE) = 3.9 (0.3) (MS diagnosis)	2 years: mean (SE) = 3.6 (0.1)

Study ID	Treatment	Total N	No. males (%) No. females (%)	Mean age in years (SD)	Mean EDSS score (SD)	Mean duration of disease in years (SD)	Mean no. relapses in previous year (SD)
INCOMIN	IFNβ-1a 30 mcg QW	92	35 (38) 57 (62)	34.9 (7.9)	1.96 (0.7)	6.7 (5.4) (unclear)	NR
	IFNβ-1b 250 mcg QAD	96	30 (31) 66 (69)	38.8 (7.1)	1.97 (0.7)	5.9 (4.2) (unclear)	NR
MSCRG	IFNβ-1a 30 mcg QW	158	40 (25) 118 (75)	36.7 (7.16)	2.4 (0.75)	6.6 (NR) (MS diagnosis)	1.2 (0.63)
	Placebo	143	40 (28) 103 (72)	36.9 (7.65)	2.3 (0.84)	6.4 (NR) (MS diagnosis)	1.2 (0.6)
OPERA I	Ocrelizumab, 600 mg, Q24W	410	140 (34.1) 270 (65.9)	37.1 (9.3)	2.86 (1.24)	6.74 (6.37) (first MS symptoms)	1.31 (0.65)
	IFNβ-1a, 44 mcg, TIW	411	139 (33.8) 272 (66.2)	36.9 (9.3)	2.75 (1.29)	6.25 (5.98) (first MS symptoms)	1.33 (0.64)
OPERA II	Ocrelizumab, 600 mg, Q24W	417	146 (35.0) 271 (65.0)	37.2 (9.1)	2.78 (1.30)	6.72 (6.10) (first MS symptoms)	1.32 (0.69)
	IFNβ-1a, 44 mcg, TIW	418	138 (33.0) 280 (67.0)	37.4 (9.0)	2.84 (1.38)	6.68 (6.13) (first S symptoms)	1.34 (0.73)
PRISMS	IFNβ-1a 22 mcg TIW	189	62 (33) 127 (67)	Median (IQR) = 34.8 (29.3-39.8)	2.5 (1.2)	Median (IQR) = 5.4 (3-11.2) (unclear)	2 years: mean (SD) = 3 (1.1)
	IFNβ-1a 44 mcg TIW	184	63 (34) 121 (66)	Median (IQR) = 35.6 (28.4-41)	2.5 (1.3)	Median (IQR) = 6.4 (2.9-10.3) (unclear)	2 years: mean (SD) = 3 (1.1)
	Placebo	187	47 (25) 140 (75)	Median (IQR) = 34.6 (28.8-40.4)	2.4 (1.2)	Median (IQR) = 4.3 (2.4-8.4) (unclear)	2 years: mean (SD) = 3 (1.3)

Study ID	Treatment	Total N	No. males (%) No. females (%)	Mean age in years (SD)	Mean EDSS score (SD)	Mean duration of disease in years (SD)	Mean no. relapses in previous year (SD)
REGARD	GA 20 mg QD	378	106 (28) 272 (72)	36.8 (9.5)	2.33 (1.31) Median (range) = 2 (NR)	NR	NR
	IFNβ-1a 44 mcg TIW	386	119 (31) 267 (69)	36.7 (9.8)	2.35 (1.28) Median (range) = 2 (NR)	NR	NR
TEMSO	Teriflunomide 14 mg QD	359	104 (29) 255 (71)	37.8 (8.2)	2.67 (1.24)	8.7 (6.7) Median (range) = 7.2 (NR) (first MS symptoms)	1.3 (0.7) 2 years: median (range) = 2 (NR)
	Teriflunomide 7 mg QD	366	111 (30.3) 255 (69.7)	37.4 (9)	2.68 (1.34)	8.8 (6.8) Median (range) = 7 (NR) (first MS symptoms)	1.4 (0.7) 2 years: median (range) = 2 (NR)
	Placebo	363	88 (24.2) 275 (75.8)	38.4 (9)	2.68 (1.34)	8.6 (7.1) Median (range) = 6.3 (NR) (first MS symptoms)	1.4 (0.7) 2 years: median (range) = 2 (NR)
TENERE	Teriflunomide 14 mg QD	111	33 (29.7) 78 (70.3)	36.8 (10.3)	2.3 (1.4)	6.6 (7.6) (first MS symptoms)	1.4 (0.8)
	Teriflunomide 7 mg QD	109	39 (35.8) 70 (64.2)	35.2 (9.2)	2 (1.2)	7 (6.9) (first MS symptoms)	1.3 (0.8)
	IFNβ-1a 44 mcg TIW	104	33 (31.7) 71 (68.3)	37 (10.6)	2 (1.2)	7.7 (7.6) (first MS symptoms)	1.2 (1.0)

Study ID	Treatment	Total N	No. males (%) No. females (%)		Mean EDSS score (SD)	Mean duration of disease in years (SD)	Mean no. relapses in previous year (SD)
TOWER	Teriflunomide 14 mg QD	372	114 (31) 258 (69)	38.2 (9.4)	2.71 (1.35)	8.18 (6.73) (first MS symptoms)	1.4 (0.7)
	Teriflunomide 7 mg QD	408	108 (26) 300 (74)	37.4 (9.4)	2.71 (1.39)	8.18 (6.75) (1st MS symptoms)	1.4 (0.7)
	Placebo	389	116 (30) 273 (70)	38.1 (9.1)	2.69 (1.36)	7.64 (6.7) (first MS symptoms)	1.4 (0.8)

BID = twice daily; GA = glatiramer acetate; IFN = interferon; IM = intramuscular; IQR = interquartile range; IV = intravenous; MS = multiple sclerosis; NR = not reported; pegIFN β -1a = pegylated interferon β -1a; Q2W = once every 2 weeks; Q4W = once every 4 weeks; QAD = every other day; QD = once daily; Q24W = every 24 weeks; SD = standard deviation; SE = standard error; TID = 3 times a day; TIW = 3 times a week.

^a The Boiko 2017 study also included a biosimilar GA drug arm (BCD-063, Biocad, Russia) (n = 61), which was not included in any analyses.

B.2.9.3.1 Annualised relapse rate

Studies that reported ARR at any time point \geq 12 months were combined into an overall network based on the rationale that this represents an annualised rate (Figure 14). The Etemadifar et al. (2006)¹⁴¹ study was not included in the network for the overall RRMS population as this study enrolled mostly RES-RRMS patients and the APEX, Boiko 2017 and PRISMS studies could not be included in the network as they did not report ARR (see Table 16).

The final network included 23 studies (ADVANCE, BEYOND, Bornstein 1987, BRAVO, Calabrese 2012, CAMMS223, CARE MS I, CARE MS II, CombiRx, CONFIRM, Copolymer I, DEFINE, EVIDENCE, GALA, IFNB MS, INCOMIN, MSCRG, OPERA I, OPERA II, REGARD, TEMSO, TENERE, TOWER). This included four studies that reported ARR after 12 months (ADVANCE, EVIDENCE, OPERA I, OPERA II) and 15 studies that reported ARR after 24 months (BEYOND, Bornstein 1987, BRAVO, Calabrese 2012, CARE MS I, CARE MS II, CONFIRM, Copolymer I, DEFINE, GALA, IFNB MS, INCOMIN, MSCRG, REGARD, TEMSO). There were four studies that reported ARR at follow-up times other than 12 or 24 months (CAMMS223, 36 months; CombiRx, 36 months; TENERE, ~14-15 months; TOWER, ~18-19 months).

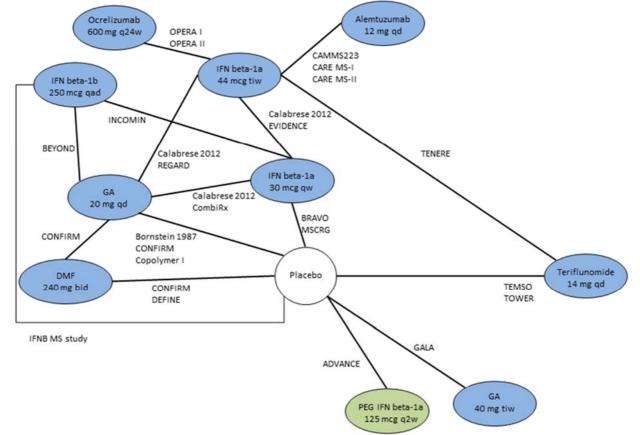
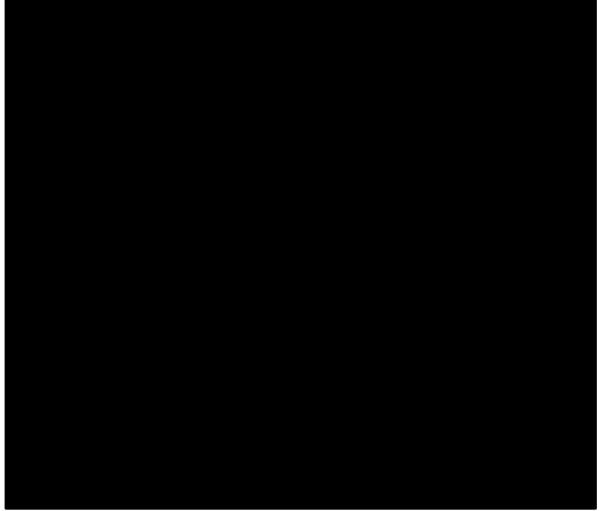


Figure 14. Overall network for annualised relapse rate


DMF = dimethyl fumarate; GA = glatiramer acetate; IFN = interferon; PEG IFN = pegylated interferon; q24w = every 24 weeks; qad = every other day; qd = once daily; qw = once weekly; tiw = three times weekly.

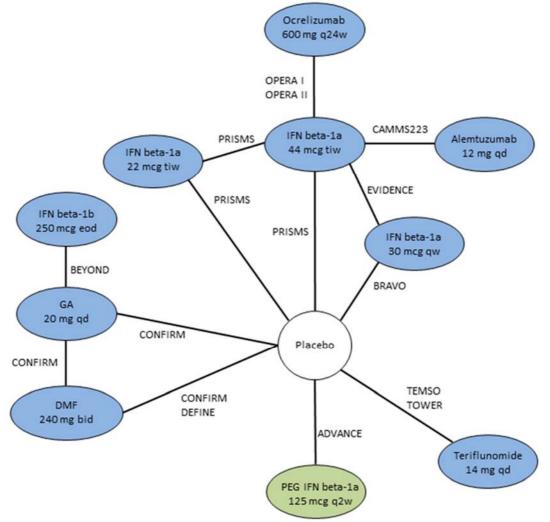
Company evidence submission template for peginterferon beta-1a for treating relapsingremitting multiple sclerosis

Mixed-treatment comparison analysis demonstrated that pegIFN β -1a demonstrated a statistically significant decrease in RR relative to placebo (Figure 15). The MTC for ARR also demonstrated the following:

- The RR for pegIFNβ-1a was numerically decreased compared with IM IFNβ-1a 30 mcg once weekly (QW) or teriflunomide; however, these differences were not statistically significant.
- PegIFNβ-1a demonstrated a statistically significant increase in RR relative to alemtuzumab or ocrelizumab. The RR for pegIFNβ-1a was also numerically increased compared with DMF; however, these differences were not statistically significant.
- There was no difference in the RR (RR, ≥ 0.9 and ≤ 1.1) for patients receiving pegIFNβ-1a compared with IFNβ-1a 44 mcg, IFNβ-1b, GA 20 mg, or GA 40 mg. Indirect (Bucher) and direct meta-analyses are presented in Appendix L.

Figure 15. Annualised relapse rate of pegIFNβ-1a relative to all other treatments

bid = twice daily; DMF = dimethyl fumarate; pegIFN β -1a = pegylated interferon β -1a; q24w = once every 24 weeks; qd = once daily; qw = once weekly; tiw = three times weekly.


Company evidence submission template for peginterferon beta-1a for treating relapsingremitting multiple sclerosis

B.2.9.3.2 Disability progression confirmed after 3 months (CDP3M)

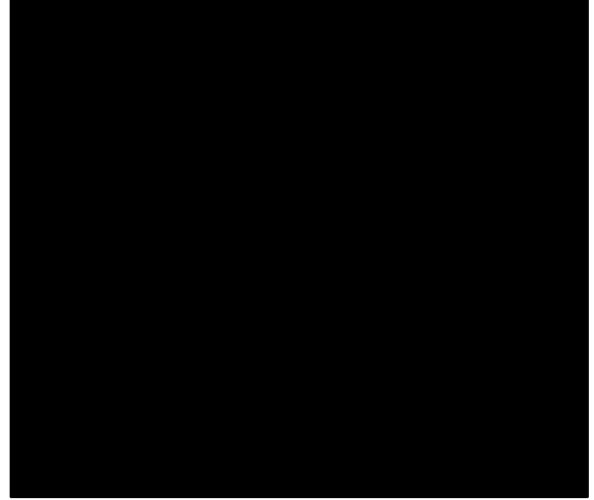
The final network for CDP3M and measured at 11, 18, or 24 months of follow-up included 12 studies (ADVANCE, BEYOND, BRAVO, CAMMS223, CONFIRM, DEFINE, EVIDENCE, OPERA I, OPERA II, PRISMS, TEMSO, TOWER) (Figure 16).

There were 15 studies that could not be included in the network because they did not report data for this outcome (APEX, Boiko 2017, Bornstein 1987, Calabrese 2012, CARE MS I, CARE MS II, CombiRx, Copolymer I, Etemadifar 2006, GALA, IFNB MS, INCOMIN, MSCRG, REGARD, TENERE) (Table 16).

Figure 16. Overall network for disability progression confirmed after three months (CDP3M)

bid = twice daily; DMF = dimethyl fumarate; eod = every other day; PEG IFN beta-1a = pegylated interferon β -1a; q24w = once every 24 weeks; qd = once daily; qw = once weekly; tiw = three times weekly.

The ADVANCE study compared pegIFN β -1a Q2W or Q4W versus placebo. After 12 months, the patients in the placebo arm were re-randomised to receive either pegIFN β -1a Q2W or pegIFN β -1a Q4W, and the study continued as a four-arm trial for an additional 12 months. These data are not directly comparable to studies that reported after 24 months of follow-up for patients who had remained on the same treatment for the full period. However, in order to link pegIFN β -1a to the rest of the network, ADVANCE (12 months follow-up) was added to a network of studies with 24 months of follow-up. This limited the accuracy of the comparison but was the best method available for combining data from different time points to make


Company evidence submission template for peginterferon beta-1a for treating relapsingremitting multiple sclerosis

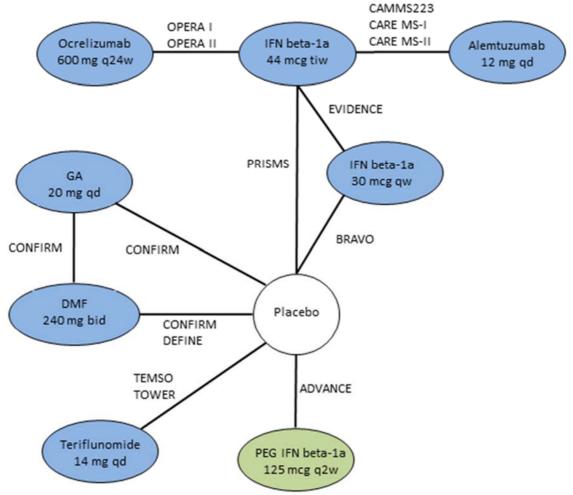
comparative effectiveness analysis possible. It should be acknowledged that despite limitations, this approach is also consistent with the MTC conducted by the assessment group for ID52.

Mixed-treatment comparison analysis demonstrated that there were no statistically significant differences in the risk of disability progression confirmed after 3 months for patients treated with pegIFN β -1a compared with all other treatments in the network (Figure 17).

- The risk of CDP3M was numerically decreased in patients receiving pegIFNβ-1a compared with those receiving IM IFNβ-1a 30 mcg, IFNβ-1b, GA 20 mg, or placebo; however, these differences were not statistically significant.
- The risk of CDP3M was numerically increased for pegIFNβ-1a compared with either alemtuzumab or ocrelizumab; however, these differences were not statistically significant.
- There was no difference in the risk of CDP3M (HR ≥ 0.9 and ≤ 1.1) in patients receiving pegIFNβ-1a compared with IFNβ-1a 44 mcg, IFNβ-1a 22 mcg, teriflunomide, or DMF. Indirect (Bucher) and direct meta-analyses are presented in Appendix L.

Figure 17. Disability progression confirmed after 3 months (CDP3M) for pegIFNβ-1a 125 mcg Q2W relative to all other treatments

bid = twice daily; DMF = dimethyl fumarate; pegIFN β -1a = pegylated interferon β -1a; qad = every other day; q24w = once every 24 weeks; qd = once daily; tiw = 3 times a week.

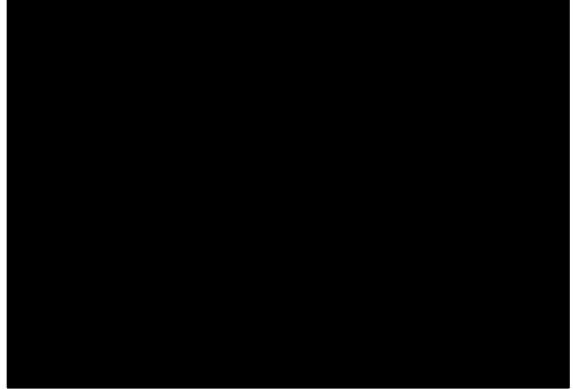

Company evidence submission template for peginterferon beta-1a for treating relapsingremitting multiple sclerosis

B.2.9.3.3 Disability progression after 6 months (CDP6M)

The overall network for CDP6M and measured after 11, 18, or 24 months of follow-up included 13 studies (ADVANCE, BRAVO, CAMMS223, CARE MS I, CARE MS II, CONFIRM, DEFINE, EVIDENCE, OPERA I, OPERA II, PRISMS, TEMSO, TOWER) (Figure 18).

There were 15 studies that could not be included in the network because they did not report data for this outcome (APEX, BEYOND, Boiko 2017, Bornstein 1987, Calabrese 2012, CombiRx, Copolymer I, Etemadifar 2006, GALA, IFNB MS, INCOMIN, MSCRG, REGARD, TEMSO, TENERE) (see Table 16).

Figure 18. Overall network for disability progression confirmed after 6 months (CDP6M)


bid = twice daily; DMF = dimethyl fumarate; PEG IFN = pegylated interferon; qad = every other day; q24w = once every 24 weeks; qd = once daily; tiw = 3 times a week.

Similar to the CDP3M network, 12-month placebo-controlled data from ADVANCE were combined with the comparator studies using 24-month data to allow for comparative effectiveness to be assessed.

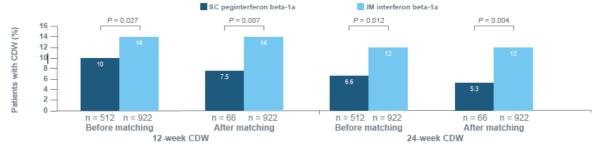
There were no statistically significant differences in the risk of CDP6M for patients treated with pegIFN β -1a compared with all other treatments in the network (Table 19; Figure 19).

- The risk of CDP6M was numerically decreased in patients receiving pegIFNβ-1a compared with those receiving IM IFNβ-1a 30 mcg, IFNβ-1a 44 mcg, GA 20 mg, DMF, teriflunomide, or placebo; however, this difference was only statistically significant against placebo.
- The risk of disability progression was numerically increased for pegIFNβ-1a compared with alemtuzumab and ocrelizumab; however, these differences were not statistically significant. Indirect (Bucher) and direct meta-analyses are presented in Appendix L.

Figure 19. Disability progression confirmed after 6 months (CDP6M) for pegIFNβ-1a 125 mcg Q2W relative to all other treatments

bid = twice daily; DMF = dimethyl fumarate; pegIFN β -1a = pegylated interferon β -1a; q24w = once every 24 weeks; qad = every other day; qd = once daily; tiw = 3 times a week.

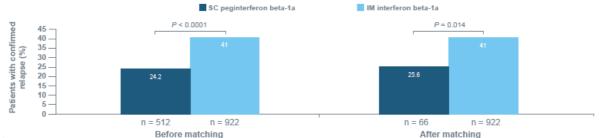
B.2.9.4 Additional comparator efficacy studies


- Matching-adjusted indirect comparison of two phase III trials shows that, in patients with relapsing forms of MS, treatment with pegIFNβ-1a Q2W results in significantly lower numbers of patients with CDP3M and CDP6M, and significantly lower ARR compared with IM IFNβ-1a 30 mcg.
- Propensity score matching analysis of phase III trials ADVANCE and CONFIRM show that significantly lower ARRs and CDP are achieved with pegIFNβ-1a Q2W than with GA 20 mg in RRMS.
 - CDP3M: 10.0% v 14.6%; HR 0.625 (95% CI 0.393 0.995; P = 0.048)
 - CDP6M: 7.7% vs 10.6%; HR 0.684 (95% CI 0.398 1.178; P = 0.171)
 - Overall NEDA or MRI NEDA over 2 years was found to be significantly higher in patients treated with pegIFNβ-1a than GA.
- A matching-adjusted comparison of weighted individual patient data on pegIFNβ-1a, and aggregate data from 4 published phase 3 clinical trials of IFNβ-1a 44 mcg, was conducted and demonstrated that patients with RRMS receiving pegIFNβ-1a Q2W achieve better clinical outcomes than patients treated with IFNβ-1a 44 mcg.

B.2.9.4.1 PegIFNβ-1a Q2W vs. IM IFNβ-1a 30 mcg

A matching-adjusted indirect comparison of the clinical effectiveness of pegIFN β -1a and IM IFN β -1a in patients with RRMS was conducted to provide relevant information for clinicians on the comparative efficacy of these two agents. Data on patients receiving pegIFN β -1a Q2W was taken from ADVANCE and data on patients receiving IM IFN β -1a was taken from the DECIDE study. Using an indirect matching-adjusted comparison, the study aimed to analyse the proportion of patients with CDP3M, CDP6M, and confirmed relapse at 2 years, and ARR in patients with RRMS treated with pegIFN β -1a or IM IFN β -1a.¹⁴²

Before matching, patients randomised to SC pegIFN β -1a Q2W (n = 512) had a lower proportion of previous IFN β treatment and fewer Gd+ lesions compared with patients randomised to IM IFN β -1a (n = 922). After matching, baseline characteristics were balanced across treatment groups. After 2 years of treatment, before and after matching, the percentage of patients with CDP3M or CDP6M (Figure 20) or confirmed relapse (Figure 21) were significantly lower in patients receiving pegIFN β -1a compared with patients receiving IM IFN β -1a. At 2 years, ARR after matching was also significantly lower in patients receiving pegIFN β -1a compared with patients receiving IM IFN β -1a (Figure 22).¹⁴²


Figure 20. CDP3M or CDP6M at 2 years with SC pegIFNβ-1a and IM IFNβ-1a before and after matching baseline characteristics

CDP = confirmed disability progression; CDW = confirmed disability worsening; IFN β -1a = interferon β -1a; IM = intramuscular; pegIFN β -1a = pegylated interferon β -1a; SC = subcutaneous. Source: Scott et al. (2017)¹⁴²

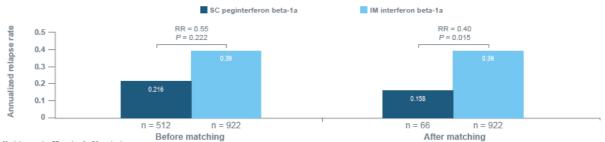

Company evidence submission template for peginterferon beta-1a for treating relapsingremitting multiple sclerosis

Figure 21. Confirmed relapse at 2 years with SC pegIFNβ-1a and IM IFNβ-1a before and after matching baseline characteristics

IFNβ-1a = interferon β-1a; IM = intramuscular; pegIFNβ-1a = pegylated interferon β-1a; SC = subcutaneous. Source: Scott et al. $(2017)^{142}$

Figure 22. ARR at 2 years with SC pegIFNβ-1a and IM IFNβ-1a before and after matching baseline characteristics

ARR = annualised relapse rate; IFN β -1a = interferon β -1a; IM = intramuscular; pegIFN β -1a = pegylated interferon β -1a; SC = subcutaneous.

Source: Scott et al. (2017)¹⁴²

B.2.9.4.2 PegIFNβ-1a Q2W vs. GA 20 mg

A second study compared data patients with RRMS receiving pegIFN β -1a Q2W from ADVANCE (N = 512) and patients with RRMS receiving SC GA 20 mg/mL once daily from CONFIRM (N = 350) with 1:1 propensity score matching using key baseline characteristics (age, baseline EDSS score, years from onset of symptoms, number of relapses in prior year, and sex). The study aimed to compare these treatments across clinical efficacy end points over 2 years. The end points investigated were ARR, CDP3M, and CDP6M in addition to NEDA in the MRI sub-cohort.¹⁴³

Propensity score matching was performed and 336 patients treated with pegIFN β -1a and 336 patients treated with GA were matched and the treatment groups were balanced for each of the key baseline characteristics. For the NEDA analyses, 305 patients treated with pegIFN β -1a and 165 patients treated with GA (from the CONFIRM MRI sub-cohort) were matched.

The results showed that at 2 years¹⁴³:

- Patients treated with pegIFNβ-1a had a significantly lower ARR than GA-treated patients (Figure 23).
- Patients treated with pegIFNβ-1a had a significantly lower probability of CDP3M than GA-treated patients (10.0% vs. 14.6%), resulting in an HR of 0.625 (95% CI, 0.393-0.995; *P* = 0.048).
- Patients treated with pegIFNβ-1a had a numerically lower probability of CDP6M than GA-treated patients (7.7% vs. 10.6%; HR, 0.684; 95% CI, 0.398-1.178; *P* = 0.171).

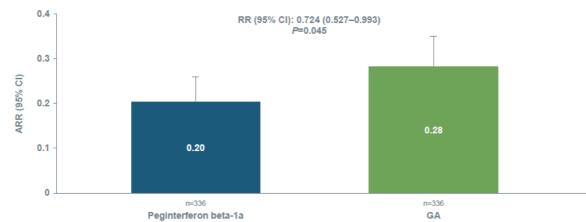
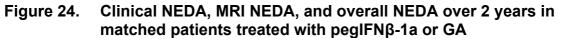



Figure 23. ARR in matched patients treated with pegIFNβ-1a or GA

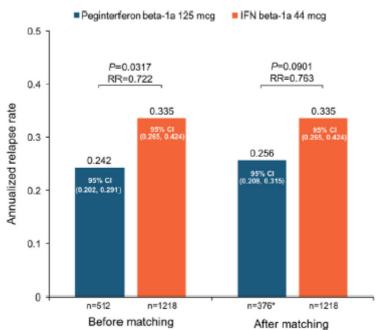
ARR = annualised relapse rate; GA = glatiramer acetate; MRI = magnetic resonance imaging; IM = intramuscular; pegIFN β -1a = pegylated interferon β -1a; SC = subcutaneous. Source: Scott et al. (2018)¹⁴³

Further analysis found that a significantly higher percentage of patients treated with pegIFN β -1a achieved overall NEDA (20.3% vs. 11.5%; *P* = 0.047), MRI NEDA (27.5% vs. 16.4%; *P* = 0.014) and clinical NEDA (56.0% vs. 55.1%; *P* = 0.762) over 2 years than patients treated with GA (Figure 24).¹⁴³

GA = glatiramer acetate; MRI = magnetic resonance imaging; NEDA = no evidence of disease activity; IM = intramuscular; pegIFN β -1a = pegylated interferon β -1a; SC = subcutaneous. Source: Scott et al. (2018)¹⁴³

B.2.9.4.3 PegIFNβ-1a Q2W vs. IFNβ-1a 44 mcg

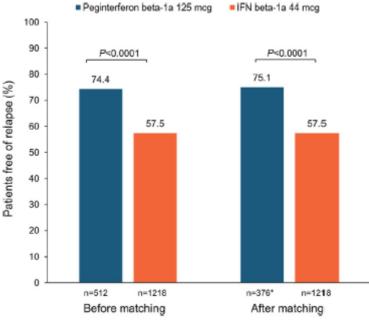
Coyle et al. $(2018)^{144}$ conducted a matching-adjusted comparison of pegIFN β -1a Q2W (using data from ADVANCE) versus IFN β -1a (using pooled summary data from four published studies of IFN β -1a 44 mcg) to evaluate the comparative efficacy of these two agents. A matching-adjusted comparison was conducted by weighting individual pegIFN β -1a treated patients using estimated propensity of enrolling in IFN β -1a 44 mcg treatment to match key aggregate baseline characteristics (e.g., age, sex, time since MS symptom onset, EDSS score prior to treatment initiation) of IFN β -1a 44 mcg treated patients that may have an impact on response variables including ARR and CDP. After this matching process, weighted ARR and CDP6M for pegIFN β -1a were compared with average outcomes from the four pooled IFN β -1a 44 mcg studies (OPERA I and II, and CARE MS I and II). For pegIFN β -1a, ARR was analysed with a negative binomial regression model adjusted for baseline


EDSS score, baseline ARR, and age. The proportion of patients who had CDP6M was compared using Rao-Scott chi-square test. Clinical NEDA was also analysed using the Rao-Scott method and was defined as no relapses and no onset of CDP6M and was compared with pooled data from the studies in which it was available. There was a sub-analysis that examined the outcomes with pegIFN β -1a and IFN β -1a 44 mcg in treatment-naive patients using individual patient data from ADVANCE and aggregate data from one of the studies included in the analysis that enrolled treatment-naive patients (CARE MS I trial). A matching-adjusted comparison was conducted and after matching for baseline characteristics, efficacy outcomes for pegIFN β -1a treated patients were weighted based on the model that was used for IFN β -1a 44 mcg in the CARE MS I trial.¹⁴⁴

Baseline characteristics were well-balanced between treatment groups after weighting. Over 2 years of treatment, the results showed the following:

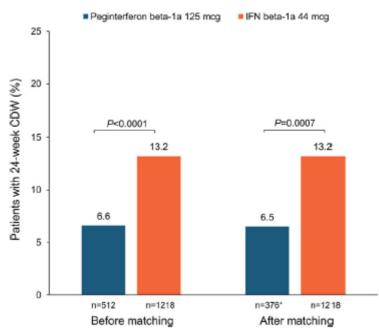
- ARR was significantly lower in patients treated with pegIFNβ-1a (before matching n = 512; after matching n = 376) compared with patients treated with IFNβ-1a 44 mcg (n = 1,218) before matching (0.24 vs. 0.34; P = 0.0317) but was not significantly lower after matching (0.256 vs. 0.335; P = 0.0901) (Figure 25).
- The percentage of patients who were relapse free over 2 years was significantly higher with pegIFNβ-1a treatment than with IFNβ-1a 44 mcg before matching (74.4% vs. 57.5%, *P* < 0.0001) and after matching (75.1% vs. 57.4%, *P* < 0.0001) (Figure 26).
- Patients treated with pegIFNβ-1a had significantly lower CDP6M compared with patients treated with IFNβ-1a 44 mcg (6.6% vs. 13.2%; *P* < 0.0001) before matching and after matching.
- Patients treated with pegIFNβ-1a also had a significantly lower proportion of patients with CDP6M compared with IFNβ-1a 44 mcg (6.5% vs. 13.2%; *P* = 0.0007) (Figure 27).

Data on clinical NEDA was only reported in two of the trials for IFNβ-1a 44 mcg, so only these trials were used in the analysis (CAR-MS I and II). Patients treated with pegIFNβ-1a were weighted to match the aggregate baseline characteristics of patients treated with IFNβ-1a 44 mcg in the CARE MS I and II studies. Clinical NEDA occurred in a statistically significantly higher proportion of patients treated with pegIFNβ-1a versus IFNβ-1a 44 mcg before matching (72.5% vs. 48.1%; P < 0.0001) and after matching (74.1% vs. 48.1%; P < 0.0001) (Figure 28).¹⁴⁴


Figure 25. Comparison of ARR over 2 years with pegIFNβ-1a and IFNβ-1a 44 mcg before and after matching baseline characteristics.

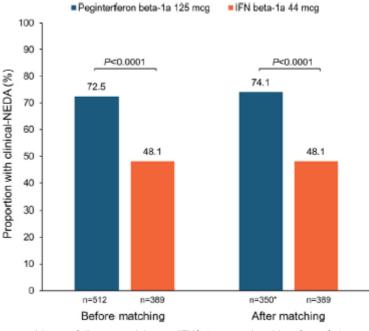
ARR = annualised relapse rate; CI = confidence interval; GA = glatiramer acetate; IFN = interferon; IM = intramuscular; MRI = magnetic resonance imaging; NEDA = no evidence of disease activity; pegIFN β -1a = pegylated interferon β -1a; RR = rate ratio. * Effective n.

Source: Coyle et al. (2018)¹⁴⁴


Figure 26. Comparison of the percentages of patients who were relapse free over 2 years with pegIFNβ-1a and IFNβ-1a 44 mcg before and after matching baseline characteristics

IFN = interferon; pegIFNβ-1a = pegylated interferon β-1a. * Effective n. Source: Coyle et al. $(2018)^{144}$

Company evidence submission template for peginterferon beta-1a for treating relapsingremitting multiple sclerosis


Figure 27. Comparison of CDP6M over 2 years with pegIFNβ-1a and IFNβ-1a 44 mcg before and after matching baseline characteristics

CDP6M = confirmed disability progression at 6 months; IFN = interferon; pegIFN β -1a = pegylated interferon β -1a. * Effective n.

Source: Coyle et al. (2018)¹⁴⁴

Figure 28. Summary of clinical NEDA analysis over 2 years' treatment with pegIFNβ-1a and IFNβ-1a 44 mcg

IFN = interferon; NEDA = no evidence of disease activity; pegIFNβ-1a = pegylated interferon β-1a. * Effective n. Source: Coyle et al. (2018)¹⁴⁴

Company evidence submission template for peginterferon beta-1a for treating relapsingremitting multiple sclerosis

In the sub-analysis that evaluated only treatment-naive patients, there were some imbalances in baseline characteristics between patients, but after matching all baseline characteristics were balanced across the pegIFN β -1a (effective sample size, n = 193) and IFN β -1a 44 mcg (n = 187) treatment groups. In this population, the results at 2 years were as follows:

- ARR was significantly lower before matching for pegIFNβ-1a–treated patients than for patients treated with IFNβ-1a 44 mcg (0.21 vs. 0.39; *P* = 0.0013), and ARR remained significantly lower in pegIFNβ-1a–treated patients after matching (0.14 vs. 0.39; *P* < 0.0001).
- There were significant differences in favour of patients treated with SC pegIFNβ-1a versus patients treated with IFNβ-1a 44 mcg in the proportion of patients with CDP6M (4.9% vs. 10.7%; *P* = 0.030).
- Similarly, the proportion of patients with clinical NEDA was higher in the patients treated with pegIFNβ-1a versus patients treated with IFNβ-1a 44 mcg; 75.1% vs. 55.6% (*P* = 0.0001).¹⁴⁴

B.2.9.5 Summary of comparative efficacy and safety profile

There were 23 studies that could be considered for inclusion in the analysis of ARR, and 27 studies that could be considered for inclusion in the analysis of other outcomes.

Outcomes assessed in the MTC included ARR, CDP3M, CDP6M, relapse severity, NEDA, and mortality in addition to AEs and SAEs.

B.2.9.5.1 Key results

Treatment	ARR (rate ratio)	CDP3M (HR)	CDP6M (HR)	Mortality	Any adverse event (odds ratio)	Any serious adverse event (odds ratio)	Treatment discontinuation due to any cause (odds ratio)
IM IFNβ-1a 30 mcg QW				-	-	-	-
IFNβ-1a 44 mcg TIW				-	-	-	-
IFNβ-1b 250 mcg QAD				-	-	-	-
GA 20 mg QD							
GA 40 mg TIW							
Teriflunomide 14 mg QD				-	-	-	-
DMF 240 mg BID				-	-	-	-
Alemtuzumab 12 mg QD				-	-	-	-
Ocrelizumab 600 mg Q24W				-	-	-	-
IFNβ-1a 22 mcg TIW				-	-	-	-
Placebo							

Table 18. Key efficacy and safety outcomes of pegIFNβ-1a relative to all other treatments

ARR = absolute risk reduction; BID = twice daily; CDP3M = confirmed disability progression sustained for 3 months; CDP6M = confirmed disability progression at 6 months; DMF = dimethyl fumarate; GA = glatiramer acetate; HR = hazard ratio; IFN β -1a = pegylated interferon β -1a; IFN β -1b = pegylated interferon β -1b; IM = intramuscular; Q24W = every 24 weeks; QAD = every other day; QD = once daily; QW = once weekly; TIW = 3 times a week.

The results for the comparative efficacy showed that in terms of ARR:

- pegIFNβ-1a reduced the RR relative to IM IFNβ-1a 30 mcg, teriflunomide, and placebo; however, only the difference versus placebo was statistically significant.
- The RR for ARR was similar (RR, \geq 0.9 and \leq 1.1) for patients treated with pegIFNβ-1a relative to IFNβ-1a 44 mcg, IFNβ-1b, GA 20 mg, and GA 40 mg.
- There was a statistically significant increase in the RR for patients treated with pegIFNβ-1a compared with alemtuzumab and ocrelizumab. There was also an increase in RR when compared against DMF; however, this was not statistically significant.

The risk of CDP3M was not statistically different for patients treated with pegIFN β -1a compared with all other treatments.

- The risk of CDP3M was numerically decreased in patients receiving pegIFNβ-1a compared with those receiving IM IFNβ-1a 30 mcg, IFNβ-1b 250 mcg, GA 20 mg, or placebo.
- The risk of CDP3M was numerically increased for pegIFNβ-1a compared with either alemtuzumab or ocrelizumab; however, these differences were not statistically significant.
- There was no difference in the risk of CDP3M (HR ≥ 0.9 and ≤ 1.1) in patients receiving pegIFNβ-1a compared with IFNβ-1a 44 mcg, IFNβ-1a 22 mcg, teriflunomide, or DMF

The risk of CDP6M was statistically significantly decreased in patients receiving pegIFN β -1a compared with placebo.

- The risk of CDP6M was numerically decreased in patients receiving pegIFNβ-1a compared with those receiving IM IFNβ-1a 30 mcg, IFNβ-1a 44 mcg, GA 20 mg, DMF, or teriflunomide.
- The risk of CDP6M was numerically increased compared with alemtuzumab and ocrelizumab.

Indirect comparisons using matching-adjusted indirect comparisons also show the following:

- PegIFNβ-1a has relapse severity similar to IFNβ-1a.
- PegIFNβ-1a showed a statistically significant reduction in NEDA compared with GA 40 mg and no statistically significant differences regarding mortality compared with GA 20 mg, GA 40 mg, or placebo.
- Analysis of the relative safety profile of pegIFNβ-1a compared with other DMTs showed no statistically significant differences between pegIFNβ-1a, GA 20 mg, GA 40 mg, or placebo.

B.2.10 Adverse reactions

- PegIFNβ-1a is generally well tolerated, with manageable AEs that are consistent with the safety profile of non-pegylated interferons for MS.
- The most common AEs occurring in ≥ 10% of patients treated with pegIFNβ-1a Q2W at year 1 of the ADVANCE study were flu-like symptoms and injection-site reactions, which are the most common adverse effects of all types of IFNβ therapies. Most of these AEs were mild or moderate in severity and there are mitigation strategies in place to manage them; less than 1% of patients treated with pegIFNβ-1a Q2W discontinued treatment due to flu-like symptoms or injection-site reactions.
- Neutralising antibodies have the potential to reduce clinical efficacy. There was no significant difference in the incidence of neutralising antibodies between pegIFNβ-1a Q2W and placebo at year 1 (< 1% in both groups), demonstrating that pegIFNβ-1a provides a significant advantage over current IFNβ products.
- Over 1 year of treatment, pegIFNβ-1a Q2W compared with placebo did not increase the risk of other AEs of special interest, including patients' susceptibility to infection and depression/suicidal ideations.
- The safety profile of pegIFNβ-1a Q2W remained favourable for up to 6 years of continuous treatment.
 - The type and incidence of most AEs during the ATTAIN extension were similar to that of the ADVANCE study, except flu-like symptoms and injection-site reactions decreased beyond 2 years of treatment, suggesting improved tolerability of pegIFNβ-1a Q2W over time.

B.2.10.1 Introduction

The safety profile of pegIFN β -1a was assessed in four studies, including the pivotal phase III study (ADVANCE), the long-term extension study (ATTAIN), a 1-year phase III study (ALLOW) and a pharmacokinetic study (COMPARE). The safety results from these studies are presented in this section.

B.2.10.2 ADVANCE

The safety profile of pegIFN β -1a has been demonstrated in the randomised, double-blind, phase III study, ADVANCE, which was placebo-controlled in the first year, with a second year where all patients received pegIFN β -1a. As all placebo patients switched to pegIFN β -1a after 1 year, data are available for patients with 2 continuous years of pegIFN β -1a treatment, and for patients with 1 year of placebo treatment followed by 1 year of pegIFN β -1a treatment.

The overall incidence of AEs was numerically higher with pegIFN β -1a Q2W group at 1 year, compared with placebo (94% vs. 83%). Treatment-related AEs were more common in the pegIFN β -1a Q2W group than in the placebo group (90% vs. 53%). Most AEs were mild to moderate in intensity; the incidence of severe AEs was low in the pegIFN β -1a Q2W group and in the placebo group (18% and 11%, respectively). Table 19 presents the summary of AEs.^{7,11,145}

The incidence of SAEs was similar between groups, and there was no difference in the number of serious infections. More pegIFN β -1a Q2W patients discontinued treatment due to AEs, compared with placebo; however, the proportion of discontinuations for both was low (5% vs. 1%). Adverse events resulting in discontinuation in > 1 patient were:

Company evidence submission template for peginterferon beta-1a for treating relapsingremitting multiple sclerosis

- PegIFNβ-1a Q2W: influenza-like illness (n = 4), injection-site erythema (n = 3), pyrexia (n = 4), suicidal ideation (n = 2), fatigue (n = 2), and increased transaminases (n = 2)
- Placebo: none

able 19. Summary of adverse events in ADVANCE											
	pegIFNβ-1a	Q2W	Placebo		pegIFNβ-1a	pegIFNβ-1a Q4W					
AEs n (%)	Year 1 (N = 512)	Year 2 (N = 740)	Year 1 (N = 500)	Year 2 (N = 0)	Year 1 (N = 500)	Year 2 (N = 728)					
≥ 1 AE	481 (94)	699 (94)	417 (83)	-	472 (94)	687 (94)					
≥ 1 moderate or severe AE	336 (66)	520 (70)	287 (57)	-	327 (65)	520 (71)					
≥ 1 severe AE ^a	90 (18)	152 (21)	53 (11)	-	82 (16)	149 (20)					
≥ 1 SAE	55 (11)	120 (16)	76 (15)	-	71 (14)	158 (22)					
≥ 1 treatment- related AE	459 (90)	668 (90)	266 (53)	-	449 (90)	644 (88)					
Discontinuation due to AEs	25 (5)	41 (6)	7 (1)	-	24 (5)	42 (6)					
Withdrawal due to AEs	25 (5)	41 (6)	6 (1)	-	22 (4)	42 (6)					

Table 19. Summary of adverse events in ADVANCE

AE = adverse event; pegIFNβ-1a = pegylated interferon Q2W = every 2 weeks; Q4W = every 4 weeks; SAE = serious adverse event.

Note: PegIFNβ-1a Q4W greyed out as pegIFNβ-1a Q2W is currently the only licensed dose and the focus of this submission. ^a Defined as symptoms that cause severe discomfort, incapacitation, or significant effect on patient's daily life; severity could cause cessation of study treatment, treatment for symptoms, or admission to hospital. Sources: Calabresi et al. (2014)¹¹; Biogen Idec Inc (2013)⁷; Newsome et al. (2018)¹²⁴Biogen Idec Inc (2014)¹⁴⁵

The results at year 2 for all patients receiving pegIFN β -1a Q2W or Q4W (i.e., patients with continuous treatment plus patients switched from placebo who had completed 1 year of treatment on either pegIFN β -1a Q2W or Q4W) were similar to the year 1 results.

B.2.10.2.1 Neutralising antibodies

Neutralising antibodies against IFN can occur with IFN treatment and may reduce the efficacy of treatment.^{12,13} PegIFNβ-1a was not associated with an increased risk of neutralising antibodies, compared with placebo, and the overall incidence over 2 years was < 1%. Anti-polyethylene glycol antibodies were observed in 7% of pegIFNβ-1a Q2W patients and 5% of placebo patients at 1 year but were not found to have any detrimental effect on efficacy (see Section B.3.3.3.2). A scenario with no treatment waning has also been explored as part of the cost-effectiveness analysis (Section B.3.8.3). Table 20 presents the results for patients positive for IFN–neutralising antibodies at 1 and 2 years in ADVANCE.^{7,11,145}

	ADVANCE						
	pegIFNβ-1a	Q2W	Placebo		pegIFNβ-1a Q4W		
n (%)	Year 1 (N = 512)	Year 2 (N = 740)	Year 1 Year 2 (N = 500) (N = 0)		Year 1 (N = 500)	Year 2 (N = 728)	
Neutralising antibody positive	4 (< 1)	7 (< 1)	2 (< 1)	-	2 (< 1)	6 (< 1)	

Table 20. Patients positive for IFN-neutralising antibodies at 1 and 2 years in ADVANCE

pegIFNβ-1a = pegylated interferon; Q2W = every 2 weeks; Q4W = every 4 weeks.

Note: PegIFNβ-1a Q4W greyed out as pegIFNβ-1a Q2W is currently the only licensed dose and the focus of this submission. Sources: Calabresi et al. (2014)¹¹; ¹²³

B.2.10.2.2 Most common adverse events

The most common AEs with an incidence \geq 10% in the pegIFNβ-1a Q2W group at 1 year, compared with placebo were injection-site erythema (62% vs. 7%); influenza-like illness (47% vs. 13%); pyrexia (45% vs. 15%); headache (44% vs. 33%); myalgia (19% vs. 6%), chills (17% vs. 5%); injection-site pain (15% vs. 3%); and injection-site pruritus (13% vs. 1%).^{7,11,145}

Infections were similar across the groups. In year 1, the incidence of infections was similar across all treatment groups (39% in the placebo group vs. 33% and 37% in the pegIFNβ-1a Q2W and Q4W groups, respectively).⁷ Nasopharyngitis, urinary tract infection, and upper respiratory tract infection were the most commonly reported infections (incidence of \geq 5% total), with similar incidences in the placebo and pegIFNβ-1a treatment groups. In year 2, infections were reported in 23% of patients continuing pegIFNβ-1a Q2W and 19% of patients who switched from placebo to pegIFNβ-1a.⁷

B.2.10.2.3 Influenza-like symptoms and injection-site reactions

Flu-like symptoms are known to be associated with treatment with IFN. The incidence of flu-like symptoms using narrow and broad definitions in ADVANCE is shown in Table 21^{7,11,145} and was consistent with the profile of other non-pegylated IFNs for MS.¹⁴⁶⁻¹⁴⁸ The incidence of flu-like symptoms was highest at the initiation of treatment and generally decreased over the first 6 months. Of the patients who reported flu-like symptoms, 90% reported them as mild or moderate in severity.¹

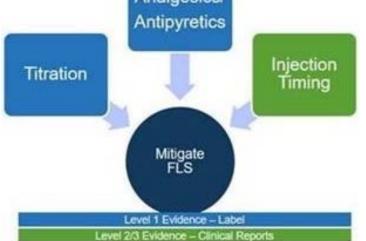
Injectable therapies for RRMS are also associated with injection-site reactions. Of the patients who experienced injection-site reactions, 95% reported them as mild or moderate in severity.^{1,11}

	PegIFNβ-1a Q2W		Placebo		PegIFNβ-1a	PegIFNβ-1a Q4W		
Adverse event, n (%)	Year 1 (N = 512)	Year 2* (N = 740)	Year 1 (N = 500)	Year 2 (N = 0)	Year 1 (N = 500)	Year 2 (N = 728)		
Narrow definition								
Flu-like illness	239 (47)	377 (51)	63 (13)	-	234 (47)	365 (50)		
Broad definition				-				
Myalgia	97 (19)	140 (19)	30 (6)	-	97 (19)	137 (19)		
Musculoskeletal pain	12 (2)	20 (3)	16 (3)	-	11 (2)	21 (3)		

Table 21. Summary of flu-like symptoms at 1 and 2 years in ADVANCE

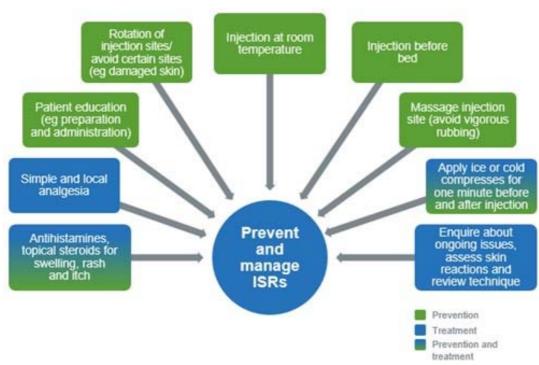
Pyrexia	228 (45)	320 (43)	76 (15)	-	218 (44)	298 (41)
Chills	88 (17)	124 (17)	23 (5)	-	92 (18)	123 (17)
Pain	25 (5)	40 (5)	16 (3)	-	29 (6)	42 (6)
Hyperpyrexia	-	1 (< 1)	-	-	-	1 (< 1)

pegIFNβ-1a = pegylated interferon; Q2W = every 2 weeks; Q4W = every 4 weeks.


Note: PegIFNβ-1a Q4W greyed out as pegIFNβ-1a Q2W is currently the only licensed dose and the focus of this submission. Sources: Biogen Idec Inc (2013)⁷; Biogen Idec Inc (2014)¹⁴⁵; Calabresi et al. (2014)¹¹

*Includes all patients who received pegIFNβ-1a Q2W anytime over 2 years

A Delphi-consensus generating study of 374 patients treated by clinicians in ADVANCE found that both flu-like symptoms and injection-site reactions generally decreased in incidence and duration after 3 months of treatment and had a minimal impact on daily activities in their typical patient.^{11,124}


Several mitigating strategies are available to help minimise the effects of these AEs (Figure 29). Dose titration at the initiation of treatment may help to ameliorate flu-like symptoms that can occur at treatment initiation with IFNs.

Prophylactic and concurrent use of anti-inflammatory, analgesic, and/or antipyretic treatments may prevent or ameliorate flu-like symptoms sometimes experienced during IFN treatment. The use of an aseptic injection technique may help to minimise the risk of injection-site reactions in patients.¹ This may be why < 1% of patients treated with pegIFNβ-1a Q2W discontinued treatment due to flu-like symptoms or injection-site reactions. Strategies suggested to prevent and manage injection-site reactions are outlined in Figure 30.

Figure 30. Strategies to prevent and manage injection-site reactions associated with self-injectable DMTs for MS

Source: Halper et al. (2016)¹⁴⁹; McEwan et al. (2010)¹⁵⁰

B.2.10.3 ATTAIN

The long-term tolerability of pegIFN β -1a Q2W was demonstrated in the ATTAIN extension study.

During years 3 to 6 in the ATTAIN study, incidences of AEs and SAEs were similar to those reported over 2 years in ADVANCE (Table 22).¹²⁴ The most commonly reported AEs continued to be injection-site reactions and flu-like symptoms, with most reported as mild or moderate. The proportion of patients who discontinued treatment with pegIFNβ-1a Q2W remained low over 3 years of treatment. Subcutaneous pegIFNβ-1a 125 μ g Q2W continued to be associated with low levels of immunogenicity and laboratory abnormalities over 3 years.¹²⁴ The incidence of any single AE that led to study discontinuation was < 1%.¹²⁴ The proportion of patients experiencing flu-like symptoms or injection-site reactions during each year of the study in each continuous treatment group decreased over time.¹²⁴ The incidence of flu-like symptoms was 77%, 61%, 51%, 44%, and 25% in year 1, 2, 3, 4, and 5 for patients treated with pegIFNβ-1a Q2W.¹²⁴

groups						
Event, n (%)	PegIFNβ-1a Q2W (n = 547)	PegIFNβ-1a Q4W (n = 529)				
Any AE	478 (87)	471 (89)				
Most common AEs (≥ 5% of patients)						
Flu-like illness	234 (43)	232 (44)				
Injection-site erythema	224 (41)	221 (42)				
Headache	161 (29)	152 (29)				
MS relapse	137 (25)	159 (30)				
Pyrexia	131 (24)	146 (28)				
Myalgia	67 (12)	65 (12)				
Chills	58 (11)	69 (13)				
Back pain	57 (10)	53 (10)				
Fatigue	52 (10)	39 (7)				
Nasopharyngitis	49 (9)	68 (13)				
Asthenia	45 (8)	64 (12)				
Injection-site pain	34 (6)	37 (7)				
Injection-site pruritus	34 (6)	24 (5)				
AEs related to study treatment	399 (73)	400 (76)				
AEs leading to discontinuation	26 (5)	18 (3)				
AEs leading to study withdrawal	22 (4)	13 (3)				
Any SAE	90 (16) ^b	113 (21) ^b				
Severe AEs	73 (13)	74 (14)				

Table 22. Adverse events in years 3 to 6 in patients in pegIFNβ-1a treatment groups^a

AE = adverse event; MS = multiple sclerosis; peglFNβ-1a = pegylated interferon; Q2W = every 2 weeks; Q4W = every 4 weeks; SAE = serious adverse event; SC = subcutaneous.

^a Duration of exposure ranges from 2 to 4 years in ATTAIN.

^b Includes MS relapse, which was reported as an SAE for 57 patients (10%) in the Q2W group and 82 patients (16%) in the Q4W group.

Source: Newsome et al. (2018)¹²⁴

B.2.10.4 ALLOW

In addition to ADVANCE and ATTAIN, a recently completed, 1-year, open-label, Phase IIIb trial (ALLOW) was conducted to assess the safety implications of switching patients from a non-pegylated IFNβ to pegIFNβ-1a, with focus on flu-like symptoms.¹⁵¹

For the primary end point, the majority of patients (89.6%) who switched to pegIFNβ-1a from their previous IFNβ therapy did not experience new/worsening flu-like symptoms over 8 weeks.¹⁵¹ Of the 10.4% of patients who did experience new/worsening flu-like symptoms, patients receiving naproxen had a 44% lower incidence of new/worsening flu-like symptoms, compared with patients receiving the current flu-like symptoms regimen.¹⁵¹ The safety profile of the two treatment regimens during ALLOW was consistent with ADVANCE.¹⁵¹

B.2.10.5 COMPARE

In addition, an open-label, crossover pharmacokinetic study (COMPARE), which also compares the incidence and frequency of AEs (particularly injection-site reactions and flulike symptoms) was conducted in 30 healthy patients receiving pegIFN β -1a or IFN β -1a 44 mcg.¹⁵²

Most treatment-emergent AEs were mild and overall incidence was similar between treatment groups.¹⁵² Injection-site reactions were the most common AEs reported with both treatment arms. However, numerically lower frequencies and incidence rates of injection-site reactions were observed with pegIFNβ-1a compared with IFNβ-1a 44 mcg.¹⁵² Numerically lower frequencies of headache, myalgia, and chills were also observed with pegIFNβ-1a compared with IFNβ-1a 44 mcg.¹⁵²

B.2.11 Ongoing studies

The Plegridy Observational Programme (POP) is an ongoing, 5-year phase IV study exploring the long-term safety profile and effectiveness of pegIFNB-1a Q2W for patients with newly diagnosed and non-newly diagnosed relapsing MS in the real-world setting. Data from the second interim analysis as of September 2017 on safety profile, reasons for discontinuation, and number of relapses are available and were presented in October 2018.¹⁵³ Further interim analysis results from the POP study may be available in the next 6 to 12 months. At the time of this second interim analysis, 1,037 patients had enrolled in POP, of which 257 patients were newly diagnosed and 780 patients were non-newly diagnosed. Newly diagnosed patients were defined as patients who were diagnosed with relapsing forms of MS < 1 year prior to POP study consent and who were treatment-naive to prior MS DMT. Non-newly diagnosed patients were defined as those who were diagnosed \geq 1 year prior to study consent and/or who had prior treatment with an MS DMT. Of these, 963 patients had received \geq 1 dose of pegIFN β -1a and were included in the study population. A total of 89% of patients had a treatment duration of \geq 12 months; 38% had a treatment duration of \geq 24 months. Newly diagnosed patients accounted for 25% of the study population. Overall baseline characteristics were well-balanced between the newly diagnosed and non-newly diagnosed subgroups.¹⁵³

The incidence of treatment-emergent AEs and SAEs was similar in the two subgroups and the most commonly reported AEs in newly diagnosed and non-newly diagnosed patients were flu-like symptoms (seen in 43% and 38% of patients, respectively) and injection-site reactions (seen in 36% and 39% of patients, respectively). The incidence of SAEs was 14 (6%) and 37 (5%) in newly diagnosed and non-newly diagnosed populations, respectively. The incidence of any particular SAE in the study populations was \leq 1%. At the time of this analysis, 33% of newly diagnosed patients and 35% of non-newly diagnosed patients in the study population had discontinued pegIFN β -1a.¹⁵³

Most newly diagnosed patients who discontinued pegIFN β -1a due to AEs and started another DMT switched to an oral therapy (55%) or another injectable (40%) (Figure 31A) and most of the non-newly diagnosed patients who discontinued due to AEs and started another DMT switched to an injectable therapy (64%) (Figure 31B). In both subgroups, patients who discontinued due to lack of efficacy and started another DMT switched either to an oral therapy or an IV therapy.¹⁵³

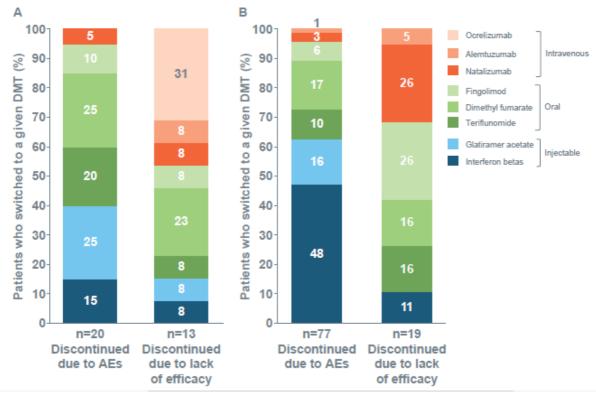
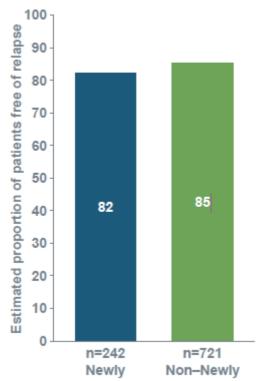



Figure 31. Switch DMT by reason for pegIFNβ-1a discontinuation in (A) newly diagnosed, and (B) non-newly diagnosed patients

AE = adverse event; DMT = disease-modifying therapy; pegIFN β -1a = pegylated interferon β -1a. Note: For each analysis, the n value below the bar represents the number of patients who discontinued pegIFN β -1a for the indicated reason and started another DMT. Patients could switch to more than one DMT after pegIFN β -1a discontinuation. Not all post-discontinuation DMTs are shown. Source: Salvetti et al. (2018)¹⁵³

This interim analysis found that a high proportion of both newly diagnosed patients (82%) and non-newly diagnosed patients (85%) were relapse free after 2 years of treatment with pegIFN β -1a (Figure 32).¹⁵³

Figure 32. Estimated proportions of newly diagnosed and non-newly diagnosed patients free of relapses at 2 years

Note: Proportions of patients in the study populations free of relapse based on Kaplan-Meier estimates. Source: Salvetti et al. (2018)¹⁵³

B.2.12 Innovation

PegIFNβ-1a is the first pegylated IFN for the treatment of RRMS. Interferons have a proven track record of efficacy and a favourable safety profile in the treatment of RRMS for over 16 years; pegylation of IFN creates a new molecular entity with increased biological half-life, allowing less frequent administration; pegIFNβ-1a is self-administered subcutaneously Q2W.

Interferons have been a mainstay of treatment for RRMS since their introduction; however, patients may develop neutralising antibodies against IFNs which are linked to treatment waning.^{12,13,154,155} This issue is most significant with SC IFNβ-1a 22/44 μ g (Rebif[®]) and SC IFNβ-1b 250 μ g (Betaferon[®]/Extavia[®]), which were found to have rates of neutralising antibody formation of 22% to 35% (22 and 44 μ g doses, respectively) and 22%, respectively, over 3 years.¹⁵⁴ In comparison, the rate with IM IFNβ-1a 30 μ g (Avonex[®]) was 7.5% over 3 years.¹⁵⁴ In addition to the clinical impact of neutralising antibodies, there is also an economic impact, with patients generally stopping treatment with IFN and switching to more expensive drugs such as natalizumab or fingolimod.^{156,157}

Pegylation can reduce the immunogenicity of therapeutic proteins with no detrimental effect on efficacy.¹²² In the ADVANCE study, less than 1% of patients receiving pegIFN β -1a subsequently developed neutralising antibodies against IFN over 2 years. Thus, pegIFN β -1a offers the advantage of an extremely low rate of neutralising antibody formation (1%) over the IFN class, where rates of 7.5% to 35% have been reported.⁷

B.2.13 Interpretation of clinical efficacy and safety profile evidence

B.2.13.1 Efficacy

B.2.13.1.1 ADVANCE

The results from ADVANCE demonstrated the efficacy of pegIFNβ-1a for the treatment of RRMS by showing that pegIFNβ-1a Q2W was statistically significantly better than placebo in reducing ARR at year 1 (36% reduction, P = 0.0007) which was confirmed by sensitivity analysis. PegIFNβ-1a Q2W was also statistically significantly better than placebo in reducing the proportion of patients who relapsed (39% reduction, P = 0.0383), reducing EDSS disability progression sustained for 12 weeks at 1 year (38% reduction, P < 0.0003) and reducing the number of new or newly enlarging T2 lesions (67% reduction, P < 0.0001) active Gd+ lesions (86% reduction, P < 0.0001), and T1 lesions (53% reduction, P < 0.0001) active Gd+ lesions (86% reduction, P < 0.0001), and T1 lesions (53% reduction, P < 0.0001) active Gd+ lesions (86% reduction, P < 0.0001), and T1 lesions (53% reduction, P < 0.0001) active Gd+ lesions (86% reduction, P < 0.0001), and T1 lesions (53% reduction, P < 0.0001) active Gd+ lesions (86% reduction, P < 0.0001), and T1 lesions (53% reduction, P < 0.0001) active Gd+ lesions (86% reduction, P < 0.0001), and T1 lesions (53% reduction, P < 0.0001) active Gd+ lesions (86% reduction, P < 0.0001), and T1 lesions (53% reduction, P < 0.0001) active Gd+ lesions (86% reduction, P < 0.0001), and T1 lesions (53% reduction, P < 0.0001) active Gd+ lesions (86% reduction, P < 0.0001), and T1 lesions (53% reduction, P < 0.0001), and several MRI measures, although there was no direct comparison performed. PegIFNβ-1a Q2W showed efficacy in patients who received it over 2 years, with patients showing significantly lower ARR (P < 0.001), significantly fewer relapses (P < 0.0001), and were significantly less likely to experience EDSS CDP3M (P = 0.0257) compared with patients who received placebo in year 1 and either Q2W or Q4W in year 2.^{11,123}

A reduction of relapses is a very important treatment goal for patients with MS as relapses indicate an acute decline in neurological function that impairs a patient's QOL. T2-weighted lesions can accumulate over time in patients with MS and the number and volume of NET2 lesions is an important indicator of the accumulated burden of focal inflammatory disease.¹¹ This demonstrates the potential positive impact that treatment with pegIFNβ-1a Q2W can have in patients with RRMS.

Post hoc analyses presented in Section B.2.7.2 shows that patients receiving pegIFN β -1a present with good MRI results as they develop fewer BHs and are more likely to achieve NEDA which may be prognostic for long-term clinical outcomes. BHs indicate the presence of severe tissue damage and NEDA indicates no disease progression and positive MRI effects of treatment. These analyses demonstrate that pegIFN β -1a treatment can help patients with RRMS achieve positive MRI results and help prevent disease progression.^{38,130}

B.2.13.1.2 ATTAIN

The ATTAIN study provided evidence to support the long-term clinical benefits associated with pegIFN β -1a Q2W. The adjusted ARR was significantly improved in patients receiving continuous pegIFN β -1a Q2W compared with patients receiving continuous Q4W for 0 to 6 years (0.188 vs. 0.263; *P* = 0.0052). Over the course of 5 years, continuous dosing Q2W significantly reduced the risk of relapse, from 49% to 36% (*P* = 0.0018), and patients showed a trend towards a reduced risk of 24-week confirmed disability worsening (15% vs. 20%, *P* = 0.0526) compared with continuous dosing Q4W. These results demonstrated the sustained and long-term efficacy of treatment with pegIFN β -1a Q2W. Patients who received placebo in year 1 then pegIFN β -1a Q2W from years 1 to 5 had a higher risk of relapse (47%) than patients who received continuous pegIFN β -1a Q2W (36%). This supports the early use of the Q2W regimen as patients who receive placebo in year 1 have a higher risk of relapses than patients who received the continuous Q2W regimen.¹²⁴

B.2.13.2 Safety profile

B.2.13.2.1 ADVANCE

In ADVANCE, the overall incidence of AEs was 94% in the pegIFN β -1a group at 1 year, compared with 83% in the placebo group. The incidence of SAEs was similar for pegIFN β -1a and placebo at 1 year (11% vs. 15%, respectively). The incidence of AEs leading to discontinuation was low at 1 and 2 years with pegIFN β -1a (5% and 6%, respectively, vs. 1% for placebo at 1 year). The incidence of flu-like symptoms and injection-site reactions with pegIFN β -1a was consistent with the safety profile of other non-pegylated IFNs for MS. PegIFN β -1a was not associated with an increased risk of infections compared with placebo. Immunogenicity results for pegIFN β -1a demonstrated a very low (< 1%) risk of developing neutralising antibodies, which can negatively affect the efficacy of non-pegylated IFNs for MS. The most common AEs associated with pegIFN β -1a were injection-site reactions, flulike symptoms, pyrexia, and headache.^{7,11,145}

B.2.13.2.2 ATTAIN

The long-term tolerability of pegIFN β -1a Q2W was demonstrated in the ATTAIN extension study. The overall incidence of AEs was 87%; the incidence of SAEs was 16%. The incidence of AEs leading to discontinuation was low with pegIFN β -1a Q2W (5%). The most commonly reported AEs up to 6 years were flu-like symptoms and injection-site reactions, which were numerically decreased in later years of the study.¹²⁸

B.3 Cost-effectiveness

B.3.1 Published cost-effectiveness studies

The original SLR was conducted for publications between 2003 and 2014 and was part of NICE TA320 submission, which was subsequently updated in a SLR conducted between 2014 and 2016 for TA441 (further documentation for these can be provided by Biogen upon request). The current SLR covers the time period since the previous update and, therefore, was undertaken to identify all cost-effectiveness studies published between 1 February, 2016 and 30 November, 2018 that are relevant to the decision problem in this appraisal.

A total of 66 economic evaluation studies were identified in this update SLR. Of these, 12 economic evaluations were conducted in the UK, out of which only two were explicitly stated as having been conducted in England (Hettle et al., 2018¹⁵⁸; Lambe et al., 2018¹⁵⁹). Most of the remaining 54 studies were conducted in North America, Europe, and Asia, and are considered to have limited relevance for decision making in England. Therefore, only the studies in the UK are discussed in this document. Two of these 12 studies (Hernandez et al., 2017¹⁶⁰; Melendez et al., 2017¹⁶¹), compared pegIFNβ-1a (Plegridy[®]) with other DMTs. In both of these studies, the pegIFNβ-1a dominated comparator DMTs in almost all comparisons over 30-year and 50-year time horizons in Markov models comprising health states defined by EDSS level. The only comparison where pegIFNβ-1a was not dominant was in the Hernandez et al. (2017)¹⁶⁰ study against GA, however, pegIFNβ-1a also would be considered cost-effective in that comparison using the conventional cost-effectiveness thresholds (ICER was £5,773). The full results of published economic evaluations that were included in this SLR, along with details of the search strategy and study selection process, are presented in Appendix G.

As the updated SLR was completed in November 2018, the EMBASE search strategy was re-run up to May 2019 to ensure no recent publications relevant to the decision problem were excluded. This search resulted in 123 hits; however, none of the studies were deemed relevant to this appraisal.

Table 23 presents the summary of the economic evaluations that are based in the UK and deemed to be more relevant for the submission.

Study (year)	Country	Summary of model	Patient population (average age in years)	QALYs (intervention, comparator)	Costs (currency) (intervention, comparator)	ICER (per QALY gained)
Maervoet et al. (2016) ¹⁶²	UK	Markov model, 21 health states, 20 defined by EDSS and death. 50-year time horizon.	RRMS, mean age = NR	QALY gains GA vs. IFN-1a 22 mcg = 0.226 GA vs. IFN-1a 30 mcg = 0.067 GA vs. BSC = NR	Costs, £ GA vs. IFN-1a 22 mcg = NR GA vs. IFN-1a 30 mcg = NR GA vs. BSC = NR	ICER (£) GA vs. IFN-1a 22 mcg = NR GA vs. IFN-1a 30 mcg = NR GA vs. BSC = 14,789/QALY
Hernandez et al. (2017) ¹⁶⁰	UK	Markov cohort model, 21 health states, 20 defined by EDSS, in RRMS and SPMS, and death. 30-year time horizon.	RRMS, mean age = 36.5 years	Total QALYs (patient + caregiver) PegIFNβ-1a = 7.32 IFNβ-1a 30 mcg = 6.88 IFNβ-1a 22 mcg = 6.99 IFNβ-1a 44 mcg = 7.01 IFNβ-1b = 6.88 GA = 6.90	Total direct costs, £ PegIFN β -1a = 106,843 IFN β -1a 30 mcg = 113,257 IFN β -1a 22 mcg = 115,614 IFN β -1a 44 mcg = 112,523 IFN β -1b = 110,657 GA = 104,441	PegIFN β -1a = reference IFN β -1a 30 mcg = dominant IFN β -1a 22 mcg = dominant IFN β -1a 44 mcg = dominant IFN β -1b = dominant GA = 5,773/QALY
Hettle et al. (2018) ¹⁵⁸	England	Markov model, 11 health states, 10 defined by EDSS and death. 50-year time horizon.	RRMS, mean age = 39.4 years	Total cost, £ Cladribine tablets = 92,484 ALZ = 104,136 NTZ = 212,969	Total QALYs Cladribine tablets = 9.45 ALZ = 8.482 NTZ = 7.739	ICER vs. cladribine ALZ = cladribine dominant NTZ = cladribine dominant

 Table 23.
 Summary list of published cost-effectiveness studies

Study (year)	Country	Summary of model	Patient population (average age in years)	QALYs (intervention, comparator)	Costs (currency) (intervention, comparator)	ICER (per QALY gained)
Montgomery et al. (2017) ¹⁶³	UK	Discrete event simulation. Health states defined by EDSS and death. Lifetime (maximum age 100) time horizon	RRMS, mean age = 34.8 years	Total QALYs FNG = 6.18 NTZ = 6.35	Total costs, £ FNG = 334,897.93 NTZ = 337,501.15	ICER was not reported Net monetary benefit £20,000/QALY threshold, £ FNG vs. NTZ = -732.02 £30,000/QALY threshold, £ FNG vs. NTZ = -2,399.65
Melendez- Torres et al. (2017) ¹⁶¹	UK	Cohort-based Markov model. Health states defined by EDSS and death. 50-year time horizon.	RRMS, starting age = 30 years	Total QALYs BSC = 8.664 DMT (pooled) = 9.607 PegIFN β -1a = 11.223 GA = 10.012 IFN β -1b = 9.934 IFN β -1a (Rebif [®]) = 10.867 IFN β -1a (Avonex [®]) = 10.348	Total costs, £ BSC = 362,100 DMT (pooled) = 394,000 PegIFN β -1a = 379,900 GA = 381,400 IFN β -1b = 392,400 IFN β -1a (Rebif [®]) = 404,800 IFN β -1a (Avonex [®]) = 406,400	ICER (£ per QALY) BSC = - DMT (pooled) = 33,800 PegIFN β -1a = 7,000 GA = dominant IFN β -1b = dominant IFN β -1a (Rebif [®]) = dominant IFN β -1a (Avonex [®]) = dominant

Study (year)	Country	Summary of model	Patient population (average age in years)	QALYs (intervention, comparator)	Costs (currency) (intervention, comparator)	ICER (per QALY gained)
Montgomery et al. (2017) ¹⁶⁴	UK	Discrete event simulation. Health states defined by EDSS and death. Lifetime time horizon.	RRMS, mean age = 38.2 years	Discounted QALY per person No AE incidence FNG = 4.44 ALZ = 4.64 Incremental (FNG vs. ALZ) = -0.20 AE incidence; AE length capped at 1 year FNG = 4.44 ALZ = 4.58 Incremental (FNG vs. ALZ) = -0.14 AE length greater than 1 year, where appropriate FNG = 4.44 ALZ = 4.48 Incremental (FNG vs. ALZ) = -0.04	Total costs at a Patient Access Scheme discount of 0%, £ FNG = 320,597 ALZ = 285,457	ICER was not reported as FNG price to the NHS is lower than that modelled

Study (year)	Country	Summary of model	Patient population (average age in years)	QALYs (intervention, comparator)	Costs (currency) (intervention, comparator)	ICER (per QALY gained)
Lambe et al. (2019) ¹⁵⁹	England	11 health states, 10 defined by EDSS and death. 50-year time horizon.	RES-MS and SOT- RRMS, mean age = NR	Incremental QALYs: RES-RRMS Cladribine vs. ALZ = Company: 0.182; ERG: -1.541 Cladribine vs. NTZ = Company: 0.512; ERG: -1.650 Cladribine vs. DCZ = Company: 0.924; ERG: -1.362 SOT-RRMS Cladribine vs. ALZ = Company: 0.153; ERG: 0.004 Cladribine vs. NTZ = Company: 0.944; ERG: 0.013 Cladribine vs. DCZ = Company: 0.548; ERG: 0.010	Incremental costs: RES-RRMS Cladribine vs. ALZ = base case: $-\pounds19,134$; ERG scenario: £38,423 Cladribine vs. NTZ = Company: $-\pounds130,676$; ERG: $-\pounds133,754$ Cladribine vs. DCZ = Company: $-\pounds89,182$; ERG: $-\pounds87,566$; SOT-RRMS Cladribine vs. ALZ = Company: $-\pounds17,549$; ERG: $-\pounds8,711$ Cladribine vs. NTZ = Company: $-\pounds72,065$; ERG: $-6,642$ Cladribine vs. DCZ = Company: $-\pounds72,065$; ERG: $-6,642$ Cladribine vs. DCZ = Company: $-\pounds66,397$; ERG: $-\pounds7,749$	RES-RRMS Cladribine vs. ALZ = Company: dominant; ERG: dominated Cladribine vs. NTZ = Company: dominant; ERG: £81,050 Cladribine vs. DCZ = Company: dominant; ERG: £64,269 SOT-RRMS: Cladribine was dominant throughout
Tempest et al. (2017) ¹⁶⁵	Scotland	Markov model, Health states defined by EDSS and death, 50-year time horizon.	RRMS, mean age = NR	Incremental QALYs DCZ-beta vs. FNG = -0.206	Incremental costs DCZ-beta vs. FNG = -£4,441	DCZ-beta was cost-effective using a willingness-to-pay threshold of £20,000/QALY. This finding was consistent across scenario analyses

Study (year)	Country	Summary of model	Patient population (average age in years)	QALYs (intervention, comparator)	Costs (currency) (intervention, comparator)	ICER (per QALY gained)
Herring et al. (2018) ¹⁶⁶	Scotland	Markov model. Health states. defined by EDSS and death	RRMS, mean age = NR	Incremental QALYs NTZ vs. FNG = 0.393	Incremental costs NTZ vs. FNG = -£19,148	NTZ remained dominant across scenarios compared with fingolimod
Rog et al. (2017) ¹⁶⁷	UK	Model type not reported, 50-year time horizon.	≥ 80% RRMS, mean age = NR	Incremental QALYs for ALZ ranged from 1.26 (NTZ) to 2.12 (SC IFNβ- 1a 44 mcg).	Total cost per person for ALZ was £276,188; total costs per person for comparators ranged from £274,401 (GA) to £343,790 (NTZ), giving incremental costs for ALZ vs. comparators ranging from -£67,602 (vs. NTZ) to + £1,787 (vs. GA).	ICER for ALZ vs. GA is £863 per QALY

Study (year)	Country	Summary of model	Patient population (average age in years)	QALYs (intervention, comparator)	Costs (currency) (intervention, comparator)	ICER (per QALY gained)
Noon et al. (2018) ¹⁶⁸	UK	A Markov model and a DES model. 21 health states, 20 defined by EDSS and death. Lifetime time horizon.	Highly active RRMS, mean age = 38.23 years; RES- RRMS, mean age = 34.85 years	Incremental QALYs: FNG vs. DMF; Markov = 0.86 DES = 0.86 FNG vs. NTZ; Markov = -0.27 DES (no AEs) = -0.27 DES (with AEs) = -0.22 QALYs FNG vs. ALZ; Markov = -0.18 DES (no AEs, no retreatment) = -0.18 DES (with AEs, no retreatment) = -0.08 QALYs DES (with AEs, with retreatment) = -0.08 QALYs	Incremental costs: FNG vs. DMF; Markov: £3,608 DES: £3,356 FNG vs. NTZ; Markov: -£6,790 DES (no AEs): -£7,249 DES (with AEs): -£7,404 FNG vs. ALZ Markov: £40,442 DES (no AEs, no retreatment): £37,524 DES (with AEs, no retreatment): £37,074 DES (with AEs, with retreatment): £5,302	ICER: FNG vs. DMF; Markov: £4,206/QALY DES: £3,910/QALY FNG vs. NTZ: Markov: £25,412 cost saving per QALY lost DES: £34,209 cost saving per QALY lost FNG vs. ALZ: NR
Versteegh (2016) ¹⁶⁹	UK	Markov model 7 health states, 2 are based on relapses (mild and severe), 4 on EDSS levels and death. Lifetime time horizon.	RRMS, mean age = NR	Symptom management vs. GA Using EQ-5D-3L utilities Incremental QALYs = 0.16	Symptom management vs. GA, US \$ Incremental costs = 25,277	Deterministic ICER (US \$) = 153,476/QALY Probabilistic ICER (US \$) = 140,735/QALY

AE = adverse event; ALZ = alemtuzumab; BSC = best supportive care; DCZ = daclizumab; DES = discrete event simulation; DMF = dimethyl fumarate; DMT = disease-modifying therapy; EDSS = expanded disability status scale; ERG = evidence review group; FNG = fingolimod; GA = glatiramer acetate; ICER = incremental cost-effectiveness ratio; IFNβ-1a = interferon β -1a; IFNβ-1b = interferon β -1b; NHS = National Health Service; NR = not reported; NTZ = natalizumab; PegIFNβ-1a = pegylated interferon β -1a QALY = quality-adjusted life-year; RES = rapidly evolving severe; RRMS = relapsing-remitting multiple sclerosis; SC = subcutaneous; SOT = suboptimally treated; SPMS = secondary-progressive multiple sclerosis; UK = United Kingdom; US = United States.

Company evidence submission template for peginterferon beta-1a for treating relapsing-remitting multiple sclerosis © Biogen (2019). All rights reserved

B.3.2 Economic analysis

The previous NICE appraisals and combined literature on economic analyses in patients with RRMS informed the development of economic analysis for this submission.

B.3.2.1 Patient population

Data from the ADVANCE study were used in the base case to inform patient characteristics at baseline.¹¹ The population for this economic evaluation included adult patients (i.e., age 18 and older) with RRMS. The average age was 36 years and 29% of patients were male.¹¹

As a scenario analysis, data from the UK RSS MTA assessment group report were used.¹⁷⁰ The mean age for the RSS population at baseline was 30 years, and 25% of patients were male.

In comparison with the UK RSS, ADVANCE is a recent trial where people with RRMS are treated earlier in their disease course. Therefore, ADVANCE is expected to have a higher proportion of patients with lower disease activity at baseline (EDSS < 4). This is confirmed by the baseline EDSS distribution, which was used as the starting distribution for the transition matrices (Table 24).

EDSS	ADVANCE study – base case (cumulative %)	RSS MTA Assessment Group (cumulative %)
0	5.6% (5.6%)	3.2% (3.2%)
1-1.5	25.9% (31.5%)	16.3% (19.5%)
2-2.5	28.1% (59.6%)	25.8% (45.3%)
3-3.5	24.3% (83.9%)	23.0% (68.3%)
4-4.5	12.3% (96.2%)	15.5% (83.8%)
5-5.5	3.8% (100.0%)	10.5% (94.3%)
6-6.5	0.0% (100.0%)	5.7% (100.0%)
7-7.5	0.0% (100.0%)	0.0% (100.0%)
8-8.5	0.0% (100.0%)	0.0% (100.0%)
9-9.5	0.0% (100.0%)	0.0% (100.0%)

Table 24. Baseline EDSS distribution

EDSS = Expanded Disability Status Scale; MTA = multiple technology appraisal; RSS = Risk Sharing Scheme.

B.3.2.2 Model structure

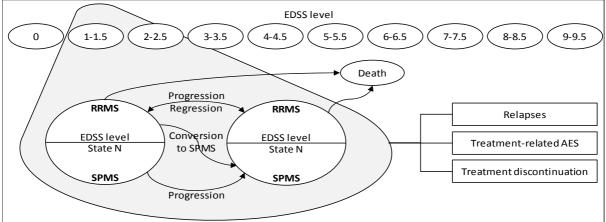

A Markov cohort model was developed in Microsoft Excel[®] (Microsoft Corporation, Redmond, WA) to track the cohort's disease progression and costs throughout the time horizon. Main features of the model are provided in Figure 33. Every year (the cycle length), the model predicts disability progression (measured by EDSS and progression from RRMS to SPMS), the occurrence of relapses and other AEs according to the treatment received. The model then translates these predictions into QALYs and costs accumulated over the model time horizon (50 years). Health outcomes included life-years, QALYs, EDSS changes (CDP), RRs, disease progression rates from RRMS to SPMS, and treatment discontinuation. Cost outcomes included those for disease management, drug acquisition, administration and monitoring, relapses, and AE management pertinent to the NHS and PSS perspective. The incremental cost-effectiveness ratios (ICERs) for pegIFN β -1a compared with other DMTs are reported.

Figure 33 illustrates the model structure. The model includes 21 health states: RRMS EDSS levels 0, 1-1.5, 2-2.5, ..., 9-9.5; SPMS EDSS levels 0, 1-1.5, 2-2.5, ..., 9-9.5; and death (absorbing state). The cohort of patients, all with RRMS, starts with an initial EDSS distribution. Every year (model cycle length), patients with RRMS may:

- Remain at the same EDSS level with RRMS
- Progress to a higher EDSS level with RRMS (increasing disability)
- Improve to a lower EDSS level with RRMS (decreasing disability)
- Progress to the next EDSS level and to SPMS
- Die

Once patients progress to SPMS, they cannot return to a lower EDSS level or to RRMS; they can only stay at the same EDSS level, move to a higher EDSS level, or die. Patients can experience relapses at any time, with the risk of relapse based on disease phase (i.e., RRMS vs. SPMS) and EDSS level.

Treatment acts to delay disability (i.e., delay transitions to a higher EDSS level) and reduce the frequency of relapses. Patients receiving treatment can experience treatment-related AEs at any time, and can discontinue treatment due to various predefined rules (see Sections B.3.3.2.1 and B.3.3.2.4). After treatment discontinuation, patients are assumed to follow the natural disease progression course.

Figure 33. Structure of the Markov cohort model

AE = adverse event; EDSS = Expanded Disability Status Scale; RRMS = relapsing-remitting multiple sclerosis; SPMS = secondary-progressive multiple sclerosis; State N = current EDSS state.

Note; ovals represent health states. Rectangles represent events that patients could experience at any time. Treatment-related AEs and treatment discontinuation could only occur for patients receiving treatment.

Once the dispositions over time of both "on treatment" and "off-treatment" sub-cohorts are calculated, a half-cycle correction is applied to ensure that outcomes are neither under- nor overestimated. The half-cycle-corrected cohort dispositions are used to calculate life-years, costs, and QALYs. This is done by averaging the number of patients in each health state at the beginning and the end of the year each year.¹⁷¹ Note however that the half-cycle correction was not implemented for the calculation of these outcomes for alemtuzumab and ocrelizumab, due to the particular dosing schedule of these DMTs. Alemtuzumab is administered during 5 consecutive days at the beginning of year 1 of treatment, and 3 consecutive days 1 year after; while ocrelizumab is administered as 600 mg every 6 months after two initial 300 mg doses at day 0 and day 14.

Factor	Chosen values	Justification
Time horizon	50 years (lifetime)	NICE Reference Case, ¹⁷² ISPOR Good Practice Guidelines ¹⁷³
Cycle length	Annual	In line with the transition matrices for disease progression
Half-cycle correction	Yes	Mitigate bias due to cycle length
Were health effects measured in QALYs; if not, what was used?	QALYs	NICE Reference Case ¹⁷²
Discount of 3.5% for utilities and costs	Yes	NICE Reference Case ¹⁷²
Perspective (NHS/PSS)	Yes	NICE Reference Case ¹⁷²

 Table 25.
 Features of the economic analysis in this submission

ISPOR = International Society of Pharmacoeconomics and Outcomes Research; NHS = National Health Service;

NICE = National Institute for Health and Care Excellence; PSS = Personal Social Services; QALY = quality-adjusted life-year.

All life-years, QALYs, and costs are discounted by a user-specified discount rate (costs and health benefits: 3.5% in the base case).¹⁷² Each cycle, these outcomes are multiplied by the discount factor calculated using the following formula: $(1 + r)^{-t}$, where *r* is the annual discount rate (for either health or cost outcomes) and *t* is the time from time zero in years.

Table 26 provides the main features of the economic analysis conducted in this dossier and in the recent relevant technology appraisals to NICE.

	Previous ap	praisals*									Current appraisal	
Factor	TA32	TA127	TA254	TA303	TA312	TA320	TA441	TA493	TA527	TA533	Chosen values	Justification
Source of natural history EDSS	London, Ontario	Trial placebo arm for EDSS 0-6 - London, Ontario, for EDSS 7-9	London, Ontario	Trial placebo arm for EDSS 0-6 - London, Ontario, for EDSS 7-9 Committee considered EDSS improvements more appropriate	Trial placebo arm for EDSS 0-6 - London, Ontario, for EDSS 7-9 Committee considered EDSS improvements more appropriate	Trial placebo arm for EDSS 0-7 - London, Ontario, for EDSS 8-9	Trial placebo arm for EDSS 0-7 - British Columbia for EDSS 8-9 - placebo arm from different trials for highly active subgroup - as per TA127 for RES subgroup	BCMS ¹⁷⁴	BCMS ¹⁷⁴	BCMS ¹⁷⁴	BCMS for transitions across EDSS levels for patients with RRMS. London, Ontario, for transitions from RRMS to SPMS and during SPMS	In line with the majority of previous submissions
Source of natural history relapse	Patzold et al. (1982) ¹⁷⁵ , adjusted for EDSS distribution	Patzold et al. (1982) ¹⁷⁵ , combined with UK MS survey data - adjusted for RES using trial data	Patzold et al. (1982) ¹⁷⁵ , combined with UK MS survey data	Held (2005) ¹⁷⁶ , combined with Orne et al. (2007) data, divided by assumption about hospitalised vs. non-hospitalised	Held (2005) ¹⁷⁶ , combined with Orne et al. (2007) data, divided by assumption about hospitalised vs. non-hospitalised	Patzold et al. (1982) ¹⁷⁵ , combined with UK MS survey data	Trial data for EDSS 0-5 Patzold et al. (2005), combined with UK MS survey data for EDSS 6-9	CLARITY trial ⁴¹ and Tremlett et al. (2010) ¹⁷⁷	UK MS survey	Patzold et al. (1982) ¹⁷⁵ , combined with UK MS survey data	Patzold et al. (1982) ¹⁷⁵ , combined with UK MS survey data	In line with the majority of previous submissions
Source of MS mortality multiplier	Not applied	Pokorski (1997) ¹⁷⁸	Pokorski (1997) ¹⁷⁸	Pokorski (1997) ¹⁷⁸ , extrapolated for EDSS states	Pokorski (1997) ¹⁷⁸ , extrapolated for EDSS states	Pokorski (1997) ¹⁷⁸ , extrapolated for EDSS states	Pokorski (1997) ¹⁷⁸ , extrapolated for EDSS states	Jick et al. (2014) ⁷⁷	Not applied	Pokorski (1997), extrapolated for EDSS states	Pokorski (1997), extrapolated for EDSS states	In line with the majority of previous submissions
Application of treatment effect	Not reported	- ARR - CDP6M - SPMS transition	- ARR - CDP6M	- ARR - CDP6M - SPMS transition	- ARR - CDP6M - SPMS transition	- ARR - CDP6M	- ARR - CDP6M (if available, otherwise CDP3M)	- ARR - CDP6M	- ARR - CDP6M - SPMS transition	- ARR - CDP3M - SPMS transition	- ARR - CDP6M - SPMS transition	In line with the majority of previous submissions
Model structure	Unknown	21 states based on 10 EDSS states for RRMS, 10 EDSS states for SPMS, and 1 death state	21 states based on 10 EDSS states for RRMS, 10 EDSS states for SPMS, and 1 death state	21 states based on 10 EDSS states for RRMS, 10 EDSS states for SPMS, and 1 death state	21 states based on 10 EDSS states for RRMS, 10 EDSS states for SPMS, and 1 death state	21 states based on 10 EDSS states for RRMS, 10 EDSS states for SPMS, and 1 death state	21 states based on 10 EDSS states for RRMS, 10 EDSS states for SPMS, and 1 death state	11 states based on 10 EDSS states representing RR and secondary- progressive forms of MS, and 1 death state		21 health states (31 when RRMS DMT and RRMS BSC health states are considered separately) based on 10 EDSS states for each of RRMS DMT, RRMS BSC and SPMS BSC, and death	21 health states (the same as TA527 submissions)	In line with the majority of previous submissions

Table 26. Features of the economic analysis in this submission versus the previous NICE technology appraisals

	Previous ap	praisals*									Current appraisal	
Factor	TA32	TA127	TA254	TA303	TA312	TA320	TA441	TA493	TA527	TA533	Chosen values	Justification
Time horizon	20 years	20 years, but committee considered longer time horizon more appropriate	50 years	50 years	50 years	30 years	50 years	50 years	50 years	50 years	50 years	In effect, a lifetime horizon, in line with the majority of previous relevant TAs, NICE Reference Case ¹⁷² , ISPOR Good Practice Guidelines ¹⁷³
Treatment waning effect	Not applied	Not applied	50% waning after 5 years	25% waning after 2 years and 50% after 5 years	25% waning after 2 years and 50% after 5 years, time-dependent rate of retreatment	25% waning after 2 years and 50% after 5 years	25% waning after 2 years and 50% after 5 years	25% waning after 2 years and 50% after 5 years	25% waning after 2 years and 50% after 5 years	25% waning after 2 years and 50% after 5 years	25% waning after 2 years and 50% after 5 years	In line with the majority of previous submissions
Application of treatment withdrawal	Trial data, assumed higher for years 1-2 than years 2+	Trial data, constant annualised rates for 10 years	Trial data (discontinuation due to AEs), constant annualised rates	Trial data (all- cause discontinuation), constant annualised rates for year 1-2, 50% applied for year 2+	Trial data (all- cause discontinuation), constant annualised rates for year 1-2, 50% applied for year 2+	Trial data (all- cause discontinuation), constant annualised rates	Trial data (all- cause discontinuation rates year 1, 2, 3), year 3+ based on year 3 rate	Trial data (all- cause discontinuation), constant annualised rates	UK MS survey, Tappenden et al. (2001)	Trial data (all- cause discontinuation), constant annualised rates	Trial data (all- cause discontinuation), constant annualised rates	In line with the majority of previous submissions
Stopping rule	- EDSS ≥ 7 - SPMS transition (scenario)	- EDSS ≥ 7 - SPMS transition (scenario)	- EDSS ≥ 7 - SPMS transition (scenario)	- EDSS ≥ 7 - SPMS transition (scenario)	- EDSS ≥ 7 - SPMS transition (scenario)	- EDSS ≥ 7 - SPMS transition (scenario)	- EDSS ≥ 7 - SPMS transition (scenario)	- EDSS ≥ 7 - SPMS transition (scenario)	By individual treatment	- EDSS ≥ 7 - SPMS transition (scenario)	- EDSS ≥ 7 - SPMS transition	In line with the majority of previous submissions
Source of patient utilities	Kobelt et al. (2000)	UK MS survey (2005) (later published by Orme et al., 2007) ⁷⁸	UK MS survey (2005) (later published by Orme et al., 2007) ⁷⁸	Trial data and Orme et al. (2007) ⁷⁸	Trial data and Orme et al. (2007) ⁷⁸	Trial data and Orme et al. (2007) ⁷⁸	BOI study, 2015 (not published)	Trial data, Hawton et al. (2016a) ¹⁷⁹ and Orme et al. (2007) ⁷⁸	Orme et al. (2007) ⁷⁸	Trial data and Orme et al. (2007) ⁷⁸	Trial data and Orme et al. (2007) ⁷⁸	In line with the majority of previous submissions

	Previous ap	praisals*									Current appraisal	
Factor	TA32	TA127	TA254	TA303	TA312	TA320	TA441	TA493	TA527	TA533	Chosen values	Justification
Source of relapse disutilities	Parkin et al. (2000)	UK MS survey (2005) (published by Orme et al., 2007) ⁷⁸ , adjusted with trial data for EDSS specific disutilities	Orme et al. (2007) ⁷⁸	Orme et al. (2007) ⁷⁸ (non- hospitalised), Prosser et al. (2003) (hospitalised)	Orme et al. (2007) ⁷⁸ (non- hospitalised), Prosser et al. (2003) (hospitalised)	UK MS survey, 2005 (published by Orme et al., 2007) ⁷⁸	BOI study, 2015 (not published)	Orme et al. (2007) ⁷⁸	Not applied	Orme et al. (2007) ⁷⁸	Orme et al. (2007) ⁷⁸	In line with the majority of previous submissions
Source of caregiver disutilities	Not applied	Loveman et al. (2006) and UK MS survey data	Loveman et al. (2006) and UK MS survey data	Loveman et al. (2006) and UK MS survey data	Loveman et al. (2006) and UK MS survey data	Loveman et al. (2006) and UK MS survey data	Maximum disutility reduced	No caregiver disutilities	Acaster et al. (2013) ¹⁸⁰	Loveman et al. (2006) and UK MS survey data	Acaster et al. (2013) ¹⁸⁰	In line with TA527 that provides the most up-to- date relevant source
Source of EDSS costs	Kobelt et al. (2000), direct costs for EDSS 0- 7, direct + indirect costs for EDSS 8-9	UK MS survey (2005), direct medical and non-medical (NHS & PSS) (later published by Tyas et al., 2007) ⁸³	UK MS survey (2005), direct medical and non-medical (NHS & PSS) (later published by Tyas et al., 2007) ⁸³	Tyas et al. (2007) ⁸³ (direct medical and midpoint of non- medical)	Tyas et al. (2007) ⁸³ (direct medical only)	UK MS survey (2005) (NHS & PSS)	BOI study, 2015 (not published), direct medical and partial non- medical)	TA32	Tyas et al. (2007) ⁸³	Tyas et al. (2007) ⁸³	UK MS survey (2005) (direct medical only), inflated to 2019	In line with the latest submissions
Source of relapse costs	Not reported	UK MS survey (2005), (later published by Tyas et al., 2007) ⁸³	Tyas et al. (2007) ⁸³	Dee et al. (2012)	Dee et al. (2012)	UK MS survey (2005)	BOI study, 2015	Not reported	Tyas et al. (2007) ⁸³	Tyas et al. (2007)	Tyas et al. (2007) ⁸³	In line with the majority of previous submissions

AE = adverse event; ARR = annualised relapse rate; BCMS = British Columbia Multiple Sclerosis; BOI = burden of illness; BSC = best supportive care; CDP3M = confirmed disability progression sustained for 3 months; CDP6M = confirmed disability progression sustained for 6 months; DMT = disease-modifying therapy; EDSS = Expanded Disability Status Scale; ISPOR = International Society for Pharmacoeconomics and Outcomes Research; MS = multiple sclerosis; NHS = National Health Service; NICE = National Institute for Health and Care Excellence; pegIFN = pegylated interferon; PSS = personal social services; RRMS = relapsing-remitting multiple sclerosis; SPMS = secondary-progressive multiple sclerosis TA = technology appraisal.

* The values for TA32, TA127, TA254, TA303, TA312, TA320, and TA441 are based on the committee papers of TA493 (Table 59) and TA533 (Table 25). The values for TA493, TA527, and TA533 reflect the preferences of the assessment groups and are based on the committee papers for each submission.

B.3.2.3 Intervention technology and comparators

As per the NICE scope, the cost-effectiveness analysis estimates the cost-effectiveness of pegIFN β -1a compared with other DMTs available in the UK. The list of comparators are listed with the dosing schedules below:

- PegIFNβ-1a (Plegridy[®]): 125 μg Q2W, Biogen Idec
- IM IFNβ-1a 30 (Avonex[®]): 30 μg QW, Biogen Idec
- IFN β -1a 22 (Rebif[®]): 22 μ g TIW, EMD Serono Inc
- IFN β -1a 44 (Rebif[®]): 44 μ g TIW, EMD Serono Inc
- IFNβ-1b (Extavia[®]): 250 μg every other day, Novartis Pharmaceuticals Corporation
- GA 20 mg (Copaxone®): 20 mg once daily, Teva Pharmaceutical Industries Ltd
- GA 40 mg (Copaxone®): 40 mg once daily, Teva Pharmaceutical Industries Ltd
- Generic glatiramer acetate (genGA) 20 (Brabio[®]): 20 mg once daily, Generics [UK] Limited t/a Mylan
- genGA 40 (Brabio[®]): 40 mg once daily, Generics [UK] Limited t/a Mylan
- teriflunomide (Aubagio[®]): 14 mg once daily, Genzyme Corporation
- DMF (Tecfidera®): 240 mg twice daily, Biogen Idec
- alemtuzumab (Lemtrada[®]): 12 mg once daily, 5-days year 1, 3 days year 2, Genzyme Corp
- Ocrelizumab (Ocrevus[®]): 600 mg, every 6 months, Genentech

Comparators that are recommended for highly active RRMS (fingolimod [Gilenya[®]] and cladribine [Mavenclad[®]]) and RES-RRMS (natalizumab [Tysabri[®]]) only have not been included in the cost-effectiveness analyses because pegIFN β -1a is not used in this population in clinical practice.

B.3.3 Clinical parameters and variables

B.3.3.1 Derivation of clinical outcomes

B.3.3.1.1 Transition probabilities within RRMS

The transition of patients between each RRMS EDSS state was modelled using a Markov state transition matrix. The dimension of the transition matrix was 10 × 10 (EDSS 0-9) with death accounted for separately (equivalent to EDSS 10).

Transition matrices for the natural history were identified from, and are aligned with, recent previous NICE appraisals (see Table 26).

The scientific advisory group (SAG) to the UK RSS scheme conducted a critical appraisal of natural history data sets within MS. Literature reviews and clinical expert opinion were implemented to examine available patient registries that considered the availability of EDSS score measurements, the use of data smoothing or manipulation, the size of the database, and applicability to the UK health system to determine a preferred data set. Table 27 below outlines key characteristics of the two largest natural history data sets available.

London, Ontario	British Columbia
Widely used in previous models	Recent publication
N = 345	N = 898
Longitudinal data set from MS clinic in Canada	Longitudinal data set from MS clinic in Canada
Patients followed up 1972-1989	Patients followed up 1980-1995
Smoothed disability data censored improvements in EDSS	Improvement in EDSS allowed
No transitions from EDSS 0 or EDSS 9	Contains transitions from all states
May have more rapid progression than clinical trials	May be subject to same limitations as London, Ontario
Separate transition matrices for RRMS and SPMS	Contains RRMS and SPMS patients (SPMS 15.7% at baseline)

 Table 27.
 Comparison of London, Ontario, and British Columbia¹⁷⁴ data sets

EDSS = Expanded Disability Status Scale; MS = multiple sclerosis; RRMS = relapsing-remitting multiple sclerosis; SPMS = secondary-progressive multiple sclerosis.

Comparison of the transition matrices demonstrates that:

- The probability of remaining in the same EDSS state in each cycle is between 0.1 and 0.3 higher in London, Ontario, than British Columbia (for all EDSS states). This difference is likely to be partially because British Columbia allows for patients to transition to a lower EDSS state (improvement in disability).
- The probability of changing by one EDSS state is similar for London, Ontario, and British Columbia (magnitude of difference is up to 0.1, direction varies).
- In both data sets, the probability of staying in the same EDSS state is higher in EDSS states between 5.5 and 9.5 than in the lower EDSS states. This is likely to be due to the non-linearity of the EDSS scale.

The RSS SAG scored the British Columbia Multiple Sclerosis (BCMS) data set highly in terms of the methodology used to capture EDSS score (EDSS prospectively captured) and registry completeness (an estimated 80% coverage of the BCMS population). The SAG concluded that the BCMS data set was the best natural history Markov state transition matrix for untreated patients who could be used as a historical control in the economic model, relevant to the UK context, and was therefore considered the preferred data set for this appraisal.

Cleaning procedures were applied to ensure disability progression or regression were independent of relapses in the untreated natural history and reflective of the UK context. Patients were eligible for inclusion in the data set if they met the ABN criteria for treatment with IFN or GA, i.e., adult with an EDSS score no worse than 6.5 and at least two relapses in the previous two calendar years. Data were truncated at the end of 1995, this being the last year when DMTs were not widely available in British Columbia. Data were also excluded if EDSS scores were collected at the time of relapses or disability levels could have been affected by confounding factors (e.g., fractures). Finally, data underlying the transition matrix probabilities were not truncated if a patient moved into SPMS.

Two models (discrete and continuous time multi-state methods, with and without baseline covariates [e.g., sex, age at MS onset, and disease duration]) were implemented to derived transition probabilities. Ultimately the continuous time model was used in this appraisal due to the poor fit of the discrete model (underestimating EDSS in earlier years vs.

overestimation in later years). Moreover, the model containing onset age as a binary covariate was deemed the most suitable model for the RSS analysis. This led to two matrices conditional on median age of onset of < 28 years of age (data not shown) or \geq 28 years of age. Given the mean age of the patients simulated in the model (36 years), the transition matrices used for patients \geq 28 years of age on RRMS EDSS levels were from the BCMS data set.¹⁹⁵ The resulting natural history matrix has non-zero elements below its diagonal, reflecting the assumption that patients can improve to a lower EDSS level within the RRMS phase of the disease (Table 28).

					EDSS at	year x+1					
	0	1-1.5	2-2.5	3-3.5	4-4.5	5-5.5	6-6.5	7-7.5	8-8.5	9-9.5	Total
0	0.6954	0.2029	0.0725	0.0217	0.0042	0.0014	0.0018	0.0001	0.0000	0.0000	1.0000
1-1.5	0.0583	0.6950	0.1578	0.0609	0.0164	0.0046	0.0064	0.0005	0.0001	0.0000	1.0000
2-2.5	0.0159	0.1213	0.6079	0.1680	0.0446	0.0185	0.0216	0.0017	0.0005	0.0000	1.0000
3-3.5	0.0059	0.0496	0.1201	0.5442	0.0911	0.0585	0.1165	0.0103	0.0036	0.0003	1.0000
4-4.5	0.0017	0.0221	0.0666	0.1152	0.4894	0.1039	0.1681	0.0258	0.0067	0.0006	1.0000
5-5.5	0.0005	0.0053	0.0294	0.0587	0.0874	0.4870	0.2731	0.0388	0.0188	0.0010	1.0000
6-6.5	0.0001	0.0013	0.0044	0.0250	0.0307	0.0408	0.7407	0.1090	0.0438	0.0042	1.0000
7-7.5	0.0000	0.0002	0.0005	0.0025	0.0073	0.0039	0.1168	0.6927	0.1606	0.0156	1.0000
8-8.5	0.0000	0.0000	0.0000	0.0003	0.0006	0.0005	0.0188	0.0557	0.9034	0.0207	1.0000
9-9.5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0018	0.0057	0.1741	0.8183	1.0000

EDSS = Expanded Disability Status Scale.

B.3.3.1.2 Transition probabilities from RRMS to SPMS

Transition probabilities describing the probability of progressing from RRMS to SPMS health states are detailed in Table 29. These probabilities are applied to the RRMS population in order to estimate the proportion of patients who are expected to progress to SPMS for each annual cycle. Upon progression, the EDSS state is assumed to increase by 1 during the given cycle (e.g., from EDSS 5 to EDSS 6) consistent with prior technology appraisals. The RRMS to SPMS transition probabilities are estimated from hazards presented in the appendix to the original 2002 MTA report (extracted from the Evidence Review Group [ERG] report for daclizumab [TA441] which was based on the London, Ontario, data set). The hazards were converted to probabilities using:

$$p = 1 - exp(-h).$$

Corresponding values are not available in BCMS. Despite the transition matrix probabilities reported in Palace et al. (2014)¹⁷⁴ considering a range of covariates (as described in Section B.3.3.1.1), it does not appear that transition into SPMS was included in these covariates. Furthermore, their baseline population included 15.7% patients with SPMS. Therefore, an argument could be made that efforts to delineate between RRMS and SPMS in a model based on these transition probabilities matrices may not be warranted and EDSS progression could be exaggerated by assuming a worsening by one EDSS upon SPMS transition. Although Biogen believes the approach taken in the base case is valid and consistent with prior technology appraisals, a key scenario analysis where the probability of conversion from RRMS to SPMS is set to zero for all EDSS states has been provided (in essence collapsing the 21-health state model into an 11-health state model).

EDSS ^a	Hazards	Probability
0	0.004	0.004
1-1.5	0.002	0.002
2-2.5	0.030	0.029
3-3.5	0.103	0.097
4-4.5	0.199	0.181
5-5.5	0.256	0.225
6-6.5	0.184	0.168
7-7.5	0.237	0.211
8-8.5	0.066	0.064
9-9.5	0.167	0.154

Table 29.London, Ontario natural history transition probabilities from
RRMS to SPMS

EDSS = Expanded Disability Status Scale; RRMS = relapsing-remitting multiple sclerosis; SPMS = secondary-progressive multiple sclerosis.

^a EDSS level goes up by one for each transition.

B.3.3.1.3 Transition probabilities within SPMS

When patients move to SPMS, their transitions are governed by a natural history transition probability matrix between EDSS levels within SPMS. This matrix is upper-triangular (i.e., with zero elements below the diagonal), reflecting the assumption that patients cannot improve to a lower EDSS level while in the SPMS phase as per the clinical definition. These transition probabilities are shown in Table 30, were obtained from the London, Ontario, data set, and are consistent with previous technology appraisals where SPMS has been modelled separately to RRMS.¹⁸¹

	auix									
EDSS at gear x+1							Total			
0	1-1.5	2-2.5	3-3.5	4-4.5	5-5.5	6-6.5	7-7.5	8-8.5	9-9.5	Total
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	N/A
0.0000	0.7692	0.1538	0.0769	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000
0.0000	0.0000	0.6357	0.2713	0.0620	0.0233	0.0078	0.0000	0.0000	0.0000	1.0000
0.0000	0.0000	0.0000	0.6291	0.2527	0.0769	0.0330	0.0027	0.0055	0.0000	1.0000
0.0000	0.0000	0.0000	0.0000	0.4854	0.3504	0.1387	0.0073	0.0182	0.0000	1.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.6325	0.3173	0.0221	0.0261	0.0020	1.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.7631	0.1903	0.0446	0.0020	1.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.8046	0.1891	0.0062	1.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.9258	0.0742	1.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000
	0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.7692 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0 1-1.5 2-2.5 0.0000 0.0000 0.0000 0.0000 0.7692 0.1538 0.0000 0.0000 0.6357 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0 1-1.5 2-2.5 3-3.5 0.0000 0.0000 0.0000 0.0000 0.0000 0.7692 0.1538 0.0769 0.0000 0.7692 0.1538 0.0769 0.0000 0.0000 0.6357 0.2713 0.0000 0.0000 0.0000 0.6291 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0 1-1.5 2-2.5 3-3.5 4-4.5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7692 0.1538 0.0769 0.0000 0.0000 0.7692 0.1538 0.0769 0.0000 0.0000 0.0000 0.6357 0.2713 0.0620 0.0000 0.0000 0.0000 0.6291 0.2527 0.0000 0.0000 0.0000 0.0000 0.4854 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	EDSS at year x+1 0 1-1.5 2-2.5 3-3.5 4-4.5 5-5.5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7692 0.1538 0.0769 0.0000 0.0000 0.0000 0.7692 0.1538 0.0769 0.0000 0.0000 0.0000 0.0000 0.6357 0.2713 0.0620 0.0233 0.0000 0.0000 0.0000 0.6291 0.2527 0.0769 0.0000 0.0000 0.0000 0.0000 0.4854 0.3504 0.0000 0.0000 0.0000 0.0000 0.0000 0.6325 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	EDSS at year x+1 0 1-1.5 2-2.5 3-3.5 4-4.5 5-5.5 6-6.5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7692 0.1538 0.0769 0.0000 0.0000 0.0000 0.0000 0.7692 0.1538 0.0769 0.0000 0.0000 0.0000 0.0000 0.0000 0.6357 0.2713 0.0620 0.0233 0.0078 0.0000 0.0000 0.6357 0.2713 0.0620 0.0233 0.0078 0.0000 0.0000 0.6000 0.6291 0.2527 0.0769 0.0330 0.0000 0.0000 0.0000 0.0000 0.4854 0.3504 0.1387 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0	EDSS at year x+1 0 1-1.5 2-2.5 3-3.5 4-4.5 5-5.5 6-6.5 7-7.5 0.0000 0.0027 0.0769 0.0330 0.0027 0.0000 0.0000 0.0027 0.0000 0.0027 0.0000 0.0027 0.0000 0.0027 0.0000 0.0027 0.0000 0.0027 0.0000 0.0027 0.0003 0.0027 0.0003 0.0027 0.0003 0.0027 0.0003 0.0027 0.0023 0.01387 0.0221 0.0000 0.0000 0.0021 0.0221 0.0000 0.0000 0.0221 0.0000 0.0000 0.0000 0.0000	EDSS at year x+1 0 1-1.5 2-2.5 3-3.5 4-4.5 5-5.5 6-6.5 7-7.5 8-8.5 0.0000 0.0001 0.0001 0.0001 0.0011 0.0011 0.0021 0.0221 0.0261 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0021 0.0261 0.0221 0.0261 0.0261 0.0000 0.0000 0.0000	EDSS at year x+1 0 1-1.5 2-2.5 3-3.5 4-4.5 5-5.5 6-6.5 7-7.5 8-8.5 9-9.5 0.0000 0.0020 0.0021 0.0221 0.0261 0.0202 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0201 0.0201 0.0201 0.0201 0.0202 0.0261

Table 30.London, Ontario SPMS natural history transition probability
matrix

EDSS = Expanded Disability Status Scale; N/A = not applicable; SPMS = secondary-progressive multiple sclerosis.

B.3.3.1.4 Relapse rates

The natural history ARRs are specific to each EDSS level and to whether a patient is in the RRMS or SPMS phase. For the off-treatment sub-cohort (those who discontinue treatment due to any reason, including AEs, lack of efficacy, or clinical trial protocol discontinuation rules [i.e., overall discontinuation]), the natural history ARRs are applied to the number of patients who are alive and who have discontinued treatment at each cycle. For the on-treatment sub-cohort (patients who remain on treatment), a rate ratio relative to placebo is applied to the natural history ARRs, which is then applied to the number of patients alive and on treatment at each cycle.

The UK MS Survey^{78,83} provides the total number of patients who experienced a relapse by EDSS health state by years since diagnosis. Patzold (1982)¹⁷⁵ conducted a regression analysis to investigate the relationship between the mean annual ARRs and the number of years since diagnosis. The annualised natural history ARRs by EDSS level are shown below (Table 31) and are consistent with approaches in prior technology appraisals.

(1982)			
EDSS	ARRs RRMS	ARRs SPMS		
0	0.709	0.000		
1-1.5	0.729	0.000		
2-2.5	0.676	0.465		
3-3.5	0.720	0.875		
4-4.5	0.705	0.545		
5-5.5	0.591	0.524		
6-6.5	0.490	0.453		
7-7.5	0.508	0.340		
8-8.5	0.508	0.340		
9-9.5	0.508	0.340		
	to EDOO Expanded Dischility Otatus Ocales N			

 Table 31.
 RRMS and SPMS natural history ARRs: UK MS survey and Patzold (1982)

ARR = annualised relapse rate; EDSS = Expanded Disability Status Scale; MS = multiple sclerosis; RRMS = relapsingremitting multiple sclerosis; SPMS = secondary-progressive multiple sclerosis; UK = United Kingdom.

B.3.3.2 Calculation of patient disposition over time

The disposition of the cohort (i.e., distribution of patients throughout the health states of the model) must be calculated over time to calculate the costs, life-years, and QALYs. The cohort of patients is divided into two sub-cohorts:

- On-treatment sub-cohort
- Off-treatment sub-cohort

Each cycle, the disposition for the on-treatment sub-cohort is recalculated using the following steps:

- 1. Patients who have discontinued treatment are moved to the off-treatment sub-cohort.
- 2. Patients who die are taken out of the cohort.
- 3. Relapses are calculated.
- 4. The transition probability matrix is applied.

Company evidence submission template for peginterferon beta-1a for treating relapsingremitting multiple sclerosis

© Biogen (2019). All rights reserved

- 5. Patients who discontinued due to progression to an EDSS level higher than a userspecified threshold (e.g., EDSS ≥ 7) were moved to the off-treatment sub-cohort.
- 6. Patients who discontinued due to progression to SPMS are moved to the off-treatment sub-cohort.

The disposition for the sub-cohort of patients who discontinued treatment is recalculated similarly:

- 1. Patients who discontinued treatment each year are added to the off-treatment subcohort from the on-treatment sub-cohort.
- 2. Patients who died are taken out of the cohort.
- 3. Relapses are calculated.
- 4. The transition probability matrix is applied (the natural history transition probability matrix).
- 5. Patients who discontinued due to progression to an EDSS level higher than a userspecified threshold were added to the off-treatment sub-cohort from the on-treatment sub-cohort.
- 6. Patients who discontinued due to progression to SPMS are added to the off-treatment sub-cohort from the on-treatment sub-cohort.

B.3.3.2.1 Treatment discontinuation

The model considers an annual risk of treatment discontinuation for each comparator. The probability of discontinuation was derived from the all-cause discontinuation rates reported in trials used in the network meta-analysis for ARR (Section B.2.6).

It should be noted that the all-cause discontinuations used in the economic model included the proportion of patients who discontinued the study drug for any reason such as AEs, lost to follow-up, investigator decision, or withdrew consent. With pegIFN β -1a, 65% of the patients who discontinued did so due to non–AE-related reasons (50/74), of which 47% were due to withdrawn consent. As a result, a scenario analysis is presented that included annual risk of discontinuation due to adverse drug reactions only.

Of the 23 studies included in the network, only 18 reported outcome data for all-cause discontinuation. The probabilities reported in the individual studies were converted to annualised probabilities (aligned with the model cycle length) using the following equation:

$$P = 1 - (1 - p)^{t}$$

where *t* is study follow-up time in weeks and *P* is the probability of discontinuation. The weights used to derive the treatment discontinuation for each DMT were based on sample size from each trial included in the analysis. The weights used for each study in the derivation of the discontinuation risk are shown in Appendix M. In addition, the annual discontinuation risk for each treatment option based on studies being included in ARR MTC network (as this is the most complete network) and are provided in Appendix M. To assess the impact of discontinuation rates on cost-effectiveness estimates, a scenario analysis using a parity rate of 5% per annum for all treatments is considered aligned with the assessment group report for TA527; however, as acknowledged within that report, there is little evidence to support this assumption.

The proportion of patients who discontinue each year is calculated by applying the risk of discontinuation directly to the number of patients on treatment at the beginning of that year. The patients who discontinue are then shifted from the on-treatment sub-cohort to the off-treatment sub-cohort for the next year onward.

Table 32 shows the annual risk of overall treatment discontinuation for each treatment.

Company evidence submission template for peginterferon beta-1a for treating relapsingremitting multiple sclerosis

© Biogen (2019). All rights reserved

discontinuation)					
Treatment	Annual risk (all-cause discontinuation)	Annual risk due to ADRs	Sources		
PegIFNβ-1a	15.56%	5.28%	ADVANCE ¹⁸²		
IM IFNβ-1a 30	7.88%	3.07%	Calabrese (2012) ¹⁸³ , CombiRx, ¹⁸⁴ EVIDENCE ¹⁸⁵ , BRAVO ¹⁸⁶ , INCOMIN ¹⁸⁷		
IFNβ-1a 22	6.00%	1.60%	PRISMS ¹⁸⁸		
IFNβ-1a 44	10.85%	3.81%	Calabrese (2012) ¹⁸³ , EVIDENCE ¹⁸⁵ , OPERA I & II ¹⁸⁹ , CARE MS I ¹⁹⁰ , CARE MS II ¹⁹¹ , REGARD ¹⁹²		
IFNβ-1b	6.87%	1.27%	IFNB MS Study ¹⁵⁵ , BEYOND ¹⁹³ , INCOMIN ¹⁸⁷		
GA 20	9.72%	2.48%	BEYOND ¹⁹³ , CONFIRM ¹²⁵ , Copolymer 1 Study ¹⁹⁴ , REGARD ¹⁹² , Bornstein ¹⁹⁵		
GA 40	8.91%	3.08%	GALA ¹⁹⁶		
genGA 20	9.72%	2.48%	Assumed equivalent to Copaxone [®] 20		
genGA 40	8.91%	3.08%	Assumed equivalent to Copaxone [®] 40		
teriflunomide	18.57%	7.84%	TOWER ¹⁴⁰ , TEMSO ¹⁹⁷		
DMF	18.01%	7.95%	CONFIRM ¹²⁵ , DEFINE ¹²⁷		
alemtuzumab	2.46%	1.19%	CARE MS I ¹⁹⁰ , CARE MS II ¹⁹¹		
ocrelizumab	6.69%	1.92%	OPERA I & II ¹⁸⁹		

Table 32.Annual risk of treatment discontinuation (all-cause discontinuation)

ADR = adverse drug reaction; GA = glatiramer acetate; genGA = generic glatiramer acetate; IFN β -1a = interferon β -1a, IFN β -1b = interferon β -1b; IM = intramuscular; PegIFN β -1a = pegylated interferon β -1a; SC = subcutaneous.

B.3.3.2.2 Mortality

Mortality is accounted for using all-cause mortality risks, specific to age and gender¹⁹⁸ and adjusted with different relative risks (for each EDSS level independent of RRMS versus SPMS due to lack of evidence suggesting a differential mortality risk). First, the model derives a weighted mortality risk for each age from the male and female mortality risks by age. This is weighted according to the proportion of males and females in the model cohort (a user input). At the beginning of the model, the mortality risk for MS. Either the overall relative risk for all patients with MS (scenario analysis) or individual relative risks for each EDSS (irrespective of RRMS versus SPMS) are applied to the all-cause mortality risk. This is then applied to the number of patients alive at the beginning of the year. This calculation is carried out for the on- and off-treatment sub-cohorts. Once patients die, they accrue no more costs, utilities, or life-years in the model.

Age- and gender-specific all-cause mortality risks for the general population were obtained from the Office for National Statistics UK (2016).¹⁹⁸ The all-cause mortality risk is adjusted by applying a disease-specific relative risk.

The relative risks are from Pokorski (1997)¹⁷⁸, a Canadian study including 2,348 patients followed in MS specialty clinics between 1972 and 1985. Pokorski reports a standardised mortality ratio (SMR) by EDSS level, which were used in the base case to adjust the all-cause mortality risks in the general population where the SMR increases with increases in EDSS states, which aligns with the natural history of MS (Table 33). Use of Pokorski has

been previously critiqued as potentially overestimating mortality for the following key reasons: (1) the study is dated and there are large difference in smoking prevalence rates versus the present day and (2) there is now improved care for MS with a relatively high uptake of DMTs, which manage MS more effectively. Despite these limitations, it has been the preferred committee assumption for mortality in prior technology appraisals.

Other sources considered included a study by Jick et al. $(2014)^{77}$, who reported mortality for the largest sample of people with MS (N = 1,822) covering mortality across multiple regions of the UK and had a good follow-up (14,295 person-years), with a total number of deaths of 130, resulting in a mortality ratio of 1.68 (95% CI, 1.38-2.05). Another study by Kingwell et al. $(2012)^{76}$ reported mortality of 6,917 patients (89% relapsing onset) with MS from the BCMS data set between 1980 and 2004. The total number of deaths were 1,025, which resulted in an overall SMR of 2.89 (95% CI, 2.71-3.07). Use of single SMRs has been previously critiqued for underestimating mortality, most notably in the higher EDSS state where patients typically accrue higher health state costs. To assess the impact of varying SMRs, the values from Kingwell et al. $(2012)^{76}$ were used in scenario analyses as this more aligned with the natural history transition matrices and had a larger population and a higher SMR than Jick et al. $(2014)^{77}$.

EDSS	Relative risk
1-3.5	1.6000
4-6.5	1.8400
7+	4.4400

Table 33. Relative risks for MS mortality

EDSS = Expanded Disability Status Scale; MS = multiple sclerosis.

B.3.3.2.3 Transitions between Health States

After mortality is applied and patients who discontinue treatment are moved to the offtreatment sub-cohort, the transition probabilities are applied to derive:

- The number of patients in each EDSS level who move within RRMS
- The disposition of patients who move to SPMS (no patients can regress from SPMS to RRMS)
- The number of patients in each EDSS level within SPMS

B.3.3.2.4 Stopping rules

Patients stop treatment when they reach EDSS level \geq 7 and/or progress to SPMS. After the transition probabilities are applied, any patients in the on-treatment sub-cohort who transition to an EDSS level \geq 7 are moved to the off-treatment sub-cohort. Similarly, any patients in the on-treatment sub-cohort who progress to SPMS are also moved to the off-treatment sub-cohort. The natural history ARRs and BCMS data set are applied to off-treatment sub-cohorts aligned with prior technology appraisals. Treatment sequencing has not been considered as this would favour DMTs with higher discontinuation rates that would transition to higher efficacy treatments in subsequent treatment lines and demonstrate more favourable cost-effectiveness outcomes.

B.3.3.2.5 End of year

After applying each of the changes listed above (in the listed order), the model arrives at the disposition at the end of the year for both sub-cohorts. The disposition (i.e., distribution of patients across the health states) for the beginning of the next year is then set equal to the

Company evidence submission template for peginterferon beta-1a for treating relapsingremitting multiple sclerosis

© Biogen (2019). All rights reserved

end-of-year disposition of the previous year, and the model moves through the transitions explained above until the end of the user-specified model time horizon (maximum: 50 years).

B.3.3.3 Treatment effects on disability progression and relapse frequency

B.3.3.3.1 Disability progression

The model includes an HR comparing the CDP of a specific treatment to progression with no treatment. To derive the transition probability matrices for the active treatments, the MTC treatment-specific HR for CDP3M or CDP6M is applied to the best supportive care transition probability matrix probabilities of worsening; i.e., to all the probabilities above the principal diagonal. The probabilities of remaining in the same health state, are then increased so as to make the rows sum to unity. The probabilities of improving are assumed to be the same for the active treatment as for the natural history (i.e., no treatment).

Once patients discontinue treatment, they are no longer exposed to any treatment effect and follow the BCMS transition probabilities.

Data from the MTC informed the relative efficacy (Section B.2.9.3). The median HRs for CDP relative to placebo at 3 and 6 months are shown in Table 34. For the base case, CDP6M was implemented as this is considered a more robust outcome (indicative of permanent disability progression) than CDP3M (which can be influenced by relapse activity) by regulatory bodies and is also the preference for committee assumptions in prior technology appraisals. Scenario analyses are also presented for CDP3M to allow for comparisons against technologies excluded using CDP6M.

-	0	3-month	6 months	6-month
Treatment	3 months	95% CI	(base case)	95% Crl
PegIFNβ-1a				
IM IFNβ-1a 30				
IFNβ-1a 22				
IFNβ-1a 44				
IFNβ-1b				
GA 20				
GA 40				
GenGA 20				
GenGA 40				
Teriflunomide				
DMF				
Alemtuzumab				
Ocrelizumab				

Table 34. MTC: CDP HR versus placebo at 3 and 6 months

CDP = confirmed disability progression; CrI = credible interval; HR = hazard ratio; MTC = mixed-treatment comparison; NA = not available.

* Assumed equivalent to GA 20 due to the absence of disability progression data.

Note: values that are less than 1 indicate favourable efficacy for treatment versus placebo.

B.3.3.3.2 Treatment waning

Despite no published literature supporting the waning of treatment effect over the long-term and clinical consensus that perceived lack of efficacy is highly likely to be a reflection of underlying disease progression, all previous appraisals since TA254 have included this feature to reflect uncertainty in the long-term benefits of DMTs upon request of the committee.

Consistent with these prior appraisals, the waning effect has been included in the base-case analysis and is applied by adjusting the HR for CDP in a step-wise manner using the following equation and proportions in Table 35.

```
CDP HR waning = 1 - (1 - CDPHR mtc) \times proportion of effect remaining
```

Year	Proportion of treatment effect
0-2	100%
2-5	75%
5+	50%

Scenario analyses excluding treatment waning are also presented.

B.3.3.3.3 Relapses

The number of relapses is calculated during each cycle. The natural history (i.e., no treatment) ARRs are adjusted by a treatment-specific rate ratio to derive the rate of relapse for patients on treatment; this is done similar to the way that the natural history transition rates between EDSS levels are adjusted during RRMS.

A median rate ratio comparing the ARRs of each treatment relative to placebo is used to adjust the RR for the treatment effect using data from the MTC (Table 36). Consistent with prior technology appraisal, treatment waning is not assumed to impact the treatment effect on RRs.

Treatment	Rate ratio on ARR	95% Crl
PegIFNβ-1a		
IM IFNβ-1a 30		
IFNβ-1a 22		
IFNβ-1a 44		
IFNβ-1b		
GA 20		
GA 40		
GenGA 20		
GenGA 40		
Teriflunomide		
DMF		
Alemtuzumab		
Ocrelizumab		

Table 36.Rate ratio on ARRs versus placebo

ARR = annualised relapse rate; CrI = credible interval; NA = not available; SC = subcutaneous. Note: values that are less than 1 indicate favourable efficacy for treatment vs. placebo.

Company evidence submission template for peginterferon beta-1a for treating relapsing-

remitting multiple sclerosis

B.3.4 Measurement and valuation of health effects

B.3.4.1 Health-related quality-of-life data from clinical trials

The relevant model parameters for the cost-effectiveness analysis conducted relied on the information from the relevant literature.

B.3.4.2 Mapping

Utility values used to inform the cost-effectiveness analyses were based on two studies^{78,180} that used EQ-5D instrument to elicit the utility values directly, which aligns with the NICE reference case and negates the need for mapping.¹⁷²

B.3.4.3 Health-related quality-of-life studies

An SLR to identify health-related QOL studies (Appendix H) was performed as part of the SLR described in Section B.3.1 using the inclusion and exclusion criteria and the search strategy presented in Appendix H.

A total of 29 studies were identified that met the eligibility criteria for the review. Of these, 11 presented utilities by EDSS score. Two publications specified UK studies (Kobelt et al., 2017⁷¹; Thompson et al., 2017¹⁹⁹); however, as both had the same population samples and mean EDSS scores, it was deemed that the relevant information reported should be based on the same sample (Table 37). In line with the previous NICE technology appraisals, utility data from Orme et al.'s (2007)⁷⁸ study has been used to inform the patient utility values and data from Acaster et al. (2013)¹⁸⁰ were used to inform caregiver disutility values in the model in this submission.

able 57. Summary list of published model studies					
Study (ID)	Country	Study details ^a	Methods of elicitation and valuation ^b	Health state description	Mean (SD) utility estimate
Daigl et al. (2016) ²⁰⁰ Value in Health Ref ID 425	US populations	Evaluates health utilities at different stages of RRMS by studying the relationship between EDSS and EQ-5D using data from OPERA I and II	EQ-5D administered at baseline, 48 and 96 weeks, value set not reported	EDSS states from 0- 7 representing different stages of RRMS	EDSS 0: 0.88 (95% Cl, 0.85-0.91) EDSS 1: 0.84 (95% Cl, 0.83-0.86) EDSS 2: 0.77 (95% Cl, 0.76-0.78) EDSS 3: 0.70 (95% Cl, 0.69-0.72) EDSS 4: 0.64 (95% Cl, 0.63-0.66) EDSS 5: 0.60 (95% Cl, 0.57-0.63) EDSS 6: 0.49 (95% Cl, 0.45-0.53) EDSS 7: 0.44 (95% Cl, 0.24-0.63) Authors state, "these results are comparable with previous published data" (Orme et al., 2007) ⁷⁸ .
Brola et al. (2017) ²⁰¹ Poland Ref ID 365	Poland	765 MS patients with average EDSS score of 3.8 +/- 2.3. Proportions of patients with RRMS were 65.2%, SPMS were 26.6%, and PPMS were 8.3%	Polish version of the EQ-5D, standardised for the general Polish population.	EDSS (mild = 0.0- 3.5, moderate or severe = ≥ 4)	EDSS 0.0-3.5: 0.72 (0.36) EDSS ≥ 4.0: 0.54 (0.16)

Table 37. Summary list of published HRQOL studies

Study (ID)	Country	Study details ^a	Methods of elicitation and valuation ^b	Health state description	Mean (SD) utility estimate
Gyllentsen et al. (2018) ²⁰² Ref ID = 43	Sweden	To estimate the HRQOL, by disability levels, among MS patients	EQ-5D-3L direct measurement. UK tariff and Swedish tariff used.	EDSS categorised into ≤ 3.5, 4-5.5, 6-6.5, and ≥ 7, representing different disability levels	EDSS 0-3.5: Swedish experience-based index value: 0.867 (95% Cl, 0.860-0.873); UK general population-based index values: 0.766 (0.753-0.778); EDSS 4-5.5: Swedish: 0.752 (95% Cl, 0.735-0.768); UK: 0.579 (0.541-0.616); EDSS 6-6.5: Swedish: 0.724 (95% Cl, 0.704-0.745); UK: 0.526 (0.476-0.576); EDSS 7-9.5: Swedish: 0.626 (95% Cl, 0.584-0.668); UK: 0.141 (0.019-0.264); All MS patients with EQ-5D responses = Swedish: 0.836 (95% Cl, 0.830-0.842); UK: 0.709 (0.697-0.722);
Flachenecker et al. (2017) ²⁰³ Ref ID: 375.	Germany	5,475 MS patients with phenotypes including RRMS, SPMS, and PPMS. Mean EDSS (SD) of 4.0 (2.5)	Utility by EDSS level estimated with the EQ-5D using both the UK and German value set.	EDSS 0-3 = Mild MS EDSS 4-6.5 = Moderate MS EDSS 7-9 = Severe MS	EDSS 0: German value set 0.974; UK values set 0.922 EDSS 1: German 0.939; UK 0.852 EDSS 2: German 0.872; UK 0.748 EDSS 3: German 0.806; UK 0.676 EDSS 4: German 0.77; UK 0.637 EDSS 5: German 0.728; UK 0.591 EDSS 6: German 0.695; UK 0.555 EDSS 6.5: German 0.662; UK 0.521 EDSS 7: German 0.554; UK 0.393 EDSS 8: German 0.321; UK 0.146 EDSS 9: German 0.012; UK -0.237

Study (ID)	Country	Study details ^a	Methods of elicitation and valuation ^b	Health state description	Mean (SD) utility estimate
Calabrese et al. (2017) ²⁰⁴ Ref ID: 376.	Switzerland	The proportion of 721 MS patients with RRMS was 61%, with SPMS was 18%, and with PPMS was 17% (5% missing). Mean EDSS (SD) of 3.1 (2.5)	Utility by EDSS level estimated with the EQ-5D using the UK value sets	EDSS 0-3 = Mild MS EDSS 4-6.5 = Moderate MS EDSS 7-9 = Severe MS	EDSS 0:0.918 EDSS 1:0.835 EDSS 2:0.746 EDSS 3:0.641 EDSS 4:0.643 EDSS 5:0.64 EDSS 6:0.619 EDSS 6:5:0.508 EDSS 7:0.494 EDSS 8:0.283 EDSS 9:-0.075
Dubois et al. (2017) ²⁰⁵ Ref ID: 378.	Belgium	The proportion of 1,856 MS patients with RRMS was 43%, with SPMS was 24%, and with PPMS was 22% (10% missing). Mean EDSS (SD) of 4.6 (2.5)	Utility by EDSS level estimated with the EQ-5D using the UK value sets and Belgium VAS value set	EDSS 0-3 = Mild MS EDSS 4-6.5 = Moderate MS EDSS 7-9 = Severe MS	EDSS 0: UK 0.862; Belgian VAS value set 0.764 EDSS 1: UK 0.752; Belgian 0.693 EDSS 2: UK 0.687; Belgian 0.642 EDSS 3: UK 0.607; Belgian 0.576 EDSS 4: UK 0.535; Belgian 0.516 EDSS 5: UK 0.508; Belgian 0.492 EDSS 6: UK 0.442; Belgian 0.438 EDSS 6.5: UK 0.409; Belgian 0.426 EDSS 7: UK 0.341; Belgian 0.363 EDSS 8: UK 0.092; Belgian 0.198 EDSS 9: UK -0.237; Belgian 0.044

Study (ID)	Country	Study details ^a	Methods of elicitation and valuation ^b	Health state description	Mean (SD) utility estimate
Lebrun-Frenay et al. (2017) ²⁰⁶ Ref ID: 379	France	The proportion of 491 MS patients with RRMS was 61%, with SPMS was 22%, and with PPMS was 11%. Mean EDSS (SD) of 3.6 (2.3)	Utility by EDSS level estimated with the EQ-5D using both the UK and France value sets	EDSS 0-3 = Mild MS EDSS 4-6.5 = Moderate MS EDSS 7-9 = Severe MS	EDSS 0: UK tariff 0.924; French tariff 0.896 EDSS 1: UK 0.806; French 0.76 EDSS 2: UK 0.735; French 0.709 EDSS 3: UK 0.647; French 0.632 EDSS 4: UK 0.586; French 0.521 EDSS 5: UK 0.555; French 0.473 EDSS 6: UK 0.437; French 0.335 EDSS 6.5: UK 0.516; French 0.392 EDSS 7: UK 0.419; French 0.261 EDSS 8: UK 0.231; French 0.169
Berger et al. (2017) ²⁰⁷ Ref ID: 394.	Austria	The proportion of 516 MS patients with RRMS was 42%, with SPMS was 25%, and with PPMS was 23% (2% missing). Mean EDSS (SD) of 4.4 (2.5)	Utility by EDSS level estimated with the EQ-5D using the UK value sets	EDSS 0-3 = Mild MS EDSS 4-6.5 = Moderate MS EDSS 7-9 = Severe MS	EDSS 0: 0.887 EDSS 1: 0.829 EDSS 2: 0.751 EDSS 3: 0.706 EDSS 4: 0.666 EDSS 5: 0.54 EDSS 6: 0.606 EDSS 6.5: 0.553 EDSS 7: 0.371 EDSS 8: 0.194 EDSS 9: -0.303

Study (ID)	Country	Study details ^a	Methods of elicitation and valuation ^b	Health state description	Mean (SD) utility estimate
Kobelt et al. (2017) ⁷¹ Ref ID: HS3	Multiple European countries (includes the UK among 16 countries)	MS phenotype and mean EDSS score reported for each country. Only data for the UK is presented here. The proportion of 779 MS patients with RRMS was 37%, with SPMS was 38%, and with PPMS was 24%. Mean EDSS (SD) of 5.5 (2.2)	Utility by EDSS level estimated with the EQ-5D using the UK value sets	EDSS 0-3 = Mild MS EDSS 4-6.5 = Moderate MS EDSS 7-9 = Severe MS	Based on the sample populations and mean EDSS, the UK study in this study is the same as Thompson et al. (2017) ¹⁹⁹ . Only figure is provided for utility estimates, therefore see Thompson et al. (2017) ¹⁹⁹ for these estimates
Thompson et al. (2017) ¹⁹⁹ Ref ID: HS4	UK	The proportion of 779 MS patients with RRMS was 37%, with SPMS was 38%, and with PPMS was 24%. Mean EDSS (SD) of 5.5 (2.2)	Utility by EDSS level estimated with the EQ-5D using the UK value sets	EDSS 0-3 = Mild MS EDSS 4-6.5 = Moderate MS EDSS 7-9 = Severe MS	EDSS 0: 0.898 EDSS 1: 0.787 EDSS 2: 0.695 EDSS 3: 0.573 EDSS 4: 0.605 EDSS 5: 0.569 EDSS 6: 0.480 EDSS 6.5: 0.431 EDSS 7: 0.373 EDSS 8: 0.157 EDSS 9: -0.111

Study (ID)	Country	Study details ^a	Methods of elicitation and valuation ^b	Health state description	Mean (SD) utility estimate
Maurer, (2016) ²⁰⁸ Ref ID: 567	Country: Multinational	A post hoc analysis of two phase III randomised controlled trials (TEMSO and TOWER), with patients defined by severity of relapse with sequelae – EDSS/FS Number of patients with sequelae-EDSS/FS (non- severe relapse) were 146, sequelae-EDSS/FS (severe relapse) were 274, with mean (SD) EDSS scores of 2.8 (1.3) and 2.7 (1.3) respectively	Preference based SF-6D administered on patients. Valuation method was not reported but refers to Brazier et al. (2002) ²⁰⁹	Severity of relapse with sequelae - EDSS/FS was defined by an increase in EDSS/FS score ≥ 30 days post- relapse	No relapse = 0.7 (0.1), Patients with relapse(s); Sequelae-EDSS/FS (non-severe relapse) = 0.7 (0.1), Sequelae-EDSS/FS (severe relapse) = 0.7 (0.1)

EDSS = expanded disability status scale; FS = functional system; HRQOL = health-related quality-of-life; MS = multiple sclerosis; PPMS = primary-progressive multiple sclerosis; RRMS = relapsingremitting multiple sclerosis; SD = standard deviation; SF-6D = SF-6D Health Survey; SPMS = secondary-progressive multiple sclerosis; UK = United Kingdom; US = United States; VAS = visual analogue scale.

B.3.4.4 Adverse Events

For each AE included in the model, several treatment-dependent inputs are used to calculate the associated utility decrement: the annual incidence for each AE, the proportion of AEs that are serious events, the durations of serious and non-serious events, and the utility decrements for serious and non-serious events.

The annual utility decrement for each AE is calculated by weighting the utility decrement for a serious and a non-serious event by the proportion of serious events. Then, the incidence and duration of the event (in years) is applied. This weighted annual utility decrement is calculated for all AEs and summed to give an annual AE-associated utility decrement for each treatment. This decrement was only added to the utility for patients on treatment.

Disutility and duration associated with each AE (both serious and non-serious) is shown in Table 38.

Adverse event	Disutility of non-serious event	Disutility of serious event	Source	Duration of non- serious event (days)	Duration of serious event (days)	Source
Arthralgia	-0.25	-0.25	Retrieved from NICE TA441, Table 91	10.50	24.50	Retrieved from NICE TA441, Table 91
Back pain	-0.25	-0.50	Retrieved from NICE TA441 Table 91	10.50	24.50	Retrieved from NICE TA441 Table 91
Fatigue	0.00	0.00	Assumption	182.50	182.50	Assumption
Gastroenteritis	-0.07	-0.07	Retrieved from Swedish adaptation 2016	10.50	24.50	Retrieved from Swedish adaptation 2016
Headache	-0.14	-0.49	Retrieved from NICE TA533 Table 42	10.50	24.50	Retrieved from NICE TA533 Table 42
Immune thrombocytopenic purpura	-0.09	-0.09	Retrieved from NICE TA312 Table B7.4.4	15.00	81.00	Retrieved from NICE TA312 Table B7.4.4
Influenza-like illness	-0.08	-0.08	Retrieved from NICE TA441 Table 91	1.00	1.00	Retrieved from NICE TA441 Table 91
Injection-site reaction - erythema	0.00	0.00	Assumption	0.00	0.00	Assumption
Injection-site reaction - pain	0.00	0.00	Assumption	0.00	0.00	Assumption
Injection-site reaction - pruritus	0.00	0.00	Assumption	0.00	0.00	Assumption
Meningitis listeria	-0.02	-0.61	Bennett (2000) ²¹⁰	365.00	365.00	Assumption
Nasopharyngitis	0.00	0.00	Retrieved from Swedish adaptation from 2016	7.00	14.00	Retrieved from Swedish adaptation from 2016

 Table 38.
 Disutility and duration associated with serious adverse events and non-serious adverse events

Adverse event	Disutility of non-serious event	Disutility of serious event	Source	Duration of non- serious event (days)	Duration of serious event (days)	Source
Progressive multifocal leukoencephalopathy	-0.30	-0.30	Retrieved from NICE TA533 Table 42	365.00	365.00	Retrieved from NICE TA533 Table 42
Pneumonia / urinary tract infection	-0.20	-0.20	Retrieved from NICE TA533 Table 42	7.00	14.00	Retrieved from NICE TA533 Table 42
Pyrexia	-0.11	-0.11	Retrieved from NICE TA441 Table 91	7.00	14.00	Retrieved from NICE TA441 Table 91

NICE = National Institute for Health and Care Excellence; Pneumonia = upper respiratory tract infection; TA = technology appraisal.

The annual incidence of AEs for each treatment is shown in Appendix M. These figures were obtained from the following trials:

- PegIFNβ-1a: ADVANCE¹⁸²
- IM IFNβ-1a: Calabrese (2012)¹⁸³, CombiRx¹⁸⁴, EVIDENCE¹⁸⁵, BRAVO¹⁸⁶, INCOMIN¹⁸⁷
- IFNβ-1a 22: PRISMS
- IFNβ-1a 44: Calabrese (2012)¹⁸³, EVIDENCE¹⁸⁵, OPERA I & II¹⁸⁹, CARE MS I¹⁹⁰, CARE MS II¹⁹¹, REGARD¹⁹²
- IFNβ-1b: IFNB MS study¹⁵⁵, BEYOND¹⁹³, INCOMIN¹⁸⁷
- GA20 (and genGA 20): BEYOND¹⁹³, CONFIRM¹²⁵, Copolymer 1 study¹⁹⁴, REGARD¹⁹², Bornstein¹⁹⁵
- GA40 (and genGA 40): GALA¹⁹⁶
- teriflunomide: TOWER¹⁴⁰, TEMSO¹⁹⁷
- DMF: CONFIRM¹²⁵, DEFINE¹²⁷
- alemtuzumab: CARE MS I¹⁹⁰, CARE MS II¹⁹¹
- ocrelizumab: OPERA I & II¹⁸⁹

The annual incidence rate of each AE for each treatment and study is calculated as the proportion of patients experiencing each AE over the study duration, scaling the study duration to 1 year. The annual incidences for each AE are assumed to apply throughout the model time horizon for patients receiving treatment. When more than one study is used for a specific treatment, the annual incidence of each AE is calculated as a weighted average of the annual incidence rates using the number of patients observed in each study as weights. The proportion of SAEs for each treatment is shown in Appendix M.

B.3.4.5 Health-related quality-of-life data used in the costeffectiveness analysis

Since patient utilities depend on a patient's health state and whether a patient has had a relapse, the risk of relapse over time for each health state needs to be calculated. This will give the number of patients experiencing a relapse in each health state over time, which will allow the utility to be weighted. The ARR for patients on treatment is adjusted by a rate ratio, then converted into a probability. The same is done for patients off treatment, except no treatment effect (i.e., the rate ratio) is needed. Once the probability of relapse is calculated for each health state for both sub-cohorts over time, the utilities for each health state are weighted by these probabilities.

The mean utility scores for RRMS by EDSS level without relapse were extracted from the study by Orme et al. (2007)⁷⁸ and are shown in Table 39. The derivation of the utility decrements by EDSS level for RRMS and SPMS patients with and without relapse are described below (and are consistent with preferred committee assumptions from prior technology appraisals):

- To obtain the utilities for SPMS patients with no relapse, a decrement of 0.045 was applied to the mean utility scores for RRMS patients with no relapse
- To obtain the utilities for RRMS patients with relapse, a decrement of 0.071 was applied to the mean utility scores for RRMS patients with no relapse
- To obtain the utilities for SPMS patients with relapse, a decrement of 0.071 was applied to the mean utility scores for SPMS patients with no relapse

Company evidence submission template for peginterferon beta-1a for treating relapsingremitting multiple sclerosis

© Biogen (2019). All rights reserved

EDSS	No relapse		Relapse					
	RRMS	SPMS	RRMS	SPMS				
0	0.8700	0.8250	0.799	0.7540				
1-1.5	0.7990	0.7540	0.728	0.6830				
2-2.5	0.7050	0.6600	0.634	0.5890				
3-3.5	0.5740	0.5290	0.503	0.4580				
4-4.5	0.6100	0.5650	0.539	0.4940				
5-5.5	0.5180	0.4730	0.447	0.4020				
6-6.5	0.4600	0.4150	0.389	0.3440				
7-7.5	0.2970	0.2520	0.226	0.1810				
8-8.5	-0.0490	-0.0940	-0.120	-0.1650				
9-9.5	-0.1950	-0.2400	-0.266	-0.3110				

Table 39.Utility by EDSS level stratified by relapse versus no relapse and
RRMS versus SPMS

EDSS = Expanded Disability Status Scale; RRMS = relapsing-remitting multiple sclerosis; SPMS = secondary-progressive multiple sclerosis.

Alternative values used in scenario analyses were derived based on pooled data sets from the original 2002 MTA ScHARR model⁵, which relied on information from a two-stage survey of 1,554 respondents from the MS Trust database, and the UK MS RSS cohort as described in the assessment group report for TA527.

NICE accepts the effect of a treatment on the utility of caregivers as a valid benefit of treatment.^{94,170,211} Caregiver disutility values by EDSS and disease phase (i.e., RRMS vs. SPMS) were derived from a study by Acaster et al. (2013).¹⁸⁰ Alternative caregiver disutility values are taken from Gani et al. (2008).²¹² Both sets of disutilities are shown in Table 40, where the same disutility is assumed to be valid for both disease phases.

	versus SPN	IS					
	Acaster et al. (2	013) ¹⁸⁰ (base case)	Gani et al. (2008	⁸⁾²¹² (scenario)			
EDSS	RRMS	SPMS	RRMS	SPMS			
0	-0.0020	-0.0020	0.0000	0.0000			
1-1.5	-0.0020	-0.0020	-0.0014	0.0000			
2-2.5	-0.0020	-0.0020	-0.0032	-0.0032			
3-3.5	-0.0020	-0.0020	-0.0091	-0.0091			
4-4.5	-0.0450	-0.0450	-0.0090	-0.0090			
5-5.5	-0.1420	-0.1420	-0.0199	-0.0199			
6-6.5	-0.1670	-0.1670	-0.0272	-0.0272			
7-7.5	-0.0630	-0.0630	-0.0534	-0.0534			
8-8.5	-0.0950	-0.0950	-0.1070	-0.1070			
9-9.5	-0.0950	-0.0950	-0.1400	-0.1400			

Table 40. Caregiver utility decrements by EDSS level stratified by RRMS versus SPMS

EDSS = Expanded Disability Status Scale; RRMS = relapsing-remitting multiple sclerosis; SPMS = secondary-progressive multiple sclerosis.

After the patient utilities are calculated, they are multiplied by the number of patients in each health state at each cycle. These values are added up across the health states for each cycle to obtain the patient QALYs of both sub-cohorts over time. For reporting purposes, the patient QALYs of both sub-cohorts are added each year. This is done with the caregiver QALY decrements as well.

B.3.5 Cost and healthcare resource use identification, measurement and valuation

An SLR was conducted to identify costs and resource use in the treatment and ongoing management of adult patients with MS from a UK perspective as described in Appendix I. A total of 114 costs and healthcare resource use studies were identified. Five of these studies were (at least partly) captured costs and/or resource use in the UK (Adlard et al., 2017²¹³; Kobelt et al., 2017⁷¹; Thompson et al., 2017¹⁹⁹; Hawton et al., 2016²¹⁴, and Zarkali et al., 2017²¹⁵) out of which only one was explicitly stated as having been conducted in England (Zarkali et al., 2017²¹⁵). Costs and healthcare resource use were presented by EDSS score in three studies (Kobelt et al., 2017⁷¹; Thompson et al., 2017¹⁹⁹, and Hawton et al., 2016²¹⁴). Most of the remaining studies were conducted in North America, Europe, and Asia and are considered less relevant for decision making in England, therefore only the UK studies were included in this submission.

In the same manner as the health outcomes, cost outcomes are also calculated during each cycle. The individual components of the overall cost are calculated. From the payer's perspective, these components include direct disease management, drug acquisition, administration, monitoring, relapse, and AE management costs. Indirect costs include the relapse and disease management costs. All costs are multiplied by the half-cycle corrected patient numbers (except for the DMTs for which the half-cycle correction does not apply).

B.3.5.1 Intervention and comparators' costs and resource use

Annual treatment acquisition costs are considered in the model for each treatment and are only applied while patients are on treatment (Table 41). Costs are sourced from the British National Formulary (BNF). Disease management costs by the EDSS level are provided in Table 43.

There are no administration costs associated with teriflunomide and DMF (oral DMTs). For pegIFN β -1a, IM IFN β -1a, IFN β -1a 22, IFN β -1a 44, IFN β -1b and the GAs 20/40, genGA 20/40, the administration cost is the same (cost of teaching the patients to self-administer the DMT) and applies only for the first year. For alemtuzumab and ocrelizumab, there is a differential administration cost between first and subsequent years (Table 41). The resource use associated with the administration costs are provided in Appendix M.

The annual cost of routine monitoring while patients are on treatment is considered separately for the first year of treatment and subsequent years and is calculated from the expected resource use per patient per year on treatment. Details on the unit costs and frequencies of the resources used are provided in Table 41.

	Drug acq	uisition	Administra	ation cost	monitoring cost	
Treatment	First year	Subsequent years	First year	Subsequent years	First year	Subsequent years
PegIFNβ-1a	£8,502	£8,502	£159.00	£0.00	£238.07	£207.45
IM IFNβ-1a 30*	£8,502	£8,502	£159.00	£0.00	£238.07	£207.45
IFNβ-1a 22*	£7,976	£7,976	£159.00	£0.00	£271.94	£207.45
IFNβ-1a 44 *	£10,572	£10,572	£159.00	£0.00	£271.94	£207.45
IFNβ-1b*	£7,239	£7,239	£159.00	£0.00	£238.07	£207.45
GA 20*	£6,681	£6,681	£159.00	£0.00	£171.00	£171.00
GA 40*	£6,681	£6,681	£159.00	£0.00	£171.00	£171.00
GenGA 20*	£6,013	£6,013	£159.00	£0.00	£171.00	£171.00
GenGA 40*	£6,013	£6,013	£159.00	£0.00	£171.00	£171.00
Teriflunomide*	£13,529	£13,529	£0.00	£0.00	£618.08	£345.78
DMF*	£17,849	£17,849	£0.00	£0.00	£441.42	£266.47
Alemtuzumab	£35,225	£21,135	£2,742.10	£1,674.10	£653.08	£580.80
Ocrelizumab*	£19,160	£19,160	£1,633.49	£1,088.99	£229.98	£203.02

 Table 41.
 Annual Treatment-related costs for each treatment (2018 values)

DMF = dimethyl fumarate; GA = glatiramer acetate; genGA = generic glatiramer acetate; IM = intramuscular; pegIFNβ-1a = pegylated interferon.

* comparator associated with confidential commercial agreements that has not been accounted for.

B.3.5.1.1 Alemtuzumab re-treatment rates

Five-year follow up data of the pivotal phase 3 studies for alemtuzumab have shown that a considerable proportion of patients need require re-treatment with alemtuzumab in years 3-5 (beyond the licensed posology of 5 infusions in year 1, followed by 3 infusions in year 2) or need to switch to other DMTs predominantly due to recurring disease activity. It is currently unclear how many of these additional cycles of treatment are commissioned by NHS England.

In TA303, the need for re-treatment with alemtuzumab was taken into consideration by the committee in decision making; all subsequent appraisals have also included including retreatment up to and including year 5. For this appraisal, average re-treatment rates for years 3-5 from the CARE MS I and II follow up data were applied (19%, 16%, and 14% respectively)^{216,217}. Switching to other DMTs after failure on alemtuzumab has not been accounted for with patients following the natural history disease progression following any discontinuation (all-cause, SPMS conversion or progression > EDSS 7), consistent for all comparators.

B.3.5.1.2 Administration costs – resource use

For teaching the patients to self-administer the DMT, 3 hours of a nurse's time has been assumed, with the unit cost sourced from the PSSRU for a a band 7 community nurse.²¹⁸ The cost per hour of advanced community nurse was included.

For alemtuzumab and ocrelizumab, the resource used for treatment administration varies across the first and second years alligned with the dosing schedule, and presented in Appendix M.

B.3.5.2 Costs and resource use associated with the health states

B.3.5.2.1 Disease management costs

The systematic review conducted in accordance with the NICE methods guide identified three studies that reported resource use and costs by EDSS health state for the UK (Kobelt et al., 2017⁷¹; Thompson et al., 2017¹⁹⁹; and Hawton et al., 2016²¹⁴). We have also considered the three additional studies (Karampampa et al., 2012⁶⁰; Kobelt et al., 2006⁸⁰; Tyas et al., 2007⁸³) that have been frequently discussed in the previous technology appraisals (Table 26). These six studies are outlined in Table 42.

The study sample of Kobelt et al. $(2017)^{71}$ and Thomson et al. $(2017)^{199}$ was based on 779 respondents. The proportions of these subgroups compared with the overall study population are unknown for the Hawton et al. $(2016)^{214}$ study, which is about "people with MS."

The publication by Tyas et al. (2007)⁸³ uses the same resource data as the UK MS Survey (2005), with unit costs applied from the PSSRU and NHS reference costs. The Tyas et al. publication also separates costs into medical, non-medical, out of pocket, and indirect costs.

In general, a clear trend was observed in all studies from the literature correlating increased costs with increasing disability, in particular with severe disability (EDSS 7-9). The type of MS (RRMS or SPMS) also has an impact on resource use, with more progressive disease associated with higher cost.

	Kobelt et al. (2017) ⁷¹ Mean total annual cost per patient ^a	Kobelt et al. (2017) ¹⁹⁹ Total mean annual cost per patient ^b	Hawton et al. (2016) ¹⁷⁹ (Annualised) mean (SD) 2016 ^c	Kobelt et al. (2006) ⁸⁰ UK MS Survey 2005 Total mean annual cost per patient ^d	Karampampa et al. (2012a) ⁶⁰ (Excluding DMT costs) Mean ^c	Tyas et al. (2007) ⁸³ Mean (SD) ^c
Sample size	779 (UK sample)	779	289 (with EDSS)	2,048 (UK sample)	119	2,048
Cost year	2015	2015	2012	2004	2009	2005
EDSS score 0	€2,140	£425	£1,020 (281)	€7,260	£1,345	£250 (1,975)
EDSS score 1		£499	£910 (168)			£85 (899)
EDSS score 2		£2,840	£716 (92)			£213 (868)
EDSS score 3		£2,450	£668 (81)			£850 (1,237)
EDSS score 4	€4,060	£1,470	£1,002 (110)	€9,060	£2,602	£806 (884)
EDSS score 5		£1,350	£1,006 (120)	1		£1,419 (823)
EDSS score 6	1	£1,990	£1,304 (94)	1		£2,162 (851)

 Table 42.
 Annual disease management costs by EDSS level

	Kobelt et al. (2017) ⁷¹ Mean total annual cost per patient ^a	Kobelt et al. (2017) ¹⁹⁹ Total mean annual cost per patient ^b	Hawton et al. (2016) ¹⁷⁹ (Annualised) mean (SD) 2016 ^c	Kobelt et al. (2006) ⁸⁰ UK MS Survey 2005 Total mean annual cost per patient ^d	Karampampa et al. (2012a) ⁶⁰ (Excluding DMT costs) Mean ^c	Tyas et al. (2007) ⁸³ Mean (SD)°
EDSS score 6.5		£2,960	-			-
EDSS score 7	€7,040	£2,960	£1,316 (180)	€10,300		£6,583 (995)
EDSS score 8		£4,330	£3,320 (395)		£3,961	£10,761 (1,069)
EDSS score 9		£8,160	Not reported			£15,121 (2,656)

DMT = disease-modifying therapy; EDSS = Expanded Disability Status Scale.

^a UK-specific values were digitised based on Figure 6 – "Direct healthcare" costs.
 ^b Values were digitised based on Figure 6 – "Direct healthcare" costs – the total of "Hospital care" and "Outpatient Care" costs.

^c Values are obtained from NICE TA533 (Table 87).

^d UK-specific values were digitised based on Figure 3 – "Direct healthcare" costs.

Disease management costs in the economic model are separated into two types:

- Costs of disease management by EDSS states and disease phase (excluding costs of DMTs, informal care, social security, and assistance, as well as relapses)
- Costs of treating MS relapses

The health states used in the base case have been summarised in Table 43, and were obtained from TA320 inflated 7% from 2011/12 to 2017/18 values using the HCHS index from the PSSRU 2018. Use of the TA320 values were preferred by the assessment group in TA527 following a critical appraisal of available sources.

Values from TA320 were based on a Seemingly Unrelated Regression (SUR) analysis of the UK MS Survey 2005 resource use data used in TA127, with updated unit costs applied to the the resource use estimates. The SUR estimated the impact of various covariates upon the likelihood of resource use compared to a reference patient of 0 years, female, RRMS, EDSS 0, no relapse and no DMT.

The UK MS survey 2005 is a UK specific cross-sectional postal survey. The sample size was large at n=2,048 (response rate 16%) using patients in the MS Trust database, which may introduce selection bias. No data is presented on the characteristics of non-responders. The majority of respondents (60%), were between EDSS 4.0 and EDSS 6.5, with few responses for EDSS states 0, 3 and 9.

Resource use data is collected over 115 different resource use items. The NHS&PSS analysis includes:

- Direct NHS medical costs
- Direct non-medical social care costs
- Aids and appliances costs

The cost of treating MS relapses (NHS and PSS perspective: £2,168 [2017/2018], inflated 7% from 2011/2012 values using the HCHS index from PSSRU 2018²¹⁹) and the disease management costs by EDSS level from the NHS and PSS perspective were also obtained from TA320 (which were derived using a seemingly unrelated regression using data from the UK MS survey 2005⁸³ inflated to 2017/2018 values by 7% from 2012 values). At each cycle, the disposition (the number of patients in each EDSS state in RRMS and SPMS) is multiplied by the annual management cost and summed across EDSS states. This is done for both sub-cohorts to give the direct disease management costs every year.

	NHS and PSS perspective (£, base case)						
EDSS	RRMS	SPMS					
0	£965	£1,301					
1-1.5	£1,004 £1,34						
2-2.5	£735 £1,071						
3-3.5	£4,025	£4,360					
4-4.5	£1,950	£2,285					
5-5.5	£3,307	£3,644					
6-6.5	£4,415	£4,750					
7-7.5	£11,621	£11,956					
8-8.5	£28,304	£28,640					
9-9.5	£22,648	£22,985					
Cost of relapse	£2,168	_					

 Table 43.
 Disease management costs by EDSS level (2016/2017 values)

EDSS = Expanded Disability Status Scale; NHS = National Health Service; PSS = personal social services; RRMS = relapsingremitting multiple sclerosis; SPMS = secondary-progressive multiple sclerosis.

B.3.5.2.2 Monitoring costs – resource use

Unit costs of the resources are provided in Appendix M. The annual cost of routine monitoring while patients are on treatment is considered separately for the first year of treatment and subsequent years and is calculated from the expected resource use per patient per year on treatment (Appendix M).

B.3.5.3 Adverse reaction unit costs and resource use

The model requires five types of inputs related to AEs:

- 1. Annualised incidence of each AE
- 2. Proportion of AEs reported as non-serious and serious
- 3. Unit cost of each AE (serious and non-serious)
- 4. Disutility of each AE (serious and non-serious)
- 5. Duration of each AE (serious and non-serious)

The derivation of the AE annual unit cost is similar to the derivation of the AE annual disutility. It is calculated for each AE by weighting the cost for a serious and a non-serious event by the proportion of serious events. Then, the incidence of the event is applied. This weighted annual cost is calculated for all AEs and then summed to give an annual AE-associated cost for each treatment. All costs above were summed each year to give the total direct cost each year.

The cost of managing each AE that was considered in the model is presented in Appendix M.

The duration of each AE (both serious and non-serious) is shown in Table 38. Details on resource use and resource unit costs are provided in Appendix M, respectively.

B.3.5.4 Miscellaneous unit costs and resource use

There are no additional costs included in the model apart from those outlined in the previous sections.

B.3.6 Summary of base-case analysis inputs and assumptions

B.3.6.1 Summary of base-case analysis inputs

Main inputs and the data sources for the based case are as follows:

- Natural history transitions:
 - Data from the University of British Columbia for the natural history transitions across EDSS levels for patients with RRMS
 - Data from the London, Ontario database were used to model the natural history transitions from RRMS to SPMS and during SPMS
 - Annual RRs by EDSS level were obtained from the UK MS survey 2005 and Patzold (1982)¹⁷⁵
- The comparative efficacy of treatments versus placebo were obtained from the network meta-analysis and MTC analysis
- Patients stopped treatment after progression to an EDSS level ≥ 7 or upon conversion to SPMS. An overall discontinuation risk was applied for each comparator over the time horizon of the model
- Utility scores by EDSS level came from a study by Orme et al. (2007)⁷⁸ based on the UK MS Survey 2005
- Health state costs by EDSS level were derived from a Tyas et al. (2007)⁸³, based on the UK MS Survey 2005.

Further details of the input values or the relevant sections of this dossier where these values are provided are reported in Table 44.

Variable	Value	Measurement of uncertainty and distribution	Reference to section
Patient demographics			
Age	36 years	Scenario analysis	B.3.2.1
Gender (Male)	29.0%	Scenario analysis	B.3.2.1
Baseline EDSS distribution	Table 24	Scenario analysis	B.3.2.1
Model structure			
Time horizon	50 years	Fixed	B.3.2.2
Cycle length	1 year	(Consistent with previous appraisals - Table 26)	B.3.2.2
Discount rate for costs and outcomes	3.5%	appraisais - Table 20)	B.3.2.2
Half cycle correction	Yes		B.3.2.2

 Table 44.
 Summary of variables applied in the economic model

Transition probabilities	5		
EDSS Relapse rate	Table 31	Lognormal	B.3.3.1.4
RRMS to RRMS transition matrix			B.3.3.1.1
RRMS to SPMS	Table 29	Dirichlet	B.3.3.1.2
Treatment effect	·		
Relapse rate	Table 36	Lognormal	B.2.9.3
Disability progression	Table 34	Lognormal	B.2.9.3
All-cause discontinuation	Table 32	Beta	B.3.3.2.1
Utilities			
Patient utility by EDSS	Table 39	Beta	B.3.4.5
Caregiver utility decrement	Table 40	Beta	B.3.4.5
AE disutility	Table 38	Beta	B.3.4.4
Costs			
Drug acquisition	Table 41	Fixed	B.3.5.1
Drug administration	Table 41	Fixed	B.3.5.1
Monitoring	Table 41	Fixed	B.3.5.1
AE costs and management	Appendix M	Gamma	B.3.5.3
Cost per EDSS health state	Table 43	Gamma	B.3.5.2.1
Cost of relapse	Table 43	Gamma	B.3.5.2.1

AE = adverse event; EDSS = Expanded Disability Status Scale; MTC = mixed-treatment comparison; RRMS = relapsingremitting multiple sclerosis; SPMS = secondary-progressive multiple sclerosis.

B.3.6.2 Assumptions

Table 45 presents a list of the main parameters and assumptions used in the economic analysis.

Parameter	Base-case assumption	Justification
Disability progression	Disability progression and relapses were modelled independently, with independent treatment effects applied to each.	In line with previous NICE TAs (Table 26). EDSS progression is a key driver of cost-effectiveness.
		A number of studies have shown a strong correlation between EDSS, resource consumption, and HRQOL. EDSS is the preferred tool for measuring disability in people with MS as recommended by the EMA.
		This approach avoids any potential double counting. In

 Table 45.
 Key assumptions within the economic model

Parameter	Base-case assumption	Justification
		addition, it is a pragmatic approach, as modelling relapses as independent health states would significantly increase size and complexity of the model.
		However, this approach could have overestimated the effect of treatment on the ARRs, as they depended on the EDSS level. However, as the natural history ARRs were lower at higher levels of EDSS during the RRMS phase and during SPMS, the possible overestimated effect of treatment in the ARRs for pegIFNβ-1a could have been offset.
	Treatments had an indirect effect on the risk of progression to SPMS and mortality.	Delaying progression to higher EDSS levels avoids higher mortality multipliers associated with risk of mortality from MS and avoids higher probabilities of progression to SPMS.
	Transition probabilities within RRMS: "The resulting natural history matrix has non-zero elements below its diagonal, reflecting the assumption that patients can improve to a lower EDSS level within the RRMS phase of the disease".	As per the definition of RRMS, patients can regress (demonstrated in the BCMS data set), as per the definition of SPMS patients cannot regress – aligned with the London, Ontario, data set.
	Transition probabilities within SPMS: This matrix is upper-triangular (i.e., with zero elements below the diagonal), reflecting the assumption that patients cannot improve to a lower EDSS level while in the SPMS phase.	
	After treatment discontinuation, patients are assumed to follow the natural disease progression course.	In line with previous NICE TAs (Table 26). An escalation of treatment (such as to fingolimod/ ocrelizumab, and alemtuzumab) would be likely in clinical practice. This approach would make treatments with the highest discontinuation rates most cost- effective ones, as they transition to higher efficacy drugs.
Mortality	The same RRs were assumed for the RRMS and SPMS phases.	Due to lack of data (conservative assumption)
Treatment waning	The treatment effect assumed to wane over time, with the same decline applying to all DMTs.	In line with previous NICE TAs (Table 26).
	Year 1-2: 100% of the treatment benefit	

Parameter	Base-case assumption	Justification
	 Years 3-5: 75% of the full treatment effect Year 6 onwards: 50% of the full treatment effect 	
	This assumption was applied equally to all comparators.	
Time horizon	50 years	Lifetime equivalent consistent with NICE reference case.
HRQOL	Fatigue, injection-site reaction – erythema, injection-site reaction – pain, and injection- site reaction – pruritus assumed not be associated with a disutility.	Due to lack of data.
	It was assumed that a patient who received treatment would incur the risk of disutility and costs associated with AEs for each year in the model. This may have overestimated the impact of AEs, as patients with severe/frequent AEs may have withdrawn from treatment during the first few years.	Due to lack of data.
	Caregiver disutility values by EDSS and disease phase (i.e., RRMS vs. SPMS) were assumed to be the same for both disease phases.	Due to lack of data (conservative assumption)
Costs	Non-serious type of fatigue, injection-site reaction – erythema, injection-site reaction – pain, injection-site reaction – pruritus, and nasopharyngitis are assumed to have no costs associated with them.	Injection-site reactions often do not lead to any resource use, particularly not ones relevant as part of a payer perspective.

AE = adverse event; DMT = disease-modifying therapy; EDSS = Expanded Disability Status Scale; EMA = European Medicines Agency; HRQOL = health-related quality-of-life; MS = multiple sclerosis; NICE = National Institute for Health and Care Excellence; RRMS = relapsing-remitting multiple sclerosis; SPMS = secondary-progressive multiple sclerosis; TA = technology assessment.

B.3.7 Base-case results

B.3.7.1 Base-case incremental cost-effectiveness analysis results

Base-case analyses have been conducted using list prices only. Results should be interpreted with caution for comparisons against technologies that are recommended contingent upon commercial agreements.

For the base case using it was not possible to obtain results for IFN β -1a 22 (Rebif[®] 22) and IFN β -1b (Extavia[®]), due to the lack of relative efficacy estimates for these comparators (CDP6M HR vs. placebo was not available from the network meta-analysis for any of these comparators, and for SC IFN β -1a 22 there was no estimate for the ARR ratio vs. placebo). For GA 40 (Copaxone[®] 40), genGA 20 (Brabio[®] 20) and genGA 40 (Brabio[®] 40) CDP estimates were assumed at parity to GA20 (Copaxone[®] 20), due to lack of outcome reporting.

Full incremental analyses using all comparators for which there was relative efficacy available are presented. The comparators are ordered using their total cost in ascending order (i.e., $pegIFN\beta$ -1a had the lowest total cost and ocrelizumab the highest).

Company evidence submission template for peginterferon beta-1a for treating relapsingremitting multiple sclerosis

© Biogen (2019). All rights reserved

Results for the base case indicate that pegIFN β -1a was a dominant treatment (i.e., cost saving and with higher QALYs) compared with teriflunomide, IFN β -1a (Avonex®, Rebif® 44), all doses of GA (including genGA), and DMF. Compared with alemtuzumab, pegIFN β -1a had a lower total cost and lower QALYs, hence pegIFN β -1a was a less costly and less effective; alemtuzumab could be considered highly cost-effective versus pegIFN β -1a with an ICER of £1,155 per QALY gained. Compared with ocrelizumab, pegIFN β -1a was less costly and less effective; using ocrelizumab as the reference comparator the ICER versus pegIFN β -1a will be £131,776, hence ocrelizumab will not be cost-effective when using a willingness-to-pay threshold of £20,000 per QALY gained.

Patients receiving pegIFN β -1a spent more time (undiscounted years) with an EDSS score < 7 than patients receiving all other DMTs except alemtuzumab and ocrelizumab; the EDSS level of patients receiving all DMTs other than alemtuzumab and ocrelizumab was predicted to have a similar increase from baseline after 50 years (5.9 points on average, vs. 5.0 and 5.6 point increase on average, for alemtuzumab and ocrelizumab, respectively). Patients receiving pegIFN β -1a spent the third largest amount of years (undiscounted) over lifetime free of SPMS; pegIFN β -1a was associated with higher QALYs than IFN β -1a 30, IFN β -1a 44 GA and genGA 20/40, teriflunomide and DMF. PegIFN β -1a and alemtuzumab had the highest life years.

Over 50 years, the total discounted cost of pegIFN β -1a was the lowest. Alemtuzumab had a slightly lower total cost, which was about 0.5% more costly than pegIFN β -1a. The total cost for pegIFN β -1a is low due to 1) the savings on disease management costs, where pegIFN β -1a ranks as the DMT with the third lowest behind alemtuzumab and ocrelizumab, and 2) pegIFN β -1a also ranks as the fifth lowest DMT in total drug acquisition cost, behind GA and genGA by a small margin, largely driven by higher discontinuation rates.

A summary of the analysis results comparing pegIFN β -1a with other DMTs is shown in Table 46.

				,			
		Total			Incremental		ICER
Treatment	Costs	LYs	QALYs	Costs	LYs	QALYs	£/QALY
pegIFNβ-1a	£ 273,641	19.275	4.393				*
alemtuzumab	£ 274,892	19.281	5.475	£ 1,250	0.006	1.082	£1,155
genGA 20	£ 282,343	19.194	3.646	£ 7,451	-0.087	-1.829	dominated
genGA 40	£ 284,674	19.195	3.658	£ 9,783	-0.086	-1.818	dominated
GA 20	£ 285,064	19.194	3.646	£ 10,173	-0.087	-1.829	dominated
GA 40	£ 287,676	19.195	3.658	£ 12,784	-0.086	-1.818	dominated
SC IFNβ-1a 44	£ 292,969	19.258	4.224	£ 18,077	-0.024	-1.251	dominated
IM IFNβ-1a 30	£ 294,199	19.228	3.929	£ 19,307	-0.053	-1.547	dominated
teriflunomide	£ 297,437	19.211	3.796	£ 22,545	-0.070	-1.679	dominated
DMF	£ 308,506	19.224	3.949	£ 33,614	-0.057	-1.526	dominated
ocrelizumab	£ 339,668	19.201	4.894	£ 64,776	-0.080	-0.581	dominated

Table 46.	Base-case results –	deterministic analy	vsis – full incrementa	l analvsis
i able 40.	Dase-Case results -	uelerininistic analy	ysis – iuli incrementa	i analys

DMF = dimethyl fumarate; GA = glatiramer acetate; genGA = generic glatiramer acetate; ICER = incremental cost-effectiveness ratio; IFN = interferon; IM = intramuscular; LY = life-year; pegIFNβ-1a = pegylated interferon; QALY = quality-adjusted life-year SC = subcutaneous.

B.3.8 Sensitivity analyses

B.3.8.1 Probabilistic sensitivity analysis

In the probabilistic sensitivity analysis (PSA), the model was run for 5,000 simulations to generate scatter plots of incremental QALYs versus incremental cost (discounted per patient over 50 years), and to generate cost-effectiveness acceptability curves (Figure 34 to Figure 53). To account for statistical uncertainties of multiple key parameters, PSAs were performed by simultaneously varying the following parameters:

- Log-normal distribution: rate ratios for the ARRs and CDP HRs relative to placebo, ARRs by EDSS level, incidence of AEs, RR for MS mortality
- Beta distribution: transition probabilities from RRMS to SPMS, annual treatment discontinuation risk, proportion of AEs reported as serious, disutility for SAEs and non-SAEs, and patient utilities
- **Gamma distribution:** SAE and non-SAE management costs and duration, cost of relapse, and disease management costs
- **Dirichlet distribution:** transition probabilities between RRMS and SPMS EDSS levels

Where a standard error or CI was not available for a selected parameter, a \pm 25% variation from the mean was assumed, which is a common approach used in economic models.^{220,221}

Mean PSA results based on 5,000 simulations are presented in Table 47, which demonstrates that alemtuzumab dominates all other comparators. Compared to the deterministic results, alemtuzumab is 0.25% less costly than pegIFN β -1a, hence the change from the deterministic results.

Based on the results of 5,000 simulations, the probability of pegIFN β -1a being cost-effective compared with genGA 20 is 85%; with genGA 40 is 87%; with GA 20 is 89%; with GA 40 is 90%; with IFN β -1a 44 is 92%; with IM IFN β -1a 30 is 95%; with teriflunomide is 98%; with DMF is 99%; with ocrelizumab is 100%; and with alemtuzumab is 17%. These results are aligned with those in the base case.

The cost-effectiveness acceptability curves highlight that at any willingness-to-pay threshold, pegIFN β -1a has a higher probability of being the most cost-effective treatment option, except for the comparison with alemtuzumab, where alemtuzumab has a higher probability of being cost-effective. It should be noted that all analyses are conducted using list prices for comparators and should therefore be interpreted with caution for comparators where commercial agreements are in place.

Table 47. Dase-case results – probabilistic analysis							
	Total			Increment	ICER		
Treatment	Costs	LYs	QALYs	Costs	LYs	QALYs	£/QALY
alemtuzumab	£ 255,439	19.298	6.378				
pegIFNβ-1a	£ 256,067	19.350	5.259	£ 628	0.052	-1.119	dominated
genGA 20	£ 263,692	19.267	4.575	£ 8,253	-0.031	-1.802	dominated
genGA 40	£ 266,683	19.264	4.571	£ 11,244	-0.034	-1.807	dominated
GA 20	£ 266,761	19.253	4.560	£ 11,322	-0.045	-1.818	dominated
GA 40	£ 269,683	19.267	4.581	£ 14,244	-0.031	-1.797	dominated
IFNβ-1a 44	£ 276,057	19.335	5.125	£ 20,618	0.037	-1.252	dominated
IM IFNβ-1a 30	£ 277,288	19.305	4.851	£ 21,849	0.007	-1.527	dominated
teriflunomide	£ 279,016	19.264	4.721	£ 23,576	-0.034	-1.657	dominated
DMF	£ 290,828	19.298	4.863	£ 35,389	0.000	-1.515	dominated
ocrelizumab	£ 329,231	19.292	5.780	£ 73,792	-0.006	-0.598	dominated

Table 47. Base-case results – probabilistic analysis

DMF = dimethyl fumarate; GA = glatiramer acetate; genGA = generic glatiramer acetate; ICER = incremental cost-effectiveness ratio; IFN = interferon; IM = intramuscular; LY = life-year; pegIFN β -1a = pegylated interferon; QALY = quality-adjusted life-year SC = subcutaneous.

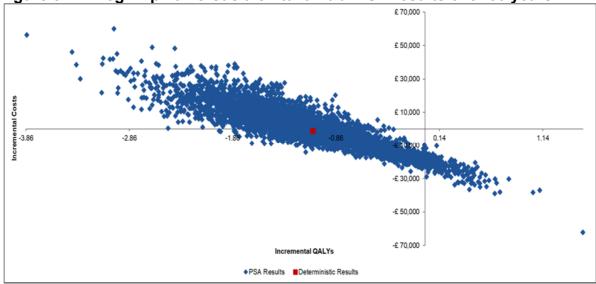
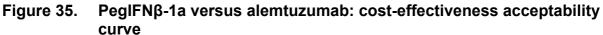
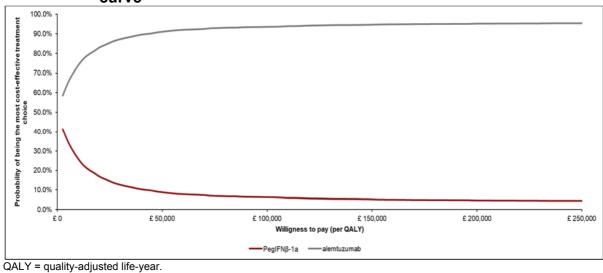




Figure 34. PegIFNβ-1a versus alemtuzumab: PSA results over 50 years

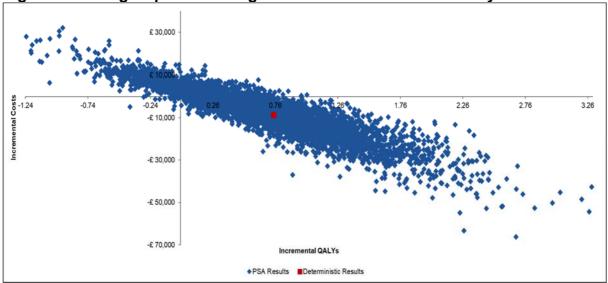
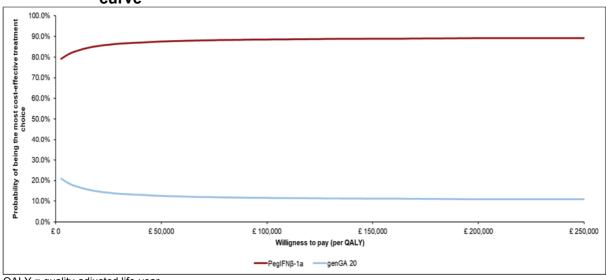



Figure 36. PegIFNβ-1a versus genGA 20: PSA results over 50 years

Figure 37. PegIFNβ-1a versus genGA 20: cost-effectiveness acceptability curve

QALY = quality-adjusted life-year.

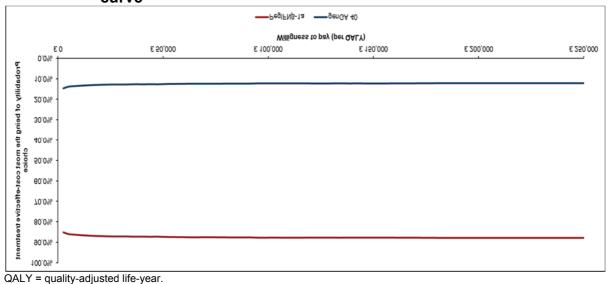



Figure 38. PegIFNβ-1a versus genGA 40: PSA results over 50 years

Figure 39. PegIFNβ-1a versus genGA 40: cost-effectiveness acceptability curve

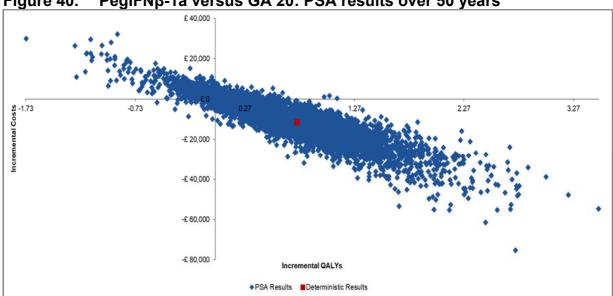
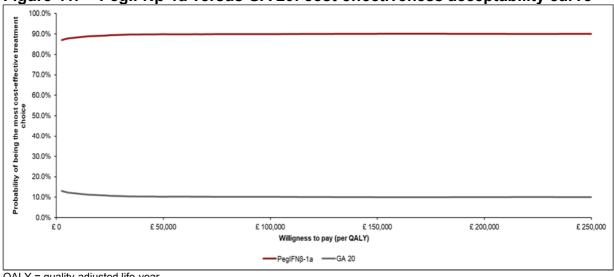
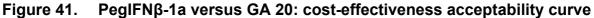




Figure 40. PegIFNβ-1a versus GA 20: PSA results over 50 years

QALY = quality-adjusted life-year.

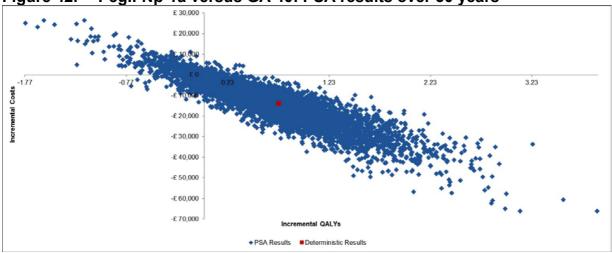


Figure 42. PegIFNβ-1a versus GA 40: PSA results over 50 years

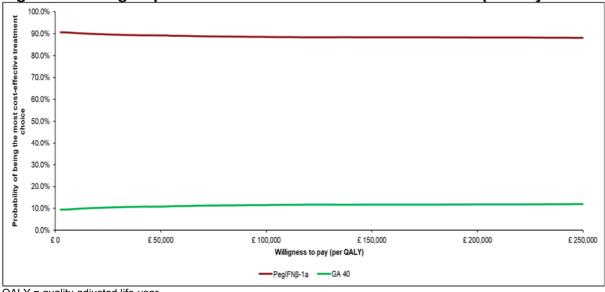


Figure 43. PegIFNβ-1a versus GA 40: cost-effectiveness acceptability curve

QALY = quality-adjusted life-year.

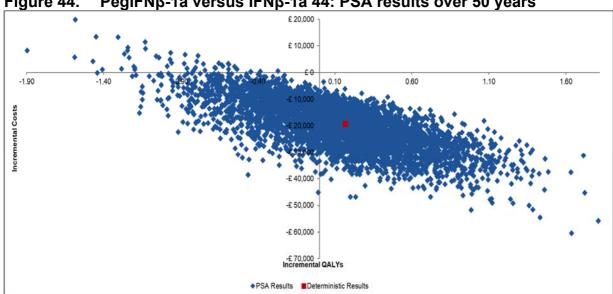



Figure 44. PegIFNβ-1a versus IFNβ-1a 44: PSA results over 50 years

PSA = probabilistic sensitivity analysis; QALY = quality-adjusted life-year; SC = subcutaneous.

QALY = quality-adjusted life-year; SC = subcutaneous.

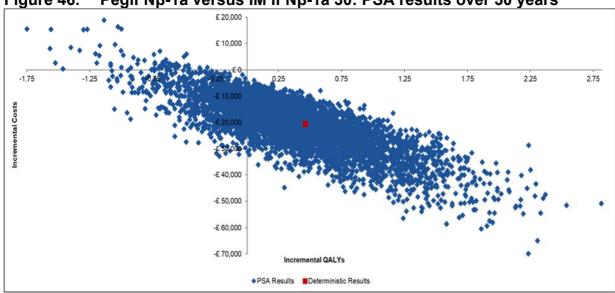
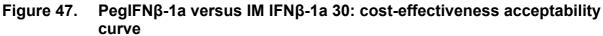
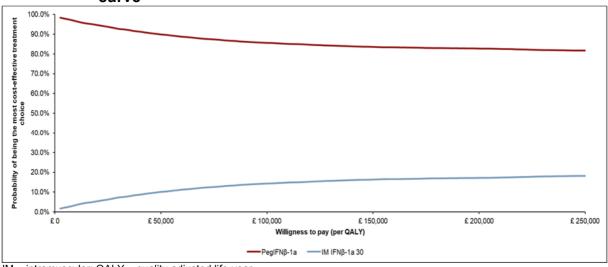




Figure 46. PegIFNβ-1a versus IM IFNβ-1a 30: PSA results over 50 years

IM = intramuscular; PSA = probabilistic sensitivity analysis; QALY = quality-adjusted life-year.

IM = intramuscular; QALY = quality-adjusted life-year.

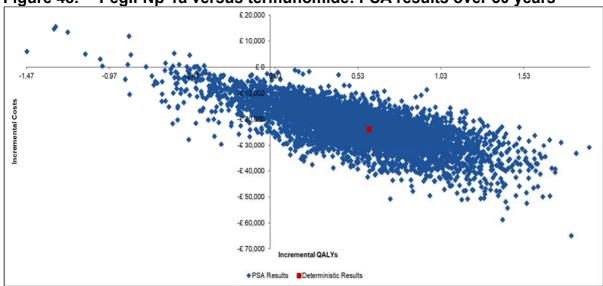
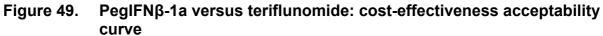
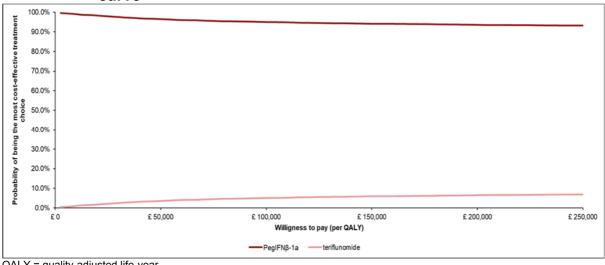




Figure 48. PegIFNβ-1a versus teriflunomide: PSA results over 50 years

QALY = quality-adjusted life-year.

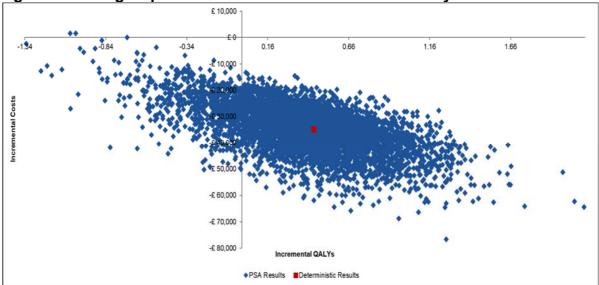
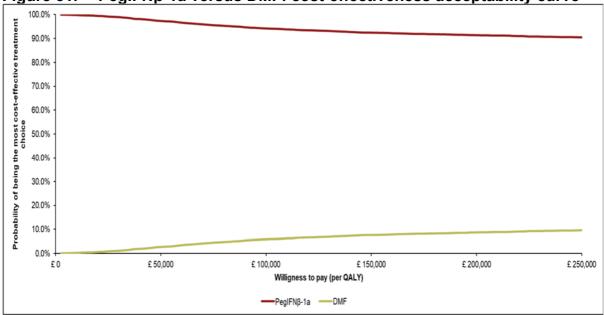



Figure 50. PegIFNβ-1a versus DMF: PSA results over 50 years

DMF = dimethyl fumarate; QALY = quality-adjusted life-year.

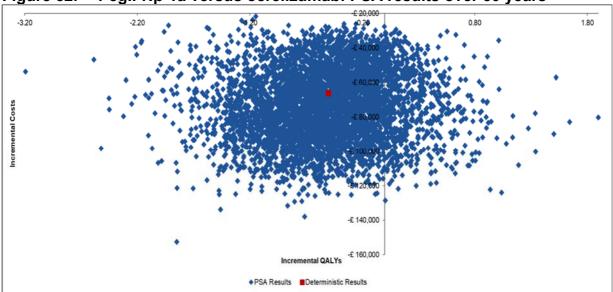
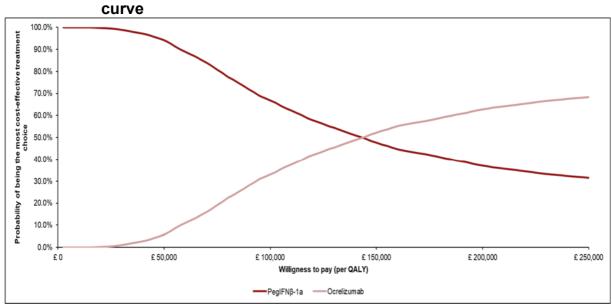
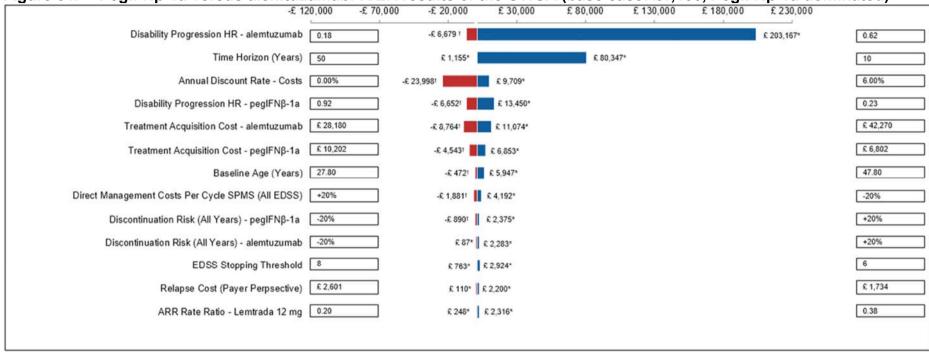



Figure 52. PegIFNβ-1a versus ocrelizumab: PSA results over 50 years

QALY = quality-adjusted life-year.

B.3.8.2 Deterministic sensitivity analysis


A one-way sensitivity analysis (OWSA) was carried out to evaluate how sensitive the estimated incremental cost, incremental QALYs, and ICER were to changes in each model parameter. OWSAs were conducted by systematically and iteratively varying one model parameter while holding all others constant. Where a standard error or CI was not available for a selected parameter, a \pm 20% variation from the base-case value was assumed for the lower and upper bounds.

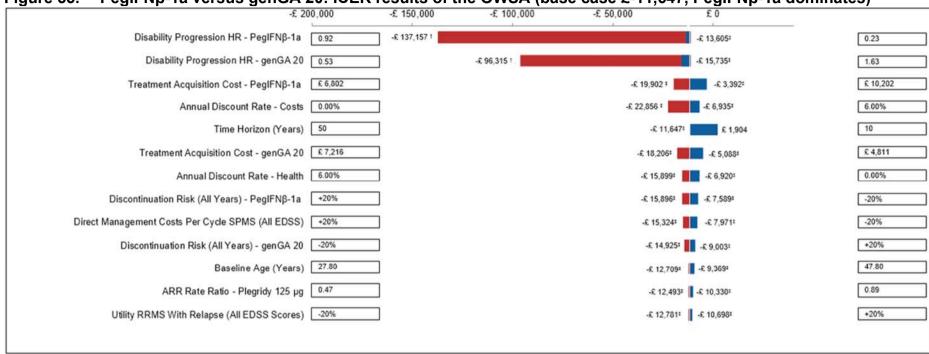
The results of the OWSA are presented as discounted per patient over 50 years. Tornado charts (Figure 54 to Figure 63) are used to illustrate the parameters that have the biggest impact on the results. In terms of the ICER, a willingness-to-pay threshold of £20,000 per QALY is used to determine cost-effectiveness.

The results from the OWSA show that the base-case results are robust, given that in most cases the OWSA results are in agreement with the base case.

- Compared with alemtuzumab (Figure 54), pegIFNβ-1a was a less costly and less effective in all but the following scenarios in which pegIFNβ-1a was dominated (more costly and less effective):
 - When the HR on disability progression for alemtuzumab was decreased to the lower bound of its 95% CI (i.e. alemtuzumab was assumed to better than in the base case)
 - When the HR on disability progression for pegIFNβ-1a was increased to the upper bound of its 95% CI (i.e. pegIFNβ-1a was assumed to worse than in the base case)
 - When the drug acquisition cost of alemtuzumab was using the lower bound, or the drug acquisition cost of pegIFNβ-1a was using the upper bound
 - When the baseline age was the lower bound
 - When the discontinuation rate of pegIFN β -1a was lowered 20%
 - When the cost of disease management of EDSS in SPMS was increased 20%
- Compared with genGA 20 (Figure 55), pegIFNβ-1a was a dominant treatment (i.e., less costly and more effective) in all but the following scenario where pegIFNβ-1a was dominated or cost-effective:
 - When the HR on disability progression for genGA 20 was decreased to the lower bound of its 95% CI (i.e. genGA 20 was assumed to better than in the base case)
 - $\circ~$ When the HR on disability progression for pegIFN β -1a was increased to the upper bound of its 95% CI (i.e., pegIFN β -1a was assumed to worse than in the base case)
 - \circ When the time horizon was reduced to 10 years (ICER = £1,904)
- Compared with genGA 40 (Figure 56), pegIFNβ-1a was a dominant treatment (i.e., less costly and more effective) in all but the following scenario, in which pegIFNβ-1a was where pegIFNβ-1a was dominated:
 - When the HR on disability progression for pegIFNβ-1a was increased to the upper bound of its 95% CI (i.e., pegIFNβ-1a was assumed to worse than in the base case)
- Compared with GA 20 (Figure 57), pegIFNβ-1a was a dominant treatment (i.e., less costly and more effective) in all scenarios where pegIFNβ-1a was dominated.
 - When the HR on disability progression for GA 20 was decreased to the lower bound of its 95% CI (i.e. GA 20 was assumed to better than in the base case)

- $\circ~$ When the HR on disability progression for pegIFN β -1a was increased to the upper bound of its 95% CI (i.e., pegIFN β -1a was assumed to worse than in the base case)
- Compared with GA 40 (Figure 58), pegIFNβ-1a was a dominant treatment (i.e., less costly and more effective) in all scenarios but the following scenario, in which pegIFNβ-1a was less costly and less effective:
 - When the HR on disability progression for pegIFNβ-1a was increased to the upper bound of its 95% CI (i.e., pegIFNβ-1a was assumed to worse than in the base case)
- Compared with SC IFNβ-1a 44 (Figure 59), pegIFNβ-1a was a dominant treatment (i.e., less costly and more effective) in all but two scenarios, in which pegIFNβ-1a was less costly and less effective:
 - When the HR on disability progression for IFNβ-1a 44 was reduced to the lower bound of its 95% CI (i.e., SC IFNβ-1a 44 was assumed to perform better than in the base case)
 - When the HR on disability progression for pegIFNβ-1a was increased to the upper bound of its 95% CI (i.e., pegIFNβ-1a was assumed to perform worse than in the base case)
- Compared with IM IFNβ-1a 30 (Figure 60), pegIFNβ-1a was a dominant treatment (i.e., less costly and more effective) in all but two scenarios in which pegIFNβ-1a was less costly and less effective:
 - When the HR on disability progression for IM IFNβ-1a 30 was reduced to the lower bound of its 95% CI (i.e., IM IFNβ-1a was assumed to perform better than in the base case)
 - When the HR on disability progression for pegIFNβ-1a was increased to the upper bound of its 95% CI (i.e., pegIFNβ-1a was assumed to perform worse than in the base case)
- Compared with teriflunomide (Figure 61), pegIFNβ-1a was a dominant treatment (i.e., less costly and more effective) in all but one scenario in which pegIFNβ-1a was less costly and less effective:
 - When the HR on disability progression for pegIFNβ-1a was increased to the upper bound of its 95% CI (i.e., pegIFNβ-1a was assumed to perform worse than in the base case)
- Compared with DMF (Figure 62), pegIFNβ-1a was a dominant treatment (i.e., less costly and more effective) in all but one scenario in which pegIFNβ-1a was less costly and less effective:
 - When the HR on disability progression for pegIFNβ-1a was increased to the upper bound of its 95% CI (i.e., pegIFNβ-1a was assumed to perform worse than in the base case)
- Compared with ocrelizumab (Figure 63), pegIFNβ-1a was less costly and less effective in all but one scenario in which pegIFNβ-1a was dominant (i.e., was less costly and more effective):
 - When the HR on disability progression for ocrelizumab was increased to the upper bound of its 95% CI (i.e., ocrelizumab was assumed to perform worse than in the base case)

Figure 54. PegIFNβ-1a versus alemtuzumab: ICER results of the OWSA (base case: £1,155, PegIFNβ-1a dominated)


ARR = annualised relapse rate; EDSS = Expanded Disability Status Scale; HR = hazard ratio; ICER = incremental cost-effectiveness ratio; OWSA = one-way sensitivity analysis; pegIFNβ-1a = pegylated interferon; RRMS = relapsing-remitting multiple sclerosis; SPMS = secondary-progressive multiple sclerosis.

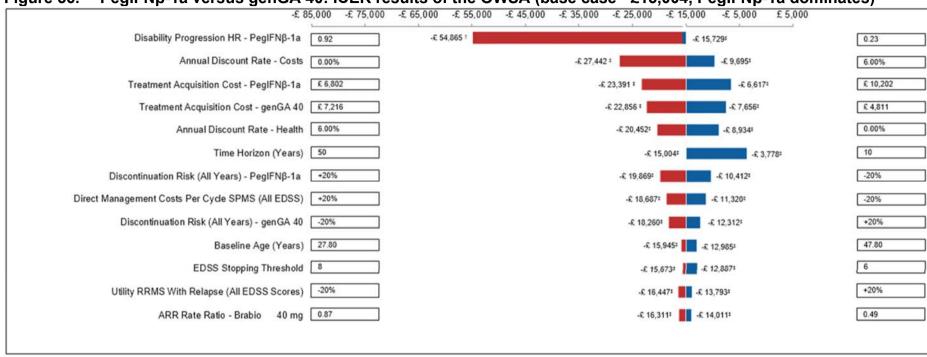
† PegIFNβ-1a dominated

* PegIFNβ-1a less costly, less effective

Red bars indicate the ICER of the lower bound value.

Blue bars indicate the ICER of the upper bound value.

Figure 55. PegIFNβ-1a versus genGA 20: ICER results of the OWSA (base case £-11,647, PegIFNβ-1a dominates)


ARR = annualised relapse rate; EDSS = Expanded Disability Status Scale; genGA = generic glatiramer acetate; HR = hazard ratio; ICER = incremental cost-effectiveness ratio; OWSA = one-way sensitivity analysis; pegIFNβ-1a = pegylated interferon; RRMS = relapsing-remitting multiple sclerosis; SPMS = secondary-progressive multiple sclerosis.

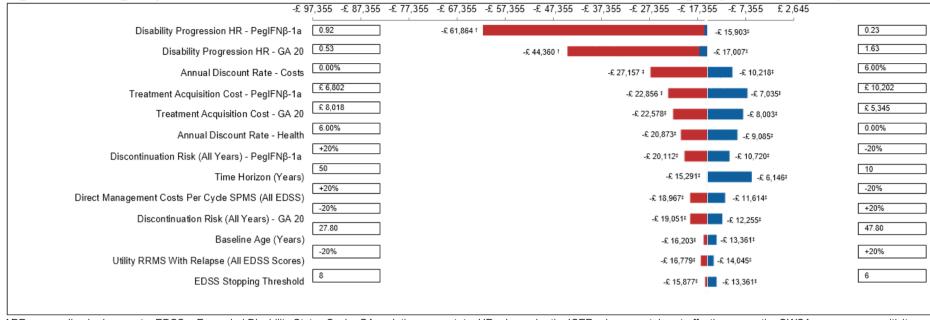
† PegIFNβ-1a dominated

 \ddagger PegIFN β -1a dominates

Red bars indicate the ICER of the lower bound value.

Blue bars indicate the ICER of the upper bound value.

Figure 56. PegIFNB-1a versus genGA 40: ICER results of the OWSA (base case -£15,004, PegIFNB-1a dominates)

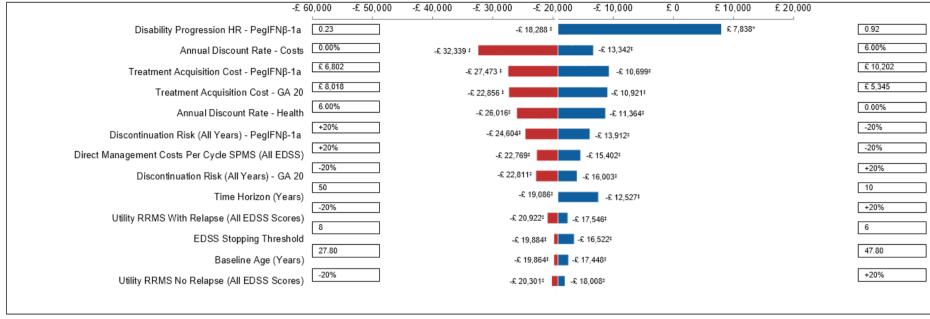

ARR = annualised relapse rate; EDSS = Expanded Disability Status Scale; genGA = generic glatiramer acetate; HR = hazard ratio; ICER = incremental cost-effectiveness ratio; OWSA = one-way sensitivity analysis; pegIFNβ-1a = pegylated interferon; RRMS = relapsing-remitting multiple sclerosis; SPMS = secondary-progressive multiple sclerosis.

+ PegIFN β -1a dominated

‡ PegIFNβ-1a dominates

Red bars indicate the ICER of the lower bound value.

Blue bars indicate the ICER of the upper bound value.


Figure 57. PegIFNβ-1a versus GA 20: ICER results of the OWSA (base case -£15,291 PegIFNβ-1a dominates)

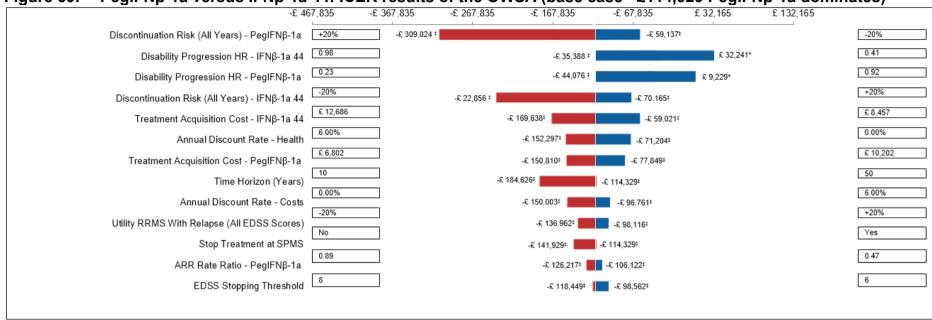
ARR = annualised relapse rate; EDSS = Expanded Disability Status Scale; GA = glatiramer acetate; HR = hazard ratio; ICER = incremental cost-effectiveness ratio; OWSA = one-way sensitivity analysis; pegIFNβ-1a = pegylated interferon; RRMS = relapsing-remitting multiple sclerosis; SPMS = secondary-progressive multiple sclerosis.

† PegIFNβ-1a dominated

‡ PegIFNβ-1a dominates

Red bars indicate the ICER of the lower bound value. Blue bars indicate the ICER of the upper bound value.

Figure 58. PegIFNβ-1a versus GA 40: ICER results of the OWSA (base case –£19,086, PegIFNβ-1a dominates)


ARR = annualised relapse rate; EDSS = Expanded Disability Status Scale; GA = glatiramer acetate; HR = hazard ratio; ICER = incremental cost-effectiveness ratio; OWSA = one-way sensitivity analysis; pegIFNβ-1a = pegylated interferon; RRMS = relapsing-remitting multiple sclerosis; SPMS = secondary-progressive multiple sclerosis.

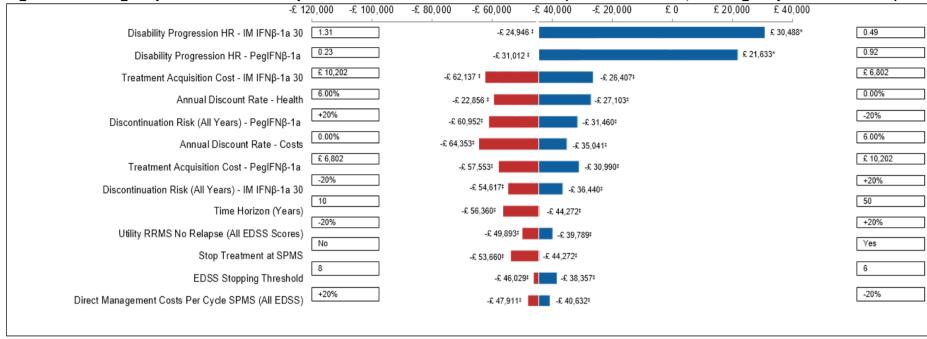
‡ PegIFNβ-1a dominates

* PegIFNβ-1a less costly, less effective

Red bars indicate the ICER of the lower bound value.

Blue bars indicate the ICER of the upper bound value.

Figure 59. PegIFNβ-1a versus IFNβ-1a 44: ICER results of the OWSA (base case –£114,329 PegIFNβ-1a dominates)

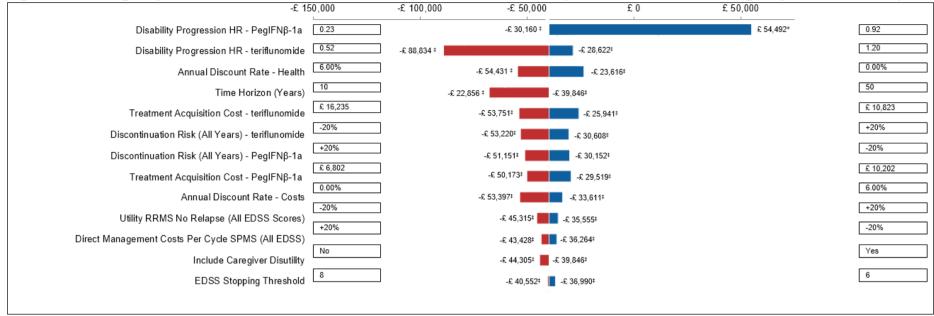

ARR = annualised relapse rate; EDSS = Expanded Disability Status Scale; HR = hazard ratio; ICER = incremental cost-effectiveness ratio; OWSA = one-way sensitivity analysis; pegIFNβ-1a = pegylated interferon; RRMS = relapsing-remitting multiple sclerosis; SPMS = secondary-progressive multiple sclerosis.

‡ PegIFNβ-1a dominates

* PegIFNβ-1a less costly, less effective

Red bars indicate the ICER of the lower bound value.

Blue bars indicate the ICER of the upper bound value.


Figure 60. PegIFNβ-1a versus IM IFNβ-1a 30: ICER results of the OWSA (base case -£44,272 PegIFNβ-1a dominates)

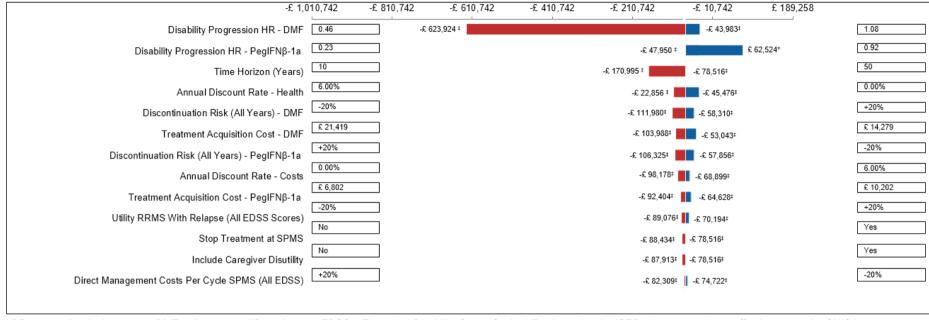
ARR = annualised relapse rate; EDSS = Expanded Disability Status Scale; genGA = generic glatiramer acetate; HR = hazard ratio; ICER = incremental cost-effectiveness ratio; IM = intramuscular; OWSA = one-way sensitivity analysis; pegIFNβ-1a = pegylated interferon; RRMS = relapsing-remitting multiple sclerosis; SPMS = secondary-progressive multiple sclerosis. ± PegIFNβ-1a dominates

* PeqIFNβ-1a less costly, less effective

Red bars indicate the ICER of the lower bound value.

Blue bars indicate the ICER of the upper bound value.

Figure 61. PegIFNβ-1a versus teriflunomide: ICER results of the OWSA (base case -£39,846, PegIFNβ-1a dominates)


ARR = annualised relapse rate; EDSS = Expanded Disability Status Scale; HR = hazard ratio; ICER = incremental cost-effectiveness ratio; OWSA = one-way sensitivity analysis; pegIFNβ-1a = pegylated interferon; RRMS = relapsing-remitting multiple sclerosis; SPMS = secondary-progressive multiple sclerosis

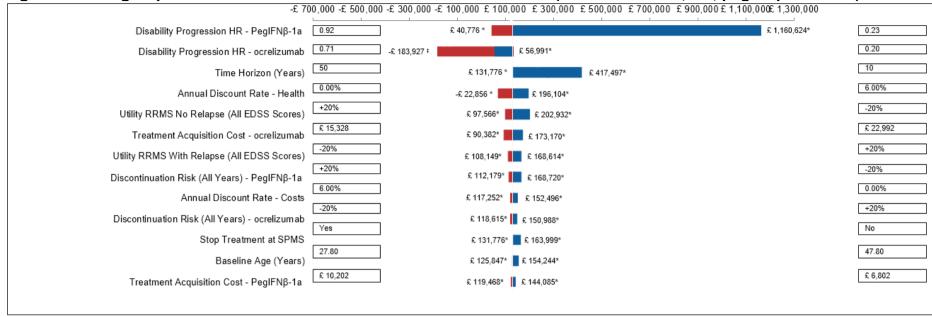
‡ PegIFNβ-1a dominates

* PegIFNβ-1a less costly, less effective

Red bars indicate the ICER of the lower bound value.

Blue bars indicate the ICER of the upper bound value.

Figure 62. PegIFNβ-1a versus DMF: ICER results of the OWSA (base case: -£80,002, PegIFNβ-1a dominates)


ARR = annualised relapse rate; DMF = disease-modifying therapy; EDSS = Expanded Disability Status Scale; HR = hazard ratio; ICER = incremental cost-effectiveness ratio; OWSA = one-way sensitivity analysis; pegIFNβ-1a = pegylated interferon; RRMS = relapsing-remitting multiple sclerosis; SPMS = secondary-progressive multiple sclerosis.

‡ PegIFNβ-1a dominates

* PegIFNβ-1a less costly, less effective

Red bars indicate the ICER of the lower bound value.

Blue bars indicate the ICER of the upper bound value.

Figure 63. PegIFNβ-1a versus ocrelizumab: ICER results of the OWSA (base case: £131,776, pegIFNβ-1a LCLE)

ARR = annualised relapse rate; EDSS = Expanded Disability Status Scale; HR = hazard ratio; ICER = incremental cost-effectiveness ratio; LCLE = less costly, less effective; OWSA = one-way sensitivity analysis; pegIFNβ-1a = pegylated interferon; RRMS = relapsing-remitting multiple sclerosis; SPMS = secondary-progressive multiple sclerosis.

‡ PegIFNβ-1a dominates

* PegIFNβ-1a less costly, less effective

Red bars indicate the ICER of the lower bound value. Blue bars indicate the ICER of the upper bound value.

B.3.8.3 Scenario analysis

Scenario analyses (Table 48) were performed to evaluate how the model outcomes varied in relation to changes in key model parameter(s), and to examine whether the model results were robust to those variations.

Scenario	Description
BC – disc.	Base case discounted
S1	Time horizon: 20 years
S2	Discounting costs 0%; effects 1.5%
S3	Discounting costs 1.5%; effects 0%
S4	Patient characteristics from TA527 report; RSS
S5	Natural History relapse rate from TA527 report
S6	Natural History transition from RRMS to SPMS = 0
S7	Relative efficacy using CDP3M
S8	Discontinuations; parity assumptions 5% for all DMTs; ID 527 report
S9	Discontinuations; Weighted randomised controlled trial ADRs only
S10	Waning effect - none
S11	Adverse events - exclude from analysis
S12	Health state utility - from TA527 report
S13	Caregiver disutility - from Gani et al. (2008) ²¹²
S14	Health state costs – Tyas et al. (2007) ⁸³ - 25% non-medical costs
S15	Health state costs - Tyas et al. (2007) ⁸³ - 100% non-medical costs
S16	Health states costs BOI - 100% community & adaptations
S17	Mortality SMR 2.8 – Kingwell et al. (2012) ⁷⁶

Table 48.Description of the scenario analysis

ADR = adverse drug reaction; BOI = burden of illness; CDP = confirmed disability progression; RRMS = relapsing-remitting multiple sclerosis; RSS = Risk Sharing Scheme; SMR = standardised mortality ratio; SPMS = secondary-progressive multiple sclerosis; TA = technology appraisal.

Results of the scenario analyses using list prices demonstrated consistency with the basecase results where pegIFN β -1a was dominant (i.e., less costly and more effective) when compared with GA 20, GA 40, genGA 20, genGA 40, IFN β -1b 44, IFN β -1b, IM IFN β -1a 30, teriflunomide, and DMF. Against ocrelizumab, pegIFN β -1a was less costly and less effective in all analyses; the ICERs for ocrelizumab relative to pegIFN β -1a were consistently above the standard willingness-to-pay threshold of £20,000 to £30,000 per QALY gained. Compared with alemtuzumab, pegIFN β -1a was either less costly and less effective or dominated (Table 49).

Scenario	pegIFNβ- 1a	GA20	GA40	genGA 20	genGA 40	IFNβ-1b 44	IFNβ-1b	IFNβ-1a 30	teriflunomi de	DMF	ocrelizuma b	alemtuzum ab
Base case -	discounted											
QALY	4.39	0.75	0.74	0.75	0.74	0.17	NA	0.46	0.60	0.44	-0.50	-1.08
Costs	£273,641	-£11,423	-£14,035	-£8,701	-£11,033	-£19,328	NA	-£20,557	-£23,796	-£34,865	-£66,027	-£1,250
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a LCLE
S1: Time hor	izon 20 years											
QALY	5.07	0.60	0.59	0.60	0.59	0.14	NA	0.38	0.47	0.35	-0.32	-0.67
Costs	£157,837	-£9,156	-£11,704	-£6,452	-£8,732	-£18,656	NA	-£18,907	-£22,015	-£33,398	-£68,109	-£10,952
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a LCLE
S2: Discount	rates: 0% for	costs and 1.5%	% for outcome	S								
QALY	4.45	0.99	0.98	0.99	0.98	0.22	NA	0.61	0.79	0.60	-0.73	-1.58
Costs	£561,870	-£20,288	-£23,780	-£17,075	-£20,179	-£25,358	NA	-£29,882	-£31,888	-£43,596	-£76,408	£25,973
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a dominated
S3: Discount	rates: 1.5% fo	or costs and 0%	% for outcome	S				·				
QALY	4.20	1.26	1.23	1.26	1.23	0.27	NA	0.76	1.01	0.77	-1.00	-2.17
Costs	£403,699	-£15,830	-£18,895	-£12,847	-£15,578	-£22,439	NA	-£25,278	-£27,891	-£39,355	-£72,190	£11,287
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a dominated
S4: Patient c	haracteristics	from TA527 re	port; RSS									
QALY	3.06	0.70	0.69	0.70	0.69	0.16	NA	0.44	0.56	0.41	-0.44	-0.97
Costs	£322,864	-£11,347	-£13,588	-£8,871	-£10,871	-£17,702	NA	-£18,999	-£22,924	-£32,978	-£58,626	-£3,127
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a LCLE

 Table 49.
 Scenario analysis results

S5: Natura	I History relapse	e rate from ID5	27 report									
QALY	4.45	0.74	0.73	0.74	0.73	0.17	NA	0.46	0.59	0.44	-0.50	-1.08
Costs	£271,372	-£11,236	-£13,848	-£8,514	-£10,847	-£19,283	NA	-£20,431	-£23,633	-£34,753	-£66,197	-£1,535
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a LCLE
S6: Natura	l History transiti	on from RRMS	6 to SPMS = 0									
QALY	7.98	0.69	0.68	0.69	0.68	0.12	NA	0.40	0.57	0.41	-0.70	-1.48
Costs	£211,655	-£11,626	-£16,140	-£8,048	-£12,082	-£25,582	NA	-£27,410	-£25,247	-£39,670	-£100,057	£10,182
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a dominated
S7: Relativ	ve efficacy using	CDP-3M										
QALY	4.11	0.34	0.32	0.34	0.32	-0.14	0.40	0.02	0.17	0.13	-0.81	-1.85
Costs	£278,554	-£4,357	-£6,830	-£1,600	-£3,784	-£14,019	-£14,176	-£13,181	-£16,458	-£29,507	-£60,915	£12,604
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a dominated
S8: Discor	ntinuations; pari		s 5% for all DN	ITs; ID 527 rep	ort							
QALY	4.95	1.25	1.26	1.25	1.26	0.51	NA	0.96	0.92	0.66	-0.10	-0.22
Costs	£285,041	-£8,205	-£8,490	-£4,527	-£4,812	-£19,896	NA	-£14,977	-£43,875	-£64,217	-£65,168	£5,910
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a dominated
S9: Discor	ntinuations; Weig	ghted RCT ADI	Rs only									
QALY	4.93	1.20	1.21	1.20	1.21	0.42	NA	0.88	0.97	0.75	-0.50	-0.77
Costs	£284,511	-£13,884	-£12,848	-£9,608	-£8,730	-£24,125	NA	-£20,566	-£34,424	-£50,938	-£92,175	£12,966
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a dominated
S10: Wani	ng effect - none											
QALY	4.65	0.97	0.95	0.97	0.95	0.19	NA	0.57	0.79	0.60	-1.00	-2.18
Costs	£269,468	-£14,979	-£17,492	-£12,247	-£14,476	-£20,011	NA	-£22,473	-£26,943	-£37,621	-£65,144	£18,475

ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a dominated
S11: Adver	se events - excl	uded from ana	llysis									
QALY	4.41	0.77	0.75	0.77	0.75	0.18	NA	0.48	0.62	0.46	-0.48	-1.07
Costs	£273,637	-£11,427	-£14,039	-£8,705	-£11,037	-£19,330	NA	-£20,560	-£23,800	-£34,860	-£66,031	-£1,048
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a LCLE
S12: Health	state utility - fr	om TA527 rep	ort									
QALY	4.20	0.73	0.72	0.73	0.72	0.17	NA	0.46	0.59	0.44	-0.50	-1.07
Costs	£273,641	-£11,423	-£14,035	-£8,701	-£11,033	-£19,328	NA	-£20,557	-£23,796	-£34,865	-£66,027	-£1,250
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	peglFNβ- 1a LCLE
S13: Caregi	iver disutility - f	rom Gani. 200	8									
QALY	4.66	0.75	0.74	0.75	0.74	0.17	NA	0.47	0.60	0.45	-0.51	-1.09
Costs	£273,641	-£11,423	-£14,035	-£8,701	-£11,033	-£19,328	NA	-£20,557	-£23,796	-£34,865	-£66,027	-£1,250
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a LCLE
S14: Diseas	se management	costs - Health	state costs -	Гyas 2007 - 25 ⁰	% non-medica	l costs			•	•		
QALY	4.39	0.75	0.74	0.75	0.74	0.17	NA	0.46	0.60	0.44	-0.50	-1.08
Costs	£284,293	-£9,134	-£11,784	-£6,412	-£8,782	-£18,830	NA	-£19,203	-£21,995	-£33,481	-£67,231	-£4,119
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a LCLE
S15: Diseas	se management	costs -Health	state costs - T	yas 2007 -100	% non-medica	l costs						
QALY	4.39	0.75	0.74	0.75	0.74	0.17	NA	0.46	0.60	0.44	-0.50	-1.08
Costs	£471,303	-£15,216	-£17,779	-£12,494	-£14,777	-£20,326	NA	-£22,910	-£26,739	-£37,218	-£62,512	£4,736
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a dominated
S16: Diseas	se management	costs - Health	states costs I	3OI - 100% cor	nmunity & ada	ptations						

ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a dominated
Costs	£289,241	-£12,793	-£15,344	-£10,086	-£12,361	-£19,500	NA	-£21,220	-£24,859	-£35,642	-£64,223	£495
QALY	4.09	0.75	0.74	0.75	0.74	0.17	NA	0.47	0.60	0.44	-0.48	-1.05
S17: Mortalit	ty SMR – Kingv	well 2012										
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a LCLE
Costs	£213,637	-£6,362	-£9,052	-£3,641	-£6,051	-£18,148	NA	-£17,538	-£19,869	-£31,786	-£69,088	-£7,726
QALY	4.39	0.75	0.74	0.75	0.74	0.17	NA	0.46	0.60	0.44	-0.50	-1.08

ADR = adverse drug reaction; BOI = burden of illness; CDP = confirmed disability progression; DMF = dimethyl fumarate; DMT = disease-modifying therapy; GA = glatiramer acetate; genGA = generic glatiramer acetate; ICER = , incremental cost-effectiveness ratio; IFN = interferon; IM = intramuscular; LCLE = less costly, less effective; MS = multiple sclerosis; NHS = National Health Service; PSS = personal social services; QALY = quality-adjusted life-year; RRMS = relapsing-remitting multiple sclerosis; RSS = Risk Sharing Scheme; SC = subcutaneous; SMR = standardised mortality ratio; SPMS = secondary-progressive multiple sclerosis; TA = technology appraisal.

B.3.8.4 Summary of sensitivity analyses results

In Section B.3.8, it has been shown that the results are robust and not sensitive to changes in important parameters. The scenario analyses show that the presented base-case ICER is conservative in relation to most parameters.

B.3.9 Subgroup analysis

The specified subgroup of 'people who could not tolerate previous treatment' was not performed due to lack of clinical data.

B.3.10 Validation

B.3.10.1 Validation of cost-effectiveness analysis

The validation of the cost-effectiveness outcomes based on the economic model for pegIFN β -1a and all comparators considered in the economic analysis conducted for this submission can be found in Appendix J. The breakdown of the clinical outcomes based on the economic model runs is also provided in Appendix J.

B.3.11 Interpretation and conclusions of economic evidence

• Are the results from this economic evaluation consistent with the published economic literature? If not, why do the results from this evaluation differ, and why should the results in the submission be given more credence than those in the published literature?

The results are consistent with the previous evaluations of pegIFNβ-1a against other DMTs. For example, NICE TA527¹⁷⁰, which evaluated pegIFNβ-1a against IFNβ-1a, IFNβ-1b, and GA (excluded alemtuzumab) in the UK, suggested that "a longer-acting interferon (Plegridy[®]) was the most cost-effective option for RRMS…" using the Department of Health RSS base-case model and with individual HRs. This is the only UK-based economic evaluation that includes pegIFNβ-1a in the analysis. Centonze et al. (2018)²²² has conducted a cost-effectiveness analysis from a payer perspective on RRMS in Italy. The study has shown that pegIFNβ-1a was dominant against SC IFNβ-1a 44 and cost-effective versus all other DMTs included, using the same model structure as the one used to inform this dossier. PegIFNβ-1a was dominant against all comparators from a societal perspective. In an economic evaluation that included pegIFNβ-1a, Walter et al. (2019)²²³ has shown that alemtuzumab is a cost-saving treatment option in the treatment of RRMS in Austria.

• Is the economic evaluation relevant to all groups of patients who could potentially use the technology as identified in the decision problem?

The economic evaluation is relevant to all adult patients with RRMS, as per the scope of this technology appraisal.

• How relevant (generalisable) is the analysis to clinical practice in England?

The patient population in ADVANCE, BCMS, and London, Ontario, data sets used to inform the economic analysis is reflective of adult patients with RRMS in the UK, as suggested in NICE TA527.¹⁷⁰ Therefore, the clinical outcomes are likely to be applicable to the patient population in England.

The economic model structure, QOL, and resource use/cost sources are in line with previous submissions to NICE on RRMS (see Section B.3.2.2).

Company evidence submission template for peginterferon beta-1a for treating relapsingremitting multiple sclerosis

© Biogen (2019). All rights reserved

The economic evaluation is relevant to all adult patients with RRMS that is not highly active or RES.

• What are the main strengths and weaknesses of the evaluation? How might these affect the interpretation of the results?

The main data sources and modelling approach are largely in line with the relevant NICE technology appraisals. The MTC conducted by Biogen to inform the HRs related to the CDP used the 6-month follow-up outcomes, which is the preferred approach by NICE. However, this meant that the treatment options IFN β -1a 22, IFN β -1b, GA 40, and genGA 40 had to be either excluded from the analyses or assumed at parity to GA 20 due to lack of data.

• What further analyses could be carried out to enhance the robustness or completeness of the results?

A scenario analyses in the absence of alemtuzumab, the dominant treatment options in the analysis conducted to inform this dossier, would help with understanding the findings specific to the remaining treatment options, particularly for IFNβ-1a and GA.

B.3.11.1 Concluding remarks of the economic evaluation

These analyses predicted that the health benefits observed in the ADVANCE trial for pegIFN β -1a are expected to be sustained over a longer term after accounting for treatment discontinuation due to AEs and lack of efficacy. They are also expected to be gained at a lower cost than that of genGA 20, GA 20, SC IFN β -1a 44, IM IFN β -1a, teriflunomide, and DMF. Compared with these DMTs, the health benefits associated with pegIFN β -1a in terms of delaying patient disability progression also translate to higher QALYs over time, hence making pegIFN β -1a a dominant treatment (i.e., more effective and less expensive). For the comparison with ocrelizumab, pegIFN β -1a returned less clinical benefit (QALYs) but was also less expensive; the additional cost-per-QALY that will be required to receive ocrelizumab instead of pegIFN β -1a makes ocrelizumab a non-cost-effective treatment. Compared with alemtuzumab, pegIFN β -1a had a higher total cost and lower QALYs, thus pegIFN β -1a was a dominated treatment.

PegIFN β -1a remains a valuable option in the treatment of patients with RRMS. The ADVANCE trial shows clinical benefit of pegIFN β -1a in comparison with placebo, and the MTC shows clinical benefit of pegIFN β -1a in comparison with other IFNs and other DMTs.

B.4 References

- 1. European Medicines Agency. Plegridy: EPAR product information. 2014.
- 2. Scottish Medicines Consortium. Peginterferon beta 1a (Plegridy). 2015. Available at: <u>https://www.scottishmedicines.org.uk/medicines-advice/peginterferon-beta-1a-plegridy-fullsubmission-101814/</u>. Accessed 8 May 2015.
- AWMSG. Peginterferon beta-1a (Plegridy[®]). All Wales Medicines Strategy Group; 2015. Available at: <u>http://www.awmsg.org/awmsgonline/app/appraisalinfo/2013</u>. Accessed 8 May 2019.
- NHS England. Multiple sclerosis: first line disease modifying agents (ID: SSC1534). National Health Service; 2015. Available at: <u>https://multiplesclerosisacademy.org/wp-</u> <u>content/uploads/sites/3/2016/10/ssc1534-multiple-sclerosis-first-line-disease-</u> modifying-agents.pdf. Accessed 30 May 2019.
- 5. NICE. TA527: Beta interferons and glatiramer acetate for treating multiple sclerosis. National Institute for Care Excellence; 2018. Available at: <u>https://www.nice.org.uk/guidance/ta527</u>. Accessed 18 March 2019.
- 6. Fazekas F, Bajenaru O, Berger T, Fabjan TH, Ledinek AH, Jakab G, et al. How does fingolimod (Gilenya[®]) fit in the treatment algorithm for highly active relapsing-remitting multiple sclerosis? Front Neurol. 2013;4:10.
- Biogen Idec Inc. CSR: a multicenter, randomized, double-blind, parallel-group, placebo-controlled study to evaluate the efficacy and safety of pegylated interferon beta-1a (BIIB017) in subjects with relapsing multiple sclerosis. 2013.
- 8. Biogen Idec Inc. Data on file. 2019.
- 9. Gaberc-Porekar V, Zore I, Podobnik B, Menart V. Obstacles and pitfalls in the pegylation of therapeutic proteins. Curr Opin Drug Discov Devel. 2008 Mar;11(2):242-50.
- 10. Thomas T, Foster G. Nanomedicines in the treatment of chronic hepatitis C-focus on pegylated interferon alpha-2a. Int J Nanomedicine. 2007;2(1):19-24.
- 11. Calabresi PA, Kieseier BC, Arnold DL, Balcer LJ, Boyko A, Pelletier J, et al. Pegylated interferon beta-1a for relapsing-remitting multiple sclerosis (ADVANCE): a randomised, phase 3, double-blind study. Lancet Neurol. 2014 Jul;13(7):657-65.
- 12. Creeke PI, Farrell RA. Clinical testing for neutralizing antibodies to interferonbeta in multiple sclerosis. Ther Adv Neurol Disord. 2013 Jan;6(1):3-17.
- Kappos L, Clanet M, Sandberg-Wollheim M, Radue EW, Hartung HP, Hohlfeld R, et al. Neutralizing antibodies and efficacy of interferon β-1a: a 4year controlled study. Neurology. 2005;65(1):40-7.
- 14. Bainbridge JL, Corboy JR. Multiple sclerosis. In: Dipiro JT, Talbert RL, Yee GC, et al., editors. Pharmacotherapy: a pathophysiologic approach. 7th ed. New York, NY: McGraw-Hill; 2008. p. 913-26.
- 15. Compston A, Coles A. Multiple sclerosis. Lancet. 2002;359(9313):1221-31.
- 16. Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372(9648):1502-17.
- 17. Ross AP, Ben-Zacharia A, Harris C, Smrtka J. Multiple sclerosis, relapses, and the mechanism of action of adrenocorticotropic hormone. Front Neurol. 2013;4:21.

- 18. Koch MW, Metz LM, Agrawal SM, Yong VW. Environmental factors and their regulation of immunity in multiple sclerosis. J Neurol Sci. 2013 Jan 15;324(1-2):10-6.
- 19. Handel AE, Williamson AJ, Disanto G, Dobson R, Giovannoni G, Ramagopalan SV. Smoking and multiple sclerosis: an updated meta-analysis. PLoS One. 2011 Jan 13;6(1):e16149.
- 20. Munger KL, Chitnis T, Ascherio A. Body size and risk of MS in two cohorts of US women. Neurology. 2009 Nov 10;73(19):1543-50.
- 21. Krone B, Oeffner F, Grange JM. Is the risk of multiple sclerosis related to the 'biography' of the immune system? J Neurol. 2009 Jul;256(7):1052-60.
- 22. Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann Neurol. 2007 Apr;61(4):288-99.
- 23. Maghzi AH, Marta M, Bosca I, Etemadifar M, Dobson R, Maggiore C, et al. Viral pathophysiology of multiple sclerosis: a role for Epstein-Barr virus infection? Pathophysiology. 2011 Feb;18(1):13-20.
- 24. Ascherio A, Munger KL. Epstein-Barr virus infection and multiple sclerosis: a review. J Neuroimmune Pharmacol. 2010 Sep;5(3):271-7.
- 25. Kappos L, Moeri D, Radue EW, Schoetzau A, Schweikert K, Barkhof F, et al. Predictive value of gadolinium-enhanced magnetic resonance imaging for relapse rate and changes in disability or impairment in multiple sclerosis: a meta-analysis. Lancet. 1999;353(9157):964-9.
- 26. World Health Organisation. Atlas multiple sclerosis resources in the world. 2008. Available at:

http://www.who.int/mental_health/neurology/Atlas_MS_WEB.pdf.

- 27. Wallin MT, Culpepper WJ, Coffman P, Pulaski S, Maloni H, Mahan CM, et al. The Gulf War era multiple sclerosis cohort: age and incidence rates by race, sex and service. Brain. 2012;135(6):1778-85.
- 28. McGuigan C, McCarthy A, Quigley C, Bannan L, Hawkins SA, Hutchinson M. Latitudinal variation in the prevalence of multiple sclerosis in Ireland, an effect of genetic diversity. J Neurol Neurosurg Psychiatry. 2004 Apr;75(4):572-6.
- 29. Multiple Sclerosis Trust. Prevalence and incidence of multiple sclerosis. 2018. Available at: <u>https://www.mstrust.org.uk/a-z/prevalence-and-incidence-multiple-sclerosis</u>. Accessed January 2019.
- 30. Buc M. New biological agents in the treatment of multiple sclerosis. Bratisl Lek Listy. 2018;119(4):191-7.
- 31. Barten LJ, Allington DR, Procacci KA, Rivey MP. New approaches in the management of multiple sclerosis. Drug Des Devel Ther. 2010 Nov;4:343-66.
- 32. Chastain EML, Duncan DAS, Rodgers JM, Miller SD. The role of antigen presenting cells in multiple sclerosis. Biochim Biophys Acta. 2011;1812(2):265-74.
- 33. Multiple Sclerosis Coalition. The use of disease-modifying therapies in multiple sclerosis: principles and current evidence. 2017.
- 34. Lublin FD, Reingold SC. Defining the clinical course of multiple sclerosis: results of an international survey. Neurology. 1996;46(4):907-11.
- 35. Multiple Sclerosis International Federation. Atlas of MS 2013. Mapping multiple sclerosis around the world. 2013.
- 36. Derfuss T. Personalized medicine in multiple sclerosis: hope or reality? BMC Med. 2012 Oct 4;10:116.

- 37. Bates D, Bartholome E. Treatment effect of natalizumab on relapse outcomes in multiple sclerosis patients despite ongoing MRI activity. J Neurol Neurosurg Psychiatry. 2012 Jan;83(1):55-60.
- 38. Arnold D, Mokliatchouk O, Naylor M. Peginterferon beta-1a reduces the number of black holes evolved from acute MRI lesions in newly diagnosed patients with relapsing-remitting multiple sclerosis: a post hoc analysis of ADVANCE. Presented at the 34th Congress of the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS); October 2018. Berlin, Germany.
- 39. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018 Feb;17(2):162-73.
- 40. Miller DH, Chard DT, Ciccarelli O. Clinically isolated syndromes. Lancet Neurol. 2012;11(2):157-69.
- 41. Scalfari A, Neuhaus A, Daumer M, Muraro PA, Ebers GC. Onset of secondary progressive phase and long-term evolution of multiple sclerosis. J Neurol Neurosurg Psychiatry. 2014;85(1):67-75.
- 42. Leray E, Yaouanq J, Le Page E, Coustans M, Laplaud D, Oger J, et al. Evidence for a two-stage disability progression in multiple sclerosis. Brain. 2010;133(7):1900-13.
- 43. Fahrbach K, Huelin R, Martin AL, Kim E, Dastani HB, Rao S, et al. Relating relapse and T2 lesion changes to disability progression in multiple sclerosis: a systematic literature review and regression analysis. BMC Neurol. 2013 Nov 19;13:180.
- 44. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an Expanded Disability Status Scale (EDSS). Neurology. 1983;33(11):1444.
- 45. Svendsen B, Myhr KM, Nyland H, Aarseth JH. The cost of multiple sclerosis in Norway. Eur J Health Econ. 2012 Feb;13(1):81-91.
- 46. Fischer J, Jak A, Kniker J. Administration and scoring manual for the multiple sclerosis function composite measure (MSFC). National Multiple Sclerosis Society; 1999.
- 47. Lublin FD, Baier M, Cutter G. Effect of relapses on development of residual deficit in multiple sclerosis. Neurology. 2003 Dec 9;61(11):1528-32.
- 48. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the Diagnosis of Multiple Sclerosis. Ann Neurol. 2001 Jul;50(1):121-7.
- 49. Havrdova E, Galetta S, Stefoski D, Comi G. Freedom from disease activity in multiple sclerosis. Neurology. 2010;74(17 Suppl 3):S3-S7.
- 50. Rudick RA, Miller DM. Health-related quality of life in multiple sclerosis: current evidence, measurement and effects of disease severity and treatment. CNS Drugs. 2008;22(10):827-39.
- 51. Montazeri A, Vahdaninia M, Mousavi SJ, Asadi-Lari M, Omidvari S, Tavousi M. The 12-item Medical Outcomes Study Short Form Health Survey version 2.0 (SF-12v2): a population-based validation study from Tehran, Iran. Health Qual Life Outcomes. 2011;9:12.
- 52. Rabin R, de Charro F. EQ-5D: a measure of health status from the EuroQol Group. Ann Med. 2001 Jul;33(5):337-43.

- 53. Rudick RA, Miller D, Hass S, Hutchinson M, Calabresi PA, Confavreux C, et al. Health-related quality of life in multiple sclerosis: effects of natalizumab. Ann Neurol. 2007 Oct;62(4):335-46.
- 54. Scolding N, Barnes D, Cader S, Chataway J, Chaudhuri A, Coles A, et al. Association of British Neurologists: revised (2015) guidelines for prescribing disease-modifying treatments in multiple sclerosis. Pract Neurol. 2015;15(4):273-9.
- 55. Fisniku L, Brex P, Altmann D, Miszkiel K, Benton C, Lanyon R, et al. Disability and T2 MRI lesions: a 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain. 2008;131(3):808-17.
- 56. Scalfari A, Neuhaus A, Degenhardt A, Rice GP, Muraro PA, Daumer M, et al. The natural history of multiple sclerosis: a geographically based study 10: relapses and long-term disability. Brain. 2010 Jul;133(Pt 7):1914-29.
- 57. Tremlett H, Yousefi M, Devonshire V, Rieckmann P, Zhao Y, UBC Neurologists. Impact of multiple sclerosis relapses on progression diminishes with time. Neurology. 2009 Nov 17;73(20):1616-23.
- 58. Ebers GC. Natural history of multiple sclerosis. J Neurol Neurosurg Psychiatry. 2001 Dec;71 Suppl 2:ii16-9.
- 59. Oleen-Burkey M, Castelli-Haley J, Lage MJ, Johnson KP. Burden of a multiple sclerosis relapse: the patient's perspective. Patient. 2012;5(1):57-69.
- 60. Karampampa K, Gustavsson A, Miltenburger C, Eckert B. Treatment experience, burden and unmet needs (TRIBUNE) in MS study: results from five European countries. Mult Scler J. 2012;18(2 suppl):7-15.
- 61. Wu N, Minden SL, Hoaglin DC, Hadden L, Frankel D. Quality of life in people with multiple sclerosis: data from the Sonya Slifka Longitudinal Multiple Sclerosis Study. J Health Hum Serv Adm. 2007:233-67.
- 62. Hermann BP, Vickrey B, Hays RD, Cramer J, Devinsky O, Meador K, et al. A comparison of health-related quality of life in patients with epilepsy, diabetes and multiple sclerosis. Epilepsy research. 1996;25(2):113-8.
- 63. Weinshenker BG, Bass B, Rice GP, Noseworthy J, Carriere W, Baskerville J, et al. The natural history of multiple sclerosis: a geographically based study.
 1. Clinical course and disability. Brain. 1989 Feb;112(Pt 1):133-46.
- 64. Confavreux C, Vukusic S, Moreau T, Adeleine P. Relapses and progression of disability in multiple sclerosis. New Engl J Med. 2000;343(20):1430-8.
- 65. Compston A. McAlpine's multiple sclerosis. 3rd ed. London: Churchill Livingstone; 1998.
- 66. Ebers GC. Disease evolution in multiple sclerosis. J Neurol. 2006;253(6):vi3-vi8.
- 67. Salter AR, Cutter GR, Tyry T, Marrie RA, Vollmer T. Impact of loss of mobility on instrumental activities of daily living and socioeconomic status in patients with MS. Curr Med Res Opin. 2010 Feb;26(2):493-500.
- 68. Halper J, Kennedy P, Miller CM, Morgante L, Namey M, Ross AP. Rethinking cognitive function in multiple sclerosis: a nursing perspective. J Neurosci Nurs. 2003 Apr;35(2):70-81.
- 69. Rao SM, Leo GJ, Ellington L, Nauertz T, Bernardin L, Unverzagt F. Cognitive dysfunction in multiple sclerosis. II. Impact on employment and social functioning. Neurology. 1991;41(5):692-6.

- 70. Rogers JM, Panegyres PK. Cognitive impairment in multiple sclerosis: evidence-based analysis and recommendations. J Clin Neurosci. 2007 Oct;14(10):919-27.
- 71. Kobelt G, Thompson A, Berg J, Gannedahl M, Eriksson J, Group MS, et al. New insights into the burden and costs of multiple sclerosis in Europe. Mult Scler. 2017 Jul;23(8):1123-36.
- 72. Multiple Sclerosis Society UK. Fatigue. 2016. Available at: <u>https://www.mssociety.org.uk/what-is-ms/signs-and-symptoms/fatigue</u>. Accessed 1 March 2016.
- 73. Zwibel HL. Contribution of impaired mobility and general symptoms to the burden of multiple sclerosis. Adv Ther. 2009 Dec;26(12):1043-57.
- 74. Fisk JD, Pontefract A, Ritvo PG, Archibald CJ, Murray TJ. The impact of fatigue on patients with multiple sclerosis. Can J Neurol Sci. 1994 Feb;21(1):9-14.
- 75. Sadovnick AD, Eisen K, Ebers GC, Paty DW. Cause of death in patients attending multiple sclerosis clinics. Neurology. 1991 Aug;41(8):1193-6.
- 76. Kingwell E, van der Kop M, Zhao Y, Shirani A, Zhu F, Oger J, et al. Relative mortality and survival in multiple sclerosis: findings from British Columbia, Canada. J Neurol Neurosurg Psychiatry. 2012 Jan;83(1):61-6.
- 77. Jick SS, Li L, Falcone GJ, Vassilev ZP, Wallander MA. Mortality of patients with multiple sclerosis: a cohort study in UK primary care. J Neurol. 2014 Aug;261(8):1508-17.
- 78. Orme M, Kerrigan J, Tyas D, Russell N, Nixon R. The effect of disease, functional status, and relapses on the utility of people with multiple sclerosis in the UK. Value Health. 2007;10(1):54-60.
- 79. Auty A, Belanger C, Bouchard J, Brunet D, Duquette P, Francis G, et al. Burden of illness of multiple sclerosis: Part II: Quality of life. Can J Neurol Sci. 1998;25(1):31-8.
- 80. Kobelt G, Berg J, Lindgren P, Fredrikson S, Jönsson B. Costs and quality of life of patients with multiple sclerosis in Europe. J Neurol Neurosurg Psychiatry. 2006;77(8):918-26.
- 81. Karampampa K, Gustavsson A, Miltenburger C, Tyas D. Treatment experience, burden and unmet needs (TRIBUNE) in MS study: results from the United Kingdom. Mult Scler. 2012 Jun;18(2 Suppl):41-5.
- 82. NICE. TA320: Dimethyl fumarate for treating relapsing-remitting multiple sclerosis. National Institute for Care Excellence; 2014. Available at: <u>https://www.nice.org.uk/guidance/ta320</u>. Accessed 18 March 2019.
- 83. Tyas D, Kerrigan J, Russell N, Nixon R. The distribution of the cost of multiple sclerosis in the UK: how do costs vary by illness severity? Value Health. 2007 Sep-Oct;10(5):386-9.
- 84. NHS England. Five year forward view. National Health Service; 2014. Available at: <u>https://www.england.nhs.uk/wp-content/uploads/2014/10/5yfv-web.pdf</u>. Accessed 1 May 2019.
- 85. Department of Health. The government's mandate to NHS England for 2018-19. 2018. Available at: <u>https://assets.publishing.service.gov.uk/government/uploads/system/uploads/</u> <u>attachment_data/file/691998/nhse-mandate-2018-19.pdf</u>. Accessed 1 May 2019.

- 86. Flachenecker P, Stuke K. National MS registries. J Neurol. 2008 Dec;255 Suppl 6:102-8.
- 87. Kobelt G, Texier-Richard B, Lindgren P. The long-term cost of multiple sclerosis in France and potential changes with disease-modifying interventions. Mult Scler J. 2009;15(6):741-51.
- 88. Kobelt G, Berg J, Atherly D, Hadjimichael O. Costs and quality of life in multiple sclerosis: a cross-sectional study in the United States. Neurology. 2006 Jun 13;66(11):1696-702.
- 89. Moore P, Harding KE, Clarkson H, Pickersgill TP, Wardle M, Robertson NP. Demographic and clinical factors associated with changes in employment in multiple sclerosis. Mult Scler. 2013 Oct;19(12):1647-54.
- 90. Freedman MS, Selchen D, Prat A, Giacomini PS. Managing multiple sclerosis: treatment initiation, modification, and sequencing. Can J Neurol Sci. 2018 Sep;45(5):489-503.
- 91. Grand'Maison F, Yeung M, Morrow SA, Lee L, Emond F, Ward BJ, et al. Sequencing of high-efficacy disease-modifying therapies in multiple sclerosis: perspectives and approaches. Neural Regen Res. 2018 Nov;13(11):1871-4.
- 92. NICE. CG186: Multiple sclerosis in adults. National Institute for Care Excellence; 2014. Available at: <u>https://www.nice.org.uk/Guidance/CG186</u>. Accessed 18 March 2019.
- NICE. Multiple sclerosis. NICE pathway. National Institute for Care Excellence; 2014. Available at: <u>https://pathways.nice.org.uk/pathways/multiple-sclerosis</u>. Accessed 18 March 2019.
- 94. NICE. TA533: Ocrelizumab for treating relapsing–remitting multiple sclerosis. National Institute for Care Excellence; 2018. Available at: https://www.nice.org.uk/guidance/ta533. Accessed 18 March 2019.
- 95. NICE. TA493: Cladribine tablets for treating relapsing–remitting multiple sclerosis. National Institute for Care Excellence; 2017. Available at: <u>https://www.nice.org.uk/guidance/ta493</u>. Accessed 18 March 2019.
- 96. NICE. TA312: Alemtuzumab for treating relapsing–remitting multiple sclerosis. National Institute for Care Excellence; 2014. Available at: <u>https://www.nice.org.uk/guidance/ta312</u>. Accessed 18 March 2019.
- 97. NICE. TA303: Teriflunomide for treating relapsing–remitting multiple sclerosis. National Institute for Care Excellence; 2014. Available at: https://www.nice.org.uk/guidance/ta303. Accessed 18 March 2019.
- 98. NICE. TA254: Fingolimod for the treatment of highly active relapsing–remitting multiple sclerosis. National Institute for Care Excellence; 2012. Available at: <u>https://www.nice.org.uk/guidance/ta254</u>. Accessed 18 March 2019.
- 99. NICE. TA127: Natalizumab for the treatment of adults with highly active relapsing-remitting multiple sclerosis. National Institute for Care Excellence; 2007. Available at: <u>https://www.nice.org.uk/guidance/ta127</u>. Accessed 18 March 2019.
- 100. Dias S, Sutton AJ, Ades AE, Welton NJ. Evidence synthesis for decision making 2: a generalized linear modeling framework for pairwise and network meta-analysis of randomized controlled trials. Med Decis Making. 2013 Jul;33(5):607-17.
- 101. European Medicines Agency. Betaferon: EPAR product information. 2009. Available at:

<u>http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-</u> <u>Product_Information/human/000081/WC500053225.pdf</u>.

- 102. European Medicines Agency. Avonex: EPAR product information. 2009. Available at: <u>http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medi</u> <u>cines/000102/human_med_000664.jsp&mid=WC0b01ac058001d124</u>. Accessed 31 May 2019.
- 103. European Medicines Agency. Rebif: EPAR product information. 2009. Available at: <u>http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medi</u> <u>cines/000136/human_med_001018.jsp&mid=WC0b01ac058001d124</u>. Accessed 31 May 2019.
- 104. Nikfar S, Rahimi R, Abdollahi M. A meta-analysis of the efficacy and tolerability of interferon- β in multiple sclerosis, overall and by drug and disease type. Clin Ther. 2010;32(11):1871-88.
- 105. Bayer. Betaseron[®] injection training guide. Bayer HealthCare Pharmaceuticals Inc.; 2013.
- 106. Biogen Idec Inc. Avonex® Pen[™] instructions for use. 2012.
- 107. EMD Serono Inc. Rebif® Rebidose® (interferon beta-1a). 2018. Available at: <u>http://www.rebif.com/pages/starting-rebif/rebif_rebidose</u>. Accessed 31 May 2019.
- 108. European Medicines Agency. Extavia: EPAR product information. 2009. Available at: <u>http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medi</u> <u>cines/000933/human_med_000781.jsp&mid=WC0b01ac058001d124</u>. Accessed 31 May 2019.
- 109. Novartis. Extavia[®] injection training guide. Novartis Pharmaceuticals Corporation; 2010.
- 110. European Medicines Agency. Copaxone: EPAR product information. 2003.
- 111. Steinberg S, Faris R, Chang C, Chan A, Tankersley M. Impact of adherence to interferons in the treatment of multiple sclerosis. Clin Drug Investig. 2010 2010/02/01;30(2):89-100.
- 112. Sabate E. Adherence to long-term therapies: evidence for action. World Health Organisation; 2003.
- 113. Tan H, Cai Q, Agarwal S, Stephenson J, Kamat S. Impact of adherence to disease-modifying therapies on clinical and economic outcomes among patients with multiple sclerosis. Adv Ther. 2011 Nov;28(1):51-61.
- 114. Menzin J, Caon C, Nichols C, White LA, Friedman M, Pill MW. Narrative review of the literature on adherence to disease-modifying therapies among patients with multiple sclerosis. J Manag Care Pharm. 2013 Jan-Feb;19(1 Suppl A):S24-40.
- 115. Devonshire V, Lapierre Y, Macdonell R, Ramo-Tello C, Patti F, Fontoura P, et al. The Global Adherence Project (GAP): a multicenter observational study on adherence to disease-modifying therapies in patients with relapsing-remitting multiple sclerosis. Eur J Neurol. 2011;18(1):69-77.
- 116. Ivanova JI, Bergman RE, Birnbaum HG, Phillips AL, Stewart M, Meletiche DM. Impact of medication adherence to disease-modifying drugs on severe relapse, and direct and indirect costs among employees with multiple sclerosis in the US. J Med Econ. 2012;15(3):601-9.

- 117. Cerghet M, Dobie E, Lafata J, Schultz L, Elias S, Pladevall M. Adherence to disease-modifying agents and association with quality of life among patients with relapsing-remitting multiple sclerosis. Int J MS Care. 2010;12(2):51-8.
- 118. Fox RJ, Salter AR, Tyry T, Sun J, You X, Laforet G, et al. Treatment discontinuation and disease progression with injectable disease-modifying therapies: findings from the North American Research Committee on Multiple Sclerosis Database. Int J MS Care. 2013 Winter;15(4):194-201.
- 119. Kieseier BC. The mechanism of action of interferon-beta in relapsing multiple sclerosis. CNS Drugs. 2011;25(6):491-502.
- 120. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple sclerosis. N Engl J Med. 2000 Sep 28;343(13):938-52.
- 121. Bailon P, Won CY. PEG-modified biopharmaceuticals. Expert Opin Drug Deliv. 2009 Jan;6(1):1-16.
- 122. Kieseier BC, Calabresi PA. Pegylation of interferon-β-1a. CNS Drugs. 2012;26(3):205-14.
- 123. Kieseier BC, Arnold DL, Balcer LJ, Boyko AA, Pelletier J, Liu S, et al. Peginterferon beta-1a in multiple sclerosis: 2-year results from ADVANCE. Mult Scler. 2015 Jul;21(8):1025-35.
- 124. Newsome SD, Scott TF, Arnold DL, Nelles G, Hung S, Cui Y, et al. Long-term outcomes of peginterferon beta-1a in multiple sclerosis: results from the ADVANCE extension study, ATTAIN. Ther Adv Neurol Disord. 2018;11:1756286418791143.
- 125. Fox RJ, Miller DH, Phillips JT, Hutchinson M, Havrdova E, Kita M, et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med. 2012;367(12):1087-97.
- 126. Kappos L, Radue E-W, O'Connor P, Polman C, Hohlfeld R, Calabresi P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. New Engl J Med. 2010;362(5):387-401.
- 127. Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K, et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med. 2012;367(12):1098-107.
- 128. Biogen Idec Inc. CSR: A dose-frequency blinded, multicenter, extension study to determine the long term safety and efficacy of pegylated interferon beta-1a (BIIB017) in subjects with relapsing multiple sclerosis. 2016.
- 129. Arnold DL, You X, Castrillo-Viguera C. Peginterferon beta-1a reduces the evolution of MRI lesions to black holes in patients with RRMS: a post hoc analysis from the ADVANCE study. J Neurol. 2017 Aug;264(8):1728-34.
- 130. Arnold DL, Shang S, Dong Q, Meergans M, Naylor ML. Peginterferon beta-1a every 2 weeks increased achievement of no evidence of disease activity over 4 years in the ADVANCE and ATTAIN studies in patients with relapsingremitting multiple sclerosis. Ther Adv Neurol Disord. 2018;11:1756286418795085.
- 131. Biogen Idec Inc. A systematic review and mixed treatment comparison of disease modifying treatments for relapsing-remitting multiple sclerosis. 2019.
- 132. van Valkenhoef G, Kuiper J. gemtc: network meta-analysis using Bayesian methods. R package version 0.7-1 [Internet]. 2015. Available at: <u>https://cran.r-project.org/web/packages/gemtc/index.html</u>. Accessed 28 January 2016.
- 133. Dias S, Welton NJ, Sutton AJ, Ades AE. NICE DSU technical support document 2: a generalised linear modelling framework for pairwise and

network meta-analysis of randomised controlled trials (last updated April 2014). Sheffield: NICE Decision Support Unit; 2011 Available at: <u>http://www.nicedsu.org.uk/</u>. Accessed 18 March 2015.

- 134. Brooks S, Gelman A. General methods for monitoring convergence of iterative simulations. J Comp Graph Stat. 1998;7(4):434-55.
- 135. Crentsil C, Scolding N, Wilkins A, Burrow J, Bennetto L, Ingles K. A comparison of the efficacy of interferon-beta and glatiramer acetate in relapse-rate reduction: a prospective randomisation study. Presented at the 28th Congress of the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS); October 2012. Lyon: France.
- 136. Mokhber N, Azarpazhooh A, Orouji E, Rao SM, Khorram B, Sahraian MA, et al. Cognitive dysfunction in patients with multiple sclerosis treated with different types of interferon beta: a randomized clinical trial. J Neurol Sci. 2014 Jul 15;342(1-2):16-20.
- 137. Mokhber N, Azarpazhooh A, Orouji E, Khorram B, Modares Gharavi M, Kakhi S, et al. Therapeutic effect of Avonex, Rebif and Betaferon on quality of life in multiple sclerosis. Psychiatry Clin Neurosci. 2015 Oct;69(10):649-57.
- 138. O'Connor P, Li D, Freedman M, Bar-Or A, Rice G, et al. A phase II study of the safety and efficacy of teriflunomide in multiple sclerosis with relapses. . Neurology. 2006;66(6):894-900.
- 139. Vermersch P, Czlonkowska A, Grimaldi LM, Confavreux C, Comi G, Kappos L, et al. Teriflunomide versus subcutaneous interferon beta-1a in patients with relapsing multiple sclerosis: a randomised, controlled phase 3 trial. Mult Scler. 2014 May;20(6):705-16.
- 140. Confavreux C, O'Connor P, Comi G, Freedman MS, Miller AE, Olsson TP, et al. Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 2014 Mar;13(3):247-56.
- 141. Etemadifar M, Janghorbani M, Shaygannejad V. Comparison of Betaferon, Avonex, and Rebif in treatment of relapsing-remitting multiple sclerosis. Acta Neurologica Scandinavica. 2006 May;113 (5):283-7.
- 142. Scott T, Shang S, Castrillo-Viguera C. A Matching-Adjusted Indirect Comparison of Clinical Effectiveness of Subcutaneous Peginterferon Beta-1a and Intramuscular Interferon Beta-1a for the Treatment of Relapsing Multiple Sclerosis. AAN. 2017.
- 143. Scott T, Mokliatchouk O, Castrillo-Viguera C, Harrington A, Naylor M. Peginterferon beta-1a every 2 weeks demonstrated better clinical outcomes than glatiramer acetate once daily in patients with RRMS using propensity score matching of phase 3 data from ADVANCE and CONFIRM. Presented at the 34th Congress of the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS); October 2018. Berlin, Germany.
- 144. Coyle PK, Shang S, Xiao Z, Dong Q, Castrillo-Viguera C. Matching-adjusted comparisons demonstrate better clinical outcomes with SC peginterferon beta-1a every two weeks than with SC interferon beta-1a three times per week. Mult Scler Relat Disord. 2018;22:134-8.
- 145. Biogen Idec Inc. 105MS301 FINAL TLGs. 2014.
- 146. Jacobs LD, Cookfair DL, Rudick RA, Herndon RM, Richert JR, Salazar AM, et al. Intramuscular interferon beta-1a for disease progression in relapsing

multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Ann Neurol. 1996 Mar;39(3):285-94.

- 147. Paty DW, Li DK. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. UBC MS/MRI Study Group and the IFNB Multiple Sclerosis Study Group. Neurology. 1993 Apr;43(4):662-7.
- 148. PRISMS Study Group. Randomised double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis. (Prevention of Relapses and Disability by Interferon beta-1a Subcutaneously in Multiple Sclerosis). Lancet. 1998 Nov 7;352(9139):1498-504.
- 149. Halper J, Centonze D, Newsome SD, Huang D, Robertson C, You X, et al. Management strategies for flu-like symptoms and injection-site reactions associated with peginterferon beta-1a: obtaining recommendations using the Delphi technique. International journal of MS care. 2016;18(4):211-8.
- 150. McEwan L, Brown J, Poirier J, Spring J, Brouillette J, Carr K, et al. Best practices in skin care for the multiple sclerosis patient receiving injectable therapies. International Journal of MS Care. 2010;12(4):177-89.
- 151. Naismith R, Hendin B, Wray S, You X, Sabatella G, Zambrano J, et al. ALLOW – a phase 3b trial characterising flu-like symptoms in patients switching to pegylated interferon beta-1a: interim analysis of all patients. Presented at the 31st Congress of the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS); October 2015. Barcelona, Spain.
- 152. Hu X, Shang S, Nestorov I, Hasan J, Seddighzadeh A, Dawson K, et al. COMPARE: pharmacokinetic profiles of subcutaneous peginterferon beta-1a and subcutaneous interferon beta-1a over 2 weeks in healthy subjects. Br J Clin Pharmacol. 2016 Aug;82(2):380-8.
- 153. Salvetti M, Wray S, Mokliatchouck O, Popescu C, Naylor M. Safety and effectiveness of peginterferon beta-1a for patients with newly diagnosed and non-newly diagnosed relapsing multiple sclerosis: second interim analysis of the Plegridy Observational Program (POP). Presented at the 34th Congress of the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS); October 2018. Berlin, Germany.
- 154. Grossberg SE, Oger J, Grossberg LD, Gehchan A, Klein JP. Frequency and magnitude of interferon beta neutralizing antibodies in the evaluation of interferon beta immunogenicity in patients with multiple sclerosis. J Interferon Cytokine Res. 2011;31(3):337-44.
- 155. Sibley WA, Duquette P, Knobler RL, Francis GS, Greenstein W, et al. Interferon beta-1b in the treatment of multiple sclerosis: final outcome of the randomized controlled trial. Neurology. 1995;45(7):1277-85.
- 156. Paolicelli D, Iannazzo S, Santoni L, D'Onghia M, Iaffaldano A, Puma E. The cost of patients with relapsing-remitting multiple sclerosis who develop neutralising antibodies while treated with interferon beta (PND34). Presented at the European Meeting of the International Society for Pharmacoeconomics and Outcomes Research (ISPOR); November 2015. Milan, Italy.
- 157. Biogen Idec Inc. TLV response 4110/2014. Cost effectiveness in treatment with Plegridy instead of Extavia. Data on file. 2014.
- 158. Hettle R, Harty G, Wong SL. Cost-effectiveness of cladribine tablets, alemtuzumab, and natalizumab in the treatment of relapsing-remitting multiple

sclerosis with high disease activity in England. J Med Econ. 2018;21(7):676-86.

- 159. Lambe T, Duarte R, Mahon J, Nevitt S, Greenhalgh J, Boland A, et al. Cladribine tablets for the first-line treatment of relapsing-remitting multiple sclerosis: an evidence review group perspective of a NICE single technology appraisal. Pharmacoeconomics. 2019;37(3):345-57.
- 160. Hernandez L, Guo S, Toro-Diaz H, Carroll S, Syed Farooq SF. Peginterferon beta-1a versus other self-injectable disease-modifying therapies in the treatment of relapsing-remitting multiple sclerosis in Scotland: a costeffectiveness analysis. J Med Econ. 2017;20(3):228-38.
- 161. Melendez-Torres G, Auguste P, Armoiry X, Maheswaran H, Madan J, Kan A, et al. Clinical effectiveness and cost-effectiveness of beta-interferon and glatiramer acetate for treating multiple sclerosis: systematic review and economic evaluation. Health Technol Assess. 2017;21(52):1-352.
- 162. Maervoet J, Ivanescu C, Andreykiv M, Wu Y, van Engen A. Glatiramer acetate (GA) is cost-effective compared to interferons and best supportive care (BSC) for relapsing remitting multiple sclerosis (RRMS) in the UK. Value Health. 2016;19(7):A433-4.
- 163. Montgomery SM, Maruszczak MJ, Slater D, Kusel J, Nicholas R, Adlard N. A discrete event simulation to model the cost-utility of fingolimod and natalizumab in rapidly evolving severe relapsing-remitting multiple sclerosis in the UK. J Med Econ. 2017;20(5):474-82.
- 164. Montgomery SM, Kusel J, Nicholas R, Adlard N. Costs and effectiveness of fingolimod versus alemtuzumab in the treatment of highly active relapsing-remitting multiple sclerosis in the UK: re-treatment, discount, and disutility. J Med Econ. 2017;20(9):962-73.
- 165. Tempest M, Bougeard C, Harrington A, Xaplanteris L. The cost-effectiveness of daclizumab beta vs fingolimod for the treatment of relapsing-remitting multiple sclerosis patients with inadequate response to prior treatment in Scotland. Value Health. 2017;20(9):A723-4.
- 166. Herring W, Gould IG, Ruiz L, Dort T, Zhang Y, Acosta C, et al. A costeffectiveness analysis using real-world data from the MSBase Registry: comparing natalizumab to fingolimod in patients with inadequate response to disease-modifying therapies in relapsing-remitting multiple sclerosis in Spain. PND56. Value Health. 2018;21:S338.
- 167. Rog D, Guo JD, Nucit A, Le Bagousse-Bego G, Chevli M, Chung L. Alemtuzumab is the most cost-effective option in comparison to available therapies in the treatment of RRMS from the UK NHS perspective. Value Health. 2017;20(9):A723.
- 168. Noon KM, Montgomery SM, Adlard NE, Kroes MA. When does economic model type become a decisive factor in health technology appraisals? Learning from the expanding treatment options for relapsing–remitting multiple sclerosis. J Med Econ. 2018;21(10):983-92.
- 169. Versteegh M. Impact on the incremental cost-effectiveness ratio of using alternatives to EQ-5D in a Markov model for multiple sclerosis. Pharmacoeconomics. 2016;34(11):1133-44.
- 170. NICE. TA527: Beta interferons and glatiramer acetate for treating multiple sclerosis (review of TA32) [ID809]. Committee papers. National Institute for Care Excellence; 2018. Available at:

https://www.nice.org.uk/guidance/ta527/documents/committee-papers. Accessed 25 March 2019.

- 171. Barendregt JJ. The life table method of half cycle correction: getting it right. Med Decis Making. 2014 Apr;34(3):283-5.
- 172. NICE. PMG9: Guide to the methods of technology appraisal. National Institute for Care Excellence; 2013. Available at: <u>https://www.nice.org.uk/process/pmg9/resources/guide-to-the-methods-of-technology-appraisal-2013-pdf-2007975843781</u>.
- 173. Siebert U, Alagoz O, Bayoumi AM, Jahn B, Owens DK, Cohen DJ, et al. State-transition modeling: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force--3. Value Health. 2012 Sep-Oct;15(6):812-20.
- 174. Palace J, Bregenzer T, Tremlett H, Oger J, Zhu F, Boggild M, et al. UK multiple sclerosis risk-sharing scheme: a new natural history dataset and an improved Markov model. BMJ Open. 2014 Jan 17;4(1):e004073.
- 175. Patzold U, Pocklington P. Course of multiple sclerosis. First results of a prospective study carried out of 102 MS patients from 1976-1980. Acta Neurol Scand. 1982;65(4):248-66.
- 176. Held U, Heigenhauser L, Shang C, Kappos L, Polman C. Predictors of relapse rate in MS clinical trials. Neurology. 2005;65(11):1769-73.
- 177. Tremlett H, Zhao Y, Rieckmann P, Hutchinson M. New perspectives in the natural history of multiple sclerosis. Neurology. 2010 Jun 15;74(24):2004-15.
- 178. Pokorski RJ. Long-term survival experience of patients with multiple sclerosis. J Insur Med. 1997;29(2):101-6.
- 179. Hawton A, Green C. Health utilities for multiple sclerosis. Value Health. 2016 Jun;19(4):460-8.
- 180. Acaster S, Perard R, Chauhan D, Lloyd AJ. A forgotten aspect of the NICE reference case: an observational study of the health related quality of life impact on caregivers of people with multiple sclerosis. BMC Health Serv Res. 2013 Sep 9;13:346.
- 181. Weinshenker BG, Bass B, Rice GP, Noseworthy J, Carriere W, Baskerville J, et al. The natural history of multiple sclerosis: a geographically based study.
 2. Predictive value of the early clinical course. Brain. 1989 Dec;112(Pt 6):1419-28.
- 182. ADVANCE trial data on file.
- 183. Calabrese M, Bernardi V, Atzori M, Mattisi I, Favaretto A, Rinaldi F, et al. Effect of disease-modifying drugs on cortical lesions and atrophy in relapsing– remitting multiple sclerosis. Mult Scler J. 2012;18(4):418-24.
- 184. Lublin FD, Cofield SS, Cutter GR, Conwit R, Narayana PA, Nelson F, et al. Randomized study combining interferon and glatiramer acetate in multiple sclerosis. Ann Neurol. 2013 Mar;73(3):327-40.
- 185. Schwid SR, Panitch HS. Full results of the Evidence of Interferon Dose-Response-European North American Comparative Efficacy (EVIDENCE) study: a multicenter, randomized, assessor-blinded comparison of low-dose weekly versus high-dose, high-frequency interferon β-1a for relapsing multiple sclerosis. Clin Ther. 2007;29(9):2031-48.
- 186. Vollmer TL, Sorensen PS, Selmaj K, Zipp F, Havrdova E, Cohen JA, et al. A randomized placebo-controlled phase III trial of oral laquinimod for multiple sclerosis. J Neurol. 2014 Apr;261(4):773-83.

- 187. Durelli L, Verdun E, Barbero P, Bergui M, Versino E, Ghezzi A, et al. Everyother-day interferon beta-1b versus once-weekly interferon beta-1a for multiple sclerosis: results of a 2-year prospective randomised multicentre study (INCOMIN). Lancet. 2002;359(9316):1453-60.
- 188. Ebers GC, Hommes O, Hughes RAC, Kappos L, Sberg Wollheim M, Palace J, et al. Randomised double blind placebo controlled study of interferon (beta)-1a in relapsing/remitting multiple sclerosis. Lancet. 1998;352(9139):1498-504.
- 189. Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017 Jan 19;376(3):221-34.
- 190. Cohen JA, Coles AJ, Arnold DL, Confavreux C, Fox EJ, Hartung HP, et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet. 2012 Nov 24;380(9856):1819-28.
- 191. Coles AJ, Twyman CL, Arnold DL, Cohen JA, Confavreux C, Fox EJ, et al. Alemtuzumab for patients with relapsing multiple sclerosis after diseasemodifying therapy: a randomised controlled phase 3 trial. Lancet. 2012 Nov 24;380(9856):1829-39.
- 192. Mikol DD, Barkhof F, Chang P, Coyle PK, Jeffery DR, Schwid SR, et al. Comparison of subcutaneous interferon beta-1a with glatiramer acetate in patients with relapsing multiple sclerosis (the Rebif vs Glatiramer Acetate in Relapsing MS Disease [REGARD] study): a multicentre, randomised, parallel, open-label trial. Lancet Neurol. 2008 Oct;7(10):903-14.
- 193. O'Connor P, Filippi M, Arnason B, Comi G, Cook S, Goodin D, et al. 250 microg or 500 microg interferon beta-1b versus 20 mg glatiramer acetate in relapsing-remitting multiple sclerosis: a prospective, randomised, multicentre study. Lancet Neurol. 2009;8(10):889-97.
- 194. Johnson KP, Brooks BR, Cohen JA, Ford CC, Goldstein J, Lisak RP, et al. Copolymer 1 reduces relapse rate and improves disability in relapsingremitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology. 1995 Jul;45(7):1268-76.
- 195. Bornstein MB, Miller A, Slagle S. A pilot trial of Cop 1 in exacerbatingremitting multiple sclerosis. N Engl J Med. 1987;317(7):408-14.
- 196. Khan O, Rieckmann P, Boyko A, Selmaj K, Ashtamker N, Davis MD, et al. Efficacy and safety of a three-times-weekly dosing regimen of glatiramer acetate in relapsing-remitting multiple sclerosis patients: 3-year results of the Glatiramer Acetate Low-Frequency Administration open-label extension study. Mult Scler. 2017 May;23(6):818-29.
- 197. O'Connor P, Wolinsky JS, Confavreux C, Comi G, Kappos L, Olsson TP, et al. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med. 2011;365(14):1293-303.
- 198. Office for National Statistics. National life tables, England, 1980-82 to 2014-16. 2016.
- 199. Thompson A, Kobelt G, Berg J, Capsa D, Eriksson J, Miller D, et al. New insights into the burden and costs of multiple sclerosis in Europe: results for the United Kingdom. Mult Scler J. 2017;23(2 suppl):204-16.

- 200. Daigl M, Jhuti G, McDougall F. EDSS state and health utility measured by EQ-5D in relapsing-remitting multiple sclerosis (RRMS). Value Health. 2016;19(7):A435.
- 201. Brola W, Sobolewski P, Fudala M, Flaga S, Jantarski K. Multiple sclerosis: patient-reported quality of life in the Świętokrzyskie region. Medical Studies/Studia Medyczne. 2017;33(3):191-8.
- 202. Gyllensten H, Kavaliunas A, Alexanderson K, Hillert J, Tinghög P, Friberg E. Costs and quality of life by disability among people with multiple sclerosis: a register-based study in Sweden. Mult Scler J Exp Transl Clin. 2018;4(3):2055217318783352.
- Flachenecker P, Kobelt G, Berg J, Capsa D, Gannedahl M, European Multiple Sclerosis Platform. New insights into the burden and costs of multiple sclerosis in Europe: results for Germany. Mult Scler J. 2017;23(2 suppl):78-90.
- 204. Calabrese P, Kobelt G, Berg J, Capsa D, Eriksson J, European Multiple Sclerosis Platform. New insights into the burden and costs of multiple sclerosis in Europe: Results for Switzerland. Mult Scler J. 2017;23(2 suppl):192-203.
- 205. Dubois B, Kobelt G, Berg J, Capsa D, Gannedahl M, European Multiple Sclerosis Platform. New insights into the burden and costs of multiple sclerosis in Europe: results for Belgium. Mult Scler J. 2017;23(2_suppl):29-40.
- 206. Lebrun-Frenay C, Kobelt G, Berg J, Capsa D, Gannedahl M, European Multiple Sclerosis Platform. New insights into the burden and costs of multiple sclerosis in Europe: results for France. Mult Scler J. 2017;23(2 suppl):65-77.
- 207. Berger T, Kobelt G, Berg J, Capsa D, Gannedahl M, Platform EMS. New insights into the burden and costs of multiple sclerosis in Europe: results for Austria. Mult Scler J. 2017;23(2 suppl):17-28.
- 208. Mäurer M, Comi G, Freedman MS, Kappos L, Olsson TP, Wolinsky JS, et al. Multiple sclerosis relapses are associated with increased fatigue and reduced health-related quality of life–A post hoc analysis of the TEMSO and TOWER studies. Mult Scler Relat Disord. 2016;7:33-40.
- 209. Brazier J, Roberts J, Deverill M. The estimation of a preference-based measure of health from the SF-36. J Health Econ. 2002;21(2):271-92.
- 210. Bennett JE, Sumner W, 2nd, Downs SM, Jaffe DM. Parents' utilities for outcomes of occult bacteremia. Arch Pediatr Adolesc Med. 2000 Jan;154(1):43-8.
- 211. Loveman E, Green C, Kirby J, Takeda A, Picot J, Payne E, et al. The clinical and cost-effectiveness of donepezil, rivastigmine, galantamine and memantine for Alzheimer's disease. Health Technol Assess. 2006 Jan;10(1):iii-iv, ix-xi, 1-160.
- 212. Gani R, Giovannoni G, Bates D, Kemball B, Hughes S, Kerrigan J. Costeffectiveness analyses of natalizumab (Tysabri) compared with other diseasemodifying therapies for people with highly active relapsing-remitting multiple sclerosis in the UK. Pharmacoeconomics. 2008;26(7):617-27.
- 213. Adlard N, Brisbane F, Watson J, Bottomley C, Kroes M. A three month interim analysis of quality of life in patients with relapsing remitting multiple sclerosis in the UK: the Patient Reported Outcomes with Fingolimod in Local Experience (PROFILE) study. Mult Scler J. 2017;23:970.

- 214. Hawton AJ, Green C. Multiple sclerosis: relapses, resource use, and costs. Eur J Health Econ. 2016 Sep;17(7):875-84.
- 215. Zarkali A, Lux D, Tredwell B, Guck N, Beaumont J, Redmond I, et al. The changing landscape of disease modifying treatments: cost implications for healthcare systems. Mult Scler J. 2017;23:159.
- 216. Havrdova E, Arnold DL, Cohen JA, Hartung H-P, Fox EJ, Giovannoni G, et al. Alemtuzumab CARE-MS I 5-year follow-up: durable efficacy in the absence of continuous MS therapy. Neurology. 2017;89(11):1107-16.
- 217. Coles AJ, Cohen JA, Fox EJ, Giovannoni G, Hartung H-P, Havrdova E, et al. Alemtuzumab CARE-MS II 5-year follow-up: Efficacy and safety findings. Neurology. 2017;89(11):1117-26.
- 218. Curtis L, Burns A. Unit costs of health and social care. Canterbury: Personal Social Services Research Unit, University of Kent; 2017. Available at: https://doi.org/10.22024/UniKent/01.02/65559. Accessed 31 May 2019.
- 219. Curtis L, Burns A. Unit costs of health and social care. Canterbury: Personal Social Services Research Unit, University of Kent; 2018. Available at: <u>https://www.pssru.ac.uk/project-pages/unit-costs/unit-costs-2018/</u>. Accessed 30 May 2019.
- 220. Getsios D, Blume S, Ishak KJ, Maclaine GD. Cost effectiveness of donepezil in the treatment of mild to moderate Alzheimer's disease: a UK evaluation using discrete-event simulation. Pharmacoeconomics. 2010;28(5):411-27.
- 221. Guo S, Getsios D, Hernandez L, Cho K, Lawler E, Altincatal A, et al. Florbetaben PET in the early diagnosis of Alzheimer's disease: a discrete event simulation to explore its potential value and key data gaps. Int J Alzheimers Dis. 2012;2012:548157.
- 222. Centonze D, Iannazzo S, Santoni L, Saleri C, Puma E, Giuliani L, et al. Costeffectiveness analysis of peginterferon beta-1a in the treatment of relapsingremitting multiple sclerosis in Italy: results of an updated analysis. Farmeconomia. 2018 Nov;19(1).
- 223. Walter E, Berger T, Bajer-Kornek B, Deisenhammer F. Cost-utility analysis of alemtuzumab in comparison with interferon beta, fingolimod, and natalizumab treatment for relapsing-remitting multiple sclerosis in Austria. J Med Econ. 2019 Mar;22(3):226-37.

+44 (0)300 323 0140

Single technology appraisal

Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis [ID1521]

Dear Company,

The Evidence Review Group, Warwick Evidence, and the technical team at NICE have looked at the submission received on 7th June 2019 from Biogen Idec. In general, they felt that it is well presented and clear. However, the ERG and the NICE technical team would like further clarification on the clinical and cost effectiveness data (see questions listed at end of letter).

The ERG and the technical team at NICE will be addressing these issues in their reports.

Please provide your written response to the clarification questions by **5pm** on **Tuesday 16th July 2019**. Your response and any supporting documents should be uploaded to NICE Docs/Appraisals.

Two versions of your written response should be submitted; one with academic/commercialin-confidence information clearly marked and one with this information removed.

Please <u>underline</u> all confidential information, and separately highlight information that is submitted as <u>commercial in confidence</u> in turquoise, and all information submitted as <u>academic in confidence</u> in yellow.

If you present data that are not already referenced in the main body of your submission and that are academic/commercial in confidence, please complete the attached checklist for confidential information.

Please do not embed documents (PDFs or spreadsheets) in your response because this may result in them being lost or unreadable.

If you have any queries on the technical issues raised in this letter, please contact Sharlene Ting, Technical Lead (<u>Sharlene.Ting@nice.org.uk</u>). Any procedural questions should be addressed to Jeremy Powell, Project Manager (<u>Jeremy.Powell@nice.org.uk</u>).

Yours sincerely Carl Prescott Technical Adviser – Appraisals Centre for Health Technology Evaluation

Encl. checklist for confidential information

+44 (0)300 323 0140

Section A: Clarification on clinical-effectiveness data

LITERATURE SEARCHING

Search dates

A1. Company submission (CS), Document C (Appendices), Appendix D, section D.1.1. There is inconsistency in the search dates reported. For example, section D.1.1 states that *'All databases and resources were searched from inception to December 2018'*. However, Table 1, Table 2 and section D.1.1.2 provide dates of '13.8.18', '11.6.18' and 'inception to August 2018' respectively. Please clarify the correct search dates.

Response

All databases were searched from inception to December 2018 as per Appendix D section D1.1, the latest date in a series of search updates conducted (see response to A2 for more detail). Dates prior to December 2018 are typographical errors with the exception of the DARE database which ceased to exist in April 2015, therefore the search date of 11.6.18 is still valid.

Search results

A2. CS, Document C, Appendix D, sections D1.1 and D.3.1. Figure 1 (PRISMA flow diagram of the systematic review process).

a. **PRIORITY QUESTION.** There is a discrepancy in the search number (n=30,866) presented in Figure 1 compared to the combined number of hits for the individual searches (n=29,865 not including the references for the previous Biogen MTC [118] and handsearching [12]) listed in Tables 1 to 21. Please clarify the number of hits from the different searches.

Response

The original literature searches (MEDLINE, MEDLINE In-Process, MEDLINE Daily Update, Embase, CENTRAL, SCI) were conducted from database inception to October 2014. A supplementary search of PubMed was also carried out to identify advance publications not yet indexed by the main databases. All searches were updated in November 2015, February 2016, September 2016, May 2017, June 2018, August 2018 and December 2018. The combined results of these database searches for clinical effectiveness yielded 27,934 references.

Searches were also undertaken to identify relevant systematic reviews, technology appraisals, guidelines and guidance (CDSR, DARE, HTA, NICE, NIHR, CADTH, PROSPERO, KSR Evidence; searches conducted in October 2014, updated in November 2015, February 2016, September 2016, May 2017, June 2018, August 2018 and December 2018). These searches, intended to identify additional primary studies, retrieved a total number of 461 records. Additional searches performed in clinical trials registers (ClinicalTrials.gov, WHO ICTRP, PharmNetBund, EUCTR, ISRCTN; searches conducted in October 2014 and updated in November 2015, February 2016, September 2016, May 2017, June 2018, August 2018 and December 2018) to identify data from ongoing or unpublished clinical trials retrieved a further 2,296 records.

+44 (0)300 323 0140

The list of publications included in existing Biogen MTCs was also checked to identify any publications not retrieved by the main searches. This yielded 118 records that were predominantly conference abstracts of existing studies. A further 12 records were identified by handsearching reference lists of included studies and relevant systematic reviews.

For the May 2017, June 2018, August 2018 and December 2018 updates, searches were conducted to identify relevant Summary of Product Characteristics (SmPCs) and European Public Assessment Reports (EPARs). These searches retrieved 45 SmPCs and EPARs. The combined results of all 8 searches yielded 30,866 records before de-duplication. After removing 10,539 duplicates, a total of 20,327 references were available for screening of titles and abstracts (see Document C, Appendix D, sections D1.1 and D.3.1. Figure 1 [PRISMA flow diagram of the systematic review process]).

Titles and abstracts of 20,327 references were screened and 1,454 potentially relevant papers ordered as full texts. Screening of full text papers identified 561 relevant publications reporting 32 studies. A further six ongoing studies were reported in nine publications.

Table 1 and Table 2 show the rapid appraisal and clinical effectiveness record hits pre- and post de-duplication across the search dates.

Search Date	Records retrieved	After de-duplication*
Oct 2014	175	159
Nov 2015	238	102
Feb 2016	243	9
Sep 2016	282	34
May 2017	243	45
Jun 2018	335	60
Aug 2018	359	24
Dec 2018	395	28
Total Combined		461

Table 1: Rapid appraisal searches

Duplicate records were removed from within the results of the update search AND between all previous search results

Table 2: Clinical effectiveness searches

Search Date	Records retrieved (d/bases)	Records after de- duplication (d/bases) [*]	Records retrieved (trials registers)	Records after de- duplication (trials registers) [*]	Combined records retrieved (d/bases & trials registers)	Combined records after de- duplication*
Oct 14	16260	10312	1629	1629 [†]	17889	11941
Nov 15	19682	1887	1555	398	21237	2285
Feb 16	19972	325	1594	29	21566	354
Sep 16	21204	678	1811	53	23015	731
May 17	23322	1467	1772	64	25094	1531
Jun 18	27025	2061	1939	90	28964	2151
Aug 18	27358	280	1965	8	29323	288
Dec 18	27934	385	1997	25	29931	410
Total combined		17395		2296		19691

*Duplicate records were removed from within the results of the update search AND between all previous search results † All trials records retrieved in the October 2014 searches were kept, including duplicate trials records

+44 (0)300 323 0140

b. Figure 1 shows that 118 and 12 records were retrieved using 'Biogen previous MTC' and 'handsearching' respectively. Please provide the list of references retrieved from these searches.

Response

Please find below the list of references or the 118 records from "Biogen previous MTC" (Table 3) and "handsearching" (Table 4).

Table 3. List of references for Biogen previous MTC

#	Reference
1	Zivadinov R, Dwyer M, Bergsland N, Hussein S, Durfee J, Ramasamy D, et al. Effect of alemtuzumab vs. interferon beta-1a on brain atrophy in patients with early, active relapsing-remitting multiple sclerosis. Paper presented at 63rd Annual Meeting of the American Academy of Neurology (AAN); 9-16 Apr 2011; Honolulu: United States. 2011.
2	Zhao GJ, Crablouse A, Li D, Riddehough A, Zhao Y, Cheng Y. Can changes of the third ventricular width on MRI demonstrate treatment effect in patients with multiple sclerosis? Paper presented at 19th World Congress of Neurology; 24-30 Oct 2009; Bangkok: Thailand. J Neurol Sci 2009;285(S1):S200.
3	Zhang A, Pace A, Hotermans C, Hyde R. A composite measure of multiple sclerosis disease progression in AFFIRM. Paper presented at 63rd Annual Meeting of the American Academy of Neurology (AAN); 9-16 Apr 2011; Honolulu: United States. 2011.
4	Zarbin M, Reder A, Collins W, Francis G, Zhang X, Zhao Y, et al. Ophthalmic evaluations in clinical studies of fingolimod (FTY720) in multiple sclerosis (MS). Paper presented at 63rd Annual Meeting of the American Academy of Neurology (AAN); 9-16 Apr 2011; Hawaii: United States. 2011.
5	Wray S, CAMMS223 Study Group. Two annual cycles of alemtuzumab yield durable treatment response 24 months after last dose. Paper presented at 61st Annual Meeting of the American Academy of Neurology (AAN); 25 Apr-2 May 2009; Seattle: United States. 2009.
6	Weinstock-Guttman B, Bermel R, Bourdette D, Foulds P, You P, Rudick R. Improved quality of life in patients with relapsing-remitting multiple sclerosis on long-term intramuscular interferon beta-1a: a 15-year study. Paper presented at 61st Annual Meeting of the American Academy of Neurology (AAN); 25 Apr-2 May 2009; Seattle: United States. 2009.
7	Weinstock-Guttman B, Bermel R, Bourdette D, Foulds P, You P, Rudick R. Comparing patient-reported and physician-reported EDSS scores in patients from ASSURANCE. Paper presented at 61st Annual Meeting of the American Academy of Neurology (AAN); 25 Apr-2 May 2009; Seattle: United States. 2009.
8	Vollmer T, Sorensen PS, Selmaj K, Zipp F, Havrdova E, Cohen J, et al. Results of switching to laquinimod in the open-label extension phase of the BRAVO study. Paper presented at 29th Congress of the European Committee for Treatment and Research in Multiple Sclerosis, ECTRIMS, 18th Annual Conference of Rehabilitation in MS, RIMS; 2-5 Oct 2013; Copenhagen: Denmark. Mult Scler 2013;19(11 Suppl):489.
9	Traboulsee A, Uitdehaag BM, Kappos L, Sandberg-Wollheim M, Li D, Jongen P, et al. Measures of early clinical activity as prognostic factors for long-term clinical outcomes in relapsing-remitting multiple sclerosis. Paper presented at 62nd Annual Meeting of the American Academy of Neurology (AAN); 10-17 Apr 2010; Toronto: Canada. 2010.

#	Reference
10	Traboulsee A, Uitdehaag BMJ, Kappos L, Sandberg-Wollheim M, Li D, Jongen P, et al. Measures of treatment adherence as prognostic factors for long-term outcomes in relapsing–remitting multiple sclerosis. Paper presented at 26th Congress of the European Committee for Treatment and Research in Multiple Sclerosis, ECTRIMS, 15th Annual Conference of Rehabilitation in MS, RIMS; 13-16 Oct 2010; Gothenburg: Sweden. Mult Scler 2010;16(10 Suppl):S165.
11	Traboulsee A, Uitdehaag B, Kappos L, Sandberg Wollheim M, Li D, Jongen P, et al. Baseline/pre-study characteristics and measures of early clinical and magnetic resonance imaging activity as prognostic factors for long-term outcomes in relapsing–remitting multiple sclerosis. Paper presented at 26th Congress of the European Committee for Treatment and Research in Multiple Sclerosis, ECTRIMS, 15th Annual Conference of Rehabilitation in MS, RIMS; 13-16 Oct 2010; Gothenburg: Sweden. Mult Scler 2010;16(10 Suppl):S283.
12	Sormani MP, Radue EW, De Stefano N, Sprenger T, Chin P, Francis G, et al. Does the effect of fingolimod on brain atrophy independently contribute to effects on disability? A patient-level analysis of the FREEDOMS study. Paper presented at 29th Congress of the European Committee for Treatment and Research in Multiple Sclerosis, ECTRIMS, 18th Annual Conference of Rehabilitation in MS, RIMS; 2-5 Oct 2013; Copenhagen: Denmark. Mult Scler 2013;19(11 Suppl):262-3.
13	Singer B, Comi G, Miller A, Olsson T, Wolinsky J, Kappos L, et al. Frequency of infections during treatment with teriflunomide: pooled data from three placebo-controlled teriflunomide studies (P01.171). Paper presented at 65th Annual Meeting of the American Academy of Neurology (AAN): 16-23 Mar 2013; San Diego: United States. Neurology 2013;80(1 MeetingAbstracts).
14	Sfikas N, Bergvall N, Chin P, Tomic D, Rosenstiel PV, Alsop J, et al. Effect of fingolimod in patients with no disability as measured by EDSS at baseline: post-hoc analyses of FREEDOMS I and II (P07.124). Paper presented at 65th Annual Meeting of the American Academy of Neurology (AAN): 16-23 Mar 2013; San Diego: United States. Neurology 2013;80(1 MeetingAbstracts).
15	Scott T, Laforet G, You X. Identifying patients with relapsing-remitting multiple sclerosis who have aggressive disease characterized by rapid disability progression (P05.093). Paper presented at 64th Annual Meeting of the American Academy of Neurology (AAN): 21-28 Apr 2012; New Orleans: United States. Neurology 2012;78(1 MeetingAbstracts).
16	Rocca MA, Camesasca F, Cook S, Comi G, Goodin DS, O'Connor PW, et al. Comparison of permanent black hole lesion number in relapsing-remitting multiple sclerosis with interferon beta-1b to glatiramer acetate. P46. Paper presented at Third Cooperative Meeting of the CMSC-ACTRIMS; 2-5 Jun 2010; San Antonio: United States. 2010: 49.
17	Reder A, Goodin D, Ebers G, Cutter G, Rametta M, Kremenchutzky M, et al. Survival outcomes and cause of death from the 21-year long-term follow-up study. (DX06). Paper presented at Fourth Cooperative Meeting of CMSC and ACTRIMS; 30 May-2 Jun 2012; San Diego: United States. Int J MS Care 2012;14(Suppl 2):39-40.
18	Radue E-W, Vera AD, Burtin P, Holdbrook F, Francis G, Kappos L. Fingolimod reduces brain volume loss in relapsing-remitting multiple sclerosis (RRMS) beyond its anti- inflammatory activity: results from FREEDOMS. Paper presented at 63rd Annual Meeting of the American Academy of Neurology (AAN); 9-16 Apr 2011; Honolulu: United States. 2011.

#	Reference
19	Phillips JT, Fox RJ, Kita M, Hutchinson M, Miller D, Havrdova E, et al. Safety and tolerability of BG-12 in the phase 3 CONFIRM study. (DX31). Paper presented at Fourth Cooperative Meeting of CMSC and ACTRIMS; 30 May-2 Jun 2012; San Diego: United States. Int J MS Care 2012;14(Suppl 2):50.
20	Pelletier J, Karlsson G, Li B, Vera AD, Francis G, Cohen J, et al. Effect of fingolimod on multiple sclerosis functional composite (MSFC) defined disability progression in patients with relapsing remitting MS (RRMS): results from two phase III studies. Paper presented at 63rd Annual Meeting of the American Academy of Neurology (AAN); 9-16 Apr 2011; Honolulu: United States. 2011.
21	O'Connor P, Briggs A, Carita P, Bégo-Le-Bagousse G. Impact on health-related quality of life of teriflunomide treatment by estimating utilities in patients with relapsing multiple sclerosis: results from TEMSO post hoc analysis. Paper presented at Twenty-second meeting of the European Neurological Society; 9-12 Jun; Prague: Czech Republic. 2012.
22	Nakamura K, Rudick R, Lee J-C, Foulds P, Fisher E. Effect of intramuscular interferon beta- 1a on gray matter atrophy in relapsing-remitting multiple sclerosis. Paper presented at 62nd Annual Meeting of the American Academy of Neurology (AAN); 10-17 Apr 2010; Toronto: Canada. 2010.
23	Munschauer F, Giovannoni G, Lublin F, O'Connor P, Phillips JT, Polman C, et al. Sustained improvement in physical disability with natalizumab in patients with relapsing multiple sclerosis. Paper presented at 61st Annual Meeting of the American Academy of Neurology (AAN); 25 Apr-2 May 2009; Seattle: United States. 2009.
24	Munschauer F, Giovannoni G, Miller D, Rudick R, O'Connor P, Polman C, et al. Improvement in EDSS corresponds with improvement in quality of life in patients with multiple sclerosis. Paper presented at 62nd Annual Meeting of the American Academy of Neurology (AAN); 10-17 Apr 2010; Toronto: Canada. 2010.
25	Miller A, Lublin F, O'Connor P, Taniou C, Dive-Pouletty C. Impact of relapses with sequelae on disability, health-related quality of life, and fatigue in a population with relapsing forms of multiple sclerosis using data from TEMSO, a pivotal phase III teriflunomide trial (P07.082). Paper presented at 64th Annual Meeting of the American Academy of Neurology (AAN): 21- 28 Apr 2012; New Orleans: United States. Neurology 2012;78(1 MeetingAbstracts).
26	Lublin F, Cutter G, Giovannoni G, Polman C, Paes D, Patel R, et al. Natalizumab reduces the disabling amplitude of multiple sclerosis relapses and improves post-relapse residual disability. Paper presented at 29th Congress of the European Committee for Treatment and Research in Multiple Sclerosis, ECTRIMS, 18th Annual Conference of Rehabilitation in MS, RIMS; 2-5 Oct 2013; Copenhagen: Denmark. Mult Scler 2013;19(11 Suppl):213-4.
27	Kremenchutzky M, O'Connor P, Hohlfeld R, Kappos L, Zhang-Auberson L, Häring DA, et al. Fingolimod efficacy by prior disease modifying therapy experience: FREEDOMS. (DX08). Paper presented at Fourth Cooperative Meeting of CMSC and ACTRIMS; 30 May-2 Jun 2012; San Diego: United States. Int J MS Care 2012;14(Suppl 2):40-1.
28	Kremenchutzky M, O'Connor P, Hohlfeld R, Radue E-W, Kappos L, Zhang-Auberson L, et al. Effect of fingolimod on relapse rate by prior treatment status and reason for discontinuation: FREEDOMS subgroup analyses. T1707. Paper presented at 136th Annual Meeting of the American Neurological Association. 25-27 Sep 2011; San Diego: United States. 2011: S67.

#	Reference
29	Kieseier B, Putzki N, Bates D, Hutchinson M, Pace A, Hyde R. Improvement in quality-of-life outcomes with natalizumab in multiple sclerosis patients with highly active disease. Paper presented at 61st Annual Meeting of the American Academy of Neurology (AAN); 25 Apr-2 May 2009; Seattle: United States. 2009.
30	Khatri BO, Pelletier J, Kappos L, Hartung H-P, Comi G, Barkhof F, et al. Effect of fingolimod on relapse rate by prior treatment status and reason for discontinuation: TRANSFORMS subgroup analyses. Paper presented at 136th Annual Meeting of the American Neurological Association. 25-27 Sep 2011; San Diego: United States. Ann Neurol 2011;70(Suppl 15):S68.
31	Khatri B, Barkhof F, Comi G, Hartung H-P, Kappos L, Montalban X, et al. 24-month efficacy and safety outcomes from the TRANSFORMS extension study of oral fingolimod (FTY720) in patients with relapsing-remitting multiple sclerosis. Paper presented at 62nd Annual Meeting of the American Academy of Neurology (AAN); 10-17 Apr 2010; Toronto: Canada. 2010.
32	Khatri B, Barkhof F, Comi G, Hartung H-P, Kappos L, Montalban X, et al. Oral fingolimod (FTY720) reduces the rate of relapses that require steroid intervention or hospitalization compared with intramuscular interferon -1a: results from a phase III study (TRANSFORMS) in multiple sclerosis. Paper presented at 62nd Annual Meeting of the American Academy of Neurology (AAN); 10-17 Apr 2010; Toronto: Canada. 2010.
33	Khan O, on behalf of the CAMMS223 Study Group. Alemtuzumab reduces disease progression in RRMS: long-term results of the CAMMS223 trial. Paper presented at 62nd Annual Meeting of the American Academy of Neurology (AAN); 10-17 Apr 2010; Toronto: Canada. 2010.
34	Kappos L, Gold R, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K, et al. Effects of BG-12 on quality of life in relapsing-remitting multiple sclerosis in DEFINE. (DX77). Paper presented at Fourth Cooperative Meeting of CMSC and ACTRIMS; 30 May-2 Jun 2012; San Diego: United States. Int J MS Care 2012;14(Suppl 2):71.
35	Kappos L, Cohen JA, Barkhof F, Cappiello L, Zhang Y, Von Rosenstiel P. Relapse rates and disability remain consistently low with long-term fingolimod therapy: five-year interim results of the LONGTERMS extension study. Paper presented at 29th Congress of the European Committee for Treatment and Research in Multiple Sclerosis, ECTRIMS, 18th Annual Conference of Rehabilitation in MS, RIMS; 2-5 Oct 2013; Copenhagen: Denmark. Mult Scler 2013;19(11 Suppl):486-7.
36	Kappos L, Rudick R, Polman C, O'Connor P, Vermersch P, Wiendl H, et al. Rapid onset of natalizumab effect regardless of baseline disease activity in multiple sclerosis. Paper presented at 62nd Annual Meeting of the American Academy of Neurology (AAN); 10-17 Apr 2010; Toronto: Canada. 2010.
37	Jeffery D, You X, Cha C. Association between MRI changes and disability progression in a pivotal study of natalizumab in patients with multiple sclerosis. Paper presented at 26th Congress of the European Committee for Treatment and Research in Multiple Sclerosis, ECTRIMS, 15th Annual Conference of Rehabilitation in MS, RIMS; 13-16 Oct 2010; Gothenburg: Sweden. Mult Scler 2010;16(10 Suppl):S137.
38	Jeffery D, Kirzinger S, Halper J, Preblick R, Bi YJ, Rametta M, et al. Baseline characteristics in a real-world MS study (ROBUST) compared to the BEYOND trial. Paper presented at Second Cooperative Meeting of the CMSC and ACTRIMS; 27-30 May 2009; Atlanta: United States. 2009.

#	Reference
39	Jeffery D, Rivera VM. Long-term effects of interferon beta-1a dose on relapse rate in relapsing remitting multiple sclerosis: results from a post-hoc analysis of PRISMS study data. Paper presented at 61st Annual Meeting of the American Academy of Neurology (AAN); 25 Apr-2 May 2009; Seattle: United States. 2009.
40	Jeffery D, Rivera VM. A post-hoc analysis of cumulative dose effects of subcutaneous interferon beta-1a on clinical and MRI outcomes in relapsing remitting multiple sclerosis: results over the long term. Paper presented at 61st Annual Meeting of the American Academy of Neurology (AAN); 25 Apr-2 May 2009; Seattle: United States. 2009.
41	Hotermans C, Subramanyam M, Pace A, Potts J, Hyde R. Natalizumab efficacy is unaffected by baseline anti-JCV antibody status. Paper presented at 21st Meeting of the European Neurological Society; 28-31 May 2011; Lisbon: Portugal. 2011.
42	Herbert J, Weinstock-Guttman B, Foulds P, You X. Impact of intramuscular interferon beta- 1a on multiple sclerosis disease severity: analysis of patients from the MSCRG and ASSURANCE studies using the Multiple Sclerosis Severity Scale. Paper presented at 62nd Annual Meeting of the American Academy of Neurology (AAN); 10-17 Apr 2010; Toronto: Canada. 2010.
43	Herbert J. Effect of subcutaneous interferon beta-1a on multiple sclerosis severity: findings from the PRISMS study. Paper presented at 61st Annual Meeting of the American Academy of Neurology (AAN); 25 Apr-2 May 2009; Seattle: United States. 2009.
44	Havrdova E, Galetta S, Hutchinson M, Stefoski D, Bates D, Polman CH, et al. Demographic and baseline disease characteristics associated with freedom from disease activity in natalizumab-treated patients. Paper presented at 26th Congress of the European Committee for Treatment and Research in Multiple Sclerosis, ECTRIMS, 15th Annual Conference of Rehabilitation in MS, RIMS; 13-16 Oct 2010; Gothenburg: Sweden. Mult Scler 2010;16(10 Suppl):S320.
45	Havrdova E, Bates D, Galetta S, Giovannoni G, Hutchinson M, Lublin F, et al. Effects of natalizumab treatment on freedom from disease activity by baseline characteristics in AFFIRM. Paper presented at 29th Congress of the European Committee for Treatment and Research in Multiple Sclerosis, ECTRIMS, 18th Annual Conference of Rehabilitation in MS, RIMS; 2-5 Oct 2013; Copenhagen: Denmark. Mult Scler 2013;19(11 Suppl):209-10.
46	Hauser S, Li D, Calabresi P, O'Connor P, Bar-Or A, Barkhof F, et al. Week 144 results of a phase II, randomized, multicenter trial assessing the safety and efficacy of ocrelizumab in patients with relapsing–remitting multiple sclerosis (RRMS) (S31.004). Paper presented at 65th Annual Meeting of the American Academy of Neurology (AAN): 16-23 Mar 2013; San Diego: United States. Neurology 2013;80(1 MeetingAbstracts).
47	Hartung H, Kappos L, Goodin D, O'Connor P, Filippi M, Arnason B, et al. Predictors of disease activity in 857 MS patients treated with IFNB-1b (PD5.009). Paper presented at 64th Annual Meeting of the American Academy of Neurology (AAN): 21-28 Apr 2012; New Orleans: United States. Neurology 2012;78(1 MeetingAbstracts).
48	Haas J, Hartung HP, von Rosenstiel P, Karlsson G, Tang DJ, Francis G, et al. Fingolimod reduces the number of severe relapses in patients with relapsing-remitting multiple sclerosis: results from phase III TRANSFORMS and FREEDOMS studies. Paper presented at 21st Meeting of the European Neurological Society; 28-31 May 2011; Lisbon: Portugal. 2011.

#	Reference
49	Haas J, Hartung H, Rosenstiel PV, Karlsson G, Tang D, Francis G, et al. Effect of fingolimod on severe multiple sclerosis relapses, healthcare utilization and recovery: results from two phase 3 studies, TRANSFORMS and FREEDOMS. Paper presented at 63rd Annual Meeting of the American Academy of Neurology (AAN); 9-16 Apr 2011; Honolulu: United States. 2011.
50	Goodin D, Reder A, Ebers G, Cutter G, Kremenchutzky M, Oger J, et al. Mortality outcomes for interferon beta-1b vs placebo 21 years following randomization. Paper presented at 63rd Annual Meeting of the American Academy of Neurology (AAN); 9-16 Apr 2011; Hawaii: United States. 2011.
51	Giovannoni G, Gold R, Fox RJ, Kita M, Yang M, Zhang R, et al. An integrated analysis of relapses requiring intravenous steroid use and multiple sclerosis (MS)-related hospitalizations from the BG-12 (dimethyl fumarate) phase 3 DEFINE and CONFIRM studies. Paper presented at ISPOR 18th Annual International Meeting; 18-22 May 2013; New Orleans: United States. Value Health 2013;16(3):A101-A102.
52	Giovannoni G, Munschauer F, O'Connor PW, Phillips JT, Polman CH, Pace A, et al. Natalizumab improves physical disability in patients with relapsing multiple sclerosis. Paper presented at 19th Meeting of the European Neurological Society; 20-24 Jun 2009; Milan: Italy. 2009.
53	Gallo P, Bernardi V, Rinaldi F, Favaretto A, Mattisi I, Perini P, et al. Effect of immunomodulatory agents (IMAs) on cortical inflammatory lesions (CLs) in patients with relapsing-remitting multiple sclerosis (RRMS): a 2-year longitudinal comparison study. Paper presented at 62nd Annual Meeting of the American Academy of Neurology (AAN); 10-17 Apr 2010; Toronto: Canada. 2010.
54	Galetta S, Balcer LJ, Polman CH, Rudick RA, Eggenberger E, Calabresi P, et al. Low- contrast letter acuity and its association with EDSS, quality of life, and MRI measures in the AFFIRM trial. Paper presented at 26th Congress of the European Committee for Treatment and Research in Multiple Sclerosis, ECTRIMS, 15th Annual Conference of Rehabilitation in MS, RIMS; 13-16 Oct 2010; Gothenburg: Sweden. Mult Scler 2010;16(10 Suppl):S336.
55	Francis G, Kappos L, O'Connor P, Collins W, Zhang-Auberson L, de Vera A, et al. Lymphocytes and fingolimod – temporal pattern and relationship with infections. Paper presented at 26th Congress of the European Committee for Treatment and Research in Multiple Sclerosis, ECTRIMS, 15th Annual Conference of Rehabilitation in MS, RIMS; 13-16 Oct 2010; Gothenburg: Sweden. Mult Scler 2010;16(10 Suppl):S146-S147.
56	Francis G, Kappos L, O'Connor P, Collins W, Zhang-Auberson L, Vera AD, et al. Lymphocytes and fingolimod temporal pattern and relationship with infections. Paper presented at 63rd Annual Meeting of the American Academy of Neurology (AAN); 9-16 Apr 2011; Honolulu: United States. 2011.
57	Fox RJ, Miller D, Phillips JT, Kita M, Hutchinson M, Havrdova E, et al. Clinical efficacy of BG-12 in relapsing-remitting multiple sclerosis: the CONFIRM study. (DX87). Paper presented at Fourth Cooperative Meeting of CMSC and ACTRIMS; 30 May-2 Jun 2012; San Diego: United States. Int J MS Care 2012;14(Suppl 2):3-4.
58	Fox EJ, Arnold DL, Cohen J, Coles AJ, Confavreux C, Hartung H-P, et al. Efficacy of alemtuzumab in relapsing-remitting multiple sclerosis patients who relapsed on prior therapy. (DX92). Paper presented at Fourth Cooperative Meeting of CMSC and ACTRIMS; 30 May-2 Jun 2012; San Diego: United States. Int J MS Care 2012;14(Suppl 2):6-7.

#	Reference
59	Fox E, on behalf of the CAMMS223 Study Group. Sustained positive effects of alemtuzumab on diverse neurological functions in relapsing-remitting multiple sclerosis patients. Paper presented at 62nd Annual Meeting of the American Academy of Neurology (AAN); 10-17 Apr 2010; Toronto: Canada. 2010.
60	Fox E, on behalf of the CAMMS223 Study Group. Long-term follow-up of immune thrombocytopenia after treatment of multiple sclerosis patients with alemtuzumab in CAMMS223. Paper presented at 62nd Annual Meeting of the American Academy of Neurology (AAN); 10-17 Apr 2010; Toronto: Canada. 2010.
61	Filippi M, Rocca M, Camesasca F, Cook S, Comi G, Goodin D, et al. IFNB-1b therapy reduces vs. glatiramer acetate the evolution of permanent T1 hypointensities (black holes) on brain MRI in treatment-naïve RRMS patients. Paper presented at 62nd Annual Meeting of the American Academy of Neurology (AAN); 10-17 Apr 2010; Toronto: Canada. 2010.
62	Doerner M, Beckmann K, Knappertz V, Limmroth V, the BEYOND Steering Committee. Effects of inhibitors of the renin-angiotensin-system on clinical and MRI outcomes in patients with multiple sclerosis receiving interferon-beta-1b or glatiramer acetate. A post- hoc-analysis of the BEYOND study. Paper presented at 28th Congress of the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS); 10-13 Oct 2012; Lyon: France. 2012.
63	DiMarco J, Collins W, Francis G, Zhang-Auberson L, Burtin P, Jin J, et al. Pooled analyses of the transient and long-term effects of fingolimod (FTY720) on cardiovascular parameters in phase 3 studies in patients with multiple sclerosis. Paper presented at 63rd Annual Meeting of the American Academy of Neurology (AAN); 9-16 Apr 2011; Hawaii: United States. 2011.
64	Devonshire V, Havrdova E, O'Connor P, Zhang-Auberson L, Li B, Kappos L. Fingolimod (FTY720) reduces the risk of 3-month confirmed disability progression: sub-group analysis from the 24-month FREEDOMS study in relapsing MS. Paper presented at 63rd Annual Meeting of the American Academy of Neurology (AAN); 9-16 Apr 2011; Honolulu: United States. 2011.
65	Cutter G, Chin P, Francis G, Meng X, Hashmonay R, Lublin F. Relapse is associated with residual deficits in relapsing-remitting multiple sclerosis: analysis of FREEDOMS data (P07.118). Paper presented at 65th Annual Meeting of the American Academy of Neurology (AAN): 16-23 Mar 2013; San Diego: United States. Neurology 2013;80(1 MeetingAbstracts).
66	Cree B, Stuart W, Tornatore C, Jeffery D, Pace A, Cha C. Natalizumab significantly improved relapses and MRI outcomes in African American patients with relapsing multiple sclerosis. Paper presented at 61st Annual Meeting of the American Academy of Neurology (AAN); 25 Apr-2 May 2009; Seattle: United States. 2009.
67	Cree B, Madireddy L, Stefano ND, Caillier S, Stromillo ML, Battaglini M, et al. Association of targeted blood biomarkers with interferon beta-1a treatment administration, magnetic resonance imaging activity, and treatment response (P02.089). Paper presented at 64th Annual Meeting of the American Academy of Neurology (AAN): 21-28 Apr 2012; New Orleans: United States. Neurology 2012;78(1 MeetingAbstracts).
68	Cornelisse P, Lehr L, Baldinetti F. Baseline predictors of mortality in patients with relapsing- remitting multiple sclerosis: exploratory analyses from the PRISMS-15 study. Paper presented at 28th Congress of the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS); 10-13 Oct 2012; Lyon: France. 2012.

#	Reference
69	Confavreux C, Olsson TP, Comi G, Freedman MS, Miller A, Wolinsky JS, et al. Teriflunomide hepatic safety results: pooled data from three placebo-controlled studies. Paper presented at Twenty-third meeting of the European Neurological Society; 8-11 Jun; Barcelona: Spain. 2013.
70	Coles AJ, CAMMS223 Study Group. Alemtuzumab induces a sustained reduction in disability in patients with relapsing remitting multiple sclerosis. Paper presented at 61st Annual Meeting of the American Academy of Neurology (AAN); 25 Apr-2 May 2009; Seattle: United States. 2009.
71	Coles A, on behalf of the CAMMS223 Study Group. Leukocyte dynamics following alemtuzumab treatment of relapsing remitting multiple sclerosis in a phase 2 study (CAMMS223). Paper presented at 62nd Annual Meeting of the American Academy of Neurology (AAN); 10-17 Apr 2010; Toronto: Canada. 2010.
72	Cohen JA, Kappos L, Francis G, Collins W, Zhang-Auberson L, Tang D. Safety overview of fingolimod in relapsing multiple sclerosis: phase 2 and 3 studies. T1709. Paper presented at 136th Annual Meeting of the American Neurological Association. 25-27 Sep 2011; San Diego: United States. Ann Neurol 2011;70(Suppl 15):S68.
73	Cohen J, Francis G, Meinel M, Eckert B. The benefits of fingolimod in patients with active multiple sclerosis despite previous treatment: phase 3 results from TRANSFORMS and the TRANSFORMS extension. Paper presented at 63rd Annual Meeting of the American Academy of Neurology (AAN); 9-16 Apr 2011; Honolulu: United States. 2011.
74	Cohen J, Barkhof F, Comi G, Hartung H-P, Kappos L, Khatri B, et al. Oral fingolimod (FTY720) treatment improves the performance of daily activities compared with intramuscular interferon -1a: patient-reported indices for multiple sclerosis (PRIMUS)-activities results from a phase III study (TRANSFORMS). Paper presented at 62nd Annual Meeting of the American Academy of Neurology (AAN); 10-17 Apr 2010; Toronto: Canada. 2010.
75	Cascione M, on behalf of the CAMMS223 Study Group. Alemtuzumab positively affects disability outcomes using a one-year-sustained criterion for relapsing-remitting multiple sclerosis patients in CAMMS223. Paper presented at 63rd Annual Meeting of the American Academy of Neurology (AAN); 9-16 Apr 2011; Honolulu: United States. 2011.
76	Twyman C, on behalf of the CAMMS223 Study Group. More alemtuzumab relapsing- remitting multiple sclerosis patients are free of clinical disease activity at five years. Paper presented at 63rd Annual Meeting of the American Academy of Neurology (AAN); 9-16 Apr 2011; Honolulu: United States. 2011.
77	Calabresi PA, Kieseier BC, Arnold DL. Pegylated interferon beta-1a in relapsing multiple sclerosis: baseline characteristics. (DX60). Paper presented at Fourth Cooperative Meeting of CMSC and ACTRIMS; 30 May-2 Jun 2012; San Diego: United States. Int J MS Care 2012;14(Suppl 2):63.
78	Calabresi PA, Goodin D, Jeffery D, Lublin FD, Rammohan K, Reder AT, et al. Oral fingolimod (FTY720) in relapsing-remitting multiple sclerosis: baseline patient demographics and disease characteristics from a 2-year phase III trial (FREEDOMS II). Paper presented at 62nd Annual Meeting of the American Academy of Neurology (AAN); 10-17 Apr 2010; Toronto: Canada. 2010.
79	Brinar V, On behalf of the CAMMS223 Study Group. Alemtuzumab and thyroid autoimmunity in relapsing-remitting multiple sclerosis patients in CAMMS223. Paper presented at 63rd Annual Meeting of the American Academy of Neurology (AAN); 9-16 Apr 2011; Honolulu: United States. 2011.

#	Reference
80	Brinar V, on behalf of the CAMMS223 Study Group. Benefits of alemtuzumab are evident even in relapsing-remitting multiple sclerosis patients who experience autoimmune adverse events. Paper presented at 62nd Annual Meeting of the American Academy of Neurology (AAN); 10-17 Apr 2010; Toronto: Canada. 2010.
81	Bhan V, Grand A, Germe M, Fisk J. Long-term outcomes in patients who receive teriflunomide for multiple sclerosis: evaluating health-related quality of life and fatigue over 7 years. Paper presented at 26th Congress of the European Committee for Treatment and Research in Multiple Sclerosis, ECTRIMS, 15th Annual Conference of Rehabilitation in MS, RIMS; 13-16 Oct 2010; Gothenburg: Sweden. Mult Scler 2010;16(10 Suppl):S308-S309.
82	Bermel RA, Weinstock-Guttman B, Bourdette D, Foulds P, Hyde R, Pace A, et al. Early predictors of long-term response to therapy in a 15-year follow-up study of intramuscular interferon beta-1a in patients with relapsing-remitting multiple sclerosis. Paper presented at 64th Annual Meeting of the American Academy of Neurology (AAN): 21-28 Apr 2012; New Orleans: United States. 2012.
83	Bermel R, Weinstock-Guttman B, Foulds P, Laforet G, You X, Pace A, et al. Evaluating the predictive value of early indicators of long-term disability in ASSURANCE. Paper presented at 5th Joint triennial congress of the European and Americas Committees for Treatment and Research in Multiple Sclerosis; 19-22 Oct; Amsterdam: The Netherlands. 2011.
84	Bergvall N, Sfikas N, Chin P, Tomic D, Rosenstiel PV, Alsop J, et al. Effects of fingolimod on disability progression in patients with disability as measured by EDSS at baseline: post- hoc analyses of FREEDOMS I and II (P04.128). Paper presented at 65th Annual Meeting of the American Academy of Neurology (AAN): 16-23 Mar 2013; San Diego: United States. Neurology 2013;80(1 MeetingAbstracts):e90-1.
85	Bergvall N, Sfikas N, Chin P, Tomic D, Cutter G. Improvement in physical disability with fingolimod: post-hoc analyses of FREEDOMS and TRANSFORMS. Paper presented at Twenty-third meeting of the European Neurological Society; 8-11 Jun; Barcelona: Spain. 2013.
86	Behari M, Kanikannan MA, Ghosh P, Gold R, Fox R, Arnold D, et al. Baseline characteristics of a subpopulation of Indian patients enrolled in two phase 3 trials for oral BG-12 in relapsing-remitting multiple sclerosis. P06.154 Paper presented at 62nd Annual Meeting of the American Academy of Neurology (AAN); 10-17 Apr 2010; Toronto: Canada. 2010.
87	Bates D, Bartholome E, Pace A, Hyde R, Hotermans C. Effect of natalizumab on relapse outcomes in patients with relapsing MS who experience MRI activity during treatment. Paper presented at 61st Annual Meeting of the American Academy of Neurology (AAN); 25 Apr-2 May 2009; Seattle: United States. 2009.
88	Bass A, for members of the CAMMS223 Study Group. Effect of alemtuzumab on quality of life in patients with relapsing-remitting multiple sclerosis. P1. Paper presented at Second Cooperative Meeting of the CMSC and ACTRIMS; 27-30 May 2009; Atlanta: United States. 2009: 32.
89	Bar-Or A, Fox RJ, Gold R, Miller DH, Arnold DL, O'Gorman J, et al. An integrated analysis of the clinical and neuroradiological effect of BG-12 (dimethyl fumarate) in subgroups of patients with relapsing-remitting multiple sclerosis from the phase 3 DEFINE and CONFIRM studies. O229. Paper presented at Twenty-third meeting of the European Neurological Society; 8-11 Jun; Barcelona: Spain. 2013.

#	Reference
90	Bar-Or A, Fox RJ, Gold R, Miller DH, Arnold DL, O'Gorman J, et al. clinical and neuroradiological effect of BG-12 (dimethyl fumarate) in subgroups of patients with relapsing–remitting multiple sclerosis (RRMS): an integrated analysis of the phase 3 DEFINE and CONFIRM studies. Paper presented at ISPOR 18th Annual International Meeting; 18-22 May 2013; New Orleans: United States. Value Health 2013;16(3):A102.
91	Baranzini SE, Madireddy LR, De Stefano N, Caillier SJ, Stromillo ML, Battaglini M, et al. Association of targeted blood biomarkers with interferon Beta-1a treatment administration, magnetic resonance imaging activity and treatment response. Paper presented at 5th Joint Triennial Congress of the European and Americas Committees for Treatment and Research in Multiple Sclerosis; 19-22 Oct 2011; Amsterdam: Netherlands. Mult Scler 2011;17(10 Suppl):S520-S521.
92	Balcer LJ, Galetta SL, Polman C, Rudick R, Munschauer F, Eggenberger E, et al. Low- contrast letter acuity detects visual function improvement in phase 3 relapsing MS trials of natalizumab. Paper presented at 62nd Annual Meeting of the American Academy of Neurology (AAN); 10-17 Apr 2010; Toronto: Canada. 2010.
93	Balcer LJ, Galetta SL, Polman CH, Rudick RA, Eggenberger E, Calabresi PA, et al. Visual function and associations with quality of life, disability, and MRI in trials of natalizumab for multiple sclerosis. P47. Paper presented at Third Cooperative Meeting of the CMSC-ACTRIMS; 2-5 Jun 2010; San Antonio: United States. 2010: 50.
94	Balcer L, Galetta S, Maguire M, Palmer J, Margolin D, Rizzo M, et al. Alemtuzumab improves contrast sensitivity in relapsing-remitting multiple sclerosis patients. Paper presented at 63rd Annual Meeting of the American Academy of Neurology (AAN); 9-16 Apr 2011; Honolulu: United States. 2011.
95	Balcer L, Galetta S, Polman CH, Rudick R, Eggenberger E, Calabresi P, et al. Low-contrast letter acuity detects visual function improvement in a phase 3 trial of natalizumab monotherapy. Paper presented at 26th Congress of the European Committee for Treatment and Research in Multiple Sclerosis, ECTRIMS, 15th Annual Conference of Rehabilitation in MS, RIMS; 13-16 Oct 2010; Gothenburg: Sweden. Mult Scler 2010;16(10 Suppl):S183.
96	Balcer L, Zhang A, Pace A, Hyde R. Evaluation of a multiple sclerosis (MS) disease progression composite (expanded disability status scale EDSS., MS functional composite MSFC., and low-contrast letter acuity LCA.). Paper presented at 15th Congress of the EFNS; 10-13 Sep 2011; Budapest: Hungary. Eur J Neurol 2011;18(Suppl 2):260.
97	Arnold DL, Gold R, Kappos L, Bar-Or A, Giovannoni G, Selmaj K, et al. Effects of BG-12 on magnetic resonance imaging outcomes in the DEFINE study (DX21). Paper presented at Fourth Cooperative Meeting of CMSC and ACTRIMS; 30 May-2 Jun 2012; San Diego: United States. Int J MS Care 2012;14(Suppl 2):46.
98	Arnold D, Dalton C, Narayanan S, Derakhshan M, Tozer DJ, Hunter K, et al. Magnetization transfer ratio imaging is feasible in large multicenter MS trials. Paper presented at 62nd Annual Meeting of the American Academy of Neurology (AAN); 10-17 Apr 2010; Toronto: Canada. 2010.
99	Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis (September 20, 2012;367:1087-97). Correction. N Engl J Med 2012;367(17):1673.
100	Calabresi PA, Kieseier BC, Arnold DL, Balcer L, Boyko A, Pelletier J, et al. Peginterferon beta-1a in relapsing multiple sclerosis: phase 3 ADVANCE. Paper presented at 27th Annual Meeting of the CMSC and the 5th Cooperative Meeting of the CMSC-ACTRIMS; 29 May-1 Jun 2013; Orlando: United States. 2013: DX05.

#	Reference
101	Chin P, Meng X, Hashmonay R. Early effect of fingolimod on clinical and MRI outcomes in relapsing multiple sclerosis. Paper presented at 27th Annual Meeting of the CMSC and the 5th Cooperative Meeting of the CMSC-ACTRIMS; 29 May-1 Jun 2013; Orlando: United States. 2013: DX17.
102	Crayton H, Arnold DL, Cohen JA, Coles AJ, Confavreux C, Fox EJ, et al. Alemtuzumab's effects on disability outcomes occur early in CARE-MS II. Paper presented at 27th Annual Meeting of the CMSC and the 5th Cooperative Meeting of the CMSC-ACTRIMS; 29 May-1 Jun 2013; Orlando: United States. 2013: DX21
103	O'Connor P. Interferon-β1a reduced relapses at 2 years in relapsing–remitting multiple sclerosis. Evid Based Med 1999;4(3):74-5.
104	Bornstein MB. Cop1 may be beneficial for patients with exacerbating-remitting form of multiple sclerosis. Adv Ther 1987;4(4):206.
105	Doerner M, Beckmann K, Knappertz V, Kappos L, Hartung HP, Filippi M, et al. Effects of inhibitors of the renin-angiotensin system on the efficacy of interferon beta-1b: a post hoc analysis of the BEYOND study. Eur Neurol 2014;71(3-4):173-9.
106	Krieger S, Arnold DL, Cohen JA, Coles AJ, Confavreux C, Fox EJ, et al. Alemtuzumab is efficacious in highly-active RRMS patients in CARE-MS II. Paper presented at 27th Annual Meeting of the CMSC and the 5th Cooperative Meeting of the CMSC-ACTRIMS; 29 May-1 Jun 2013; Orlando: United States. 2013: DX01.
107	Rudick RA, Jacobs L, Alam J, Cookfair D, Herndon R, Richert J, et al. Toxicity of recombinant intramuscular recombinant interferon-β-1a in multiple sclerosis patients. M115. Paper presented at 120th Annual Meeting of the American Neurological Association; 22-25 Oct 1995; Washington, DC: United States. Ann Neurol 1995;38(2):313.
108	Freedman M, Confavreux C, Olsson T, Comi G, Aaron Miller MD, Wolinsky J, et al. Teriflunomide efficacy and safety analyses: results from TEMSO and TOWER. Paper presented at 27th Annual Meeting of the CMSC and the 5th Cooperative Meeting of the CMSC-ACTRIMS; 29 May-1 Jun 2013; Orlando: United States. 2013: P5.
109	Nelson F, Salter A, Narayana P, Gustafson T, Conwit R, Wang J, et al. MRI outcomes and MS diagnosis criteria in the CombiRx trial. Paper presented at 27th Annual Meeting of the CMSC and the 5th Cooperative Meeting of the CMSC-ACTRIMS; 29 May-1 Jun 2013; Orlando: United States. 2013: 3.2.
110	Gustafson T, Powell CS, Salter A, Wang J, Lublin FD, Wolinsky J, et al. Data management and montitoring in the CombiRx randomized trial. Paper presented at 27th Annual Meeting of the CMSC and the 5th Cooperative Meeting of the CMSC-ACTRIMS; 29 May-1 Jun 2013; Orlando: United States. 2013: DX32.
111	Jeffery D, Cohen JA, Meng X, Hashmonay R. Effect of fingolimod on brain atrophy: MRI data from phase 3 studies. Paper presented at 27th Annual Meeting of the CMSC and the 5th Cooperative Meeting of the CMSC-ACTRIMS; 29 May-1 Jun 2013; Orlando: United States. 2013: DX37.
112	Bashir K, Cofield SS, Cutter G, Wolinsky J, Gustafson T, Conwit R, et al. Clinical outcomes and MS diagnosis criteria in the CombiRx trial. Paper presented at 27th Annual Meeting of the CMSC and the 5th Cooperative Meeting of the CMSC-ACTRIMS; 29 May-1 Jun 2013; Orlando: United States. 2013: P42.
113	Hohlfeld R, Meng X, Hashmonay R, Tenenbaum N. Long-term safety and tolerability of fingolimod in relapsing-remitting MS. Paper presented at 27th Annual Meeting of the CMSC and the 5th Cooperative Meeting of the CMSC-ACTRIMS; 29 May-1 Jun 2013; Orlando: United States. 2013: DX55.

+44 (0)300 323 0140

#	Reference
114	Yu CC, Lancia S, Tutlam N, Xu J, Naismith RT. High monthly T2 lesion burden associated with improved EDSS upon starting MS treatment. Paper presented at 27th Annual Meeting of the CMSC and the 5th Cooperative Meeting of the CMSC-ACTRIMS; 29 May-1 Jun 2013; Orlando: United States. 2013: DX61
115	Henson LJ, Arnold DL, Canada M, Cohen JA, Coles AJ, Confavreux C, et al. Durable effects of alemtuzumab on relapse rate over time in CARE-MS II. Paper presented at 27th Annual Meeting of the CMSC and the 5th Cooperative Meeting of the CMSC-ACTRIMS; 29 May-1 Jun 2013; Orlando: United States. 2013: DX38
116	Fernandez O. Alemtuzumab in the treatment of multiple sclerosis. J Inflamm Res 2014;7:19-27.
117	Randhawa S, Meng X, Hashmonay R. Cardiac effects of fingolimod: first-dose observation. Paper presented at 27th Annual Meeting of the CMSC and the 5th Cooperative Meeting of the CMSC-ACTRIMS; 29 May-1 Jun 2013; Orlando: United States. 2013: DX50
118	Agius M, Jeffery D, Meng X, Hashmonay R, DiBernardo A. Fingolimod efficacy and safety vs. placebo: phase 3 FREEDOMS II study. Paper presented at 27th Annual Meeting of the CMSC and the 5th Cooperative Meeting of the CMSC-ACTRIMS; 29 May-1 Jun 2013; Orlando: United States. 2013: DX09.

Table 4. List of references - hand searches

#	Reference
1	Heron Evidence Development. An update to SR and MTC of DMTs in relapsing remitting multiple sclerosis. Version 1.0. Report. May 2014: Heron Evidence Development, 2014
2	Biogen Idec Inc. Clinical study report. Full final. Study Number: 205MS202. A double-blind, multicenter, extension study to evaluate the safety and efficacy of DAC HYP in subjects with multiple sclerosis who have completed treatment in study 205MS201 (SELECT). Cambridge, MA: Biogen Idec Inc, 2013
3	Biogen Idec Inc. Clinical study report. Full final. Study Number: 205MS301. Multicenter, double-blind, randomized, parallel-group, monotherapy, active-control study to determine the efficacy and safety of daclizumab high yield process (DAC HYP) versus avonex® (interferon β -1a) in patients with relapsing-remitting multiple sclerosis. Cambridge, MA: Biogen Idec Inc, 2015
4	Biogen Idec Inc. Clinical study report. Full final. Study Number: 205MS201. Multicenter, double-blind, placebo-controlled, dose-ranging study to determine the safety and efficacy of daclizumab HYP (DAC HYP) as a monotherapy treatment in subjects with relapsing-remitting multiple sclerosis. Cambridge, MA: Biogen Idec Inc, 2013
5	Biogen Idec Inc. Clinical study report. Full final. Study Number: 109MS302. A randomized, multicenter, placebo-controlled and active reference (glatiramer acetate) comparison study to evaluate the efficacy and safety of BG00012 in subjects with relapsing-remitting multiple sclerosis. Cambridge, MA: Biogen Idec Inc, 2012
6	Biogen Idec Inc. Clinical study report. Full final. Study Number: 109MS301. A randomized, multicenter, double-blind, placebo-controlled, dose-comparison study to determine the efficacy and safety of BG00012 in subjects with relapsing-remitting multiple sclerosis. Cambridge, MA: Biogen Idec Inc, 2012
7	Biogen Avonex, Multiple Sclerosis Collaborative Research Group (MSCRG). Integrated clinical/statistical report. Study Number: NS 26321. Intramuscular interferon beta-la versus placebo as treatment for multiple sclerosis. Part IV: BIOGEN Inc, 1995

+44 (0)300 323 0140

#	Reference
8	Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 1983;33(11):1444-52.
9	Poser CM, Paty DW, Scheinberg L, McDonald WI, Davis FA, Ebers GC, et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol 1983;13(3):227-31.
10	European Medicines Agency, Committee for Medicinal Products for Human Use (CHMP). Guideline on clinical investigation of medicinal products for the treatment of multiple sclerosis [Internet]. London: European Medicines Agency, 2006 accessed 11.2.15. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC5 00003485.pdf
11	Biogen Idec. 105MS301 Final - TLGs. Year 2 trial results. 2014.
12	Biogen Idec. 105MS301 Interim - TLGs. Year 1 trial results. 2013.

A3. CS, Document C, Appendix D, sections D.3.1 and D.3.2.1; Appendix L, section

L.3.12.1. 'GLOW' is listed in Table 25 (Studies excluded from key analyses) but no reference has been provided.

a. Please provide a reference for this study.

Response:

References for GLOW are available in Document C, Appendix D, Section 3.2, table 26 (p58) and are as follows:

Teva Pharmaceutical Industries. A clinical study in patients with multiple sclerosis to assess the efficacy, safety and tolerability of Glatiramer Acetate (GA) 20 mg/0.5 ml (experimental drug). EUCTR2011-005550-57-LV. In: WHO International Clinical Trials Registry Platform (ICTRP) [Internet]. Geneva: World Health Organization (WHO). 2012 [accessed 15.10.14]. Available from: https://www.clinicaltrialsregister.eu/ctr-search/search?query=eudract_number:2011-005550-57 http://ClinicalTrials.gov/show/NCT01578785 NLM Identifier: NCT01578785

Teva Pharmaceutical Industries. An efficacy, safety and tolerability study of glatiramer acetate (GA) 20 mg/0.5 ml new formulation administered daily by subcutaneous (SC) injection in subjects with relapsing-remitting multiple sclerosis (RRMS). In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2012-2012 (Terminated) [cited 2014 Oct 14]. Available from: http://ClinicalTrials.gov/show/NCT01578785 NLM Identifier: NCT01578785

b. GLOW also appears in Table 26 (List of included studies) along with 2 references, and in the network diagram in Figure 15. Please clarify whether GLOW is an included or excluded study.

+44 (0)300 323 0140

Response:

Key analyses are in reference to ARR and CDP3M and CDP6M only which do not include GLOW. GLOW was only included in the network for adverse events.

ADVANCE and ATTAIN

Patient characteristics

A4. <u>PRIORITY QUESTION</u>. CS, Document B, section B.2.3.1.2. Based on Table 7, please provide a table of patient characteristics for the arms at the start and at the end of ADVANCE and ATTAIN.

Response:

As clarified on the teleconference (9th July), Biogen have provided baseline charcteristics at the start of each study (patients must have received 1 dose of pegIFN β -1a) and at the end of the study for the subset of completers across ADVANCE & ATTAIN (defined at patients who reach the 96 week timepoint in both studies, respectively). The placebo only treatment group in ADVANCE is for those patients who received Placebo in Year 1 and withdrew before Year 2. These summary tables are provided in accompaniment to this document.

Generalisability of population

A5. <u>**PRIORITY QUESTION.**</u> **CS, Document B, sections B.2.3.1.2 and B.3.11.** Section B.3.11 states that '*The patient population in ADVANCE ... is reflective of adult patients with relapsing-remitting multiple sclerosis (RRMS) in the UK*'. However, only 14 patients were enrolled from the UK. Please clarify why the population in ADVANCE is considered to be generalisable to the UK.

Response:

ADVANCE included only 14 UK patients, and most patients were from Eastern Europe. Subgroup analysis by region has been performed for ADVANCE (see response 7) and suggests that the efficacy of pegIFN is broadly similar across all populations, regardless of region.

Document B, section 2.9.3, Table 17, presents baseline characteristics from other comparator studies relevant to this appraisal. These studies have been used in prior appraisals for the respective technologies and all deemed generalisable to the UK. Biogen do not believe the baseline characteristics of ADVANCE significantly differ from these reported studies.

Annualised relapse rate (ARR)

A6. CS, Document B, section B.2.4, section B.2.6.1.1 and section B.2.6.1.2. CS, Document C, Appendix L, section L.3.13. For ADVANCE, Table 10 (section B.2.4) states that the annualised relapse rate at 1 year (the primary end point) 'was analysed using negative binomial regression, adjusted for baseline Expanded Disability Status Scale (EDSS) score (< 4 vs. \geq 4), baseline age (< 40 vs. \geq 40 years), and baseline relapse rate (number of relapses in 3 years prior to study entry divided by 3)'. For ADVANCE, Newsome et al. (2018) states that the annualised relapse rate was adjusted for the same characteristics, that is, 'baseline EDSS score (<4.0 versus \geq 4.0), baseline relapse rate, and

+44 (0)300 323 0140

age (<40 versus \geq 40 years)'. However, there is discrepancy in the reporting of the annualised relapse rate at 1 year for the peginterferon beta-1a Q2W arm in ADVANCE in Document B (please see table below). Please clarify the discrepancy in reported annualised relapse rates.

Document location of information	ARR for peginterferon beta-1a Q2W at 1 year	Reported data source in document
Document B, section B2.6.1.1, Table 11	0.256	Calabresi et al. (2014) ¹¹
Document C, Appendix L, section L.3.13	0.256	Source not provided
Document B, section B.2.6.1.2, Figure 3	0.241	Newsome et al. (2018) ¹²⁴

Response:

For clarification, the Newsome et al 2018 publication relates to ATTAIN, 0.241 is therefore the ARR for the ITT population for the patients who entered this extension study; 0.256 is the ARR for the ITT population in ADVANCE as reported in the Calabresi et al (2014) publication.

A7. <u>**PRIORITY QUESTION.</u></u> CS, Document B, section B.2.7.1.** Based on subgroup analyses of annualised relapse rates at 1 year, the company submission states that 'the efficacy of peginterferon beta-1a was similar in all patients regardless of their sex, age, body weight, geographical region, or disease status at the initiation of treatment (Figure 8)'. However, Figure 8 does not provide a subgroup analysis based on geographical region. Please provide this information.</u>

Response:

Please find the requested subgroup analyses from the 1-year analysis of ADVANCE for ARR (INEC confirmed relapses) comparing pegIFN β -1a Q2W (Figure 1) and Q4W (Figure 2) against placebo.

+44 (0)300 323 0140

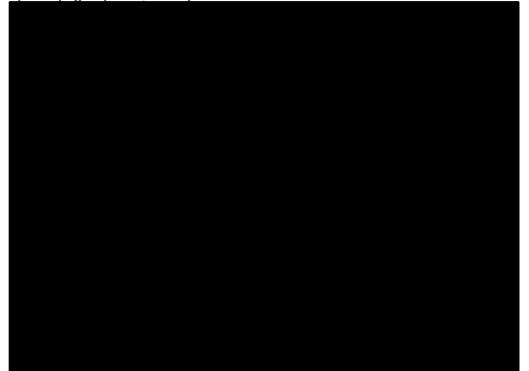
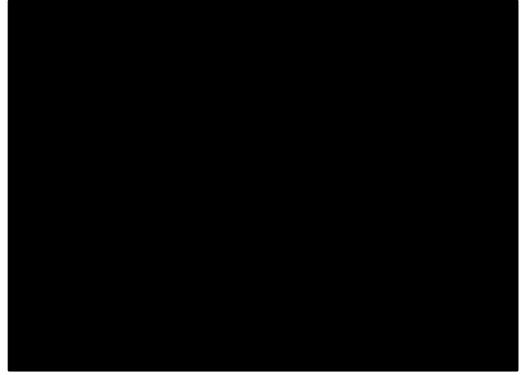



Figure 1. ARR (INEC confirmed relapses) at 1 year – rate ratio and 95% CI by demographic subgroups for pegIFN β -1a Q2W vs placebo

Figure 2. ARR (INEC confirmed relapses) at 1 year – rate ratio and 95% CI by demographic subgroups for pegIFNβ-1a Q4W vs placebo

NETWORK META-ANALYSIS

Included studies

A8. <u>PRIORITY QUESTION.</u> CS, Document C, section D.2.1.1. CS, Document B, sections B.2.9.3 and B.2.10.3. Section D.2.1.1 states that 'A narrative summary of all of the included studies is presented in Section B.2.10.3 in Document B or in the meta-analysis results section below. This includes a summary of the key study characteristics (e.g. study design, population size, year, inclusion criteria, baseline population characteristics) and methodological quality (according to the Cochrane Collaboration risk of bias tool) of the studies'. However, section B.2.10.3 only refers to adverse reactions specifically in ADVANCE and ATTAIN. In addition, no details are included in the meta-analysis results section in Document C. Table 17 (section B.2.9.3) provides only the baseline patient characteristics of included studies. Please provide all the information stated above for all included studies for any reported outcome.

Response

Requested information are available in the following tables (with the exception of baseline characteristics already provided in Document B, section 2.9.3, table 17):

- Table 5: Study details
- Table 6: Population sizes and interventions assessed
- Table 7: Distribution of MS Subtypes
- Table 8: Previous treatments prior to enrolment
- Table 9: Methodological quality

Table 5. Study details of studies included in the systematic review

Study ID	Trial Registry number	Main Publication	Diagnosis Criteria	Age	EDSS	Previous Relapses	Previous treatment
ADVANCE	NCT00906399	Calabresi 2014	McDonald 2005	18-65 years	0-5.0	≥2 in previous 3 years with ≥1 within past 12 months	Mixed ^{1,2}
APEX	NCT01838668	Mori 2017	NR	NR	0-5.0	NR	Treatment Naïve
BEYOND	NCT00099502	O'Connor 2009	McDonald	18-55 years	0-5.0	≥1 in year before study	Treatment Naïve
Boiko 2017	NCT02753088	Boiko 2017	McDonald 2005	NR	0-5.5	At least one exacerbation or at least one identified focus accumulating gadolinium on T1 MRI scans	NR
Bornstein 1987	NR	Bornstein 1987	Poser	20-35 years	0-6.0	≥2 exacerbations in 2 years before admission	NR
BRAVO	NCT00605215	Vollmer 2014	McDonald 2005	18-55 years	0-5.5	≥1 in previous year, 2 in previous 2 years, or 1 in previous 1–2 years and 1 or more GdE lesion in the previous year	Treatment Naïve
Calabrese 2012	NR	Calabrese 2011	McDonald 2005	18-55 years	0-5.0	NR	NR
CAMMS223	NCT00050778	CAMMS223 Trial Investigators 2008	McDonald	NR	0-3.0	≥2 clinical episodes during previous 2 years	Treatment Naïve
CARE MS-I	NCT00530348	Cohen 2012	McDonald 2005	18-50 years	0-3.0	≥2 in previous 2 years and ≥1 in previous year	Treatment Naïve
CARE MS-II	NCT00548405	Coles 2012	McDonald 2005	18-55 years	0-5.0	≥2 attacks in previous 2 years with ≥1 in previous year	Mixed
CombiRx	NCT00211887	Lublin 2013	Other	18-60 years	0-5.5	≥2 exacerbations in prior 3 years, where 1 exacerbation could be an MRI change	NR

Study ID	Trial Registry number	Main Publication	Diagnosis Criteria	Age	EDSS	Previous Relapses	Previous treatment
CONFIRM	NCT00451451	Fox 2012	McDonald 2005	18-55 years	0-5.0	≥1 in previous 12 months or ≥1 Gd- enhanced lesion 0 to 6 weeks before randomisation	Mixed ^{1,2}
Copolymer I study	NCT00004814	Johnson 1995	Poser	18-45 years	0-5.0	Onset of relapse > 1 year before randomisation	NR
Crentsil 2012	NR	Crentsil 2012	NR	NR	NR	NR	NR
DEFINE	NCT00420212	Gold 2012	McDonald 2005	18-55 years	0-5.0	≥1 within 12 months before randomisation or a brain MRI scan, obtained within 6 weeks before randomisation, that showed ≥1 Gd- enhanced lesion	Mixed ^{1,2}
Etemadifar 2006	NR	Etemadifar 2006	Poser	15-50 years	0-5.0	≥2 within 2-year period to treatment	NR
EVIDENCE	NR	Panitch 2002	Poser	NR	0-5.5	≥2 exacerbations of MS in prior 2 years	NR
GALA	NCT01067521	Khan 2013	McDonald 2005	18-55 years	0-5.5	1 in 12 months prior to screening, 2 in 24 months prior to screening, or 1 between 12 and 24 months prior to screening	Mixed
GLOW	NCT01578785	Teva Pharmaceutical Industries 2014	McDonald 2010	18-55 years	0-5.5	Either ≥1 in 12 mths prior to screening, or ≥2 in 24 months prior to screening, or 1 between 12 and 24 months prior to screening with ≥1 documented T1-Gd-enhanced lesion in a MRI performed within 12 months prior to screening	NR
IFNB MS study	NR	The IFNB Multiple Sclerosis Study Group 1993	Poser	18-50 years	0-5.5	≥2 acute exacerbations during previous 2 years	NR

Study ID	Trial Registry number	Main Publication	Diagnosis Criteria	Age	EDSS	Previous Relapses	Previous treatment
INCOMIN	NR	Durelli 2002	Poser	18-50 years	1-3·5	2 during preceding 2 years	NR
Mokhber 2014	NR	Mokhber 2014	McDonald	NR	NR	NR	Treatment Naïve
Mokhber 2015	IRCT201404195280N16	Mokhber 2015	McDonald 2010	NR	NR	NR	Treatment Naïve
MSCRG	NR	Jacobs 1996	Poser	18-55 years	1.0- 3.5	≥2 within previous 3 years	NR
O'Connor 2006	NCT00228163	O'Connor 2006	Poser	18-65 years	0-6.0	2 in previous 3 years, and 1 during preceding year	NR
OPERA I	NCT01247327	Hauser 2017	McDonald 2010	18-55 years	0-5.5	\geq 2 within previous 2 years or 1 within the year before screening	Mixed
OPERA II	NCT01412333	Hauser 2017	McDonald 2010	18-55 years	0-5.5	≥ 2 within previous 2 years or 1 within the year before screening	Mixed
PRISMS	NR	PRISMS study group 1999	Schumacher	NR	0-5.0	≥2 in preceding 2 years	NR
REGARD	NCT00078338	Mikol 2008	McDonald	18-60 years	0-5.5	≥1 in preceding 12 months	NR
TEMSO	NCT00134563	O'Connor 2011	McDonald	18-55 years	0-5.5	≥2 in previous 2 yrs or 1 during preceding year	Mixed ¹
TENERE	NCT00883337	Vermersch 2014	McDonald 2005	≥18 years	0-5.5	NR	Mixed
TOWER	NCT00751881	Confavreux 2014	McDonald 2005	18-55 years	0-5.5	≥1 in previous year or ≥2 in previous2 years	Mixed

EDSS = Expanded Disability Status Scale, MRI = magnetic resonance imaging, NR = not reported 1 Reports treatment-naïve as a sub-group analysis for CDP3M; 2 Reports treatment-naïve as a sub-group analysis for CDP6M

Study ID	Total Randomised	Treatment arm	Administration	No. pts randomised	No. pts received treatment	No. pts discon study
		PEG IFN beta-1a, 125 mcg, q4w	SC	500	500	62
ADVANCE	1512	PEG IFN beta-1a 125 mcg q2w	SC	512	512	74
	1012	Placebo	SC	500	500	44
		Placebo	IV Infusion	315	312	31
APEX	115	Dimethyl Fumarate 240 mg bid	Oral	56	NR	NR
AFEA	115	Placebo	Oral	58	NR	NR
		GA 20 mg qd	SC	448	445	71
BEYOND	2244	IFN beta-1b 250 mcg qad	SC	897	888	104
		IFN beta-1b 500 mcg qad	SC	899	887	161
		GA 20 mg qd (Copaxone, Teva) ¹	SC	NR	61	NR
Boiko 2017	158	GA 20 mg qd (Timexon, Biocad) ¹	SC	NR	61	NR
		Placebo	SC	NR	28	NR
Bornstein 1987	50	GA 20 mg qd	SC	25	25	3
Domstein 1307	50	Placebo	SC	25	NR	4
		IFN beta-1a 30 mcg qw	IM	447	442	69
BRAVO	1331	Placebo	Oral	450	449	91
		Laquinimod 0.6 mg once-daily	Oral	434	433	81
		GA 20 mg qd	SC	55	55	NR
Calabrese 2012	165	IFN beta-1a 30 mcg qw	IM	55	55	NR
		IFN beta-1a 44 mcg, tiw	SC	55	55	NR
		IFN beta-1a 44 mcg, tiw	SC	111	107	45
CAMMS223	334	Alemtuzumab 12 mg qd	IV Infusion	113	108	21
		Alemtuzumab 24 mg qd	IV Infusion	110	108	18
	581	IFN beta-1a 44 mcg tiw	SC	195	187	22
CARE MS-I	1 36 1	Alemtuzumab 12 mg qd	IV Infusion	386	376	19
		IFN beta-1a 44 mcg tiw	SC	231	202	56
CARE MS-II	840	Alemtuzumab 12 mg qd	IV Infusion	436	426	20
		Alemtuzumab 24 mg qd	IV Infusion	173	170	9
CombiRx	509	GA 20 mg qd	SC	259	259	36

Table 6. Summary of interventions assessed in studies included in the systematic review

www.nice.org.uk

+44 (0)300 323 0140

Study ID	Total Randomised	Treatment arm	Administration	No. pts randomised	No. pts received treatment	No. pts discon study
		IFN beta-1a 30 mcg qw	IM	250	250	56
		Dimethyl Fumarate 240 mg bid	Oral	362	359	75
CONFIRM	1430	Dimethyl Fumarate 240 mg tid	Oral	345	345	72
CONFIRM	1430	GA 20 mg qd	SC	360	350	58
		Placebo	Oral	363	363	85
Conclumer Study	251	GA 20 mg qd	SC	125	NR	19
Copolymer I Study	201	Placebo	SC	126	NR	17
		Interferon-beta 1a IM	IM	NR	NR	NR
Crentsil 2012	NR	Interferon-beta 1a SC	SC	NR	NR	NR
Crentsil 2012	NR	Interferon-beta 1b	NR	NR	NR	NR
		Glatiramer acetate	NR	NR	NR	NR
		Dimethyl Fumarate 240 mg bid	Oral	411	410	95
DEFINE	1237	Dimethyl Fumarate 240 mg tid	Oral	416	416	96
		Placebo	Oral	410	408	91
	90	IFN beta-1a 30 mcg qw	IM	30	30	NR
Etemadifar 2006		IFN beta-1a 44 mcg tiw	SC	30	30	NR
		IFN beta-1b 250 mcg qad	SC	30	30	NR
EVIDENCE	677	IFN beta-1a 30 mcg qw	IM	338	337	14
EVIDENCE	0//	IFN beta-1a 44 mcg tiw	SC	339	339	14
GALA	1404	GA 40mg tiw	SC	943	943	84
GALA	1404	Placebo	SC	461	461	31
GLOW	178	GA 20 mg qd	SC	119	NR	119
GLOW	170	Placebo	SC	59	NR	59
		IFN beta-1b 250 mcg qad	SC	124	NR	48
IFNB MS study	372	IFN beta-1b 50 mcg qad	SC	125	NR	57
		Placebo	SC	123	NR	49
	188	IFN beta-1a 30 mcg qw	IM	92	NR	19
INCOMIN	100	IFN beta-1b 250 mcg qad	SC	96	NR	11
Makhhar 2014	60	IFN beta-1a 30 mcg qw	IM	23	NR	3
Mokhber 2014	69	IFN beta-1a 44 mcg, tiw	SC	23	NR	0

www.nice.org.uk

+44 (0)300 323 0140

Study ID	Total Randomised	Treatment arm	Administration	No. pts randomised	No. pts received treatment	No. pts discon study
		IFN beta-1b 250 mcg qad	SC	23	NR	1
		IFN beta-1a 30 mcg qw	IM	23	NR	3
Mokhber 2015	69	IFN beta-1a 44 mcg, tiw	SC	23	NR	2
		IFN beta-1b 250 mcg qad	SC	23	NR	4
MSCRG	301	IFN beta-1a 30 mcg qw	IM	158	NR	73
MOCKG	301	Placebo	IM	143	NR	56
		Teriflunomide 14 mg qd	Oral	57	NR	4
O'Connor 2006	179	Teriflunomide 7 mg qd	Oral	61	NR	2
		Placebo	Oral	61	NR	11
	004	Ocrelizumab 600 mg q24w	IV	410	366	44
OPERA I	821	IFN beta-1a 44 mcg tiw	SC	411	340	71
	835	Ocrelizumab 600 mg q24w	IV	417	360	57
OPERA II		IFN beta-1a 44 mcg tiw	SC	418	320	98
		IFN beta-1a 44 mcg tiw	SC	184	184	5
PRISMS	560	IFN beta-1a 22 mcg tiw	SC	189	189	12
		Placebo	SC	187	187	10
	764	GA 20 mg qd	SC	378	375	5
REGARD	764	IFN beta-1a 44 mcg, tiw	SC	386	383	20
		Teriflunomide 7 mg qd	Oral	366	365	69
TEMSO	1088	Teriflunomide 14 mg qd	Oral	359	358	75
		Placebo	Oral	363	363	73
		IFN beta-1a 44 mcg, tiw	SC	104	101	33
TENERE	324	Teriflunomide 7 mg qd	Oral	109	109	20
		Teriflunomide 14 mg qd	Oral	111	111	22
		Teriflunomide 7 mg qd	Oral	408	407	134
TOWER	1169	Teriflunomide 14 mg qd	Oral	372	370	126
		Placebo	Oral	389	388	125

¹The Boiko 2017 study also included a biosimilar GA drug arm (BCD-063, Biocad, Russia) (n=61), which was not included in any analyses

Table 7. Distribution of multiple sclerosis subtypes in studies included in the systematic review

Study ID	Treatment	Total N	MS subtype	Population comments ¹
	PEG IFN beta-1a 125 mcg q2w	512	CIS: n = 0, 0% RRMS: n = 512, 100% SPMS: n = 0, 0% Other = NR	
ADVANCE	PEG IFN beta-1a, 125 mcg, q4w	500	CIS: n = 0, 0% RRMS: n = 500, 100% SPMS: n = 0, 0% Other = NR	RRMS was an inclusion criterion
	Placebo	500	RRMS: n = 500, 100% SPMS: n = 0, 0% Other = NR	
APEX	Dimethyl Fumarate 240 mg bid	56	RRMS: n = 56, 100% SPMS: n = 0, 0% Other = NR	RRMS was an inclusion criterion
APEA	Placebo	58	RRMS: n = 58, 100% SPMS: n = 0, 0% Other = NR	RRIVIS was an inclusion chienon
	IFN beta-1b 250 mcg qad	897	CIS: n = 0, 0% RRMS: n = NR SPMS: n = NR Other = NR	
BEYOND	IFN beta-1b 500 mcg qad	899	CIS: n = 0, 0% RRMS: n = NR SPMS: n = NR Other = NR	Patients with progressive forms of MS were excluded
	GA 20 mg qd	448	CIS: n = 0, 0% RRMS: n = NR SPMS: n = NR Other = NR	

Study ID	Treatment	Total N	MS subtype	Population comments ¹
	GA 20 mg qd (Copaxone, Teva) ²	61	RRMS: n = 61, 100% SPMS: n = 0, 0% Other = NR	
Boiko 2017	GA 20 mg qd (Timexon, Biocad)	61	RRMS: n = 61, 100% SPMS: n = 0, 0% Other = NR	RRMS was an inclusion criterion
	Placebo	28	RRMS: n = 28, 100% SPMS: n = 0, 0% Other = NR	
Bornstein 1987	Placebo	25	CIS: n = 0, 0% RRMS: n = NR SPMS: n = NR Other = NR	Patients were required to fulfil the Poser criteria for
	GA 20 mg qd	25	CIS: n = 0, 0% RRMS: n = NR SPMS: n = NR Other = NR	definite multiple sclerosis
	IFN beta-1a 30 mcg qw	447	CIS: n = 0, 0% RRMS: n = 447, 100% SPMS: n = 0, 0% Other = NR	
BRAVO	Laquinimod 0.6 mg qd	434	CIS: n = 0, 0% RRMS: n = 434, 100% SPMS: n = 0, 0% Other = NR	Diagnosis with RRMS was an inclusion criterion
	Placebo	450	CIS: n = 0, 0% RRMS: n = 450, 100% SPMS: n = 0, 0% Other = NR	
	IFN beta-1a 30 mcg qw	47	CIS: n = 0, 0%	Diagnosis with RRMS was an inclusion criterion

Study ID	Treatment	Total N	MS subtype	Population comments ¹
			RRMS: n = 47, 100% SPMS: n = 0, 0% Other = NR	
Calabrese 2012	IFN beta-1a 44 mcg tiw	46	CIS: n = 0, 0% RRMS: n = 46, 100% SPMS: n = 0, 0% Other = NR	
	GA 20 mg qd	48	CIS: n = 0, 0% RRMS: n = 48, 100% SPMS: n = 0, 0% Other = NR	
	Alemtuzumab 12 mg qd	112	CIS: n = 0, 0% RRMS: n = 112, 100% SPMS: n = 0, 0% Other = NR	
CAMMS223	Alemtuzumab 24 mg qd	110	CIS: n = 0, 0% RRMS: n = 110, 100% SPMS: n = 0, 0% Other = NR	Diagnosis with RRMS was an inclusion criterion
	IFN beta-1a 44 mcg tiw	111	CIS: n = 0, 0% RRMS: n = 111, 100% SPMS: n = 0, 0% Other = NR	
CARE MS-I	Alemtuzumab 12 mg qd	376	CIS: n = 0, 0% RRMS: n = 376, 100% SPMS: n = 0, 0% Other = NR	Diagnosis with RRMS was an inclusion criterion
CARE MS-I	IFN beta-1a 44 mcg tiw	187	CIS: n = 0, 0% RRMS: n = 187, 100% SPMS: n = 0, 0% Other = NR	
CARE MS-II	Alemtuzumab 12 mg qd	426	CIS: n = 0, 0%	Diagnosis with RRMS was an inclusion criterion

Study ID	Treatment	Total N	MS subtype	Population comments ¹
			RRMS: n = 426, 100% SPMS: n = 0, 0% Other = NR	
	Alemtuzumab 24 mg qd	170	CIS: n = 0, 0% RRMS: n = 170, 100% SPMS: n = 0, 0% Other = NR	
	IFN beta-1a 44 mcg tiw	202	CIS: n = 0, 0% RRMS: n = 202, 100% SPMS: n = 0, 0% Other = NR	
CombiRx	IFN beta-1a 30 mcg qw	250	CIS: n = 0, 0% RRMS: n = 250, 100% SPMS: n = 0, 0% Other = NR	Diagnosis with RRMS was an inclusion criterion
CombitX	GA 20 mg qd	259	CIS: n = 0, 0% RRMS: n = 259, 100% SPMS: n = 0, 0% Other = NR	
	Dimethyl Fumarate, 240 mg bid	359	CIS: n = 0, 0% RRMS: n = 359, 100% SPMS: n = 0, 0% Other = NR	
CONFIRM	Dimethyl Fumarate, 240 mg tid	345	CIS: n = 0, 0% RRMS: n = 345, 100% SPMS: n = 0, 0% Other = NR	Diagnosis with RRMS was an inclusion criterion
	GA 20 mg qd	350	CIS: n = 0, 0% RRMS: n = 350, 100% SPMS: n = 0, 0% Other = NR	
	Placebo	363	CIS: n = 0, 0%	

Study ID	Treatment	Total N	MS subtype	Population comments ¹
			RRMS: n = 363, 100% SPMS: n = 0, 0% Other = NR	
Copolymer I	Placebo	126	CIS: n = 0, 0% RRMS: n = 126, 100% SPMS: n = 0, 0% Other = NR	Diagnosis with RRMS was an inclusion criterion
Study	GA 20 mg qd	125	CIS: n = 0, 0% RRMS: n = 125, 100% SPMS: n = 0, 0% Other = NR	
	Interferon-beta 1a IM	NR	CIS: n = NR RRMS: n = NR SPMS: n = NR Other = NR	
Crentsil 2012	Interferon-beta 1a SC	NR	CIS: n = NR RRMS: n = NR SPMS: n = NR Other = NR	NR
Crentsii 2012	Interferon-beta 1b	NR	CIS: n = NR RRMS: n = NR SPMS: n = NR Other = NR	
	Glatiramer acetate	NR	CIS: n = NR RRMS: n = NR SPMS: n = NR Other = NR	
DEFINE	Dimethyl Fumarate, 240 mg bid	410	CIS: n = 0, 0% RRMS: n = 410, 100% SPMS: n = 0, 0% Other = NR	Diagnosis with RRMS was an inclusion criterion
	Dimethyl Fumarate, 240 mg tid	416	CIS: n = 0, 0%	

Study ID	Treatment	Total N	MS subtype	Population comments ¹
			RRMS: n = 416, 100% SPMS: n = 0, 0% Other = NR	
	Placebo	408	CIS: n = 0, 0% RRMS: n = 408, 100% SPMS: n = 0, 0% Other = NR	
	IFN beta-1a 30 mcg qw	30	CIS: n = 0, 0% RRMS: n = 30, 100% SPMS: n = 0, 0% Other = NR	
Etemadifar 2006	IFN beta-1a 44 mcg tiw	30	CIS: n = 0, 0% RRMS: n = 30, 100% SPMS: n = 0, 0% Other = NR	Diagnosis with clinically or laboratory supported relapsing MS was an inclusion criterion
	IFN beta-1b 250 mcg qad	30	CIS: n = 0, 0% RRMS: n = 30, 100% SPMS: n = 0, 0% Other = NR	
EVIDENCE	IFN beta-1a 30 mcg qw	338	CIS: n = 0, 0% RRMS: n = 338, 100% SPMS: n = 0, 0% Other = NR	Diagnosis with RRMS was an inclusion criterion
EVIDENCE	IFN beta-1a 44 mcg tiw	339	CIS: n = 0, 0% RRMS: n = 339, 100% SPMS: n = 0, 0% Other = NR	Diagnosis with KKIVIS was an inclusion chienon
GALA	GA 40mg tiw	943	CIS: n = 0, 0% RRMS: n = 943, 100% SPMS: n = 0, 0% Other = NR	Diagnosis with RRMS was an inclusion criterion
	Placebo	461	CIS: n = 0, 0%	

+44 (0)300 323 0140

Study ID	Treatment	Total N	MS subtype	Population comments ¹
			RRMS: n = 461, 100% SPMS: n = 0, 0% Other = NR	
GLOW	Placebo	59	CIS: n = 0, 0% RRMS: n = 59, 100% SPMS: n = 0, 0% Other = NR	Diagnosis with RRMS was an inclusion criterion
GLOW	GA 20 mg qd	119	CIS: n = 0, 0% RRMS: n = 119, 100% SPMS: n = 0, 0% Other = NR	Diagnosis with KKIVIS was an inclusion chienon
	IFN beta-1b 50 mcg qad	125	CIS: n = 0, 0% RRMS: n = 125, 100% SPMS: n = 0, 0% Other = NR	
IFNB MS study	IFN beta-1b 500 mcg qad	124	CIS: n = 0, 0% RRMS: n = 124, 100% SPMS: n = 0, 0% Other = NR	Diagnosis with RRMS was an inclusion criterion
	Placebo	123	CIS: n = 0, 0% RRMS: n = 123, 100% SPMS: n = 0, 0% Other = NR	
	IFN beta-1a 30 mcg qw	92	CIS: n = 0, 0% RRMS: n = 92, 100% SPMS: n = 0, 0% Other = NR	Diagnosis with RRMS was an inclusion criterion
INCOMIN	IFN beta-1b 250 mcg qad	CIS: n = 0, 0% RPMS: n = 96, 100%		
	IFN beta-1a 30 mcg qw	23	CIS: n = 0, 0%	Diagnosis with RRMS was an inclusion criterion

www.nice.org.uk

Study ID	Treatment	Total N	MS subtype	Population comments ¹
Mokhber 2014			RRMS: n = 23, 100% SPMS: n = 0, 0% Other = NR	
	IFN beta-1a 44 mcg tiw	23	CIS: n = 0, 0% RRMS: n = 23, 100% SPMS: n = 0, 0% Other = NR	
	IFN beta-1b 250 mcg qad	23	CIS: n = 0, 0% RRMS: n = 23, 100% SPMS: n = 0, 0% Other = NR	
	IFN beta-1a 30 mcg qw	20	CIS: n = 0, 0% RRMS: n = 20, 100% SPMS: n = 0, 0% Other = NR	
Mokhber 2015	IFN beta-1a 44 mcg tiw	23	CIS: n = 0, 0% RRMS: n = 23, 100% SPMS: n = 0, 0% Other = NR	Diagnosis with RRMS was an inclusion criterion
	IFN beta-1b 250 mcg qad	22	CIS: n = 0, 0% RRMS: n = 22, 100% SPMS: n = 0, 0% Other = NR	
MSCRG	IFN beta-1a 30 mcg qw	158	CIS: n = 0, 0% RRMS: n = 158, 100% SPMS: n = 0, 0% Other = NR	The study enrolled patients with relapsing MS. Defined as patients with complete remissions (returned to baseline preexacerbation disability status) and patients
	Placebo	143	CIS: n = 0, 0% RRMS: n = 143, 100% SPMS: n = 0, 0% Other = NR	with incomplete remissions (did not return to their baseline preexacerbation disability status because of new residua)
	Teriflunomide 7 mg qd	61	CIS: n = 0, 0%	NR

+44 (0)300 323 0140

Study ID	Treatment	Total N	MS subtype	Population comments ¹
			RRMS: n = 54, 88.5% SPMS: n = 7, 11.5% Other = NR	
O'Connor 2006	Teriflunomide 14 mg qd	57	CIS: n = 0, 0% RRMS: n = 50, 87.7% SPMS: n = 7, 12.3% Other = NR	
	Placebo	61	CIS: n = 0, 0% RRMS: n = 53, 86.9% SPMS: n = 8, 13.1% Other = NR	
OPERA I	Ocrelizumab 600 mg q24w	410	CIS: n = NR RRMS: n = NR SPMS: n = NR Other = NR	Diagnosis with RRMS was an inclusion criterion
	IFN beta-1a 44 mcg tiw	411	CIS: n = NR RRMS: n = NR SPMS: n = NR Other = NR	Diagnosis with KKWS was an inclusion chienon
	Ocrelizumab 600 mg q24w	417	CIS: n = NR RRMS: n = NR SPMS: n = NR Other = NR	
OPERA II	IFN beta-1a 44 mcg tiw	418	CIS: n = NR RRMS: n = NR SPMS: n = NR Other = NR	Diagnosis with RRMS was an inclusion criterion
PRISMS	IFN beta-1a 22 mcg tiw	189	CIS: n = 0, 0% RRMS: n = NR SPMS: n = NR Other = NR	Enrolled patients had clinically definite or laboratory- supported definite MS. Adults with relapsing/remitting MS were eligible for study if they had had at least two relapses in the preceding 2 years and had Kurtzke
	IFN beta-1a 44 mcg tiw	184	CIS: n = 0, 0%	EDSS scores of 0–5.

www.nice.org.uk

Study ID	Treatment	Total N	MS subtype	Population comments ¹
			RRMS: n = NR	
			SPMS: n = NR	
			Other = NR	
			CIS: n = 0, 0%	
	Placebo	187	RRMS: n = NR	
	Tideebo	107	SPMS: n = NR	
			Other = NR	
			CIS: n = 0, 0%	
	IFN beta-1a 44 mcg tiw	386	RRMS: n = 386, 100%	
		000	SPMS: n = 0, 0%	
REGARD			Other = NR	Diagnosis with RRMS was an inclusion criterion
			CIS: n = 0, 0%	
	GA 20 mg qd	378	RRMS: n = 378, 100%	
			SPMS: n = 0, 0%	
			Other = NR CIS: n = 0, 0%	
	Placebo	363	RRMS: n = 329, 90.6% SPMS: n = 22, 6.1%	
	Placebo	303	Other = Progressive	
			relapsing (n=12, 3.3%)	
			CIS: $n = 0, 0\%$	
			RRMS: n = 333, 91%	
TEMSO	Teriflunomide 7 mg qd	366	SPMS: n = 17, 4.6%	NR
1 Line e	romanomiao r mg qu	000	Other = Progressive	
			relapsing (n=16, 4.4%)	
			CIS: n = 0, 0%	
			RRMS: n = 333, 92.8%	
	Teriflunomide 14 mg qd	359	SPMS: n = 12, 3.3%	
	remanomide 14 mg qu		Other = Progressive	
			relapsing (n=14, 3.9%)	
TENERE	Teriflunomide 14 mg qd	111	CIS: n = 0, 0%	NR

+44 (0)300 323 0140

Study ID	Treatment	Total N	MS subtype	Population comments ¹
			RRMS: n = 108, 97.3%	
			SPMS: n = 1, 0.9%	
			Other = Progressive	
			relapsing (n=2, 1.8%)	
			CIS: n = 0, 0%	
	Teriflunomide 7 mg qd	109	RRMS: n = 108, 97.3%	
	remunomide / mg qu	109	SPMS: n = 0, 0%	
			Other = 0, 0%	
			CIS: n = 0, 0%	
	IEN boto 10.44 mos tim	104	RRMS: n = 108, 97.3%	
	IFN beta-1a 44 mcg tiw	104	SPMS: n = 1, 0.9%	
			Other = 0, 0%	
			CIS: n = 0, 0%	
			RRMS: n = 366, 99%	
	Teriflunomide 14 mg qd	372	SPMS: n = 2, 1%	
			Other = Progressive	
			relapsing (n=2, 1%)	
			CIS: n = 0, 0%	
			RRMS: n = 393, 96%	
TOWER	Teriflunomide 7 mg qd	408	SPMS: n = 3, 1%	NR
			Other = Progressive	
			relapsing (n=12, 3%)	
			CIS: n = 0, 0%	
			RRMS: n = 379, 97%	
	Placebo	389	SPMS: n = 4, 1%	
			Other = Progressive	
			relapsing (n=6, 2%)	

1. If a study reported that diagnosis with a particular subtype was an inclusion criterion and no further information was given it was assumed that all enrolled patients had that subtype of MS; 2. Only this group was considered for the analyses.

bid = twice daily; CIS = Clinically Isolated Syndrome; qad = every other day; GA = Glatiramer acetate; IFN = interferon; IM = intramuscular; mcg = microgram; MS = multiple sclerosis; NR = not reported; PEG = polyethylene glycolated; RRMS = Relapsing-remitting MS; SD = standard deviation; SPMS = Secondary progressive MS; q2w = once every 2 weeks; q4w = once every 4 weeks; q4 = once daily; tid = 3 times a day; tiw = 3 times a week

Table 8. Previous treatment prior to enrolment

Study ID	Treatment	Total N	Previous Treatment, n (%)	Previous treatment details
	PEG IFN beta-1a 125 mcg q2w	512	Yes = 39 (8)	
		012	No = 473 (92.4)	
ADVANCE	PEG IFN beta-1a 125 mcg q4w	500	Yes = 39 (8)	Previous treatment with disease modifying treatment
			No = 461 (92.2) Yes = 35 (7)	_
	Placebo	500	No = 465 (93)	
	Dimethyl Fumarate 240 mg bid	56	NR	
APEX	Placebo	58	NR	– NR
	IFN beta-1b 250 mcg qad	897	NR	Patients who were treatment experienced or had
BEYOND	IFN beta-1b 500 mcg qad	899	NR	participated in previous trials of drugs for multiple
	GA 20 mg qd	448	NR	sclerosis were excluded
Boiko 2017	GA 20 mg qd	61	NR	81.97% (n=50) patients had hormone therapy
BOIKO 2017	Placebo	28	NR	82.14% (n=23) had hormone therapy
Bornstein	Placebo	25	NR	NR
1987	GA 20 mg qd	25	NR	INTX
	IFN beta-1a 30 mcg qw	447	Yes = 42 (9.4)	
			No = 405 (90.6)	Prior disease modifying treatment for MS at any time
BRAVO	Laquinimod 0.6 mg once-daily	434	Yes = 30 (6.9)	before study entry including mitoxantrone,
DICAVO		404	No = 404 (93.1)	immunoglobulin, IgG, glatiramer acetate, IFNb drugs meglumine acridonacetate, and azathioprine
	Placebo	450	Yes = 27 (6)	
			No = 423 (94)	
Calabrese	IFN beta-1a 30 mcg qw	47	NR	
2012	IFN beta-1a 44 mcg tiw	46	NR	NR
	GA 20 mg qd	48	NR	
	Alemtuzumab 12 mg qd	112	Yes = 0 (0)	
CAMMS223			No = 112 (100)	
	Alemtuzumab 24 mg qd	110	Yes = 0 (0)	Previous treatment with DMT was an exclusion criterion
			No = 110 (100)	
	IFN beta-1a 44 mcg tiw	111	Yes = 0 (0)	
			No = 111 (100)	1

Study ID	Treatment	Total N	Previous Treatment, n (%)	Previous treatment details
CARE MS-I	Alemtuzumab 12 mg qd	376	Yes = 0 (0) No = 376 (100)	Key exclusion criteria were previous multiple sclerosis disease therapy (apart from corticosteroids), previous
	IFN beta-1a 44 mcg tiw	187	Yes = 0 (0) No = 187 (100)	immunosuppressive, investigational, or monoclonal antibody therapy.
	Alemtuzumab 12 mg qd	426	Yes = 426 (100) No = 0 (0)	At least one relapse while on interferon beta or
CARE MS-II	Alemtuzumab 24 mg qd	170	Yes = 170 (100) No = 0 (0)	glatiramer after at least 6 months of treatment was an inclusion criterion.
	IFN beta-1a 44 mcg tiw	202	Yes = 202 (100) No = 0 (0)	
CombiRx	IFN beta-1a 30 mcg qw	250	NR	NR
COMDIKX	GA 20 mg qd	259	NR	INIX
CONFIRM	Dimethyl Fumarate, 240 mg bid	359	Yes = 101 (28) No = 244 (72)	Any prior approved DMT including exposure to interferon beta-1a, interferon beta-1b, natalizumab or glatiramer acetate. Patients may also have received other non-approved therapies for MS
CONFIRM	Dimethyl Fumarate 240 mg tid	345	Yes = 100 (29) No = 259 (71)	
	GA 20 mg qd	350	Yes = 103 (29) No = 247 (71)	
	Placebo	363	Yes = 111 (31) No = 252 (69)	
Copolymer I	GA 20 mg qd	125	NR	ND
Study	Placebo	126	NR	– NR
	Interferon-beta 1a IM	NR	NR	
Orenteil 2042	Interferon-beta 1a SC	NR	NR	
Crentsil 2012	Interferon-beta 1b	NR	NR	- NR
	Glatiramer acetate	NR	NR	
DEEINE	Dimethyl Fumarate 240 mg bid	410	Yes = 162 (40) No = 248 (60)	Previous use of approved medications for MS. Approved medications include interferon beta-1a,
DEFINE	Dimethyl Fumarate 240 mg tid	416	Yes = 168 (40) No = 248 (60)	interferon beta-1b, glatiramer acetate and natalizumab. Patients may have received more than

Study ID	Treatment	Total N	Previous Treatment, n (%)	Previous treatment details
	Placebo	408	Yes = 172 (42) No = 236 (58)	one prior therapy for MS. Patients may have received other non-approved therapies for MS
	IFN beta-1a 30 mcg qw	30	NR	NR
Etemadifar 2006	IFN beta-1a 44 mcg tiw	30	NR	
	IFN beta-1b 250 mcg gad	30	NR	-
	IFN beta-1a 30 mcg gw	338	NR	
EVIDENCE	IFN beta-1a 44 mcg tiw	339	NR	- NR
0.11.4	GA 40mg tiw	943	Yes = 128 (13.6) No = 815 (86.4)	
GALA	Placebo	461	Yes = 63 (13.7) No = 398 (86.3)	 Prior DMT treatment. Type of DMT not defined
	Placebo	59	NR	NR
GLOW	GA 20 mg qd	119	NR	
	IFN beta-1b 50 mcg qad	125	NR	
IFNB MS	IFN beta-1b 500 mcg qad	124	NR	NR
study	Placebo	123	NR	
INCOMIN	IFN beta-1a 30 mcg qw	92	NR	
INCOMIN	IFN beta-1b 250 mcg qad	96	NR	- NR
Mokhber	IFN beta-1a 30 mcg qw	23	NR	
2014	IFN beta-1a 44 mcg tiw	23	NR	NR
2014	IFN beta-1b 250 mcg qad	23	NR	
	IFN beta-1a 30 mcg qw	20	Yes = 0 (0) No = 20 (100)	
Mokhber 2015	IFN beta-1a 44 mcg tiw	23	Yes = 0 (0) No = 23 (100)	Previous disease modifying treatment was an exclusion criterion
	IFN beta-1b 250 mcg qad	22	Yes = 0 (0) No = 22 (100)	
1100000	IFN beta-1a 30 mcg qw	158	Yes = 128 (81) No = 30 (19)	Administered within 60 days prior to the first day of injection of study medication. Medications used by at
MSCRG	Placebo	143	Yes = 130 (91) No = 13 (9)	least 10% of group included Ascorbic acid, Nicotinamide, Riboflavin, Thiamine hydrochloride,

Study ID	Treatment	Total N	Previous Treatment, n (%)	Previous treatment details
				Retinol, Ergocalciferol, Folic acid, Panthenol, Paracetamol, Ibuprofen, Amantadine, Acetylsalicylic acid, Baclofen, Pyridoxine hydrochloride, Tocopherol, Vitamins, Calcium pantothenate
O'Connor	Teriflunomide 7 mg qd	61	NR	
2006	Teriflunomide 14 mg qd	57	NR	NR
2000	Placebo	61	NR	
OPERA I	Ocrelizumab 600 mg q24w	408	Yes = 107 (26) No = 301 (74)	NR
OPERAT	IFN beta-1a 44 mcg tiw	409	Yes = 117 (29) No = 292 (71)	
	Ocrelizumab 600 mg q24w	417	Yes = 113 (27) No = 304 (73)	NR
OPERA II	IFN beta-1a 44 mcg tiw	417	Yes = 103 (25) No = 314 (75)	
	IFN beta-1a 22 mcg tiw	189	Yes = 128 (81) No = 30 (19)	NR
PRISMS	IFN beta-1a 44 mcg tiw	184	Yes = 130 (91) No = 13 (9)	
	Placebo	187	Yes = 128 (81) No = 30 (19)	
250422	IFN beta-1a 44 mcg tiw	386	Yes = 130 (91) No = 13 (9)	Other is the strength in the annual set of the
REGARD	GA 20 mg qd	378	Yes = 128 (81) No = 30 (19)	Steroid treatment in the previous 6 months
	Placebo	363	Yes = 90 (24.8) No = 273 (75.2)	Use of DMT in previous 2 years including interferon
TEMSO	Teriflunomide 7 mg qd	366	Yes = 102 (27.9) No = 264 (72.1)	beta-1a, interferon beta-1b, glatiramer acetate. Patients may have received more than one previous
	Teriflunomide 14 mg qd	359	Yes = 102 (28.4) No = 257 (71.6)	therapy

Study ID	Treatment	Total N	Previous Treatment, n (%)	Previous treatment details
	Teriflunomide 14 mg qd	111	Yes = 13 (11.7) No = 98 (88.3)	Lies of DMT in provinue 2 years: JEN hote 1a, JEN
TENERE	Teriflunomide 7 mg qd	109	Yes = 23 (21.1) No = 86 (78.9)	 Use of DMT in previous 2 years: IFN beta-1a, IFN beta-1b, Glatiramer acetate. Patients may have received more than one DMT
	IFN beta-1a 44 mcg tiw	104	Yes = 25 (24.0) No = 79 (76)	
	Teriflunomide 14 mg qd	372	Yes = 126 (34.0) No = 246 (66.0)	Line of MO modified in the province Outparts (EN
TOWER	Teriflunomide 7 mg qd	408	Yes = 123 (30.0) No = 285 (70)	 Use of MS medication in the previous 2 years: IFN beta-1a, IFN beta-1b, Glatiramer Acetate. Patients may have received more than 1 prior medication
	Placebo	389	Yes = 135 (35.0) No = 254 (65.0)	

bid = twice daily; DMT = disease-modifying treatment; qad = every other day; GA = Glatiramer acetate; IFN = interferon; IM = intramuscular; mcg = microgram; NR = not reported; PEG = polyethylene glycolated; q2w = once every 2 weeks; q4w = once every 4 weeks; qd = once daily; tid = 3 times a day; tiw = 3 times a week

Table 9. Risk of bias of included studies

Study ID	Randomisation	Allocation Concealment	Participant Blinding	Caregiver Blinding	Assessor Blinding	Incomplete Outcome Data	Selective Reporting
ADVANCE	Unclear	Low	Low	Low	Low	Low	Low
APEX	Unclear	Unclear	Low	Low	Unclear	Low	Low
BEYOND	Low	Low	Low	Low	Low	Low	Low
Boiko 2017	Unclear	Unclear	Low	Low	Low	High	Low
Bornstein 1987	Unclear	Unclear	Unclear	High	Unclear	High	Low
BRAVO	Low	Unclear	High	High	Low	Low	Low
Calabrese 2012	Low	Unclear	Unclear	Unclear	Low	High	Unclear
CAMMS223	Low	Unclear	High	High	High	Low	Low
CARE MS-I	Unclear	Low	High	High	Low	Low	Low
CARE MS-II	Unclear	Low	High	High	Low	Low	High
CombiRx	Low	Low	Low	Low	Low	Unclear	Unclear
CONFIRM	Low	Low	Low	Low	Low	Low	Low
Copolymer I	Unclear	Low	Low	Low	Low	Low	Low
Crentsil 2012	Unclear	Unclear	Unclear	Unclear	Unclear	Unclear	Unclear
DEFINE	Unclear	Low	Low	Low	Low	Low	Low
Etemadifar 2006	Unclear	Unclear	High	High	Low	Low	Low
EVIDENCE	Low	Low	High	Low	Low	Low	Low
GALA	Low	Low	Low	Low	Low	Low	Low
GLOW	Unclear	Unclear	Low	Low	Unclear	High	Unclear
IFNB MS study	Unclear	Unclear	Low	Low	Low	Unclear	Low
INCOMIN	Low	Low	High	High	High	Low	Low
Mokhber 2014	Low	Unclear	Unclear	Unclear	Low	Low	Unclear

www.nice.org.uk

Study ID	Randomisation	Allocation Concealment	Participant Blinding	Caregiver Blinding	Assessor Blinding	Incomplete Outcome Data	Selective Reporting
Mokhber 2015	Low	Unclear	High	Unclear	Low	Low	Low
MSCRG	Low	Low	Low	Low	Low	Low	High
O'Connor 2006	Unclear	Unclear	Low	Low	Low	Low	Low
OPERA I	Low	Unclear	Low	Low	Low	Low	Low
OPERA II	Low	Unclear	Low	Low	Low	Low	Low
PRISMS	Low	Unclear	Low	Low	Low	Low	Low
REGARD	Low	Unclear	High	High	Low	Low	Low
TEMSO	Unclear	Unclear	Unclear	Low	Low	Low	High
TENERE	Low	Low	High	High	High	Low	Low
TOWER	Low	Low	Low	Low	Low	Low	Low

+44 (0)300 323 0140

A9. <u>**PRIORITY QUESTION.</u> CS, Document B, section B.2.9.3.3**. The company submission states that the INCOMIN study was not included in the network meta-analysis for the outcome 'disability progression after 6 months (CDP6M)' because it did not report data for this outcome.</u>

a. INCOMIN 2002 reports the rate ratio for this outcome for interferon beta-1b 250 mcg end of day (information can be found in <u>Melendez-Torres et al. [2017]</u>). Please clarify the rationale for not calculating the hazard ratio from the reported rate ratio.

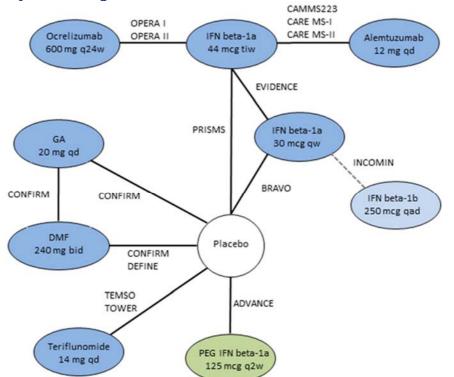
Response:

Rate ratio and hazard ratios can be defined as:

- The rate ratio is the ratio of the incidence rate in the treatment and control groups over the whole study period which is the total number of events divided by the total person-years of the study (the combined follow-up times of everyone) for each group. This involves the total number of events so counts more than one event per patient.
- The hazard ratio is the ratio of the hazard per group which is on a per patient basis and is the time to the first event for each patient and if they do not experience the event they are censored at the last known time. This effect size only includes one event per patient.

A hazard ratio is taken from a survival analysis in the original study whereas a rate ratio is not. According to section 9.2.6 of the Cochrane Handbook,¹ time-to-event data can sometimes be analysed as dichotomous data if the status of all patients at a fixed time point is known. However, there is no suggestion of assuming rate and hazard ratios are equivalent and can be included in the same analysis. Therefore, we did not include INCOMIN in the CDP6M network.

b. Please provide an updated network meta-analysis including INCOMIN 2002.


Response:

In response to this request, we have prepared a sensitivity analysis of CDP6M, including the rate ratio from Durelli et al. 2002², into the existing network which used hazard ratio for the already included studies. Figure 3 (which is based on CS, Document B, Section 2.9.3.3, Figure 18) shows the revised network and Figure 4 shows the results of the sensitivity analyses which is based on CS, Document B, Section 2.9.3.3, Figure 19).

In previous TAs including TA533, the INCOMIN trial has been noted as an outlier as the CDP3M and CDP6M MTC outputs for IFNB-1b are inconsistent (INCOMIN is the only study informing CDP-24 for IFNB-1b) with the general trend of CDP3M and CDP6M for all other technologies.

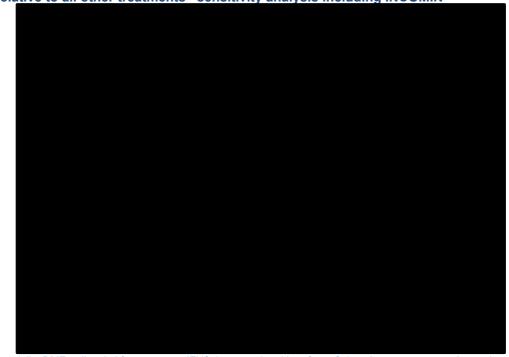

¹ Higgins JPT, Green S, eds. Cochrane handbook for systematic reviews of interventions [Internet]. Version 5.1.0 [updated March 2011]: The Cochrane Collaboration, 2011 [accessed 7.8.14]. Available from: http://www.cochrane-handbook.org/
² Durelli L, Verdun E, Barbero P, Bergui M, Versino E, Ghezzi A, et al. Every-other-day interferon beta-1b versus once-weekly interferon beta-1a for multiple sclerosis: results of a 2-year prospective randomised multicentre study (INCOMIN). Lancet 2002;359(9316):1453-60.

Figure 3. Overall network for disability progression confirmed after 6 months (CDP6M) – sensitivity analysis including INCOMIN

bid = twice daily; DMF = dimethyl fumarate; PEG IFN = pegylated interferon; q24w = once every 24 weeks; qad = every other day; qd = once daily; tiw = 3 times a week

Figure 4. Disability progression confirmed after 6 months (CDP6M) for pegIFNβ-1a 125 mcg Q2W relative to all other treatments– sensitivity analysis including INCOMIN

bid = twice daily; DMF = dimethyl fumarate; pegIFN β -1a = pegylated interferon β -1a; q24w = once every 24 weeks; qad = every other day; qd = once daily; qw = once weekly; tiw = three times weekly

+44 (0)300 323 0140

A10. CS, Document B, section B.2.9.3, section B.2.9.3.1, section B.2.9.3.2 and section B.2.9.3.3. CS, Document C, Appendix D, section D.3.1; Appendix L, section L.3.1.2, section L.3.2.2 and section L.3.3.2. In section B.2.9.3, Table 16 (Final inclusion in the mixed-treatment comparison for the overall relapsing-remitting multiple sclerosis population) shows that 2 included studies, APEX and Etemadifar 2006 did not report 3 outcomes (ARR, CDP3M and CDP6M). These studies also do not appear in the network diagrams for these outcomes in Figures 14 (ARR), 16 (CDP3M) and 18 (CDP6M). In addition, they do not appear in the mixed treatment comparisons or direct meta-analyses for these outcomes in Appendix L. However, they are not included in Table 25 (Studies excluded from key analysis) [Appendix D, section D.3.1].

a. Please clarify if the information in Table 16 is correct.

Response:

Table 16 is correct with the exception of APEX and Etemadifar 2006 which were not included in any MTC. Both studies should have been instead included in Table 25 (studies excluded from key analyses).

b. Please clarify if APEX and Etemadifar 2006 were included in at least one analysis presented elsewhere.

Response:

Neither study was included in any MTC. The Etemadifar 2006 study was not included in any network as this study enrolled mostly RES RRMS patients and the APEX did not report key outcomes of ARR and CDP; other outcomes (e.g. AEs) were not reported at comparable timepoints.

c. **PRIORITY QUESTION.** For Figures 14, 16 and 18, please provide SUCRA (surface under the cumulative ranking curve) diagrams or equivalent tables of ranking to describe the unified ranking of treatments for these mixed treatment comparisons.

Response:

The requested ranking tables were calculated using gemtc 0.8-2 in R³ and are provided below. For CDP6M, we have provided two versions, namely a version without INCOMIN (in line with original submission) and with INCOMIN (in line with the response to question A9b).

- Table 10: Ranking table ARR
- Table 11: Ranking table CDP3M
- Table 12: Ranking table CDP6M
- Table 13: Ranking table CDP6M sensitivity analysis including INCOMIN

³ van Valkenhoef G, Kuiper J. gemtc: network meta-analysis using Bayesian methods. R package version 0.8-2 [Internet]. 2016 [accessed 13.10.17]. Available from: https://cran.r-project.org/web/packages/gemtc/index.html

Treatment	Rank1	Rank2	Rank3	Rank4	Rank5	Rank6	Rank7	Rank8	Rank9	Rank10	Rank11
Alemtuzumab 12 mg qd	XXXX	XXXX									
Ocrelizumab 600 mg q24w	XXXX	XXXX									
DMF 240 mg bid	XXXX	XXXX									
PEG IFN beta-1a 125 mcg q2w	XXXX	XXXX									
GA 40 mg tiw	XXXX	XXXX									
IFN beta-1b 250 mcg qad	XXXX	XXXX									
GA 20 mg qd	XXXX	XXXX									
IFN beta-1a 44 mcg tiw	XXXX	XXXX									
IFN beta-1a 30 mcg qw	XXXX	XXXX									
Teriflunomide 14 mg qd	XXXX	XXXX									
Placebo	XXXX	XXXX									

Table 10. Ranking table – Annualised relapse rate (ARR)

ARR = annualised relapse rate; bid = twice daily; DMF = dimethyl fumarate; GA = glatiramer acetate; IFN = interferon; PEG IFNβ-1a = pegylated interferon β-1a; q24w = once every 24 weeks; qd = once daily; qw = once weekly; tiw = three times weekly

Treatment	Rank1	Rank2	Rank3	Rank4	Rank5	Rank6	Rank7	Rank8	Rank9	Rank10	Rank11
Alemtuzumab 12 mg qd	XXXX	XXXX									
Ocrelizumab 600 mg q24w	XXXX	XXXX									
PEG IFN beta-1a 125 mcg q2w	XXXX	XXXX									
IFN beta-1b 250 mcg qad	XXXX	XXXX									
Teriflunomide 14 mg qd	XXXX	XXXX									
DMF 240 mg bid	XXXX	XXXX									
IFN beta-1a 22 mcg tiw	XXXX	XXXX									
GA 20 mg qd	XXXX	XXXX									
IFN beta-1a 30 mcg qw	XXXX	XXXX									
IFN beta-1a 44 mcg tiw	XXXX	XXXX									
Placebo	XXXX	XXXX									

Table 11. Ranking table – Confirmed disease progression after three months (CDP3M)

CDP3M = confirmed disease progression after three months; bid = twice daily; DMF = dimethyl fumarate; GA = glatiramer acetate; IFN = interferon; PEG IFNβ-1a = pegylated interferon β-1a; g24w = once every 24 weeks; gd = once daily; gw = once weekly; tiw = three times weekly

Table 12. Ranking table – Confirmed disease progression after six months (CDP6M)

Treatment	Rank1	Rank2	Rank3	Rank4	Rank5	Rank6	Rank7	Rank8	Rank9
Alemtuzumab 12 mg qd	XXXX								
Ocrelizumab 600 mg q24w	XXXX								
PEG IFN beta-1a 125 mcg q2w	XXXX								
DMF 240 mg bid	XXXX								
GA 20 mg qd	XXXX								
Teriflunomide 14 mg qd	XXXX								
IFN beta-1a 30 mcg qw	XXXX								
IFN beta-1a 44 mcg tiw	XXXX								
Placebo	XXXX								

CDP6M = confirmed disease progression after six months; bid = twice daily; DMF = dimethyl fumarate; GA = glatiramer acetate; IFN = interferon; PEG IFN β -1a = pegylated interferon β -1a; q24w = once every 24 weeks; qd = once daily; qw = once weekly; tiw = three times weekly

		•						<u> </u>		
Treatment	Rank1	Rank2	Rank3	Rank4	Rank5	Rank6	Rank7	Rank8	Rank9	Rank10
IFN beta-1b 250 mcg qad	XXXX	XXXX	XXXX							
Alemtuzumab 12 mg qd	XXXX	XXXX	XXXX							
Ocrelizumab 600 mg q24w	XXXX	XXXX	XXXX							
PEG IFN beta-1a 125 mcg q2w	XXXX	XXXX	XXXX							
DMF 240 mg bid	XXXX	XXXX	XXXX							
GA 20 mg qd	XXXX	XXXX	XXXX							
Teriflunomide 14 mg qd	XXXX	XXXX	XXXX							
IFN beta-1a 30 mcg qw	XXXX	XXXX	XXXX							
IFN beta-1a 44 mcg tiw	XXXX	XXXX	XXXX							
Placebo	XXXX	XXXX	XXXX							

Table 13. Ranking table – Confirmed disease progression after six months (CDP6M) – sensitivity analysis including INCOMIN

CDP6M = confirmed disease progression after six months; bid = twice daily; DMF = dimethyl fumarate; GA = glatiramer acetate; IFN = interferon; PEG IFN β -1a = pegylated interferon β -1a; q24w = once every 24 weeks; qd = once daily; qw = once weekly; tiw = three times weekly

+44 (0)300 323 0140

A11. CS, Document C, Appendix D, section D.3.2.1; Appendix L, section L.3.15.1. Document 'Biogen Plegridy – Full Report – Main - 20190222'. The Biogen Plegridy Full Report Main document¹³¹ (section 6.1, p122) states that 'Due to lack of relevant studies, no MTCs or indirect comparisons of treatment discontinuation due to adverse events were possible'. In addition, section L.3.15.1 (Document C) states that 'Two studies reported data on the proportion of patients who discontinued treatment due to adverse events (AEs) after 1 year (ADVANCE, GALA). There was heterogeneity in the reporting of discontinuation between studies; One study reported study discontinuation due to AEs (ADVANCE) while one study did not specify which definition was used (GALA). Given the heterogeneity between studies and the lack of appropriate data to assess the impact of heterogeneity, we did not consider it valid to perform a quantitative meta-analysis for discontinuation due to AEs'. However, Khan et al. (2017)'s paper on the GALA study (Document C, Reference 129) reports discontinuations due to adverse events at the end of the 1-year placebo-controlled period (see Figure 2 in the paper: 29/943 for glatiramer acetate 40 vs. 6/461 for placebo). Khan et al. (2017) is not included in Table 26 (List of included studies) [Document C, section D.3.2.1].

a. Please clarify the rationale for excluding Khan et al. (2017) in the meta-analysis.

Response:

Khan et al 2017 is a more recent publication of Khan et al 2013 (Document C, Table 26, p60) which is already included in the meta-analysis for adverse events leading to discontinuation for GALA. Khan 2013 reports the cited discontinuations due to adverse events at the end of the 1-year placebo-controlled period (29/943 for glatiramer acetate 40 vs. 6/461 for placebo). These input data can be found in "The Biogen Plegridy Full Report Main document"¹³¹ (section 5.7, p118, table 43)

b. Please provide an updated network meta-analysis including Khan et al. (2017).

Response:

As these data were already included network meta-analysis provided in Document C, appendix L, section 3.15.1, no update has been conducted.

Outcomes

A12. CS, Document B, section B.2.9.3. Section B.2.9.3 states that '*It was decided after a protocol modification in May 2015 to consider time points other than 12 or 24 months for ARR, as this is an annualised measure expressed as relapses per patient-year*'. However, these additionally included studies having timepoints other than 12 or 24 months for annualised relapse rates '... were not considered for any other outcomes'. Please provide further justification for including and combining time points other than 12 or 24 months for only the annualised relapse rate.

Response:

The text "were not considered for any other outcomes" is an error. It is stated later in the same paragraph that "two additional studies (EVIDENCE, TOWER) providing 11 months or 18 months of data, respectively, were further considered for inclusion in the base-case analysis for CDP3M and CDP6M". Further detail is provided below.

+44 (0)300 323 0140

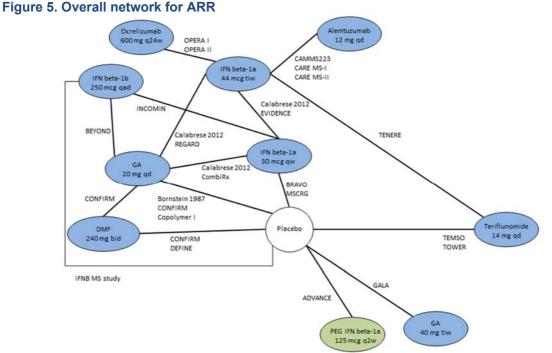
There was some variation in the follow-up time between studies. Several studies reported one year outcomes after 48 weeks (11 months) of follow-up. Therefore, any study where one year outcomes were reported at \geq 11 months and \leq 13 months was considered for potential inclusion in the analysis of 12 month outcomes. The actual follow-up period for two year outcomes ranged from 96 weeks (22.2 months) to 108 weeks (24.9 months). Therefore, any study where two year outcomes were reported at \geq 22 months and \leq 25 months was considered for potential inclusion in the analysis of 24 month outcomes.

In order to achieve a comparison with PEG IFN beta-1a and inform the economic model, the treatment under appraisal, 11, 18, and 24 month follow-ups were pooled for the key outcomes of ARR, CDP3M and CDP6M outcomes, where possible. All other outcomes (including relapses requiring hospitalisation, relapses requiring IV corticosteroids, mortality, NEDA, symptoms of MS (cognition, fatigue and visual impairment), quality of life, any AE, any SAE, treatment discontinuation due to any cause or treatment discontinuation due to AE) were informed by 12 month follow-up data alone.

There were seven studies included in the systematic review that did not report relevant outcome data at either 12 months or 24 months (CombiRx, Crentsil 2012, Mokhber 2014, Mokhber 2015, O'Connor 2006, TENERE, TOWER). Following a protocol modification in May 2015, it was decided to consider time points other than 12 or 24 months for ARR as this is an annualised measure expressed as relapses per patient-year. There were three studies that reported ARR data at time points other than 12 or 24 months (CAMMS223, 36 months; CombiRx, 36 months; TENERE, ~14-15 months; TOWER, ~18-19 months). These studies were consequently considered for inclusion in the analysis. One study (CAMMS223) also reported ARR at 36 months follow-up, which allowed this study to be considered for inclusion in the combined analysis of ARR (in addition to other outcomes). Two additional studies (EVIDENCE, TOWER) providing 11 months or 18 months of data, respectively, were further considered for inclusion in the base case analysis for CDP3M and CDP6M.

Inconsistency

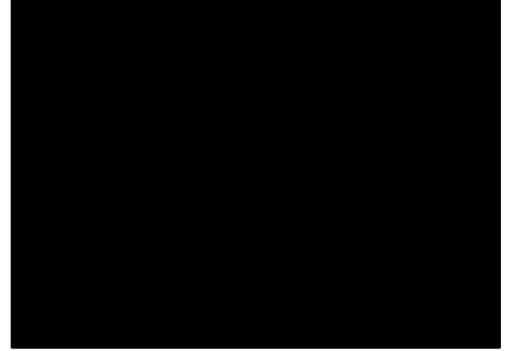
A13. CS, Document C, Appendix D, section D.2.5; Appendix L, sections L.3.12 and L.3.13. Section D.2.5 states that '*Inconsistency in the mixed treatment comparison (MTC) networks was investigated using a combination of graphical and statistical methods. For those networks with the potential for inconsistency, the node splitting method to check for evidence of inconsistency was used*'. For those networks with the potential for inconsistency, please clarify where the evidence of statistically significant inconsistency has been reported. In particular, for networks where no closed loops are formed, such as networks for adverse events (section L.3.12) and serious adverse events (section L.3.13).


Response:

Annualised relapse rate (ARR)

Inconsistency occurs in loops of evidence where the effect estimates are derived from both direct and indirect evidence. In the network for this outcome, there were 11 treatment comparisons with the potential for inconsistency (Figure 5).

+44 (0)300 323 0140


DMF = dimethyl fumarate; GA = glatiramer acetate; IFN = interferon; PEG IFN = pegylated interferon; q24w = every 24 weeks; qad = every other day; qd = once daily; qw = once weekly; tiw = three times weekly.

We tested the presence of inconsistency in the ARR network using the node splitting method. There was no evidence of statistically significant inconsistency in any of the 11 treatment comparisons (Figure 6).

An inconsistency factor (IF) of exactly 1 would indicate that the indirect and direct estimates of the treatment comparison were exactly equal. As each treatment effect in a given loop includes a degree of uncertainty, some deviation from IF=1 is expected as illustrated by the variation in the IF values around one in Figure 6.

+44 (0)300 323 0140

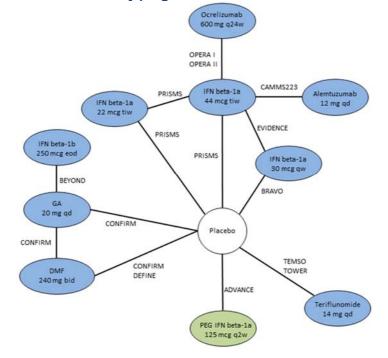


Figure 6. ARR – evaluation of inconsistency in the overall network

Confirmed disability progression at 3 months (CDP3M)

In the network for this outcome, there were six treatment comparisons with the potential for inconsistency (Figure 7).

Figure 7. Overall network for disability progression confirmed after three months (CDP3M)

+44 (0)300 323 0140

We tested the presence of inconsistency in the CDP3M network using the node splitting method. There was no evidence of statistically significant inconsistency in any of the six treatment comparisons (Figure 8).

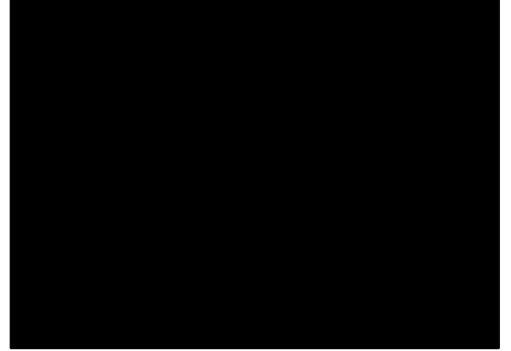
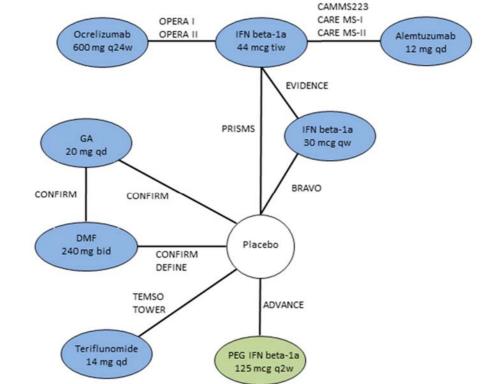


Figure 8. <u>CDP3M – evaluation of inconsistency in the overall network</u>

Confirmed disability progression at 6 months (CDP6M)


In the network for this outcome, there were six treatment comparisons with the potential for inconsistency (Figure 9).

We tested the presence of inconsistency in the CDP6M network using the node splitting method. There was no evidence of statistically significant inconsistency in any of the six treatment comparisons (Figure 10).

NICE National Institute for Health and Care Excellence

10 Spring Gardens London SW1A 2BU United Kingdom

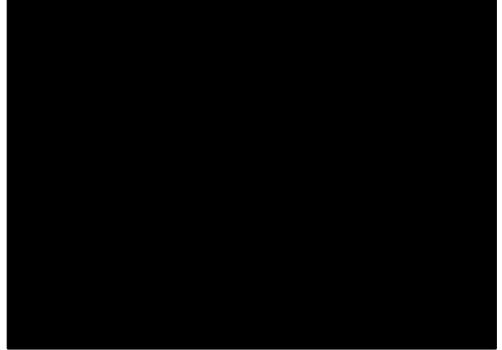

+44 (0)300 323 0140

Figure 9. Overall network for disability progression confirmed after 6 months (CDP6M)

bid = twice daily; DMF = dimethyl fumarate; PEG IFN = pegylated interferon; qad = every other day; q24w = once every 24 weeks; qd = once daily; tiw = 3 times a week.

Figure 10. CDP6M – evaluation of inconsistency in the overall network

+44 (0)300 323 0140

Any adverse events, serious adverse event and treatment discontinuation due to any cause.

We planned to assess inconsistency in the network using a combination of graphical assessment of the network structure and node splitting where potential inconsistency may be present. Inconsistency can only occur in closed loops where direct and indirect evidence for a given treatment comparison is derived from different studies. In the network for any adverse event and treatment discontinuation due to any cause, no closed loops were formed. In the network for any serious adverse event there was only one closed loop which was formed by a single three arm study (CONFIRM). Since a single study cannot be inconsistent with itself, there is no potential for inconsistency in these networks.

Sensitivity analysis

A14. Document 'Biogen Plegridy – Full Report – Main - 20190222' and document 'Biogen Plegridy – Full Report – Appendices - 20190222'. Risk of bias was reported in the Biogen Plegridy Full Report Main document (p75), with 4 out of 32 trials rated as low risk of bias in all domains. Sensitivity analysis excluding studies at higher risk of bias cannot be found in the Biogen Plegridy Full Report Main document or The Biogen Plegridy Full Report Appendices document. Please provide a sensitivity analysis excluding studies at higher risk of bias.

Response:

For this request, we removed 16 studies from the networks in line with question A10 (APEX and Etemadifar 2006) or for having at least one domain rated as "High" risk of bias (ROB) as presented in response A8, Table 9 (Boiko 2017, Bornstein 1987, BRAVO, Calabrese 2012, CAMMS223, CARE MS-I, CARE MS-II, EVIDENCE, INCOMIN, Mokhber, MSCRG, REGARD, TEMSO, and TOWER).

Results of the sensitivity analyses are presented below:

- Annualised relapse rate
 - Figure 11. Overall network for annualised relapse rate (ARR) Sensitivity analysis excluding studies rated as high ROB: Overall network for annualised relapse rate – Sensitivity analysis excluding studies rated as high ROB (based on CS, Document B, section 2.9.3.1, figure 14)
 - Figure 12. Annualised relapse rate of pegIFNβ-1a relative to all other treatments Sensitivity analysis excluding studies rated as high ROB: Annualised relapse rate of pegIFNβ-1a relative to all other treatments – Sensitivity analysis excluding studies rated as high ROB (based on CS, Document B, section 2.9.3.1, Figure 15)
- Confirmed disease progression after three months (CDP3M)
 - Figure 13: Overall network for disability progression confirmed after three months (CDP3M) – Sensitivity analysis excluding studies rated as high ROB (based on CS, Document B, section 2.9.3.2, figure 16)
 - Figure 14: Disability progression confirmed after 3 months (CDP3M) for pegIFNβ-1a 125 mcg Q2W relative to all other treatments – Sensitivity analysis

excluding studies rated as high ROB (based on CS, Document B, section 2.9.3.2, Figure 17)

- Confirmed disease progression after six months (CDP6M)
 - Figure 15: Overall network for disability progression confirmed after six months (CDP6M) – Sensitivity analysis excluding studies rated as high ROB (based on CS, Document B, section 2.9.3.3, Figure 18)
 - Figure 16: Disability progression confirmed after 6 months (CDP6M) for pegIFNβ-1a 125 mcg Q2W relative to all other treatments – Sensitivity analysis excluding studies rated as high ROB (based on CS, Document B, section 2.9.3.3, Figure 19).

No networks were possible for:

- Mortality (CS, Document C, Appendix L, Section 3.7, Figure 12) due to removal of Boiko 2017
- Any adverse events (CS, Document C, Appendix L, Section 3.12, Figure 15) due to removal of Boiko 2017 and GLOW
- Any serious AE (CS, Document C, Appendix L, Figure 18) due to removal of Boiko 2017
- Treatment discontinuation due to any cause (CS, Document C, Appendix L, Section 3.14, Figure 21) due to removal of Boiko 2017.

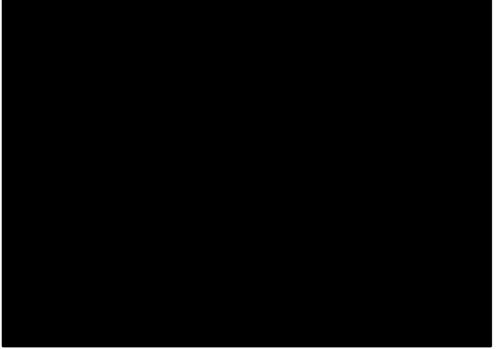
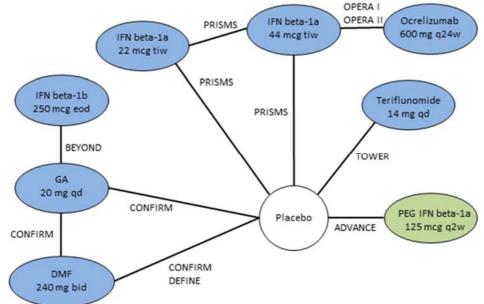
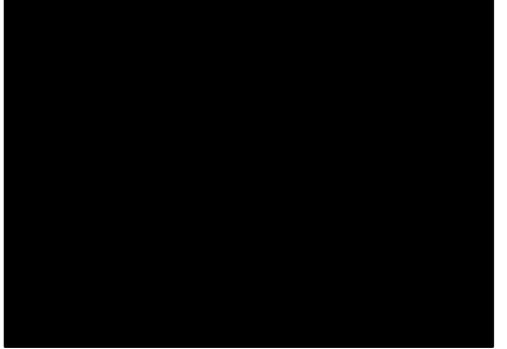


Figure 11. Overall network for annualised relapse rate (ARR) – Sensitivity analysis excluding studies rated as high ROB

ARR = annualised relapse rate; DMF = dimethyl fumarate; GA = glatiramer acetate; IFN = interferon; PEG IFN = pegylated interferon; q2w = once every other week; q24w = every 24 weeks; qad = every other day; qd = once daily; qw = once weekly; ROB = risk of bias; tiw = three times weekly



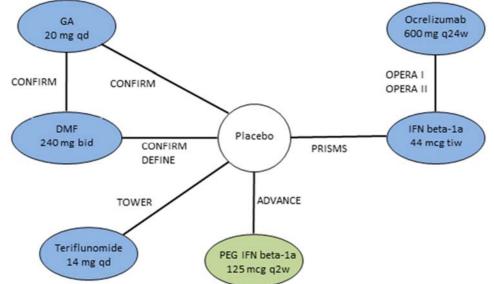
bid = twice daily; dmf = dimethyl fumarate; pegifn β -1a = pegylated interferon β -1a; q24w = once every 24 weeks; qd = once daily; qw = once weekly; rob = risk of bias; tiw = three times weekly



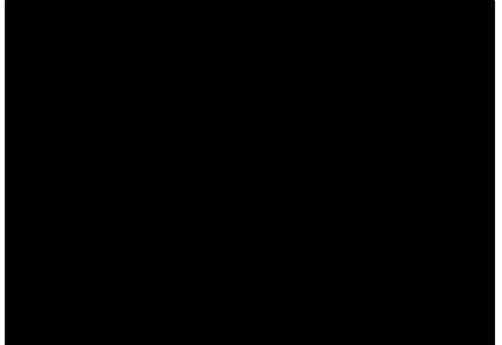
+44 (0)300 323 0140

Figure 13. Overall network for disability progression confirmed after three months (CDP3M) – Sensitivity analysis excluding studies rated as high ROB

CDP3M = confirmed disease progression after three months; DMF = dimethyl fumarate; GA = glatiramer acetate; IFN = interferon; PEG IFN = pegylated interferon; q2w = once every other week; q24w = every 24 weeks; qad = every other day; qd = once daily; qw = once weekly; ROB = risk of bias; tiw = three times weekly


Figure 14.Disability progression confirmed after 3 months (CDP3M) for pegIFNβ-1a 125 mcg Q2W relative to all other treatments – Sensitivity analysis excluding studies rated as high ROB

bid = twice daily; CDP3M = confirmed disease progression after 3 months; DMF = dimethyl fumarate; pegIFN β -1a = pegylated interferon β -1a; qad = every other day; q24w = once every 24 weeks; qd = once daily; ROB = risk of bias; tiw = 3 times a week



+44 (0)300 323 0140

CDP6M = confirmed disease progression after six months; DMF = dimethyl fumarate; GA = glatiramer acetate; IFN = interferon; PEG IFN = pegylated interferon; q2w = once every other week; q24w = every 24 weeks; qad = every other day; qd = once daily; qw = once weekly; ROB = risk of bias; tiw = three times weekly

Figure 16. Disability progression confirmed after 6 months (CDP6M) for pegIFNβ-1a 125 mcg Q2W relative to all other treatments – Sensitivity analysis excluding studies rated as high ROB

CDP6M = confirmed disease progression after six months; DMF = dimethyl fumarate; GA = glatiramer acetate; IFN = interferon; PEG IFN = pegylated interferon; q2w = once every other week; q24w = every 24 weeks; qad = every other day; qd = once daily; qw = once weekly; ROB = risk of bias; tiw = three times weekly

+44 (0)300 323 0140

PLEGRIDY OBSERVATIONAL PROGRAMME (POP) STUDY

A15. CS, Document B, section B.2.11. The Plegridy Observational Programme (POP) is an ongoing, 5-year study exploring the long-term safety profile and effectiveness of peginterferon beta-1a Q2W for patients with newly diagnosed and non-newly diagnosed relapsing MS in the real-world setting.

a. Section B.2.11 states that '...33% of newly diagnosed patients and 35% of non-newly diagnosed patients ... had discontinued peginterferon beta-1a' in the POP study. These figures are higher than the discontinuation rates because of adverse events for peginterferon beta-1a in ADVANCE at 1 and 2 years (5% and 6% respectively) and ATTAIN (5%) [sections B.2.13.2.1 and B.2.13.2.2]. Please provide a rationale for the higher discontinuation rates observed in the POP study.

Response:

The discontinuation rates from the 2nd interim analysis of POP cite "discontinuation for any reason", whereas the the cited proportions in the clarification question from ADVANCE and ATTAIN are discontinuations due to AEs only. These proportions are therefore not comparable.

Comparing discontinuation rates from ADVANCE/ATTAIN for due to any reason in the continuously treated pegIFN β -1a Q2W patient population, which for ADVANCE at 48 and 96 weeks was 14% and 20%, respectively. Of the 376 patients who entered year 1 of ATTAIN on continuous pegIFN β -1a Q2W 25% discontinued due to any reason by the end of the study.

Differences primarily reflect those between a blinded, randomized, controlled Phase 3 study (ADVANCE), an optional open-label extension study (ATTAIN), and an open-label, observational Phase 4 study that reflects the real-world patient population and clinical practices. Additionally, there is a significant increase of available treatment options for patient since the time of ADVANCE/ATTAIN clinical trials. Moreover, the POP study numbers reflect only the 2nd interim analysis (where 89% and 38& of patients [n=963] had completed \geq 12 and \geq 24 months of treatment, respectively) and does not include the full enrolled patient population; the completed study is expected to read out in 2022.

b. Figure 31 shows the proportion of patients switching from peginterferon beta-1a to another disease-modifying therapy because of stopping treatment due to adverse events or lack of efficacy. Please provide further details on the reasons for patients switching treatment because of adverse events or lack of efficacy. For example, discontinuation by type of adverse event/serious adverse event or because of problems with adherence or patient choice etc.

Response:

These broad categories were selected by study investigators from a pre-specified list of reasons for discontinuing pegIFN β -1a in the CRF; therefore, no additional data are available regarding additional details on the reasons for discontinuing pegIFN β -1a and switching to another DMT.

+44 (0)300 323 0140

MISSING INFORMATION

A16. <u>**PRIORITY QUESTION**</u>. Please provide the following missing documents or clarify which reference they are in the Reference pack(s):

a. The appendices for the clinical study report (CSR) of ADVANCE 2013. Please provide the sections of the appendix which outlines the reasons why participants 'withdrew consent' and details of 'other' reasons for withdrawal, including numbers who withdrew due to relapse or lack of effect (CSR ADVANCE 2013, section 10.1.2, p126). This information is provided as a combined figure for both years 1 and 2 (ADVANCE and ATTAIN) in the CSR, with reference to Appendices. However, the appendices were not included in the reference pack. In particular, reference to Table 3 in Appendix 16.2.1 and Tables 9 and 12 in Appendix 16.2.7.

Response:

Following the clarification call on 9th July 2019, the requested tables from the appendices have been provided in accompaniment to this document.

b. 'ADVANCE trial data on file' (CS, Document B, Reference 182. CS, Document C, Reference 117).

Response:

The data for which this reference is cited are available within Calabresi et al 2014 (table 3, p 6), Document B, reference number 11.

 c. 'Novartis data on file. HR vs placebo for 3-month confirmed disability progression (with the definition of progression adjusted to match that from the AFFIRM trial), pooled FREEDOMS¢ FREEDOMS II RES sub-group. Camberley, Surrey, UK: 2016' (CS, Document C, Reference 39).

Response:

This data on file reference is cited within Montgomery et al 2017 (ref number 293). Biogen do not have access to the data on file reference.

 d. 'Biogen Idec data on file. Cost-effectiveness analysis of Tecfidera® in patients with relapsing remitting multiple sclerosis. Version 18.0 technical report. Oct 2013' (CS, Document C, Reference 87).

Response:

This report is cited within the Mauskopf et al 2016 publication relating to "Treatment efficacy from an MTC and an SLR". All required information is either available in Mauskopf et al 2016

(Document C, reference number 97) or Hutchinson et al 2014 (Document C, Reference number 88).

Section B: Clarification on cost-effectiveness data

LITERATURE SEARCHING

Databases

B1. CS, Document C, Appendix G, section G.1.1.1. EconLit is included in the electronic databases searched for the economic systematic review. Please clarify whether this search was conducted in 'EconLit' or 'Econlit with Full Text' database.

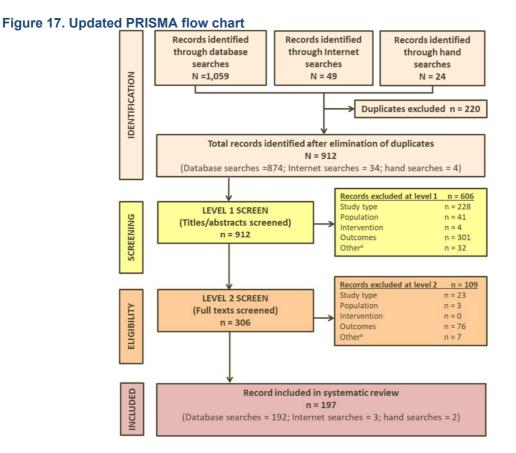
Response:

This search was conducted in 'EconLit'. As Econlit includes both full-text and conference proceedings and 'Econlit with Full Text' includes full-text publications only, 'EconLit' was preferred for a more comprehensive search.

Included and excluded studies

B2. CS, Document C, Appendix G, section G.2. Figure 3 (PRISMA flow diagram for economic systematic review) shows the number of included and excluded references. Please provide:

a. a list of included studies and all related references for eligibility (level 2) screening.


Response:

Please see below the list of included studies and the updated PRISMA for CS, Document C, Appendix G, section 2, Figure 3 as described below.

Upon review of the included list of studies, two studies (Djambazov et al., 2017 and Martin et al., 2018) that were further excluded but not indicated as such in the original submission have been identified. The list of studies and the PRISMA diagram (Figure 17) are updated to reflect the correct number of studies included (197, opposed to 199).

+44 (0)300 323 0140

^a includes non-English language and duplicate publications

Table 14. List of included studies

#	Reference			
1	neurology, neurosurgery, and psychiatry. 2018;89(11):1200-1207.			
2	Noon KM, Montgomery SM, Adlard NE, Kroes MA. When does economic model type become a decisive factor in health technology appraisals? Learning from the expanding treatment options for relapsing–remitting multiple sclerosis. Journal of Medical Economics. 2018;21(10):983-992.			
3	Piena MA, Heisen M, Wormhoudt LW, Wingerden JV, Frequin STFM, Uitdehaag BMJ. Cost- minimization analysis of alemtuzumab compared to fingolimod and natalizumab for the treatment of active relapsing-remitting multiple sclerosis in the Netherlands. Journal of Medical Economics. 2018;21(10):968-976.			
4	Afolabi D, Albor C, Zalewski L, Altmann DR, Baker D, Schmierer K. Positive impact of cladribine on quality of life in people with relapsing multiple sclerosis. Multiple Sclerosis Journal. 2018;24(11):1461-1468.			
5	Hahn N, Palmer KE, Klocke S, Delate T. Therapeutic Interferon Interchange in Relapsing Multiple Sclerosis Lowers Health Care and Pharmacy Expenditures with Comparable Safety. The Permanente journal. 2018;22.			
6	Tinelli M, Kanavos P, Efthymiadou O, Visintin E, Grimaccia F, Mossman J. Using IMPrESS to guide policy change in multiple sclerosis. Multiple Sclerosis Journal. 2018;24(9):1251-1255.			
7	Hettle R, Harty G, Wong SL. Cost-effectiveness of cladribine tablets, alemtuzumab, and natalizumab in the treatment of relapsing-remitting multiple sclerosis with high disease activity in England. Journal of Medical Economics. 2018;21(7):676-686.			
8	Gyllensten H, Kavaliunas A, Alexanderson K, Hillert J, Tinghög P, Friberg E. Costs and quality of life by disability among people with multiple sclerosis: a register-based study in Sweden. Multiple Sclerosis Journal - Experimental, Translational and Clinical. 2018;4(3).			

#	Reference		
9	Hernandez L, Toro-Diaz H, Cele C, Harrington A, Kinter E, Lundqvist T. Dimethyl Fumarate demonstrates Costeffectiveness vs Teriflunomide in Treatment-naïve Patients with Relapsingremitting Multiple Sclerosis in Sweden. European Journal of Neurology. 2018;25:138.		
10	Rao D, Heidari E, Kamal KM, Dashputre AA. Cost-effectiveness of daclizumab versus interferon beta- 1a in the treatment of patients with relapsing-remitting multiple sclerosis in the United States. Value in Health. 2018;21:S206.		
11	Djambazov S, Slavchev G, Dineva T, Panayotov P, Vekov T. Cost-effectiveness analysis of cladribine tablets for treatment of patients with relapsing-remitting multiple sclerosis in Bulgaria. Value in Health. 2018;21:S206.		
12	Granqvist M, Boremalm M, Poorghobad A, Svenningsson A, Salzer J, Frisell T, et al. Comparative effectiveness of rituximab and other initial treatment choices for multiple sclerosis. JAMA Neurology. 2018;75(3):320-327.		
13	Marangi A, Farina G, Vicenzi V, Forlivesi S, Benedetti MD. Pharmacoepidemiology of multiple sclerosis treatment in veneto region: An observational study. Neuroepidemiology. 2018;50(1-2):90.		
14	Lambe T, Duarte R, Mahon J, Nevitt S, Greenhalgh J, Boland A, et al. Cladribine Tablets for the First- Line Treatment of Relapsing-Remitting Multiple Sclerosis: An Evidence Review Group Perspective of a NICE Single Technology Appraisal. PharmacoEconomics. 2018.		
15	Palace J, Duddy M, Lawton M, Bregenzer T, Zhu F, Boggild M, et al. Assessing the long-term effectiveness of interferon-beta and glatiramer acetate in multiple sclerosis: Final 10-year results from the UK multiple sclerosis risk-sharing scheme. Journal of Neurology, Neurosurgery and Psychiatry. 2018.		
16	Zimmermann M, Brouwer E, Tice JA, Seidner M, Loos AM, Liu S, et al. Disease-Modifying Therapies for Relapsing–Remitting and Primary Progressive Multiple Sclerosis: A Cost-Utility Analysis. CNS Drugs. 2018.		
17	Kheirandish M, Varahrami V, Kebriaeezade A, Cheraghali AM. Impact of economic sanctions on access to noncommunicable diseases medicines in the islamic republic of Iran. Eastern Mediterranean Health Journal. 2018;24(1):42-51.		
18	Hashemi-Meshkini A, Zekri HS, Karimi-Yazdi H, Zaboli P, Sahraian MA, Nikfar S. Pegylated versus non-pegylated interferon beta la in patients with relapsing-remitting multiple sclerosis: A cost-effectiveness analysis. Iranian Journal of Neurology. 2018;17(3):123-128.		
19	Alsaqa'aby MF, Vaidya V, Khreis N, Al Khairallah T, Al-Jedai AH. Cost-effectiveness of oral agents in relapsing-remitting multiple sclerosis compared to interferon-based therapy in Saudi Arabia. Annals of Saudi Medicine. 2017;37(6):433-443.		
20	Frasco MA, Shih T, Incerti D, Diaz Espinosa O, Vania DK, Thomas N. Incremental net monetary benefit of ocrelizumab relative to subcutaneous interferon β-1a. Journal of Medical Economics. 2017;20(10):1074-1082.		
21	Yang H, Duchesneau E, Foster R, Guerin A, Ma E, Thomas NP. Cost-effectiveness analysis of ocrelizumab versus subcutaneous interferon beta-1a for the treatment of relapsing multiple sclerosis. Journal of Medical Economics. 2017;20(10):1056-1065.		
22	Chirikov V, Ma I, Joshi N, Patel D, Smith A, Giambrone C, et al. Clinical and economic evaluation of alemtuzumab compared to ocrelizumab in the treatment of relapsing forms of multiple sclerosis in the United States: A payer perspective. Multiple Sclerosis Journal. 2017;23(3):885.		
23	Zarkali A, Lux D, Tredwell B, Guck N, Beaumont J, Redmond I, et al. The changing landscape of disease modifying treatments: Cost implications for healthcare systems. Multiple Sclerosis Journal. 2017;23(3):159.		
24	Ruiz L, Toro-Diaz H, Cele C, Hernandez L, Harrington A. Cost-effectiveness analysis of peginterferon beta-1a vs. first-line injectable disease-modifying therapies for the treatment of relapsing-remitting multiple sclerosis in Spain. Value in Health. 2017;20(9):A723.		
25	Tempest M, Bougeard C, Harrington A, Xaplanteris L. The cost-effectiveness of daclizumab beta vs fingolimod for the treatment of relapsing-remitting multiple sclerosis patients with inadequate response to prior treatment in Scotland. Value in Health. 2017;20(9):A723-A724.		
26	Lee J, Ko S. The cost effectiveness of fingolimod for the treatment multiple sclerosis in Korea. Value in Health. 2017;20(9):A724.		
27	Ruiz L, Machado M, Toro-Diaz H, Cele C, Hernandez L, Harrington A. Cost effectiveness analysis of dimethyl fumarate versus teriflunomide for the treatment of multiple sclerosis. Value in Health. 2017;20(9):A724.		
28	Wong SL, Hohnhorst PV, Hettle R, Konings P. Health state utilities in patients with relapsing remitting multiple sclerosis treated with cladribine tablets. Value in Health. 2017;20(9):A725.		

#	Reference		
29	Leandersson A, Kagström S, Forsberg L, Hillert J, Nilsson P, Dahle C, et al. A Swedish nationwide pharmaco-epidemiological study of the long-term safety and effectiveness of alemtuzumab (IMSE 3). Multiple Sclerosis Journal. 2017;23(3):888-889.		
30	Grabenhorst L, Haase R, Cornelissen C, Sparring V, Ziemssen T. The impact of fingolimod on the economic burden of multiple sclerosis: Results from two non-interventional studies conducted in Germany. Multiple Sclerosis Journal. 2017;23(3):480-481.		
31	Silverio N, Goncalves A, Fonseca A. Cost analysis of several treatment sequences used for the treatment of relapsing-remitting multiple sclerosis in Portugal: The case for cladribine tablets. Value in Health. 2017;20(9):A721.		
32	Chirikov V, Ma I, Joshi N, Patel D, Smith A, Giambrone C, et al. Cost-effectiveness of alemtuzumab in the treatment of relapsing forms of multiple sclerosis in the united states and societal spillover effects. Value in Health. 2017;20(9):A722.		
33	Herring W, Zhang Y, Pearson I, Tempest M, Freudensprung U, Acosta C, et al. A cost-effectiveness analysis using real-world data from the MSBase Registry: Comparing natalizumab to fingolimod in patients with inadequate response to disease modifying therapies in relapsing-remitting multiple sclerosis in Scotland. Multiple Sclerosis Journal. 2017;23(3):341.		
34	Adlard N, Brisbane F, Watson J, Bottomley C, Kroes M. A three month interim analysis of quality of life in patients with relapsing remitting multiple sclerosis in the UK: The Patient Reported Outcomes with Fingolimod in Local Experience (PROFILE) study. Multiple Sclerosis Journal. 2017;23(3):970.		
35	Perumal J, Fox RJ, Balabanov R, Makh S, Dong Q, Balcer L, et al. Natalizumab is associated with stable or improved cognitive function, health-related quality of life, and work capacity in anti-JC virus seronegative patients with early relapsingremitting multiple sclerosis: A 2-year analysis of STRIVE. Multiple Sclerosis Journal. 2017;23(3):675.		
36	Daigl M, Jhuti GS, McDougall F, Bennett I. Impact of disease activity measures on health utilities in PPMS. Value in Health. 2017;20(9):A727-A728.		
37	Yang H, Duchesneau ED, Guerin A, Ma E, Thomas NP. Impact of ocrelizumab vs. interferon beta-1a in delaying the deterioration of patients' daily functions and associated costs in relapsing-remitting multiple sclerosis. Value in Health. 2017;20(9):A721.		
38	Ziemssen T, Wang H, Zhang W, Thangavelu K, Melanson M, Hashemi L, et al. Impact of alemtuzumab on work capacity based upon evidence from the CARE-MS II study. Multiple Sclerosis Journal. 2017;23(3):902.		
39	Ziemssen T, Albrecht H, Haas J, Klotz L, Lang M, Lassek C, et al. 5 years effectiveness of fingolimod in daily clinical practice: Results of the non-interventional study PANGAEA. Multiple Sclerosis Journal. 2017;23(3):372-373.		
40	Rog D, Guo JD, Nucit A, Le Bagousse-Bego G, Chevli M, Chung L. Alemtuzumab is the most cost- effective option in comparison to available therapies in the treatment of RRMS from the UK NHS perspective. Value in Health. 2017;20(9):A723.		
41	Taheri S, Yousefi N, Sahraian MA, Mehralian G. Cost-effectiveness analysis of alemtuzumab in comparison with natalizumab, intramuscular interferon beta-1a, subcutaneous interferon beta-1b, and fingolimod for the treatment of relapsing-remitting multiple sclerosis in Iran. Value in Health. 2017;20(9):A723.		
42	Montgomery SM, Kusel J, Nicholas R, Adlard N. Costs and effectiveness of fingolimod versus alemtuzumab in the treatment of highly active relapsing-remitting multiple sclerosis in the UK: retreatment, discount, and disutility. Journal of Medical Economics. 2017;20(9):962-973.		
43	Melendez-Torres GJ, Auguste P, Armoiry X, Maheswaran H, Court R, Madan J, et al. Clinical effectiveness and cost-effectiveness of beta-interferon and glatiramer acetate for treating multiple sclerosis: Systematic review and economic evaluation. Health Technology Assessment. 2017;21(52).		
44	Centonze D, Iannazzo S, Santoni L, Saleri C, Puma E, Giuliani L, et al. The economic profile of peginterferon beta-1a in the treatment of relapsing-remitting multiple sclerosis in Italy. Multiple Sclerosis and Demyelinating Disorders. 2017;2(1).		
45	Johnson KM, Zhou H, Lin F, Ko JJ, Herrera V. Real-world adherence and persistence to oral disease- modifying therapies in multiple sclerosis patients over 1 year. Journal of Managed Care and Specialty Pharmacy. 2017;23(8):844-852.		
46	Wickström A, Fagerström M, Wickström L, Granåsen G, Dahle C, Vrethem M, et al. The impact of adjusted work conditions and disease-modifying drugs on work ability in multiple sclerosis. Multiple Sclerosis. 2017;23(8):1137-1147.		

#	Reference			
47	Dashputre AA, Kamal KM, Pawar G. Cost-effectiveness of peginterferon beta-1a and alemtuzumab in relapsing-remitting multiple sclerosis. Journal of Managed Care and Specialty Pharmacy. 2017;23(6):666-676.			
48	Lee A, Pike J, Edwards MR, Petrillo J, Waller J, Jones E. Quantifying the Benefits of Dimethyl Fumarate Over β Interferon and Glatiramer Acetate Therapies on Work Productivity Outcomes in MS Patients. Neurology and Therapy. 2017;6(1):79-90.			
49	Montgomery SM, Maruszczak MJ, Slater D, Kusel J, Nicholas R, Adlard N. A discrete event simulation to model the cost-utility of fingolimod and natalizumab in rapidly evolving severe relapsing-remitting multiple sclerosis in the UK. Journal of Medical Economics. 2017;20(5):474-482.			
50	Watson C, Gitlin M, Snyder S. Cost consequence analysis of sc peginterferon beta-1a every 2 weeks versus sc interferon beta-1atiw in patients with RRMS in The United States. Value in Health. 2017;20(5):A192.			
51	Smith A, Hashemi L, Wandstrat T. Cost-utility analysis of alemtuzumab versus subcutaneous interferon beta-1a for the treatment of relapsing-remitting multiple sclerosis: Us payer perspective. Value in Health. 2017;20(5):A193.			
52	Zimmermann M, Brouwer E, Tice JA, Seidner M, Loos A, Liu S, et al. Cost-utility of disease modifying therapies for relapsing-remitting multiple sclerosis. Value in Health. 2017;20(5):A193.			
53	Ordonez JE. Cost-utility analysis of pegylated interferon beta-1a versus interferons beta-1a and beta- 1b in patients with relapsing-remitting multiple sclerosis in Colombia. Value in Health. 2017;20(5):A193- A194.			
54	Ordonez JE. Dimethyl fumarate versus fingolimod and teriflunomide for the treatment of relapsing- remitting multiple sclerosis in Colombia: A cost-utility analysis. Value in Health. 2017;20(5):A194.			
55	Thomas N, Ma E, Yu EB. Economic implications of replacing interferon beta-1a with ocreli-zumab in relapsing multiple sclerosis. Value in Health. 2017;20(5):A191.			
56	Alsop J, Medin J, Cornelissen C, Vormfelde SV, Ziemssen T. Two studies in one: A propensity- scorematched comparison of fingolimod versus interferons and glatiramer acetate using realworld data from the independent German studies, PANGAEA and PEARL. PLoS ONE. 2017;12(5).			
57	Bargiela D, Bianchi M, Westover B, Healy B, De Jager P, Xia Z. Selection of first-line therapy in multiple sclerosis using risk-benefit decision analysis. Neurology. 2017;88(16).			
58	Bozkaya D, Livingston T, Migliaccio-Walle K, Odom T. The cost-effectiveness of disease-modifying therapies for the treatment of relapsing-remitting multiple sclerosis. Journal of Medical Economics. 2017;20(3):297-302.			
59	Hernandez L, Guo S, Toro-Diaz H, Carroll S, Syed Farooq SF. Peginterferon beta-1a versus other self- injectable disease-modifying therapies in the treatment of relapsing-remitting multiple sclerosis in Scotland: a cost-effectiveness analysis. Journal of Medical Economics. 2017;20(3):228-238.			
60	Sawad AB, Seoane-Vazquez E, Rodriguez-Monguio R, Turkistani F. Cost-effectiveness of different strategies for treatment relapsing-remitting multiple sclerosis. Journal of Comparative Effectiveness Research. 2017;6(2):97-108.			
61	Chirikov V, Ma I, Joshi N, Patel D, Smith A, Giambrone C, et al. Cost-effectiveness of alemtuzumab in the treatment of relapsing forms of multiple sclerosis in the United States. Journal of Managed Care and Specialty Pharmacy. 2017;23:S61.			
62	Hua L, Hersh C, Morten P, Kusel J, Lin F, Cave J, et al. The impact of price reductions after loss of exclusivity in a cost-effectiveness analysis: Fingolimod versus intramuscularly administered interferon beta-1a for the treatment of relapsing-remitting multiple sclerosis. Journal of Managed Care and Specialty Pharmacy. 2017;23:S62.			
63	Molina M, Rodriguez E, Gonzalez A, Gonzalez L, Moreno F, Jimenez I, et al. Reasons for changing treatment to oral agents in multiple sclerosis. European Journal of Hospital Pharmacy. 2017;24:A125.			
64	Moya-Carmona I, Dominguez-Rivas Y, Pedrosa-Ruiz M, Fernandez-Ovies JM. Economic impact of implementation of natalizumab use with extended interval dosing in patients with relapsing remitting multiple sclerosis. European Journal of Hospital Pharmacy. 2017;24:A43.			
65	Soini E, Joutseno J, Sumelahti ML. Cost-utility of First-line Disease-modifying Treatments for Relapsing–Remitting Multiple Sclerosis. Clinical Therapeutics. 2017;39(3):537-557.e10.			
66	Fox RJ, Chan A, Zhang A, Xiao J, Levison D, Lewin JB, et al. Comparative effectiveness using a matching-adjusted indirect comparison between delayed-release dimethyl fumarate and fingolimod for the treatment of multiple sclerosis. Current Medical Research and Opinion. 2017;33(2):175-183.			
67	Moccia M, Palladino R, Lanzillo R, Carotenuto A, Russo CV, Triassi M, et al. Healthcare Costs for treating relapsing multiple sclerosis and the risk of progression: A retrospective Italian cohort study from 2001 to 2015. PLoS ONE. 2017;12(1).			

#	Reference			
68	Arroyo González R, Kita M, Crayton H, Havrdova E, Margolin DH, Lake SL, et al. Alemtuzumab improves quality-of-life outcomes compared with subcutaneous interferon beta-1a in patients with active relapsing-remitting multiple sclerosis. Multiple Sclerosis Journal. 2017;23(10):1367-1376.			
69	Brola W, Sobolewski P, Fudala M, Flaga S, Jantarski K. Multiple sclerosis: Patient-reported quality of life in the Świętokrzyskie Region. Medical Studies/Studia Medyczne. 2017;33(3):191-198.			
70	Liu Y, Vollmer T, Havrdova E, Riester K, Lee A, Phillips G, et al. Impact of daclizumab versus interferon beta-1a on patient-reported outcomes in relapsing-remitting multiple sclerosis. Multiple Sclerosis and Related Disorders. 2017;11:18-24.			
71	Mahon R, Callan A, Burke C, Medin J. Cost-effectiveness of fingolimod vs brace cycling followed by a switch to fingolimod in patients failing prior treatment. Value in Health. 2016;19(7):A432.			
72	Toro-Diaz H, Cele C, Hernandez L, Haines P, Liu Y, Bjørnstad BM, et al. Cost-effectiveness of daclizumab versus fingolimod in the treatment of patients with relapsing-remitting multiple sclerosis in Norway. Value in Health. 2016;19(7):A433.			
73	Maervoet J, Ivanescu C, Andreykiv M, Wu Y, Van Engen A. Glatiramer acetate (GA) is cost-effective compa red to interferons and best supportive care (BSC) for relapsing remitting multiple sclerosis (RRMS) in the UK. Value in Health. 2016;19(7):A433-A434.			
74	Smith A, Hashemi L, Ma I. Cost-utility analysis of alemtuzumab versus natalizumab for the treatment of relapsing-remitting multiple sclerosis: Us payer perspective. Value in Health. 2016;19(7):A431.			
75	Noda C, De Anda JA, Anaya P, Serafini P, Machado M. The cost-effectiveness of delayed-release dimethyl fumarate versus glatiramer acetate for the treatment of relapsing-remitting multiple sclerosis i the chilean national health fund (FONASA). Value in Health. 2016;19(7):A431.			
76	De Anda JA, Noda C, Anaya P, Azamar A, Machado M, Serafini P. The cost-effectiveness of delayed release dimethyl fumarate versus glatiramer acetate for the treatment of relapsing-remitting multiple sclerosis in the Mexican social security institute (IMSS). Value in Health. 2016;19(7):A432.			
77	Aly S, Digoin-Danzin A, Duteil E, Leiba G, Duco J, Chouette I, et al. Efficacy, costs and quality of life in the real world setting for patients with multiple sclerosis treated with fingolimod: Intermediate results from the virgile study. Value in Health. 2016;19(7):A430.			
78	Polistena B, Spandonaro F, Gasperini C, Zimatore GB, Santoni L, Fantaccini S, et al. The societal impact of natalizumab treatment in the Italian relapsing-remitting multiple sclerosis clinical practice: The tysabri® pharmacoeconomics (TYPE) study. Value in Health. 2016;19(7):A434.			
79	Ordóñez J, Serafini P, Machado M. Cost-utility analysis of dimethyl fumarate versus fingolimod and teriflunomide in patients with relapsing-remitting multiple sclerosis in Colombia. Value in Health. 2016;19(7):A434.			
80	Daigl M, Jhuti GS, McDougall F, Bennett I. EDSS state and health utility measured by EQ5D in relapsing-remitting multiple sclerosis (RRMS). Value in Health. 2016;19(7):A435.			
81	Versteegh M. Impact on the Incremental Cost-Effectiveness Ratio of Using Alternatives to EQ-5D in a Markov Model for Multiple Sclerosis. PharmacoEconomics. 2016;34(11):1133-1144.			
82	Kona C, Kona C, Kumar S, Kumar A. South Indian perspective of disease modifying therapy in patients with multiple sclerosis: A single centre observational study. Annals of Indian Academy of Neurology. 2016;19(6):S41.			
83	Smith A, Hashemi L. Healthcare resource utilisation and costs in patients with active relapsing-remitting multiple sclerosis treated with alemtuzumab vs. SC IFNB-1a (CARE-MS II). Multiple Sclerosis. 2016;22:147-148.			
84	Morawski J, Hass S, Cox F, Turkistani F. Treatment preferences related to route of administration in patients with MS: Results from US and EU5. Multiple Sclerosis. 2016;22:807-808.			
85	Eriksson I, Cars T, Piehl F, Malmström R, Wettermark B, Von Euler M. Drug utilization patterns in relapsing-remitting multiple sclerosis: A population-based cohort study. Pharmacoepidemiology and Drug Safety. 2016;25:3-4.			
86	Su W, Kansal A, Vicente C, Deniz B, Sarda S. The cost-effectiveness of delayed-release dimethyl fumarate for the treatment of relapsing-remitting multiple sclerosis in Canada. Journal of Medical Economics. 2016;19(7):718-727.			
87	Hernandez L, Guo S, Kinter E, Fay M. Cost-effectiveness analysis of peginterferon beta-1a compared with interferon beta-1a and glatiramer acetate in the treatment of relapsing-remitting multiple sclerosis in the United States. Journal of Medical Economics. 2016;19(7):684-695.			
88	Paolicelli D, Iannazzo S, Santoni L, Iaffaldano A, Lecce VD, Manni A, et al. The cost of relapsing- remitting multiple sclerosis patients who develop neutralizing antibodies during interferon beta therapy. PLoS ONE. 2016;11(7).			

#	Reference			
89	Ribes García S, Gómez-Pajares F, Albelda Puig C, García Herrera JL, Casanova Estruch B. Description of the Characteristics of Multiple Sclerosis Patients in the Region of Valencia (Spain) Who Requested Treatment with Disease-Modifying Drugs during the 2005-2014 Decade. European Neurology. 2016;75(5-6):274-281.			
90	O'Malley P, Lee A, O'Day K, Friedman M. Multiple sclerosis relapse-related costs of oral disease- modifying therapies in Denmark: An economic analysis comparing delayed-release dimethyl fumarate, fingolimod and teriflunomide. European Journal of Neurology. 2016;23:543.			
91	Fahham L, Murta L, Teich V, Machado M, Serafini P. Cost-utility analysis of dimethyl fumarate as a first switch treatment for relapsing remitting multiple sclerosis in the Brazilian public health care system. Value in Health. 2016;19(3):A61.			
92	Bin Sawad A, Seoane-Vazquez E, Rodriguez-Monguio R, Turkistani F. Cost-effectiveness of different strategies for treatment of relapsing-remitting multiple sclerosis. Value in Health. 2016;19(3):A62.			
93	Suh K, Carlson JJ, Garrison LP. Projecting the potential cost effectiveness of ocrelizumab versus standard care in primary progressive multiple sclerosis patients under alternative pricing scenarios. Value in Health. 2016;19(3):A62-A63.			
94	Ordoñez J, Delgado A. Cost-utility analysis of intramuscular interferon beta-1b versus subcutaneous interferon beta-1b and beta-1a in patients with relapsing-remitting multiple sclerosis in Colombia. Value in Health. 2016;19(3):A63.			
95	Greene M, Greene N. Fingolimod versus teiflunomide: Health care costs associated with patients diagnosed with relapsing remitting multiple sclerosis taking disease modifying therapies in The United States. Value in Health. 2016;19(3):A69.			
96	Greene M, Greene N. Health economic evaluation of interferon beta 1b versus 1a for patients diagnosed with relapsing remitting multiple sclerosis. Value in Health. 2016;19(3):A69-A70.			
97	Mäurer M, Comi G, Freedman MS, Kappos L, Olsson TP, Wolinsky JS, et al. Multiple sclerosis relapses are associated with increased fatigue and reduced health-related quality of life - A post hoc analysis of the TEMSO and TOWER studies. Multiple Sclerosis and Related Disorders. 2016;7:33-40.			
98	Ontaneda D, Henry O. Cost effectiveness of multiple sclerosis therapeutic strategies for achieving no evidence of disease activity. Neurology. 2016;86(16).			
99	Iyer R, Jones E, Edwards M, Lee A, Pike J. Differences in work productivity activity impairment in ms patients initiated on oral DMF versus interferon beta or glatiramer acetate in europe and the US. Neurology. 2016;86(16).			
100	Mauskopf J, Fay M, Iyer R, Sarda S, Livingston T. Cost-effectiveness of delayed-release dimethyl fumarate for the treatment of relapsing forms of multiple sclerosis in the United States. Journal of Medical Economics. 2016;19(4):432-442.			
101	Wandstrat T. Potential cost savings due to alemtuzumab persistent reduction in disease endpoints through 5 years without retreatment for majority of patients. Journal of Managed Care and Specialty Pharmacy. 2016;22:S73.			
102	Smith A, Hashemi L. Twelve-month MS-related direct cost analysis of relapse outcomes with alemtuzumab versus IFNB-1a in active relapsing-remitting MS (CARE-MS II). Journal of Managed Care and Specialty Pharmacy. 2016;22:S71.			
103	De Meo MS, Antolini C, Scoccia L, Pucci E, De Dominicis L, Medicato E, et al. Multiple sclerosis therapy at Macerata's general hospital: Economic impact. European Journal of Hospital Pharmacy. 2016;23:A33.			
104	Phillips G, Guo S, Bender R, Havrdová E, Proskorovsky I, Vollmer T. Assessing the impact of multiple sclerosis disease activity and daclizumab HYP treatment on patient-reported outcomes: Results from the SELECT trial. Multiple Sclerosis and Related Disorders. 2016;6:66-72.			
105	Chevalier J, Chamoux C, Hammès F, Chicoye A. Cost-Effectiveness of Treatments for Relapsing Remitting Multiple Sclerosis: A French Societal Perspective. PloS one. 2016;11(3):e0150703.			
106	Beckerman R, Locklear J, Smith N, Phillips A. Cost-offset analysis of interferon beta disease-modifying therapies in relapsing-remitting multiple sclerosis. Journal of Managed Care and Specialty Pharmacy. 2015;21:S46.			
107	Phillips A, Locklear J, Kozma C. A real-world assessment of multiple sclerosis patients treated with subcutaneous interferon beta-1a: Relapse, medical costs, and persistency. Journal of Managed Care and Specialty Pharmacy. 2015;21:S46.			
108	Dashputre A, Kamal K. Cost-effectiveness of peginterferon beta-1a in relapsing-remitting multiple sclerosis. Journal of Managed Care and Specialty Pharmacy. 2015;21:S47.			
109	Dashputre A, Kamal K. Cost-effectiveness of alemtuzumab versus subcutaneous interferon beta-1a in relapsing-remitting multiple sclerosis. Journal of Managed Care and Specialty Pharmacy. 2015;21:S47.			

#	Reference		
110	Garland R, Cox-Buckley B, Fay M, Wu N, Lee A, Yeh W, et al. Healthcare resource utilization and costs in treatment-naïve multiple sclerosis patients initiating delayed-release dimethyl fumarate or fingolimod. Journal of Managed Care and Specialty Pharmacy. 2015;21:S43-S44.		
111	Grilo M, Sequeira J, Tomas J, Varanda S, Ferreira J, Samoes R, et al. Demography, clinical characteristics and socioeconomic status of the Portuguese patients with multiple sclerosis in 2014-results of the national cross-sectional PORT-MS study. Sinapse. 2015;15(1):166-167.		
112	Varanda S, Samoes R, Ferreira J, Tomas J, Grilo M, Sequeira J, et al. Trends in the treatment of multiple sclerosis in Portugal in 2014: Results of the national cross-sectional PORT-MS study. Sinapse. 2015;15(1):167.		
113	Smith MY, Sabidó-Espin M, Trochanov A, Samuelson M, Guedes S, Corvino FA, et al. Postmarketing safety profile of subcutaneous interferon beta-1a given 3 times weekly: A retrospective administrative claims analysis. Journal of Managed Care and Specialty Pharmacy. 2015;21(8):650-660.		
114	Kita M, Fox RJ, Gold R, Giovannoni G, Phillips JT, Sarda SP, et al. Effects of delayed-release dimethyl fumarate (DMF) on health-related quality of life in patients with relapsing-remitting multiple sclerosis: An integrated analysis of the phase 3 DEFINE and CONFIRM studies. Clinical Therapeutics. 2014;36(12):1958-1971.		
115	Wickström A, Dahle C, Vrethem M, Svenningsson A. Reduced sick leave in multiple sclerosis after one year of natalizumab treatment. A prospective ad hoc analysis of the TYNERGY trial. Multiple Sclerosis. 2014;20(8):1095-1101.		
116	Couto E, Hamidi V, Ringerike T, Odgaard-Jensen J, Harboe I, Klemp M. NIPH Systematic Reviews. Medicines Used for Multiple Sclerosis - A Health Technology Assessment. 2016.		
117	Hamidi V, Couto E, Ringerike T, Klemp M. A Multiple Treatment Comparison of Eleven Disease- Modifying Drugs Used for Multiple Sclerosis. J Clin Med Res. 2018 Feb;10(2):88-105.		
118	Kresa-Reahl K, Repovic P, Robertson D, Okwuokenye M, Meltzer L, Mendoza JP. Effectiveness of Delayed-release Dimethyl Fumarate on Clinical and Patient-Reported Outcomes in Patients With Relapsing Multiple Sclerosis Switching From Glatiramer Acetate: RESPOND, a Prospective Observational Study. Clin Ther. 2018 Nov 20.		
119	Meca-Lallana J, Hernandez L, Caminero AB, Giron JM, Cano-Orgaz A, Carcelen-Gadea M, et al. Fatigue Improvement after Switching Multiple Sclerosis Treatment from Interferon-beta to Glatiramer Acetate in Clinical Practice. Eur Neurol. 2016;76(1-2):40-7.		
120	Taheri S, Sahraian MA, Yousefi N. Cost-effectiveness of alemtuzumab and natalizumab for relapsing- remitting multiple sclerosis treatment in Iran: decision analysis based on an indirect comparison. J Med Econ. 2018 Oct 31:1-14.		
121	Newsome SD, Kieseier BC, Liu S, You X, Kinter E, Hung S, et al. Peginterferon beta-1a reduces disability worsening in relapsing-remitting multiple sclerosis: 2-year results from ADVANCE. Therapeutic advances in neurological disorders. 2017;10(1):41-50.		
122	Petruzzo M, Palladino R, Nardone A, Nozzolillo A, Servillo G, Roggeri A, et al. New diagnostic criteria and the costs for treating multiple sclerosis ECTRIMS Online Library. Oct 10, 2018; 228241		
123	Muñoz-Galindo IM, Moreno Calderón JA, Guarín Téllez NE, Arévalo Roa HO, Díaz Rojas JA. Health Care Cost for Multiple Sclerosis: The Case of a Health Insurer in Colombia. Value in Health Regional Issues. 2018;17:14-20.		
124	Setayeshgar S, Kingwell E, Zhu F, Zhang X, Zhang T, Marrie RA, et al. Use of the new oral disease- modifying therapies for multiple sclerosis in British Columbia, Canada: the first five-years. Multiple Sclerosis and Related Disorders. 2018;25:57-60.		
125	Eriksson I, Komen J, Piehl F, Malmström RE, Wettermark B, Von Euler M. Impact of new drugs and treatment recommendations on drug utilization in multiple sclerosis. Pharmacoepidemiology and Drug Safety. 2018;27:214.		
126	Roux J, Guilleux A, Leray E. Impact of new oral disease-modifying therapies on the prescription of injectable and off-label drugs in multiple sclerosis in France over 2011-2015 using national administrative databases. Pharmacoepidemiology and Drug Safety. 2018;27:319-320.		
127	Piccinni C, Ronconi G, Calabria S, Dondi L, Forcesi E, Rossi E, et al. Healthcare resources utilisation in primary progressive multiple sclerosis. Neurological Sciences. 2018;39(7):1169-1174.		
128	Diniz IM, Guerra AA, de Lemos LLP, Souza KM, Godman B, Bennie M, et al. The long-term costs for treating multiple sclerosis in a 16-year retrospective cohort study in Brazil. PLoS ONE. 2018;13(6).		
129	Eriksson I, Komen J, Piehl F, Malmström RE, Wettermark B, von Euler M. The changing multiple sclerosis treatment landscape: impact of new drugs and treatment recommendations. European Journal of Clinical Pharmacology. 2018;74(5):663-670.		

#	Reference			
130	Bowen K, Gleason P. Multiple sclerosis prevalence, disease-modifying drug therapy use and adherence, and total medical and pharmacy claims expense associated with multiple sclerosis in a 15 million commercially insured population. Journal of Managed Care and Specialty Pharmacy. 2018;24:S61.			
131	2018;24(4):520-528.			
132	Ogino M, Shiozawa A, Ota H, Okamoto S, Hiroi S, Kawachi I. Treatment and comorbidities of multiple sclerosis in an employed population in Japan: Analysis of health claims data. Neurodegenerative Disease Management. 2018;8(2):97-103.			
133	Estaun-Martinez C, Moya-Carmona I, Pedrosa-Ruiz M, Mora-Santiago R, Fernández-Ovies JM. Multiple sclerosis committee: Including a pharmacist as part of the multidisciplinary team. European Journal of Hospital Pharmacy. 2018;25:A7.			
134	Nicholas J, Boster A, Wu N, Yeh WS, Fay M, Kendter J, et al. Comparison of Disease-Modifying Therapies for the Management of Multiple Sclerosis: Analysis of Healthcare Resource Utilization and Relapse Rates from US Insurance Claims Data. PharmacoEconomics - Open. 2018;2(1):31-41.			
135	Chen J, Taylor B, Van Der Mei I. Patient-reported effects of disease-modifying therapies on employment outcomes in people with multiple sclerosis. Multiple Sclerosis. 2017;23(13):NP21.			
136	Blozik E, Rapold R, Eichler K, Reich O. Epidemiology and costs of multiple sclerosis in Switzerland: An analysis of health-care claims data, 2011–2015. Neuropsychiatric Disease and Treatment. 2017;13:2737-2745.			
137	Paknas C. Småbrakka I. Low dasa paltravana in multiple sclarasis: Effects on modication use. A			
138	Multiple Sclerosis and Related Disorders. 2017;18:218-224.			
139	Ogino M, Okamoto S, Ohta H, Sakamoto M, Nakamura Y, Iwasaki K, et al. Prevalence, treatments and medical cost of multiple sclerosis in Japan based on analysis of a health insurance claims database. Clinical and Experimental Neuroimmunology. 2017;8(4):318-326.			
140	Mitsikostas DD, Zafeiropoulou E, Papathanasopoulos P, Kyritsis A, Vlaikidis N, Nasios G, et al. Patient satisfaction and quality of life during treatment with fingolimod in multiple sclerosis: Results from the 'DIAMOND' non-interventional, prospective, observational study in Greece. Multiple Sclerosis Journal. 2017;23(3):424-425.			
141	Detournay B, Cousin M, Gourmelen J, Machuron V, Depoortere PH, Pau D. The therapeutic management of patients with multiple sclerosis in France: An analysis of the EGB database. Multiple Sclerosis Journal. 2017;23(3):944-945.			
142	Evans C, Marrie RA, Zhu F, Leung S, Lu X, Kingwell E, et al. Adherence to disease-modifying therapies for multiple sclerosis and subsequent hospitalizations. Pharmacoepidemiology and Drug Safety. 2017;26(6):702-711.			
143	Davis M, Johnson SJ, Espinosa R, Skup M. Quantifying the benefits of injection-related pain reduction on patient outcomes. Value in Health. 2017;20(5):A195.			
144	Burks J, Marshall TS, Ye X. Adherence to disease-modifying therapies and its impact on relapse, health resource utilization, and costs among patients with multiple sclerosis. ClinicoEconomics and Outcomes Research. 2017;9:251-260.			
145	Lage ML, Wu Y. Real-world monitoring costs associated with initiation of disease-modifying therapy among patients with multiple sclerosis. Neurology. 2017;88(16).			
146	Ko J, Kantor D, DeClue R, Drzayich Antol D, Waldman Casebeer A, Li Y, et al. Does opening access to oral disease modifying therapy increase rates of initiation and reduce disease-related medical costs in a national population of patients with multiple sclerosis? Neurology. 2017;88(16).			
147	Sanchiz GP, García IS, Casasempere IM, Pérez LC, Cruz BM, Gallego BS, et al. Evolution in treatment of multiple sclerosis in a medium sized hospital. European Journal of Hospital Pharmacy. 2017;24:A192.			
148	Lorenzo MG, Alarcón AL, Del Río Valencia JC, Castillo IM. Cost analysis of therapy for patients with multiple sclerosis three years ago and now. European Journal of Hospital Pharmacy. 2017;24:A180.			
149	De Dios López A, Montaña SJ, Parada LS, Broseta PAL, Marqués MM, Subirada MC. Observational study on the use of different therapeutic alternatives for multiple sclerosis treatment. European Journal of Hospital Pharmacy. 2017;24:A91.			

#	Reference			
150	Hernández AMH, Crespo MB, Nonay ALA, De Juan-García Torres P, Izquierdo AY, Izquierdo BE. Quality of life in multiple sclerosis patients: Experience in a university hospital outpatient pharmacy. European Journal of Hospital Pharmacy. 2017;24:A65-A66.			
151	Tichá V, Kodým R, Počíková Z, Kadlecová P. Real-World Outcomes in Fingolimod-Treated Patients with Multiple Sclerosis in the Czech Republic: Results from the 12-Month GOLEMS Study. Clinical Drug Investigation. 2017;37(2):175-186.			
152	Watson C, Prosser C, Braun S, Landsman-Blumberg PB, Gleissner E, Naoshy S. Health care resource utilization before and after natalizumab initiation among patients with multiple sclerosis in Germany. ClinicoEconomics and Outcomes Research. 2017;9:85-97.			
153	Flachenecker P, Kobelt G, Berg J, Capsa D, Gannedahl M. New insights into the burden and costs of multiple sclerosis in Europe: Results for Germany. Multiple Sclerosis Journal. 2017;23(2_suppl):78-90.			
154	Calabrese P, Kobelt G, Berg J, Capsa D, Eriksson J. New insights into the burden and costs of multiple sclerosis in Europe: Results for Switzerland. Multiple Sclerosis Journal. 2017;23(2_suppl):192-203.			
155	Dubois B, Kobelt G, Berg J, Capsa D, Gannedahl M. New insights into the burden and costs of multiple sclerosis in Europe: Results for Belgium. Multiple Sclerosis Journal. 2017;23(2_suppl):29-40.			
156	Lebrun-Frenay C, Kobelt G, Berg J, Capsa D, Gannedahl M. New insights into the burden and costs of multiple sclerosis in Europe: Results for France. Multiple Sclerosis Journal. 2017;23(2_suppl):65-77.			
157	Kalincik T, Kuhle J, Pucci E, Rojas JI, Tsolaki M, Sirbu CA, et al. Data quality evaluation for observational multiple sclerosis registries. Multiple Sclerosis Journal. 2017;23(5):647-655.			
158	Berger T, Kobelt G, Berg J, Capsa D, Gannedahl M. New insights into the burden and costs of multiple sclerosis in Europe: Results for Austria. Multiple Sclerosis Journal. 2017;23(2_suppl):17-28.			
159	Asseburg C, Svensson J, Andersson E, Persson U, Willis M. Cost-effectiveness depends on the subsequent treatment sequence: An example from multiple sclerosis. Value in Health. 2016;19(7):A375.			
160	Villoro R, Hidalgo A. Analysis of expenditure in multiple sclerosis disease modifying therapies evolution between 2004-2015 in Spain. Value in Health. 2016;19(7):A430.			
161	Medin J, Ghodge B, Bonzani I, Korn JR, Olson M, Risson V. Work productivity and use of disease- modifying therapies in multiple sclerosis: Results from a patient survey accessed through social media. Value in Health. 2016;19(7):A436-A437.			
162	Shih T, Wakeford C, Meletiche D, Sussell J, Chung A, Liu Y, et al. Reconsidering the economic value of multiple sclerosis therapies. American Journal of Managed Care. 2016;22(11):e368-e374.			
163	Bin Sawad A, Seoane-Vazquez E, Rodriguez-Monguio R, Turkistani F. Price analysis of multiple sclerosis disease-modifying therapies marketed in the United States. Current Medical Research and Opinion. 2016;32(11):1783-1788.			
164	Cully A, Holeman A, Sheen J, Brink D, Williams A. First-line selection of treatment for multiple sclerosis in a medicaid population. Journal of Managed Care and Specialty Pharmacy. 2016;22:S52.			
165	Kantor D, Ko J, Antol D, Casebeer A, Stemkowski S, Cave J, et al. The impact of step therapy on oral disease-modifying treatment initiation rates for patients with multiple sclerosis. Journal of Managed Care and Specialty Pharmacy. 2016;22:S52-S53.			
166	Richards K, Ko J, Yu T, Nazareth T, Lawson K. Medical resource utilization and expenditures by disease-modifying treatment adherence and nonadherence in texas medicaid patients with multiple sclerosis. Journal of Managed Care and Specialty Pharmacy. 2016;22:S51.			
167	Irwin D, Wu Y, Cappell KA, Davis BM, Grinspan A, Gandhi SK. Medication use patterns of glatiramer acetate 40 mg/ml in patients with multiple sclerosis. Annals of Neurology. 2016;80:S127.			
168	Nazareth T, Friedman HS, Navaratnam P, Herriott DA, Ko JJ, Barr P, et al. Persistency, medication prescribing patterns, and medical resource use associated with multiple sclerosis patients receiving oral disease-modifying therapies: A retrospective medical record review. BMC Neurology. 2016;16(1).			
169	Karamyan A, Oppermann K, Bacher C, Otto F, Pilz G, Wipfler P, et al. Evidence of gender differences for initiation of therapy escalation in multiple sclerosis. Multiple Sclerosis. 2016;22:723.			
170	Liu Y, Garland R, Yeh WS, Wang P, Ting J, Ye X, et al. Cutaneous events in daclizumab HYP-treated patients did not impact patient-reported outcomes in the DECIDE study. Multiple Sclerosis. 2016;22:283.			
171	Vollmer BL, Chong KH, Campbell J, Corboy J, Vollmer T, Nair KV. Evaluating the increase in the cost of Multiple Sclerosis drugs in the United States between 2010-2015: Market price vs inflation based analysis. Multiple Sclerosis. 2016;22:462-463.			
172	Horakova D, Hradilek P, Vachova M, Valis M, Sucha J, Novotna A, et al. Evolution of the Czech national registry ReMuS-3 years experience. Multiple Sclerosis. 2016;22:716.			

#	Reference			
173	Desai RJ, Mahesri M, Hurley E, Gagne JJ, Tong A, Chinis T, et al. Time-trends and predictors of oral disease modifying drug treatment for multiple sclerosis. Pharmacoepidemiology and Drug Safety. 2016;25:3.			
174	Nair K, Campbell J, Kim CH, Vollmer B, Corboy J, Vollmer T. Comparing the increase in the cost of drug prices among multiple sclerosis drugs: Anticipated vs. market prices between 2010-2015. Pharmacoepidemiology and Drug Safety. 2016;25:669.			
175	Liao ZJ, Lee L, Carr K. Patient-reported adverse events on multiple sclerosis disease-modifying therapies in an urban tertiary MS clinic. Canadian Journal of Neurological Sciences. 2016;43:S33.			
176	McKay KA, Tremlett H, Zhu F, Kastrukoff L, Marrie RA, Kingwell E. A population-based study comparing multiple sclerosis clinic users and non-users in British Columbia, Canada. European Journal of Neurology. 2016;23(6):1093-1100.			
177	Bin Sawad A, Alkelya M. Price analysis of multiple sclerosis disease-modifying drugs: Comparison between Saudi Arabia and the united states. Value in Health. 2016;19(3):A62.			
178	Kozma CM, Munschauer FE, Phillips AL. Cost analysis of patients with multiple sclerosis newly initiating subcutaneous interferon β-1a versus oral disease-modifying drugs. Value in Health. 2016;19(3):A69.			
179	Jiménez-Pérez CE, Zarco-Montero LA, Castañeda-Cardona C, Otálora-Esteban M, Martínez A, Rosselli D. Current status of multiple sclerosis in Colombia. Value in Health. 2016;19(3):A70.			
180	Selzer M, Hashemi L. A retrospective study of united states health care utilization and costs for patients with multiple sclerosis treated with disease-modifying therapy. Value in Health. 2016;19(3):A70.			
181	Ogino M, Kawachi I, Otake K, Ohta H, Otsuka Y, Iwasaki K, et al. Current treatment status and medical cost for multiple sclerosis based on analysis of a Japanese claims database. Clinical and Experimental Neuroimmunology. 2016;7(2):158-167.			
182	De Lott LB, Burke JF, Kerber KA, Skolarus LE, Callaghan BC. Medicare Part D payments for neurologist-prescribed drugs. Neurology. 2016;86(16):1491-1498.			
183	Nicholas J, Boster A, Yeh WS, Garland R, Fay M, Iyer R, et al. Comparison of costs and health resource utilization inpatients treated with different disease modifying therapies for multiplesclerosis. Neurology. 2016;86(16).			
184	Kozma C, Munschauer F, Phillips A. Resource use associated with outpatient management of multiple sclerosis: Subcutaneous interferon ß-1a versus oral disease-modifying drugs. Journal of Managed Care and Specialty Pharmacy. 2016;22:S71.			
185	Kozma C, Munschauer F, Phillips A. Real-world assessment of cost among patients with multiple sclerosis newly initiating subcutaneous interferon ß-1a versus oral disease-modifying drugs. Journal of Managed Care and Specialty Pharmacy. 2016;22:S72.			
186	Thomas N, Hurley D, Farr A, Lalla D. The impact of multiple sclerosis treatment persistence and adherence on emergency room visits and inpatient hospital stays. Journal of Managed Care and Specialty Pharmacy. 2016;22:S67-S68.			
187	Nicholas J, Boster A, Yeh W, Garland R, Fay M, Iyer R, et al. Comparison of costs and health resource utilization in multiple sclerosis patients treated with disease-modifying therapies. Journal of Managed Care and Specialty Pharmacy. 2016;22:S68-S69.			
188	Wu Y, Van Engen A, Tchoukouaha T, Rai G, Gandhi S. A cost analysis of drug-related monitoring requirements for glatiramer acetate and other multiple sclerosis disease-modifying therapies. Multiple Sclerosis. 2016;22(3):418.			
189	Ogino M, Kawachi I, Otake K, Ohta H, Takeshima T, Iwasaki K, et al. Cost and treatment patterns for multiple sclerosis based on a health insurance claims database. Clinical Neurology. 2016;56:S385.			
190	Livingston T, Fay M, Iyer R, Wells W, Pill MW. Quantifying differences in health care consumption for the management of multiple sclerosis within privately and publicly insured health care programs. Journal of Managed Care and Specialty Pharmacy. 2016;22(12):1385-1391.			
191	Patel A, Carroll N. Dispensing channel used for specialty drugs and associated costs in medicare part D population. Journal of Managed Care and Specialty Pharmacy. 2015;21:S81-S82.			
192	Phillips A, Edwards N, Locklear J. Cost-effectiveness of 44 mcg subcutaneous interferon beta-1a versus 30 mcg intramuscular interferon beta-1a using composite multiple sclerosis clinical endpoints. Journal of Managed Care and Specialty Pharmacy. 2015;21:S45-S46.			
193	Franklin MA, Happe LE, Dillman R, Marshall LZ. Frequency and economic impact of comorbid cardiac conditions with multiple sclerosis. Journal of Managed Care and Specialty Pharmacy. 2014;20(8):795-799.			
194	Kobelt G, Thompson A, Berg J, Gannedahl M and Eriksson J. New insights into the burden and costs of multiple sclerosis in Europe. Multiple Sclerosis Journal. 2017, Vol. 23(8) 1123–1136			

+44 (0)300 323 0140

#	Reference
195	Thompson A, Kobelt G, Berg, Capsa D, Eriksson J. New insights into the burden and costs of multiple sclerosis in Europe: Results for the United Kingdom. Multiple Sclerosis Journal. 2017, Vol. 23(2S) 204–216
196	Hawton AJ and Green C. Multiple sclerosis: relapses, resource use, and costs. The European Journal of Health Economics, 2016, vol. 17, issue 7, 875-884
197	Doesburg D, Mokkink W, Vennegoor A, Uitdehaag B and van Oosten B. Sick leave in early MS is associated with fatigue and relapse rate, not disability

b. a list of excluded references with rationale for eligibility (level 2) screening.

Response:

Table 15. List of excluded studies with rationale

#	Reference	Reason for Exclusion
1	Ginestal López RC. Efficiency of the new therapeutic options for the treatment of multiple sclerosis; a pharmacoeconomic review. Pharmacoeconomics - Spanish Research Articles. 2018;15(1-4):3-12.	Study type: SLR
2	Ziemssen T, Schulze Topphoff U, Fendji D. Interim analysis of the non- interventional study COPTIVITY assessing the alteration of activity in ambulatory patients with relapsing MS treated with COPAXONE® 40 mg tiw. European Journal of Neurology. 2018;25:136.	Outcomes: No outcomes presented in this abstract
3	Mékiès C, Heinzlef O, Jenny B, Ramelli AL, Clavelou P. Treatment satisfaction and quality of life in patients treated with fingolimod. Patient Preference and Adherence. 2018;12:899-907.	Outcomes: No relevant outcomes
4	Parente A, Sahlu I, Sutton BS, Petrilla A, Clark MA, Teigland C. Comparison of healthcare utilization by disease modifying therapy generation among individuals diagnosed with multiple sclerosis after one year of initiating therapy in the United States. Value in Health. 2018;21:S209-S210.	Outcomes: No outcomes presented in this abstract
5	Djambazov S, Slavchev G, Dineva T, Panayotov P, Vekov T. Budget impact analysis of cladribine tablets for treatment of patients with relapsing-remitting multiple sclerosis in Bulgaria. Value in Health. 2018;21:S205.	Study type: Budget impact model
6	Reyes S, Allen-Philbey K, Suarez S, Yildiz Ö, Turner B, Gnanapavan S, et al. The impact of socioeconomic status on treatment choice in patients with multiple sclerosis. Neurology. 2018;90(15).	Outcomes: No outcomes in this abstract
7	Isfort MC, Xia Z. Patterns and trends of healthcare utilization among people with multiple sclerosis in the age of disease-modifying modifying therapy. Multiple Sclerosis Journal. 2018;24(1):53-54.	Outcomes: No relevant outcomes
8	Oprea S, Negres S. Evolution in treatment of multiple sclerosis in a university hospital. International Journal of Clinical Pharmacy. 2018;40(1):279-280.	Outcomes: No relevant outcomes in this abstract
9	Álvarez Ayuso L, Rodríguez Marrodán B, Blasco Quílez MR, García-Merino JA, Sánchez Guerrero A. Economic impact of the new oral treatments for multiple sclerosis. Neurologia. 2018.	Other: Spanish article
10	Gaber T, Shippen C. Cladribine tablets and multiple sclerosis: NICE technology appraisal. Progress in Neurology and Psychiatry. 2018;22(1):5-6.	Study type: Review
11	Echave M, Oyagüez I, Casado Ruiz V, Ginestal R, Casado MÁ. Systematic review of studies of quality of life and/or work productivity in patients treated with natalizumab. Pharmacoeconomics - Spanish Research Articles. 2017;14(3-4):77-90.	Study type: SLR

#	Reference	Reason for Exclusion		
12	Vieira M, Li Y, Zhou H, Meng X, Wenxian Piao O, Kutz C, et al. Injectable disease-modifying therapies cycling versus switching to gilenya: A retrospective u.s. claims study of risk of ms-related relapses. Journal of Managed Care and Specialty Pharmacy. 2017;23:S53.	Outcomes: No relevant outcomes in this abstract		
13	Ali ZK, Baker DE. Formulary drug review: Ocrelizumab. Hospital Pharmacy. 2017;52(9):599-606.	Study type: Formulary review		
14	Afolabi D, Albor C, Altmann DR, Zalewski L, Baker D, Schmierer K. Cladribine tablets treating multiple sclerosis orally (CLARITY): An independent analysis of the quality of life data. Multiple Sclerosis Journal. 2017;23(3):423.	Outcomes: No relevant outcomes in this abstract		
15	Landtblom AM, Guala D, Hau S, Jansson L, Martin C, Fredrikson S. RebiQoL: A telemedicine patient support program on health related quality of life and adherence in MS patients treated with Rebif. Multiple Sclerosis Journal. 2017;23(3):425.	Outcomes: No relevant outcomes in this abstract		
16	Spelman T, Havrdova E, Horakova D, Trojano M, Lugaresi A, Izquierdo G, et al. A comparative-effectiveness analysis applying a 3 way propensity matching to real-world data from MSBase Registry in preparation for a cost effectiveness model: Patients switching within firstline agents or to natalizumab or fingolimod in active RRMS. Multiple Sclerosis Journal. 2017;23(3):395-397.	Outcomes: No relevant outcomes in this abstract		
17	Zhang Y, Taylor B, Van Der Mei I. Patient-reported outcomes are worse for progressive-onset MS than relapse-onset MS, particularly early in the disease process. Multiple Sclerosis Journal. 2017;23(3):727.	Outcomes: No relevant outcomes in this abstract		
18	Brown MG, Hicks V, Asbridge M, Murray TJ, Andreou P. Effectiveness, health outcomes and cost-effectiveness of first generation disease-modifying drugs in relapsing-onset multiple sclerosis: Nova Scotia evidence 1979-2010. Multiple Sclerosis Journal. 2017;23(3):360-361.	Outcomes: No relevant outcomes in this abstract		
19	Leandersson A, Kagstrom S, Forsberg L, Hillert J, Nilsson P, Dahle C, et al. A Swedish nationwide pharmaco-epidemiological study of the long-term safety and effectiveness of fingolimod (IMSE 2). Multiple Sclerosis Journal. 2017;23(3):374-375.	Outcomes: No relevant outcomes in this abstract		
20	Ziemssen T, Schulze-Topphoff U, Fendji D. Multicenter open-label non- interventional study assessing the alteration of activity in ambulatory patients with relapsing forms of MS (RMS) under treatment with COPAXONER 40 mg tiw-results of an interim analysis of the NIS COPTIVITY. Multiple Sclerosis Journal. 2017;23(3):679.	Outcomes: No relevant outcomes in this abstract		
21	Guilleux A, Roux J, Leray E. Mood disorders and multiple sclerosis: A study based upon the French national health insurance databases. Multiple Sclerosis Journal. 2017;23(3):755.	Outcomes: No relevant outcomes in this abstract		
22	Roux J, Grimaud O, Leray E. Care consumption of multiple sclerosis patients in France: An analysis of health insurance administrative databases using multichannel sequence analysis from 2007 to 2013. Multiple Sclerosis Journal. 2017;23(3):717.	Outcomes: No relevant outcomes in this abstract		
23	Kieseier BC, Hyland M, Williams JR, De Moor C, Phillips GA, Rudick R. Treatment patterns of disease modifying therapies in MS PATHS (Multiple Sclerosis Partners Advancing Technology and Health Solutions). Multiple Sclerosis Journal. 2017;23(3):951.	Outcomes: No relevant outcomes in this abstract		
24	Cartier-Bechu C, Sivignon M, Petitjean A, Roze S, Pinguet J, Tehard B. How to address french health authority (HAS/CEESP) specific requirements in modelling relapsing-remitting multiple sclerosis in health-economic evaluation? modelling treatment sequences. Value in Health. 2017;20(9):A752.	Outcomes: No relevant outcomes in this abstract		

#	Reference	Reason for Exclusion		
25	Stumpfe M, Redelsteins E, Sigel KO, Fischer J, Kausch U, Scholz E, et al. Defining areas of cognitive impairment in relapsingremitting multiple sclerosis (RRMS)-baseline analysis of a longitudinal multicenter study in 15 German practice centers. Multiple Sclerosis Journal. 2017;23(3):387-388.	Outcomes: No relevant outcomes in this abstract		
26	Bargiela D, Bianchi MT, Westover MB, Chibnik LB, Healy BC, De Jager PL, et al. Selection of first-line therapy in multiple sclerosis using riskbenefit decision analysis. Multiple Sclerosis Journal. 2017;23(3):625.	Other: Duplicate of Bargiela (2016), ref ID 470		
27	Schreiber H, Roßnagel F, Gößwein KH, Braune S, Bergmann A. Retrospective longitudinal analysis of cognition and clinicalbehavioral parameters (PRO) in relapsing-remitting multiple sclerosis (RRMS) patients treated with Teriflunomide - Results from a 12 month registry study in German practice centers. Multiple Sclerosis Journal. 2017;23(3):894.	Outcomes: No relevant outcomes in this abstract		
28	Kagstrom S, Leandersson A, Forsberg L, Berglund A, Hillert J, Nilsson P, et al. Real-world longitudinal data of peginterferon beta-1a from a Swedish national post-marketing surveillance study (IMSE 6)-efficacy and safety profile. Multiple Sclerosis Journal. 2017;23(3):626-627.	Outcomes: No relevant outcomes in this abstract		
29	Lux D, Zarkali A, Tredwell B, Marshall D, Beaumont J, Guck N, et al. Disease modifying therapies: Trending choices and the what's and why's to switching. Multiple Sclerosis Journal. 2017;23(3):664.	Population: outcomes only reported for rapidly- evolving severe MS in this abstract		
30	Hincapie AL, Penm J, Burns CF. Factors associated with patient preferences for disease-modifying therapies in multiple sclerosis. Journal of Managed Care and Specialty Pharmacy. 2017;23(8):822-830.	Outcomes: No relevant outcomes		
31	Fernández O, Calleja-Hernández MA, Meca-Lallana J, Oreja-Guevara C, Polanco A, Pérez-Alcántara F. Estimate of the cost of multiple sclerosis in Spain by literature review. Expert Review of Pharmacoeconomics and Outcomes Research. 2017;17(4):321-333.	Study type: SLR		
32	Alskaaabi M, Vaidya V, Mahashabde R. Cost effectiveness of oral agents compared with interferon-based therapy in relapsing-remitting multiple sclerosis saudi patients. Journal of the American Pharmacists Association. 2017;57(3).	Study type: Protocol		
33	Edwards NC, Beckerman R, Phillips AL. Real-world evidence for disease- modifying drugs in multiple sclerosis: Trends in the literature. Value in Health. 2017;20(5):A189.	Study type: Abstract of a lit review. Results describe the characteristics of the papers included in the review		
34	Martin A. Evidence map of cost-utility models in multiple sclerosis published since 1960. Value in Health. 2017;20(5):A194.	Study type: SLR		
35	González RA, Margolin DH, Huang X, Wang H, Zhang W, Guo JD, et al. Improvements in quality of life over 6 years in patients with relapsing-remitting multiple sclerosis treated with alemtuzumab: Results from the CARE-MS II Extension Study. Neurology. 2017;88(16).	Outcomes: No relevant outcomes in this abstract		
36	Ziemssen T, Albrecht H, Haas J, Klotz L, Lang M, Lassek C, et al. 5 years effectiveness of fingolimod in daily clinical practice: Results of the noninterventional study PANGAEA documenting RRMS patients treated with fingolimod in Germany. Neurology. 2017;88(16).	Outcomes: No relevant outcomes in this abstract		
37	Bourdette D, Van Leuvin S, Johnston K, Lei M, Hartung D. Industry payments to neurologists who commonly prescribe repository corticotropin gel (H.P. Acthar). Neurology. 2017;88(16).	Outcomes: No relevant outcomes in this abstract		

#	Reference	Reason for Exclusion	
38	Everage NJ, Prada C, Liu S, Balashov K, Macdonell R, Windsheimer J, et al. Safety and efficacy of delayed-release dimethyl fumarate in multiple sclerosis patients treated in routine medical practice: Interim analysis of ESTEEM. Neurology. 2017;88(16).	Outcomes: No relevant outcomes in this abstract	
39	González RA, Guo JD, Wang H, Zhang W, Bury D, Melanson M, et al. Alemtuzumab improves patient-reported quality of life over 6 years in relapsing-remitting multiple sclerosis patients with highly active disease: Results from the CARE-MS II Extension Study. Neurology. 2017;88(16).	Outcomes: No relevant outcomes in this abstract	
40	Jenny L, Ryan R, Michael A, Malin R, Signe H, Delphine B, et al. Clinical practice of analysis of anti-drug antibodies against interferon beta and natalizumab in multiple sclerosis patients in Europe: A descriptive study of test results. PLoS ONE. 2017;12(2).	Study type: Testing for anti-drug antibodies	
41	Zaprutko T, Kopciuch D, Kus K, Merks P, Nowicka M, Augustyniak I, et al. Affordability of medicines in the European Union. PLoS ONE. 2017;12(2).	Outcomes: No relevant outcomes	
42	ŠtouraČ P, Horáková D, Klímová E, TurČáni P. Ametyst-results of an observational phase IV clinical study evaluating the effect of intramuscular interferon beta-1a therapy in patients with clinically isolated syndrome or clinically definite multiple sclerosis. Ceska a Slovenska Neurologie a Neurochirurgie. 2017;80(6):660-665.	Other: Paper is not in English	
43	Prosser C, Haas J, Wakeford C, Landsman-Blumberg P, Braun S. Relapse rates and healthcare resource use of therapy persistent and non-persistent multiple sclerosis patients in Germany-a real world analysis. Value in Health. 2016;19(7):A426.	Outcomes: No relevant outcomes in this abstract	
44	Visintin E, Kanavos P. Criteria driving values assessments in multiple sclerosis medicines. Value in Health. 2016;19(7):A353.	Outcomes: No relevant outcomes in this abstract	
45	Ashtari F, Toghianifar N, Zarkesh-Esfahani SH, Mansourian M. High dose Vitamin D intake and quality of life in relapsing-remitting multiple sclerosis: a randomized, double-blind, placebo-controlled clinical trial. Neurological Research. 2016;38(10):888-892.	Outcomes: No relevant outcomes	
46	Kantor D, Johnson K, Vieira M, Signorovitch J, Li N, Gao W, et al. Real-world persistence with fingolimod for the treatment of multiple sclerosis: A systematic review and meta-analysis. Journal of Managed Care and Specialty Pharmacy. 2016;22:S52.	Study type: Abstract of an SLR and MA	
47	Bargiela D, Bianchi MT, Westover MB, Chibnik LB, Healy BC, De Jager PL, et al. Selection of first-line therapy in multiple sclerosis using risk-benefit decision analysis. Annals of Neurology. 2016;80:S63.	Other: Duplicate of ref ID 230	
48	Lee LK, Wu Y, Cutter GR, Hobart JC, Flores NM, Carra AJ, et al. Psychometric evaluation of the medication satisfaction questionnaire (MSQ) to assess satisfaction with glatiramer acetate among patients with multiple sclerosis. Annals of Neurology. 2016;80:S137.	Outcomes: No relevant outcomes in this abstract	
49	Stumpfe M, Redelstein E, Sigel KO, Fischer J, Kausch U, Scholz E, et al. Profiling cognitive deficits of patients with remitting relapsing multiple sclerosis (RRMS) in initial and later disease stages. Multiple Sclerosis. 2016;22:128-129.	Outcomes: EQ-5D data collected, but no results presented	
50	Duddy M, Palace J, Lilford R, Bregenzer T, Lawton M, Zhu F, et al. The United Kingdom multiple sclerosis risk-sharing scheme: Final 10 year results. Multiple Sclerosis. 2016;22:74-75.	Outcomes: No results presented	
51	Ziemssen T, Albrecht H, Haas J, Klotz L, Lang M, Lassek C, et al. 4 years PANGAEA: Effectiveness update of a 5 year noninterventional study on the daily use of fingolimod in Germany. Multiple Sclerosis. 2016;22:642-643.	Outcomes: No relevant outcomes presented	

#	Reference	Reason for Exclusion	
52	Arroyo González R, Dive D, Dreyer M, Hupperts RMM, LaGanke C, Lycke J, et al. Improvements in quality of life over 5 years with alemtuzumab are associated with confirmed disability improvement in patients with active relapsing-remitting multiple sclerosis who had an inadequate response to prior therapy (CARE-MS II). Multiple Sclerosis. 2016;22:382-383.	Outcomes: No relevant outcomes presented	
53	Bargiela D, Bianchi MT, Westover MB, Chibnik LB, Healy BC, De Jager PL, et al. Selection of first-line therapy in multiple sclerosis using risk benefit decision analysis. Multiple Sclerosis. 2016;22:350-351.	Other: Duplicate of ref ID 230	
54	Ziemssen T, Faude U, Fendji D. COPAXONE® active registry-documentation of efficacy, tolerability and quality of life in outpatients with relapsing remitting multiple sclerosis (RRMS) treated with glatiramer acetate. Multiple Sclerosis. 2016;22:639-640.	Outcomes: No relevant outcomes presented	
55	Everage NJ, Prada C, Liu S, Balashov K, Macdonell R, Windsheimer J, et al. Safety and effectiveness of delayed-release dimethyl fumarate in multiple sclerosis patients treated in routine medical practice: The first interim analysis of ESTEEM. Multiple Sclerosis. 2016;22:775-776.	Outcomes: No relevant outcomes presented	
56	Haupts M, Faude U, Fendji D. Efficacy, tolerability, quality of life, and spasticity in outpatients with relapsing remitting multiple sclerosis (RRMS) treated with glatiramer acetate-results of an observational study. Multiple Sclerosis. 2016;22:814.	Outcomes: No relevant outcomes presented in this abstract	
57	Kresa-Reahl K, Repovic P, Robertson D, Okwuokenye M, Meltzer L, Mendoza J. Clinical measures and impact on patient-reported outcomes of delayed- release dimethyl fumarate in relapsing multiple sclerosis patients after suboptimal response to glatiramer acetate: Analysis of the 12-month RESPOND study. Multiple Sclerosis. 2016;22:774.	Outcomes: No relevant outcomes presented in this abstract	
58	Ruggeri M, Aiello A, D'Ausilio A, Di Brino E, Cottone S, Ghezzi A, et al. Evolution of the healthcare expenditure in Italy and effects of fingolimod increased prescribing in second line treatment of relapsing-remitting multiple sclerosis. Global and Regional Health Technology Assessment. 2016;3(3):125- 133.	Other: Article in Italian	
59	Chou CH, Lin TC, Cheng CL, Yang YHK. First-line disease modifying therapies in preventing multiple sclerosis relapse - A nationwide observational study in Taiwan. Pharmacoepidemiology and Drug Safety. 2016;25:580-581.	Outcomes: No relevant outcomes presented	
60	Berenguer-Ruiz L, Sempere AP, Gimenez-Martinez J, Gabaldon-Torres L, Tahoces L, Sanchez-Perez R, et al. Rescue therapy using rituximab for multiple sclerosis. Clinical Neuropharmacology. 2016;39(4):178-181.	Outcomes: No relevant outcomes presented	
61	Hatam N, Bastani P, Shahtaheri RS. Quality of life in relapsing-remitting multiple sclerosis patients receiving CinnoVex compared with Avonex. Journal of Research in Pharmacy Practice. 2016;5(3):181-185.	Outcomes: No relevant outcomes presented	
62	Effat S, Azzam H, Shalash A, Elkatan S, Elrassas H. Self-reported quality of life of patients with multiple sclerosis with mild disability. Egyptian Journal of Neurology, Psychiatry and Neurosurgery. 2016;53(3):161-167.	Outcomes: No relevant outcomes presented	
63	Giovannoni G, Butzkueven H, Dhib-Jalbut S, Hobart J, Kobelt G, Pepper G, et al. Brain health: time matters in multiple sclerosis. Multiple Sclerosis and Related Disorders. 2016;9:S5-S48.	Study type: Consensus paper	
64	Kuhelj R, Deol-Bhullar G, Garas M, Chin P, Hauser S, Montalban X. Open- label phase III extension studies to evaluate the long-term safety and efficacy of ocrelizumab in relapsing MS and primary progressive MS. European Journal of Neurology. 2016;23:200.	Outcomes: Trial currently ongoing, no results reported in the abstract	

#	Reference	Reason for Exclusion		
65	Ziemssen T, Albrecht H, Haas J, Klotz L, Lang M, Lassek C, et al. 4 years PANGAEA: A 5-year non-interventional study of safety, effectiveness and pharmacoeconomic data for fingolimod patients in daily clinical practice-effectiveness update. European Journal of Neurology. 2016;23:417.	Outcomes: No relevant outcomes presented		
66	Faude U, Ziemssen T. COPAXONE® active registry-documentation of efficacy, tolerability and quality of life in outpatients with relapsing remitting multiple sclerosis (RRMS) treated with glatiramer acetate. European Journal of Neurology. 2016;23:418.	Outcomes: No relevant outcomes presented in this abstract		
67	Müller-Schubert A, Ziemssen T, Reichmann H, Kern R, Fendji D. Multicentre open-label non-interventional study (NIS) assessing the alteration of activity in ambulatory patients with relapsing forms of multiple sclerosis (RMS) under treatment with glatiramer aceta. European Journal of Neurology. 2016;23:418.	Outcomes: Results not presented in this abstract		
68	Faude U, Fendji D, Haupts MR. Efficacy, tolerability, quality of life and spasticity in outpatients with relapsing remitting multiple sclerosis (RRMS) treated with glatiramer acetate-results of an observational study. European Journal of Neurology. 2016;23:814.	Outcomes: No relevant outcomes presented in this abstract		
69	Hupperts RM, Vermersch P, Margolin DH, Thangavelu K, Arroyo Gonzalez R. Treatment-naiive patients with active relapsing-remitting multiple sclerosis demonstrate improved quality of life over 5 years with alemtuzumab related to disability improvement: CARE-MS I extension study. European Journal of Neurology. 2016;23:818.	Outcomes: No relevant outcomes presented in this abstract		
70	Brownlee WJ, Ciccarelli O. All relapsing multiple sclerosis patients should be managed at a specialist clinic - YES. Multiple Sclerosis. 2016;22(7):873-875.	Outcomes: No relevant outcomes presented		
71	Kresa-Reahl K, Repovic P, Robertson D, Okwuokenye M, Meltzer L, Mann M. Clinical effectiveness and impact on patient-reported outcomes of delayed- release dimethyl fumarate in relapsing multiple sclerosis patients after suboptimal response to glatiramer acetate: Six-month interim analysis of a prospective, multicenter, open-label, single-arm, observational study (RESPOND). Neurology. 2016;86(16).	Outcomes: No relevant outcomes presented in this abstract		
72	Bierema C, Williamson E. JC virus antibody testing in the penn MS clinic- examining the utility and stability of the test. Neurology. 2016;86(16).	Study type: Serology		
73	Sahai-Srivastava S, Wang SL, Ugurlu C, Amezcua L. Headaches in multiple sclerosis: Cross-sectional study of a multiethnic population. Clinical Neurology and Neurosurgery. 2016;143:71-75.	Outcomes: No relevant outcomes presented		
74	Orefice NS, Alhouayek M, Carotenuto A, Montella S, Barbato F, Comelli A, et al. Oral Palmitoylethanolamide Treatment Is Associated with Reduced Cutaneous Adverse Effects of Interferon- β 1a and Circulating Proinflammatory Cytokines in Relapsing–Remitting Multiple Sclerosis. Neurotherapeutics. 2016;13(2):428-438.	Outcomes: No relevant outcomes presented		
75	Santoro M, Nociti V, De Fino C, Caprara A, Giordano R, Palomba N, et al. Depression in multiple sclerosis: Effect of brain derived neurotrophic factor Val66Met polymorphism and disease perception. European Journal of Neurology. 2016;23(3):630-640.	Outcomes: No relevant outcomes presented		
76	Frisell T, Forsberg L, Nordin N, Kiesel C, Alfredsson L, Askling J, et al. Comparative analysis of first-year fingolimod and natalizumab drug discontinuation among Swedish patients with multiple sclerosis. Multiple Sclerosis Journal. 2016;22(1):85-93.	Outcomes: No relevant outcomes presented		
77	Higuera L, Carlin CS, Anderson S. Adherence to disease-modifying therapies for multiple sclerosis. Journal of Managed Care and Specialty Pharmacy. 2016;22(12):1394-1401.	Outcomes: No relevant outcomes presented		

#	Reference	Reason for Exclusion		
78	Coles A, Giovannoni G, Moreau T, Havrdova E, Margolin D, Kasten L, et al. Alemtuzumab improves 3-year quality of life in CARE-MS II. Journal of Neurology, Neurosurgery and Psychiatry. 2015;86(11).	Outcomes: No relevant outcomes presented		
79	Ko J, Navaratnam P, Friedman H, Herriott D, Nazareth T, Sasane R. Frequent prescriber preferences and insights regarding the use of oral disease-modifying therapies among patients with multiple sclerosis. Journal of Managed Care and Specialty Pharmacy. 2015;21:S43.	Outcomes: No relevant outcomes presented.		
80	Johnson K, Zhou H, Lin F, Ko J, Herrera V. Adherence and persistence to oral MS disease-modifying treatment in a real-world setting. Journal of Managed Care and Specialty Pharmacy. 2015;21:S44.	Outcomes: No relevant outcomes presented in this abstract		
81	Bozkaya D, Livingston T, Migliaccio-Walle K, Mehta S, Odom T. The cost- effectiveness of disease-modifying therapies for the treatment of relapsing- remitting multiple sclerosis. Journal of Managed Care and Specialty Pharmacy. 2015;21:S42.	Outcomes: No relevant outcomes presented in this abstract		
82	Dahdaleh D, Sharrack B. We can compare the relative efficacy of multiple sclerosis medications by examining the results of independent clinical trials: Yes. Multiple Sclerosis. 2015;21(1):35-36.	Study type: Commentary		
83	Foley JF, Nair KV, Vollmer T, Stephenson JJ, Niecko T, Agarwal SS, et al. Long-term natalizumab treatment is associated with sustained improvements in quality of life in patients with multiple sclerosis. Patient Prefer Adherence. 2017;11:1035-1048.	Outcomes: No relevant outcomes presented		
84	Huggett B. America's drug problem. Nat Biotechnol. 2016 Dec;34(12):1231- 1241.	Study type: Narrative review		
85	Ozakbas S, Cinar BP, Kosehasanogullari G, Kahraman T, Oz D, Kursun BB. Monthly methylprednisolone in combination with interferon beta or glatiramer acetate for relapsing-remitting multiple sclerosis: A multicentre, single-blind, prospective trial. Clin Neurol Neurosurg. 2017 Sep;160:69-72.	Outcomes: No relevant outcomes presented		
86	Sater RA, Gudesblatt M, Kresa-Reahl K, Brandes DW, Sater P. NAPS-MS: Natalizumab Effects on Parameters of Sleep in Patients with Multiple Sclerosis. Int J MS Care. 2016 Jul-Aug;18(4):177-82.	Outcomes: No relevant outcomes presented		
87	Sundgren M, Piehl F, Wahlin A, Brismar T. Cognitive function did not improve after initiation of natalizumab treatment in relapsing-remitting multiple sclerosis. A prospective one-year dual control group study. Mult Scler Relat Disord. 2016 Nov;10:36-43.	Outcomes: No relevant outcomes presented		
88	Vormfelde SV, Ortler S, Ziemssen T. Multiple Sclerosis Therapy With Disease- Modifying Treatments in Germany: The PEARL (ProspEctive phArmacoeconomic cohoRt evaluation) Noninterventional Study Protocol. JMIR Res Protoc. 2016 Feb 4;5(1):e23.	Study type: Protocol		
89	Efficacy of daclizumab beta vs intramuscular interferon beta-1a on patient- reported outcomes across patient demographic and disease activity subgroups in DECIDE. Multiple sclerosis journal. 2017;Conference: 7th Joint ECTRIMS- ACTRIMS, MSPARIS2017. France. 23(3 Supplement 1):966-967.	Outcomes: No relevant outcomes presented		
90	Yadav V, Marracci G, Kim E, Spain R, Cameron M, Overs S, et al. Low-fat, plant-based diet in multiple sclerosis: a randomized controlled trial. Multiple sclerosis and related disorders. 2016;9:80-90.	Outcomes: No relevant outcomes presented		
91	Kingwell E, Leray E, Zhu F, Petkau J, Edan G, Oger J, et al. Beta-interferon and mortality in multiple sclerosis: a popu-lation-based international study. Multiple sclerosis journal. Conference: 3rd annual americas committee for treatment and research in multiple sclerosis forum, ACTRIMS 2018. United states. 2018;24(1 Supplement 1):122.	Outcomes: No relevant outcomes presented		

#	Reference	Reason for Exclusion
92	Papeix C, Lebrun-Frenay C, Leray E, Kobelt G, Visy JM, Coustans M, et al. Long-term efficacy, safety, tolerability and quality of life with fingolimod treatment in patients with multiple sclerosis in real-world settings in France: VIRGILE one-year results. Multiple sclerosis (Houndmills, Basingstoke, England). 2016;Conference: 32nd Congress of the European Committee for Treatment and Research in Multiple Sclerosis, ECTRIMS 2016. United Kingdom. Conference Start: 20160914. Conference End: 20160917. 22:649- 650.	Outcomes: No relevant outcomes presented in this abstract
93	De Seze J, Montalban X, McDougall F, Julian L, Sauter A, Deol-Bhullar G, et al. Patient-reported outcomes in the phase III double-blind, placebo-controlled ORATORIO study of ocrelizumab in primary progressive multiple sclerosis. Multiple sclerosis. Conference: 2017 americas committee for treatment and research in multiple sclerosis forum, ACTRIMS 2017. United states. 2017;23:84.	Outcomes: No relevant outcomes presented
94	Kingwell E, Leray E, Zhu F, Petkau J, Edan G, Oger J, et al. Beta-interferon and mortality in multiple sclerosis: a population- based international study. Multiple sclerosis journal. Conference: 7th joint ECTRIMS-ACTRIMS, MSPARIS2017. France. 2017;23(3 Supplement 1):69-70.	Other: Duplicate of information in ref ID 819
95	Gold R, Khatri B, Edwards KR, Cavalier S, Rufi P, Brette S, et al. Impact of teriflunomide treatment on real-world quality of life in the Phase 4 Teri-PRO Study. Multiple sclerosis (Houndmills, Basingstoke, England). 2016;Conference: 32nd Congress of the European Committee for Treatment and Research in Multiple Sclerosis, ECTRIMS 2016. United Kingdom. Conference Start: 20160914. Conference End: 20160917. 22:307-308.	Outcomes: No relevant outcomes presented
96	Wolinsky J, McDougall F, Lentz E, Deol-Bhullar G, Montalban X. Baseline assessment of fatigue and health-related quality of life in patients with primary progressive multiple sclerosis in the ORATORIO study. Multiple sclerosis (Houndmills, Basingstoke, England). 2016;Conference: 32nd Congress of the European Committee for Treatment and Research in Multiple Sclerosis, ECTRIMS 2016. United Kingdom. Conference Start: 20160914. Conference End: 20160917. 22:676-677.	Outcomes: No relevant outcomes presented
97	Fatigue and depression predict quality of life in patients with early multiple sclerosis: a longitudinal study. European journal of neurology. 23 (9) (pp 1482-1486), 2016. Date of publication: 01 sep 2016. 2016.	Outcomes: No relevant outcomes presented
98	Bertolotto A, Caldano M, Tortorella P, Annibali V, Capobianco M, Cottone S, et al. Non-interventional post-authorization safety study to prospectively evaluate the safety and tolerability profile of Rebif HSA-free scIFNbeta-1a in naive relapsing remitting multiple sclerosis subjects: STEP study. Multiple sclerosis (Houndmills, Basingstoke, England). 2016;Conference: 32nd Congress of the European Committee for Treatment and Research in Multiple Sclerosis, ECTRIMS 2016. United Kingdom. Conference Start: 20160914. Conference End: 20160917. 22:681.	Outcomes: No relevant outcomes presented in this abstract
99	Herzog S, Shanahan M, Grimison P, Tran A, Wong N, Lintzeris N, et al. Systematic Review of the Costs and Benefits of Prescribed Cannabis-Based Medicines for the Management of Chronic Illness: Lessons from Multiple Sclerosis. PharmacoEconomics, 2018, vol. 36, issue 1, 67-78	Study type: SLR
100	Iannazzo S, Iliza AC and Perrault L. Disease-Modifying Therapies for Multiple Sclerosis: A Systematic Literature Review of Cost-Effectiveness Studies. PharmacoEconomics, 2018, vol. 36, issue 2, 189-204	Study type: SLR
101	Gyllensten H, Wiberg M, Alexanderson K, Norlund A, Friberg E, Hillert J, et al. Costs of illness of multiple sclerosis in Sweden: a population-based register study of people of working age. The European Journal of Health Economics, 2018, vol. 19, issue 3, 435-446	Population: Not separated by phenotype

+44 (0)300 323 0140

#	Reference	Reason for Exclusion
102	Hernandez L, O'Donnell M and Postma M. Modeling Approaches in Cost- Effectiveness Analysis of Disease-Modifying Therapies for Relapsing– Remitting Multiple Sclerosis: An Updated Systematic Review and Recommendations for Future Economic Evaluations. PharmacoEconomics, 2018, vol. 36, issue 10, 1223-1252	Study type: SLR
103	Webb EJD, Meads D, Eskyte I, King N, Dracup N, Chataway J. et al. A Systematic Review of Discrete-Choice Experiments and Conjoint Analysis Studies in People with Multiple Sclerosis The Patient: Patient-Centered Outcomes Research, 2018, vol. 11, issue 4, 391-402	Study type: SLR
104	Svendsen B, Grytten N, Bø L, Aarseth H, Smedal T and Myhr KM. The economic impact of multiple sclerosis to the patients and their families in Norway. The European Journal of Health Economics, 2018, vol. 19, issue 9, 1243-1257	Population: Not separated by phenotype
105	Kingdon CC, Bowman EW, Curran H, Nacul L and Lacerda EM. Functional Status and Well-Being in People with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Compared with People with Multiple Sclerosis and Healthy Controls. Pharmacoecon Open. 2018 Dec;2(4):381-392	Outcomes: No relevant outcomes presented
106	Oliva J, Trapero-Bertran M, Peña-Longobardo LM and del Pozo-Rubio R. The Valuation of Informal Care in Cost-of-Illness Studies: A Systematic Review PharmacoEconomics, 2017, vol. 35, issue 3, 331-345	Study type: SLR
107	Montgomery S, Kusel J, Allen F and Adlard N. Paucity and Inconsistency: A Systematic Review and Critique of Budget Impact Analyses of Disease- Modifying Therapies for Multiple Sclerosis in the UK and the Implications for Policy in the UK. Applied Health Economics and Health Policy, October 2016, Volume 14, Issue 5, pp 545–558	Study type: SLR
108	Djambazov S, Vekov T. Cost-effectiveness analysis of alemtuzumab for the treatment of multiple sclerosis in Bulgaria, 2016. Value in Health. 2017;20(5):A193.	Study type: An abstract of SLR
109	Martin M, Campbell R, Jacob J. Reinvestment of biosimilar savings: What are the best options? Annals of the Rheumatic Diseases. 2018;77:326.	Outcomes: No relevant outcomes

B3. CS, Document B, sections B.3.1 and B.3.4.3. CS. Document C, Appendix H,

section H.2. The company performed a systematic literature review for health-related quality of life.

a. Table 37 (Document B) reports a summary of 11 published studies on health-related quality of life. However, the data has not been used in the company submission or economic model. Please clarify what was included from the data found in the economic systematic literature review.

Response

As described in Document B, Section 3.1 The 11 published studies identified for healthrelated quality of life relate to those found in the latest update to the systematic literature review (i.e. between 1 February 2016 and 30 November 2018). This was part of a significantly broader systematic literature review where databases were searched back to 2003, with results used in the submission for TA320 and TA441. Only studies pertaining to this latest update (from 1 Feb 2016) were documented in this submission as agreed in the decision problem meeting for this appraisal with the ERG.

+44 (0)300 323 0140

From this update, only 2 studies were included in the company submission and economic model as a scenario analysis for health state costs (Thompson et al 2017, referred to as Burden of illness study) and utilities (Palace et al 2018, referenced as TA527, assessment group report). Studies identified for prior economic evaluations were used to validate the model structure and natural history data sources.

b. The company submission states that 'In line with the previous NICE technology appraisals, utility data from Orme et al.'s (2007)⁷⁸ study has been used to inform the patient utility values and data from Acaster et al. (2013)¹⁸⁰ were used to inform caregiver disutility values in the model in this submission'. Please justify performing a systematic literature review if Orme et al. (2007) and Acaster et al. (2013) were intended to be the sources of evidence.

Response

We conducted an economic systematic literature review aligned with good practice for health economic evaluation and NICE methods guide 2013. As stated above (part a), the studies documented within the submission are from those identified in the latest update only (from 1 February 2016). The broader search dating back to 2003 did identify the studies from Orme et al (2007) and Acaster et al (2013) as referenced in TA320, TA441, TA492, TA527 and TA533.

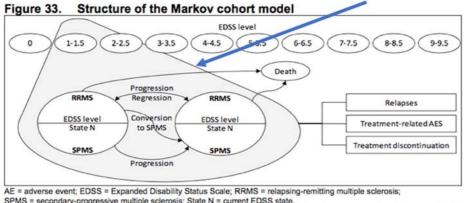
c. Document C, section H.2. states that '30 studies reporting health state utility estimates in patients with MS' but section H.3. states that the 'results of the 29 identified utility studies are summarised'. Please clarify the discrepancy.

Response

Upon review of utility extractions in CS, Document C, Appendix H, Section 2, Table 99, the extracted information for one utility study (Palace et al., 2018) was not incorporated into the table by error. Therefore, section H.3 should state 'results of the 30 identified utility studies are summarised', after addition of Palace et al. (2018) to the utility extraction table (Table 99). Please see Table 16 for the Palace et al. (2018) extraction.

Table 16. Palace et al. (2018) to the utility extraction table

		Population, Treatments	Primary Objective of Study	Analytic Method Used	Utilities Rep	oorted		Conclusions
2018,oJournal ofcrNeurology,aNeurosurgerywand Psychiatrym(121)a	omplementary inalysis models vere used: a nultilevel model ind a continuous /larkov model. JK	Sex: NR; Sample size: 4,862; Response rate: NR Selection and recruitment: NR Inclusion/exclusion criteria: patients with RRMS or SPMS	To compare the rate of disability worsening of patients treated with DMTs, with that in an untreated modelled comparator control group	Surveys of MS patients and an unpublished paper examined for the relation between EDSS and EQ-5D. Standard UK tariff was used (Dolan et al. 1995)	EDSS 0 1 or 1.5 2 or 2.5 3 or 3.5 4 or 4.5 5 or 5.5 6 or 6.5 7 or 7.5 8 or 8.5 9 or 9.5 Primary anal (n=4,862), av Model Markov Multilevel model	verage follow-up 8.7 Utility, actual progression (95\$ CI) 0.122 (0.117 to 0.127) 0.122 (0.117 to 0.127) RRMS patients at ba	S patients at baseline	According to authors, "this study supports a beneficial effect on long-term disability with first-line MS disease-modifying treatments, which is clinically meaningful".



+44 (0)300 323 0140

MODEL STRUCTURE

B4. CS, Document B, section B.3.2.2. Excel model 'ID1521_Pegiterferon Beta-1a for RRMS_CE Model_07 June 19 [ACIC]'. Figure 33 shows the model structure.

Please provide the interpretation of the large grey ovaloid (indicated by bold blue arrow). For example, please explain why it only encompasses EDSS states 1-1.5, 2-2.5, 3-3.5 but not the other EDSS states.

SPMS = secondary-progressive multiple scierosis; State N = current EDSS state. Note; ovals represent health states. Rectangles represent events that patients could experience at any time. Treatment-related AEs and treatment discontinuation could only occur for patients receiving treatment.

Response:

The grey ovaloid should be interpreted as a magnifier and represents an example of transitions that can occur within each of the EDSS health states. It is not specific to the EDSS levels encompassed by the ovaloid.

- b. There is a similar diagram to Figure 33 in the Excel document in the 'Introduction' tab. However, there are some differences in presentation. Please clarify which of the following are correct:
 - i. EDSS states in the Excel model (Introduction worksheet) 0, 0.5 to 1, 1.5 to 2 or Figure 33's EDSS levels 0, 1-1.5, 2-2.5, 3-3.5.

Response:

The EDSS banding as described in document B is correct (0, 1-1.5, 2-2.5, 3-3.5).

ii. The recurring arrow for RRMS and SPMS is shown in the Excel model but not in Figure 33.

+44 (0)300 323 0140

Response:

In the excel model figure the recurring arrow represents relapses that occur as events within the RRMS & SPMS EDSS health states. This is captured by the right hand box in figure 33.

TRANSITION PROBABILITY MATRIX

B5. CS, Document B, section B.3.3.1.1. Table 28 shows the transition probability matrix based on the British Columbia natural history cohort. The matrix shows that there are probabilities of regressing to less severe EDSS levels. For example, there is a 0.8183 probability of remaining in EDSS 9-9.5 or regressing to less severe health states EDSS 6-6.5 (0.0018), EDSS 7-7.5 (0.0057) and EDSS 8-8.5 (0.1741). Please clarify what assumptions are being made about people who regress from a 'non-treatment' health state to an 'on-treatment' health state.

Response:

Regression from a 'non-treatment' health state to an 'on-treatment' health state is not possible within the model. The probabilities of regression are part of the natural history matrix; these regression probabilities are applied across all comparators and sub cohorts. Stopping rules for patients "on-treatment" can occur through progression beyond EDSS >7 (RRMS only), transitions to SPMS or all-cause discontinuation. No transition back to on-treatment can occur thereafter.

TREATMENT DISCONTINUATION

B6. <u>PRIORITY QUESTION</u>. CS, Document B, section B.3.3.2.1. Excel model 'ID1521_Pegiterferon Beta-1a for RRMS_CE Model_07 June 19 [ACIC]': There appears to be some inconsistencies in the all-cause discontinuation reported in Table 32 (Document B, p124) and the Excel model ('Treatment' worksheet). Please see table below. Please clarify which values are correct and should be used in the model.

Treatment	Document B (Table 32)	Excel model
Interferon Beta-1a 44µg	10.85%	10.53%
Glatiramer acetate 20mg	9.72%	11.02%
Generic glatiramer acetate 20mg	9.72%	11.02%
Alemtuzumab	2.46%	2.59%

Annual risk of treatment discontinuation (all-cause discontinuation)

Response:

The values presented in the model are the correct values and are aligned with the calculation presented in Document C, Table 122, p 464. The cited values in the table above for Cs, Document B, Section 3.3.2.1, Table 32, are transcription errors.

B7. PRIORITY QUESTION. CS, Document B, section B.3.3.2.1. CS, Document C,

Appendix M, Table 121. Section B.3.3.2.1 states that '*The weights used to derive the treatment discontinuation for each disease-modifying therapy were based on sample size*

10 Spring Gardens London SW1A 2BU United Kingdom

+44 (0)300 323 0140

from each trial included in the analysis. The weights used for each study in the derivation of the discontinuation risk are shown in Appendix M².

a. Please outline the calculations undertaken to derive the weights used in the treatment discontinuation for each disease-modifying therapy.

Response:

The weights were derived from the number of patients evaluated in each of the studies included for a particular DMT. The respective weights per study are presented in Document C, Appendix M, Table 121, p 463, the underlying data are presented in Table 122, p 464. The study weight for each DMT is derived by dividing the number of patients evaluated in one study by the total patients evaluated for a particular DMT across all studies. Part b explores alternative options for weighting the studies.

b. Please clarify why the weights used to derive the treatment discontinuation for each disease-modifying therapy were based on sample size.

Response:

We acknowledge we should have weighted the studies including an element of follow-up time (by multiplying the number of patients evaluated with the mean or median follow-up time). The resulting annual discontinuation rates using follow-up time are presented in Table 17 alongside the base case (weighted by sample size alone) and a simple average. The annual discontinuation rates do not significantly differ across scenarios and are the same for some comparators when it is informed by one study or the mean follow-up time is the same for all included studies.

We assessed the impact of these scenario in the cost-effectiveness model with results comparatibe to PegIFN β -1a not differing significantly versus the submitted base case analysis (Table 18).

Annual all-cause discontinuation risk						
		use discontinua	ation fisk			
Treatment	Weighted by sample size (base case)	Weighted by person time	Simple average	Sources		
PegIFNβ-1a	15.56%	15.56%	15.56%	ADVANCE		
IM IFNβ-1a 30	7.88%	8.27%	8.09%	Calabrese (2012), CombiRx, EVIDENCE, BRAVO, INCOMIN		
IFNβ-1a 22	6.00%	6.00%	6.00%	PRISMS		
IFNβ-1a 44	10.53%	9.74%	10.73%	Calabrese (2012), EVIDENCE, OPERA I & II, CARE MS I, CARE MS II, REGARD		
IFNβ-1b	6.87%	7.54%	6.87%	IFNB MS Study, BEYOND, INCOMIN		
GA 20	11.02%	8.05%	8.54%	BEYOND, CONFIRM, Copolymer 1 Study, REGARD, Bornstein		
GA 40	8.91%	8.91%	8.91%	GALA		
genGA 20	11.02%	8.05%	8.54%	Assumed equivalent to GA 20		
genGA 40	8.91%	8.91%	8.91%	Assumed equivalent to GA 40		
teriflunomide	18.57%	18.50%	18.12%	TOWER, TEMSO		
DMF	18.01%	17.97%	18.01%	CONFIRM, DEFINE		
alemtuzumab	2.59%	2.55%	2.59%	CARE MS I, CARE MS II		
ocrelizumab	6.69%	6.69%	6.69%	OPERA I & II		

Table 17. Weighting all cause discontinuation risks

Scenario	pegIFNβ- 1a	GA20	GA40	genGA 20	genGA 40	IFNβ-1b 22	IFNβ-1b 44	IFNβ-1b	IFNβ-1a 30	teriflunomide	DMF	ocrelizumab	alemtuzumab
Base case)		L	L								•	
QALY	4.39	0.75	0.74	0.75	0.74	NA	0.17	NA	0.46	0.60	0.44	-0.50	-1.08
Costs	£273,641	-£11,423	-£14,035	-£8,701	-£11,033	NA	-£19,328	NA	-£20,557	-£23,796	-£34,865	-£66,027	-£1,250
ICER	-	-£15,291	-£19,086	-£11,647	-£15,004	NA	-£114,329	NA	-£44,272	-£39,846	-£78,516	£131,776	£1,155
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ-1a dominates	pegIFNβ- 1a dominates	pegIFNβ-1a less costly, less effective	pegIFNβ-1a less costly, less effective
Discontinu	uations - wei	ghted by per	son time										
QALY	4.39	0.72	0.74	0.72	0.74	NA	0.14	NA	0.47	0.60	0.44	-0.50	-1.09
Costs	£273,641	-£14,907	-£14,037	-£11,776	-£11,035	NA	-£20,642	NA	-£19,888	-£23,887	-£34,947	-£66,027	-£1,165
ICER	-	-£20,572	-£19,090	-£16,252	-£15,008	NA	-£143,973	NA	-£42,130	-£40,051	-£78,841	£131,776	£1,071
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ-1a dominates	pegIFNβ- 1a dominates	pegIFNβ-1a less costly, less effective	pegIFNβ-1a less costly, less effective
Discontinu	uations - sim	ple average							•		•	•	
QALY	4.39	0.73	0.74	0.73	0.74	NA	0.18	NA	0.47	0.59	0.44	-0.50	-1.08
Costs	£273,641	-£14,270	-£14,037	-£11,214	-£11,035	NA	-£19,001	NA	-£20,188	-£24,394	-£34,865	-£66,027	-£1,254
ICER	-	-£19,584	-£19,090	-£15,390	-£15,008	NA	-£108,265	NA	-£43,083	-£41,199	-£78,516	£131,776	£1,159
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ-1a dominates	pegIFNβ- 1a dominates	pegIFNβ-1a less costly, less effective	pegIFNβ-1a less costly, less effective

Table 18. Disconitnuation rate scenario analysis using CDP6M network and list prices

10 Spring Gardens London SW1A 2BU United Kingdom

+44 (0)300 323 0140

B8. CS, Document B, section B.3.6.2. Table 45 provides the 'Key assumptions within the economic model'. It states that '*After treatment discontinuation, patients are assumed to follow the natural disease progression course*'. Please clarify the assumption(s) made when people discontinue treatment. For example, do people incur the annual cost of the disease-modifying therapy if they discontinue treatment at 3 months?

Response:

In the Markov traces, patients who discontinue treatment are removed from the 'ontreatment' sub-cohort at the beginning of each annual cycle, based on a discontinuation risk that is also annual. Once patients are moved to the 'off-treatment' sub-cohort they no longer accrue treatment (DMT) cost, and neither enjoy the treatment benefit (i.e. the delay on disease progression). Outcomes are calculated based on half-cycle corrected patients counts, except for the cases in which this was explicitly requested to be removed (alemtuzumab and ocrelizumab, due to their respective dosing schedules).

UTILITIES

B9. <u>**PRIORITY QUESTION.**</u> **CS, Document B, section B.3.4.5.** Table 40 provides the 'caregiver utility decrements by EDSS level stratified by RRMS versus SPMS'. Please outline the calculations undertaken to derive the caregiver utility decrements by EDSS level which were obtained from Acaster et al. (2013) for the base case.

Response:

Caregiver utility decrements were derived directly from the ID527 assessment group report (Table 29, p 213). These are the same values as used in the TA493 (committee papers p 64).

B10. <u>**PRIORITY QUESTION.**</u> **CS, Document B, section B.3.4.5.** Tables 39 and 40 provide utility values by EDSS level and disease phase (RRMS and SPMS) for no relapse and relapses, and utility decrements for caregivers respectively. Please clarify if age-related disutilities have been captured in the model.

Response:

Age-related disutilities have not been captured in the model submitted. Biogen cannot find any evidence of age-related disutilities been used in decision making for prior technology appraisals in multiple sclerosis including TA493, TA527 and TA533.

COSTS

B11. <u>**PRIORITY QUESTION.</u> CS, Document B, section B.3.5.2.1.** Table 43 provides 'Disease management costs by EDSS level (2016/2017 values)'. Please clarify if these costs are at 2016/17 values.</u>

Response:

2016/2017 is a typographical error, this should read 2017/18 (inflated using the PSSRU 2017/18) as referenced in the preceding text to Table 43 in Document B, section 3.5.2.1.

10 Spring Gardens London SW1A 2BU United Kingdom

+44 (0)300 323 0140

B12. PRIORITY QUESTION. CS, Document B, section B.3.5.1. Table 41 provides the 'Annual treatment-related costs for each treatment (2018 values)'. Please provide the unit cost for each disease modifying treatment that was used to derive the annual drug acquisition costs.

Response:

The annual drug acquisition costs were derived using the following unit costs (Table 19).

Drug	Dosage	Frequency per week	Strength	Pack size	Price per pack	Unit cost	Annual cost	Reference
PegIFNβ-1a 125 mcg	Week 0: 63mcg Week 2: 94 mcg		125mcg	6	£1,962.00	£327.00		British National Formulary.
PegIFNβ-1a 63 mcg & 94 mcg (Initiation pack)	Week 4+: 125mcg	0.5	1 x 63mcg 1 x 94mcg	2	£654.00	£327.00	£8,502.00	www.mediinescomplete.com, accessed September 10, 2018
IM IFNβ-1a 30 mcg	30mcg weekly	1	30mcg	4	£654.00	£163.50	£8,502.00	British National Formulary. www.mediinescomplete.com, accessed September 10, 2018
SC IFNβ-1a initiation pack	Week 0-2: 8.8 mcg tiw		6x8.8mcg 6x22mcg	12	£552.19	£46.02	n/a	MIMS - June 2017
SC IFNβ-1a 22 mcg	Week 3-4: 22mcg tiw	3	22mcg	12	£613.52	£51.13	£7,975.76	British National Formulary. www.mediinescomplete.com, accessed September 10, 2018
SC IFNβ-1a 44 mcg	week 5+: 44mcg tiw		44mcg	12	£813.21	£67.77	£10,571.73	British National Formulary. www.mediinescomplete.com, accessed September 10, 2018
SC IFNβ-1b 250 mcg	Day 1,3,5: 62.5mcg Days 7,9,11: 125mcg Days 13,15,17: 187.5mcg Days 19+: 250mcg	3.5	250mcg	15	£596.63	£39.78	£7,239.11	British National Formulary. www.mediinescomplete.com, accessed September 10, 2018
Glatiramer Acetate 20mg	20mg daily	7	20mg	28	£513.95	£18.36	£6,681.35	British National Formulary. www.mediinescomplete.com, accessed September 10, 2018

Table 19. Posology, unit cost and annual costs for PegIFNβ-1a and included comparators

www.nice.org.uk

10 Spring Gardens London SW1A 2BU United Kingdom

Drug	Dosage	Frequency per week	Strength	Pack size	Price per pack	Unit cost	Annual cost	Reference
Glatiramer Acetate 40mg	40mg tiw	3	40mg	12	£513.95	£42.83	£6,681.35	British National Formulary. www.mediinescomplete.com, accessed September 10, 2018
genGA 20mcg (Brabrio)	20mcg daily	7	20mcg	28	£462.56	£16.52	£6,013.28	British National Formulary. www.mediinescomplete.com, accessed September 10, 2018
genGA 40mcg (Brabrio)	40mcg tiw	3	40mcg	12	£462.56	£38.80	£6,013.28	British National Formulary. www.mediinescomplete.com, accessed September 10, 2018
Teriflunomide	14mg Daily	7	14mg	28	£1,037.84	£37.07	£13,528.99	British National Formulary. www.mediinescomplete.com, accessed September 10, 2018
DME	Week 1: 120mg		120mg	14	£343.00	£24.50	£17,848.75	British National Formulary. www.mediinescomplete.com, accessed September 10, 2018
DMF	Week 2+: 240mg	14	240mg	56	£1,373.00	£24.52		
Alemtuzumab	Year 1: 12mg for 5 days Year 2: 12mg for 3 days Year 3+: 12mg for 3 days	Yearly	12mg	1	£7,045.00	£7,045.00	Year 1: 35,225 Year 2: 21,135	British National Formulary. www.mediinescomplete.com, accessed September 10, 2018
Ocrelizumab	Week 0: 300mg Week 2: 300mg Week 2+: 600mg every 6 months	every 6 months	300mg	1	£4,790.00	£4,790.00	£19,160.00	British National Formulary. www.mediinescomplete.com, accessed September 10, 2018

PROBABILISTIC SENSITIVITY ANALYSES

B13. CS, Document B, section B.3.3.3.1, section B.3.3.3 and section B.3.8.1. Section B.3.8.1. states that '*To account for statistical uncertainties of multiple key parameters, probabilistic sensitivity analyses were performed by simultaneously varying ... log-normal distribution: rate ratios for the annualised relapse rates (ARRs) and confirmed disability progression (CDP) hazard ratios relative to placebo, ARRs by EDSS level, incidence of adverse events, rate ratio for MS mortality*'. However, Tables 34 and 36 report the credible intervals for the hazard ratio for CDP and rate ratio for ARR respectively. Please clarify whether the lognormal distributions were used for these inputs and not the posterior distributions.

Response:

Lognormal distributions were using for HR for confirmed disability progression at 3 and 6 months, please see "PSA inputs" or "parameters" worksheets in the excel model.

B14. CS, Document B, section B.3.8.1.

a. Please clarify the type of distributions being used in the probabilistic sensitivity analyses for the utility values for EDSS levels ≥8.

Response:

A beta distribution where the sampling uses the absolute value of the utility.

b. Please clarify the type of distributions being used in the probabilistic sensitivity analyses for caregiver utility decrements.

Response:

A beta distribution where the sampling uses the absolute value of the utility.

MISSING INFORMATION

B15. CS, Document C, Appendix J, sections J.1 and J.2. For Tables 102 and 103, please provide reference citations for the first row.

Response:

These results are derived from the submitted economic model which can be derived from the "all DMT results" worksheet by selecting either discounted or undiscounted outcomes.

Section C: Textual clarifications and additional points

C1. In Document B, please provide in text reference citations for the following:

a. Table 15 (Studies excluded from key analyses)

- b. Table 16 (Final inclusion in the mixed-treatment comparison for the overall relapsingremitting multiple sclerosis population)
- c. Section B.2.9.3.1 (Annualised relapse rate)
- d. Section B.2.9.3.2 (Disability progression confirmed after 3 months [CDP3M])
- e. Section B.2.9.3.3 (Disability progression after 6 months [CDP6M])
- f. Section B.2.10.1 (Introduction)

Response:

Following the clarification teleconference on 9th July, Biogen and the ERG agreed to provide text reference citations lists and not to update the referencing within document B.

A full list of studies and citations for part a (table 15) and part b (table 16) along with citations can be found in document C, section 3.2, table 26 and have not been repeated here. Responses to part c through part f can be found in the table below (Table 20).

Query	Study	Citation
Section B.2.9.3.1 Annualised relapse rate	ADVANCE	Calabresi PA, Kieseier BC, Arnold DL, Balcer LJ, Boyko A, Pelletier J, Liu S, Zhu Y, Seddighzadeh A, Hung S, Deykin A, Advance Study Investigators. Pegylated interferon beta-1a for relapsing-remitting multiple sclerosis (ADVANCE): a randomised, phase 3, double-blind study. Lancet Neurol 2014;13(7):657-65.
network	BEYOND	O'Connor P, Filippi M, Arnason B, Comi G, Cook S, Goodin D, Hartung H-P, Jeffery D, Kappos L, Boateng F, Filippov V, Groth M, Knappertz V, Kraus C, Sandbrink R, Pohl C, Bogumil T, for the BEYOND Study Group. 250 microg or 500 microg interferon beta-1b versus 20 mg glatiramer acetate in relapsing-remitting multiple sclerosis: a prospective, randomised, multicentre study [Erratum appears in: Lancet Neurol 2011;10(2):115. Lancet Neurol 2009;8(11):981. Lancet Neurol 2012;11(1):27]. Lancet Neurol 2009;8(10):889-97.
	Bornstein 1987	Bornstein MB, Miller A, Slagle S, Weitzman M, Crystal H, Drexler E, Keilson M, Merriam A, Wassertheil-Smoller S, Spada V, Weiss W, Arnon R, Jacobsohn I, Teitelbaum D, Sela M. A pilot trial of Cop 1 in exacerbating-remitting multiple sclerosis. N Engl J Med 1987;317(7):408-14.
	BRAVO	Vollmer TL, Sorensen PS, Selmaj K, Zipp F, Havrdova E, Cohen JA, Sasson N, Gilgun-Sherki Y, Arnold DL, BRAVO Study Group. A randomized placebo-controlled phase III trial of oral laquinimod for multiple sclerosis. J Neurol 2014;261(4):773-83.
	Calabrese 2012	Calabrese M, Bernardi V, Atzori M, Mattisi I, Favaretto A, Rinaldi F, Perini P, Gallo P. Effect of disease-modifying drugs on cortical lesions and atrophy in relapsing-remitting multiple sclerosis. Mult Scler 2012;18(4):418-24.
	CAMMS223	CAMMS223 Trial Investigators, Coles AJ, Compston DAS, Selmaj KW, Lake SL, Moran S, Margolin DH, Norris K, Tandon PK. Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med 2008;359(17):1786-801.
	CARE MS I	Cohen JA, Coles AJ, Arnold DL, Confavreux C, Fox EJ, Hartung HP, Havrdova E, Selmaj KW, Weiner HL, Fisher E, Brinar VV, Giovannoni G, Stojanovic M, Ertik BI, Lake SL, Margolin DH, Panzara MA, Compston DA, CARE-MS I investigators. Alemtuzumab versus interferon beta 1a as first-

Table 20. Requested text citations

10 Spring Gardens London SW1A 2BU United Kingdom

Query	Study	Citation
		line treatment for patients with relapsing-remitting multiple sclerosis: a
		randomised controlled phase 3 trial. Lancet 2012;380(9856):1819–28.
	CARE MS II	Henson LJ, Arnold DL, Canada M, Cohen JA, Coles AJ, Confavreux C, Fox EJ, Hartung H-P, Havrdova E, Selmaj K, Weiner HL, Miller TA, Twyman CL, Lake SL, Margolin DH, Panzara MA, Compston A. Durable effects of
		alemtuzumab on relapse rate over time in CARE-MS II. Paper presented at 27th Annual Meeting of the CMSC and the 5th Cooperative Meeting of the CMSC-ACTRIMS; 29 May-1 Jun 2013; Orlando: United States. 2013: DX38
	CombiRx	Lublin FD, Cofield SS, Cutter GR, Conwit R, Narayana PA, Nelson F, Salter AR, Gustafson T, Wolinsky JS, CombiRx Investigators. Randomized study combining interferon and glatiramer acetate in multiple sclerosis. Ann Neurol 2013;73(3):327-40.
	CONFIRM	Fox RJ, Miller DH, Phillips JT, Hutchinson M, Havrdova E, Kita M, Yang M, Raghupathi K, Novas M, Sweetser MT, Viglietta V, Dawson KT, CONFIRM Study Investigators. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med 2012;367(12):1087-97.
	Copolymer I	Johnson K, Brooks B, Cohen J, Ford C, Goldstein J, Lisak R, Myers L, Panitch H, Rose J, Schiffer R, Vollmer T, Weiner L, Wolinsky J. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology 1995;45(7):1268-76.
	DEFINE	Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K, Tornatore C, Sweetser MT, Yang M, Sheikh SI, Dawson KT, DEFINE Study Investigators. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 2012;367(12):1098-107.
	EVIDENCE	Panitch H, Goodin DS, Francis G, Chang P, Coyle PK, O'Connor P, Monaghan E, Li D, Weinshenker B, EVIDENCE Study Group. EVidence of Interferon Dose-response: Europian North American Compartative Efficacy, University of British Columbia MS/MRI Research Group. Randomized, comparative study of interferon beta-1a treatment regimens in MS: The EVIDENCE Trial. Neurology 2002;59(10):1496-506.
	GALA	Khan O, Rieckmann P, Boyko A, Selmaj K, Zivadinov R, GALA Study Group. Three times weekly glatiramer acetate in relapsing-remitting multiple sclerosis. Ann Neurol 2013;73(6):705-13.
	IFNB MS	The IFNB Multiple Sclerosis Study Group. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 1993;43(4):655-61.
		The IFNB Multiple Sclerosis Study Group and the University of British Columbia MS/MRI Analysis Group. Interferon beta-lb in the treatment of multiple sclerosis: final outcome of the randomized controlled trial. Neurology 1995;45(7):1277-85.
	INCOMIN	Durelli L, Verdun E, Barbero P, Bergui M, Versino E, Ghezzi A, Montanari E, Zaffaroni M, Independent Comparison of Interferon (INCOMIN) Trial Study Group. Every-other-day interferon beta-1b versus once-weekly interferon beta-1a for multiple sclerosis: results of a 2-year prospective randomised multicentre study (INCOMIN). Lancet 2002;359(9316):1453-60.
	MSCRG	Jacobs LD, Cookfair DL, Rudick RA, Herndon RM, Richert JR, Salazar AM, Fischer JS, Goodkin DE, Granger CV, Simon JH, Alam JJ, Bartoszak DM, Bourdette DN, Braiman J, Brownscheidle CM, Coats ME, Cohan SL, Dougherty DS, Kinkel RP, Mass MK, Frederick E. Munschauer, Priore RL, Pullicino PM, Scherokman BJ, Weinstock-Guttman B, Whitham RH. Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Ann Neurol 1996;39(3):285-94.
	OPERA I	Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, Lublin F, Montalban X, Rammohan KW, Selmaj K, Traboulsee A, Wolinsky JS, Arnold DL, Klingelschmitt G, Masterman D, Fontoura P, Belachew S,

10 Spring Gardens London SW1A 2BU United Kingdom

Query	Study	Citation
		Chin P, Mairon N, Garren H, Kappos L, Opera I and Investigators OIC (2017). "Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis." New England Journal of Medicine 376(3): 221-234
	OPERA II	Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, Lublin F, Montalban X, Rammohan KW, Selmaj K, Traboulsee A, Wolinsky JS, Arnold DL, Klingelschmitt G, Masterman D, Fontoura P, Belachew S, Chin P, Mairon N, Garren H, Kappos L, Opera I and Investigators OIC (2017). "Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis." New England Journal of Medicine 376(3): 221-234
	REGARD	Mikol DD, Barkhof F, Chang P, Coyle PK, Jeffery DR, Schwid SR, Stubinski B, Uitdehaag BMJ, REGARD study group. Comparison of subcutaneous interferon beta-1a with glatiramer acetate in patients with relapsing multiple sclerosis (the REbif vs Glatiramer Acetate in Relapsing MS Disease [REGARD] study): a multicentre, randomised, parallel, open-label trial. Lancet Neurol 2008;7(10):903-14.
	TESMO	O'Connor P, Wolinsky JS, Confavreux C, Comi G, Kappos L, Olsson TP, Benzerdjeb H, Truffinet P, Wang L, Miller A, Freedman MS, for the TEMSO Trial Group. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med 2011;365(14):1293-303.
	TENERE	Vermersch P, Czlonkowska A, Grimaldi LM, Confavreux C, Comi G, Kappos L, Olsson TP, Benamor M, Bauer D, Truffinet P, Church M, Miller AE, Wolinsky JS, Freedman MS, O'Connor P, TENERE Trial Group. Teriflunomide versus subcutaneous interferon beta-1a in patients with relapsing multiple sclerosis: a randomised, controlled phase 3 trial. Mult Scler 2014;20(6):705-16.
CDP3M network	ADVANCE	Calabresi PA, Kieseier BC, Arnold DL, Balcer LJ, Boyko A, Pelletier J, Liu S, Zhu Y, Seddighzadeh A, Hung S, Deykin A, Advance Study Investigators. Pegylated interferon beta-1a for relapsing-remitting multiple sclerosis (ADVANCE): a randomised, phase 3, double-blind study. Lancet Neurol 2014;13(7):657-65.
	BEYOND	O'Connor P, Filippi M, Arnason B, Comi G, Cook S, Goodin D, Hartung H-P, Jeffery D, Kappos L, Boateng F, Filippov V, Groth M, Knappertz V, Kraus C, Sandbrink R, Pohl C, Bogumil T, for the BEYOND Study Group. 250 microg or 500 microg interferon beta-1b versus 20 mg glatiramer acetate in relapsing-remitting multiple sclerosis: a prospective, randomised, multicentre study [Erratum appears in: Lancet Neurol 2011;10(2):115. Lancet Neurol 2009;8(11):981. Lancet Neurol 2012;11(1):27]. Lancet Neurol 2009;8(10):889-97.
	BRAVO	Vollmer TL, Sorensen PS, Selmaj K, Zipp F, Havrdova E, Cohen JA, Sasson N, Gilgun-Sherki Y, Arnold DL, BRAVO Study Group. A randomized placebo-controlled phase III trial of oral laquinimod for multiple sclerosis. J Neurol 2014;261(4):773-83.
	CAMMS223	CAMMS223 Trial Investigators, Coles AJ, Compston DAS, Selmaj KW, Lake SL, Moran S, Margolin DH, Norris K, Tandon PK. Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med 2008;359(17):1786-801.
	CONFIRM	Fox RJ, Miller DH, Phillips JT, Hutchinson M, Havrdova E, Kita M, Yang M, Raghupathi K, Novas M, Sweetser MT, Viglietta V, Dawson KT, CONFIRM Study Investigators. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med 2012;367(12):1087-97.
	DEFINE	Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K, Tornatore C, Sweetser MT, Yang M, Sheikh SI, Dawson KT, DEFINE Study Investigators. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 2012;367(12):1098-107.
	EVIDENCE	Panitch H, Goodin DS, Francis G, Chang P, Coyle PK, O'Connor P, Monaghan E, Li D, Weinshenker B, EVIDENCE Study Group. EVidence of Interferon Dose-response: Europian North American Compartative Efficacy, University of British Columbia MS/MRI Research Group. Randomized,

10 Spring Gardens London SW1A 2BU United Kingdom

Query	Study	Citation
		comparative study of interferon beta-1a treatment regimens in MS: The
		EVIDENCE Trial. Neurology 2002;59(10):1496-506.
	OPERA I	Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, Lublin F, Montalban X, Rammohan KW, Selmaj K, Traboulsee A, Wolinsky
		JS, Arnold DL, Klingelschmitt G, Masterman D, Fontoura P, Belachew S,
		Chin P, Mairon N, Garren H, Kappos L, Opera I and Investigators OIC
		(2017). "Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple
		Sclerosis." New England Journal of Medicine 376(3): 221-234
	OPERA II	Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B,
		Lublin F, Montalban X, Rammohan KW, Selmaj K, Traboulsee A, Wolinsky
		JS, Arnold DL, Klingelschmitt G, Masterman D, Fontoura P, Belachew S,
		Chin P, Mairon N, Garren H, Kappos L, Opera I and Investigators OIC
		(2017). "Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple
	PRISMS	Sclerosis." New England Journal of Medicine 376(3): 221-234 Randomised double-blind placebo-controlled study of interferon beta-1a in
	FRISIVIS	relapsing/remitting multiple sclerosis. PRISMS (Prevention of Relapses and
		Disability by Interferon beta-1a Subcutaneously in Multiple Sclerosis) Study
		Group.[Erratum appears in Lancet 1999 Feb 20;353(9153):678]. Lancet
		1998;352(9139):1498-504.
	TESMO	O'Connor P, Wolinsky JS, Confavreux C, Comi G, Kappos L, Olsson TP,
		Benzerdjeb H, Truffinet P, Wang L, Miller A, Freedman MS, for the TEMSO
		Trial Group. Randomized trial of oral teriflunomide for relapsing multiple
	TOWER	sclerosis. N Engl J Med 2011;365(14):1293-303.
	TOWER	Confavreux C, O'Connor P, Comi G, Freedman MS, Miller AE, Olsson TP,
		Wolinsky JS, Bagulho T, Delhay J-L, Dukovic D, Truffinet P, Kappos L, for the TOWER Trial Group. Oral teriflunomide for patients with relapsing
		multiple sclerosis (TOWER): a randomised, double-blind, placebo-
		controlled, phase 3 trial. Lancet Neurol 2014;13(3):247-56.
CDP6M	ADVANCE	Biogen Idec. 105MS301 Interim - TLGs. Year 1 trial results. 2013.
network	BRAVO	Vollmer TL, Sorensen PS, Selmaj K, Zipp F, Havrdova E, Cohen JA,
		Sasson N, Gilgun-Sherki Y, Arnold DL, BRAVO Study Group. A randomized
		placebo-controlled phase III trial of oral laquinimod for multiple sclerosis. J
		Neurol 2014;261(4):773-83.
	CAMMS223	CAMMS223 Trial Investigators, Coles AJ, Compston DAS, Selmaj KW, Lake
		SL, Moran S, Margolin DH, Norris K, Tandon PK. Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med
		2008;359(17):1786-801.
	CARE MS-I	Cohen JA, Coles AJ, Arnold DL, Confavreux C, Fox EJ, Hartung HP,
		Havrdova E, Selmaj KW, Weiner HL, Fisher E, Brinar VV, Giovannoni G,
		Stojanovic M, Ertik BI, Lake SL, Margolin DH, Panzara MA, Compston DA,
		CARE-MS I investigators. Alemtuzumab versus interferon beta 1a as first-
		line treatment for patients with relapsing-remitting multiple sclerosis: a
	0455146.1	randomised controlled phase 3 trial. Lancet 2012;380(9856):1819–28.
	CARE MS-II	Coles AJ, Twyman CL, Arnold DL, Cohen JA, Confavreux C, Fox EJ,
		Hartung H-P, Havrdova E, Selmaj KW, Weiner HL, Miller T, Fisher E, Sandbrink R, Lake SL, Margolin DH, Oyuela P, Panzara MA, Compston
		DAS, CARE-MS II investigators. Alemtuzumab for patients with relapsing
		multiple sclerosis after disease-modifying therapy: a randomised controlled
		phase 3 trial. Lancet 2012;380(9856):1829-39.
	CONFIRM	Fox RJ, Miller DH, Phillips JT, Hutchinson M, Havrdova E, Kita M, Yang M,
		Raghupathi K, Novas M, Sweetser MT, Viglietta V, Dawson KT, CONFIRM
		Study Investigators. Placebo-controlled phase 3 study of oral BG-12 or
		glatiramer in multiple sclerosis. N Engl J Med 2012;367(12):1087-97.
	DEFINE	Biogen Idec Inc. Clinical study report. Full final. Study Number: 109MS301.
		A randomized, multicenter, double-blind, placebo-controlled, dose-
		comparison study to determine the efficacy and safety of BG00012 in
		subjects with relapsing-remitting multiple sclerosis. Cambridge, MA: Biogen
		Idec Inc, 2012

10 Spring Gardens London SW1A 2BU United Kingdom

Query	Study	Citation
	EVIDENCE	Panitch H, Goodin DS, Francis G, Chang P, Coyle PK, O'Connor P, Monaghan E, Li D, Weinshenker B, EVIDENCE Study Group. EVidence of Interferon Dose-response: Europian North American Compartative Efficacy, University of British Columbia MS/MRI Research Group. Randomized, comparative study of interferon beta-1a treatment regimens in MS: The EVIDENCE Trial. Neurology 2002;59(10):1496-506.
	OPERA I	Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, Lublin F, Montalban X, Rammohan KW, Selmaj K, Traboulsee A, Wolinsky JS, Arnold DL, Klingelschmitt G, Masterman D, Fontoura P, Belachew S, Chin P, Mairon N, Garren H, Kappos L, Opera I and Investigators OIC (2017). "Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis." New England Journal of Medicine 376(3): 221-234
	OPERA II	Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, Lublin F, Montalban X, Rammohan KW, Selmaj K, Traboulsee A, Wolinsky JS, Arnold DL, Klingelschmitt G, Masterman D, Fontoura P, Belachew S, Chin P, Mairon N, Garren H, Kappos L, Opera I and Investigators OIC (2017). "Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis." New England Journal of Medicine 376(3): 221-234
	PRISMS	Wong SL, Aldrige J, Hettle R, Khurana IS, Siddiqui MK. Analysis of 6-month confirmed disability progression in RRMS patients treated with subcutaneous interferon beta-1a. Mult Scler J 2018;24(1 Suppl 1):32.
	TESMO	European Medicines Agency. Aubagio. EPAR - Assessment report. International Non-proprietary Name: teriflunomide. Procedure No. EMEA/H/C/002514/0000 [Internet]. London: European Medicines Agency, 2013 [accessed 18.5.17] Available from: <u>http://www.ema.europa.eu/docs/en_GB/document_library/EPAR</u>
		I. Summary of product characteristics [Internet]. London: European Medicines Agency, 2013 [accessed 1.4.15] Available from: https://www.ema.europa.eu/en/documents/product-information/aubagio- epar-product-information_en.pdf
	TOWER	European Medicines Agency. Aubagio. EPAR - Assessment report. International Non-proprietary Name: teriflunomide. Procedure No. EMEA/H/C/002514/0000 [Internet]. London: European Medicines Agency, 2013 [accessed 18.5.17] Available from: <u>http://www.ema.europa.eu/docs/en_GB/document_library/EPAR</u> _Public_assessment_report/human/002514/WC500148684.pdf
		European Medicines Agency. Aubagio: EPAR - Product Information. Annex I. Summary of product characteristics [Internet]. London: European Medicines Agency, 2013 [accessed 1.4.15] Available from: <u>https://www.ema.europa.eu/en/documents/product-information/aubagio-</u> epar-product-information_en.pdf
Introduction	ADVANCE	Calabresi PA, Kieseier BC, Arnold DL, Balcer LJ, Boyko A, Pelletier J, Liu S, Zhu Y, Seddighzadeh A, Hung S, Deykin A, Advance Study Investigators. Pegylated interferon beta-1a for relapsing-remitting multiple sclerosis (ADVANCE): a randomised, phase 3, double-blind study. Lancet Neurol 2014;13(7):657-65.
	ATTAIN	Newsome SD, Scott TF, Arnold DL, Nelles G, Hung S, Cui Y, et al. Long- term outcomes of peginterferon beta-1a in multiple sclerosis: results from the ADVANCE extension study, ATTAIN. Ther Adv Neurol Disord. 2018;11:1756286418791143
	ALLOW	Naismith R, Hendin B, Wray S, You X, Sabatella G, Zambrano J, et al. ALLOW – a phase 3b trial characterising flu-like symptoms in patients switching to pegylated interferon beta-1a: interim analysis of all patients. Presented at the 31st Congress of the European Committee for Treatment

Query	Study	Citation
		and Research in Multiple Sclerosis (ECTRIMS); October 2015. Barcelona, Spain.
	COMPARE	Hu X, Shang S, Nestorov I, Hasan J, Seddighzadeh A, Dawson K, et al. COMPARE: pharmacokinetic profiles of subcutaneous peginterferon beta- 1a and subcutaneous interferon beta-1a over 2 weeks in healthy subjects. Br J Clin Pharmacol. 2016 Aug;82(2):380-8

C2. CS, Document B, section B.2.4. Section B.2.4 states '*Table 10 presents a summary of the statistical analysis and definition of study groups for the ADVANCE and ATTAIN trials*¹¹'. However, the footnote in Table 10, cites reference 11, 124 and 128. Please clarify which citation is correct for the 'sample size, power calculation'.

Response

Reference 7 (Biogen Idec Inc. CSR: a multicenter, randomized, double-blind, parallel-group, placebo-controlled study to evaluate the efficacy and safety of pegylated interferon beta-1a (BIIB017) in subjects with relapsing multiple sclerosis. 2013.) is also included in the footnote which is the correct source for the sample size & power calculation

C3. CS, Document B, section B.3.3.3.1. Table 34 reports the results of the network metaanalysis for CDP3M and CDP6M hazard ratio versus placebo. Please clarify why confidence intervals are reported for CDP3M (95% CI), while credible intervals are presented for CDP6M (95% CrI).

Response:

Typographical error, this should read as credible intervals for both CDP3M and CDP6M.

C4. CS, Document B, section B.3.8.2. Pages 165 to 166 report the impact of how sensitive the incremental cost-effectiveness ratios were to changes made to the lower and upper bound of the hazard ratios on disability progression using the 95% confidence intervals. Please clarify if these lower and upper bounds were 95% credible intervals.

Response:

Typographical error, these lower and upper bounds were 95% credible intervals

C5. CS, Document C, Appendix M. Excel model 'ID1521_Pegiterferon Beta-1a for RRMS_CE Model_07 June 19 [ACIC]'. Table 124 (Document C) includes the adverse event 'Pneumonia/urinary tract infection' but the Excel model states 'Pneumonia/URT'. Please clarify whether URT refers to urinary tract infection or upper respiratory tract infection.

Response:

Typographical error, this should read "upper respiratory tract infection".

C6. CS, Document C, section L.3.1.3. Please provide the source and citation of the text *'patients experienced an event rate 0.256 after approximately 12 months of follow-up compared with an event rate of 0.397 for patients in the placebo arm'* (p438).

10 Spring Gardens London SW1A 2BU United Kingdom

+44 (0)300 323 0140

Response:

The source and citation for this data is: Calabresi PA, Kieseier BC, Arnold DL, Balcer LJ, Boyko A, Pelletier J, et al. Pegylated interferon beta-1a for relapsing-remitting multiple sclerosis (ADVANCE): a randomised, phase 3, double-blind study. Lancet Neurol. 2014 Jul;13(7):657-65.

These data are also reported in document B, section 2.6.1, table 11, p49.

C7. CS, Document C. Please provide a contents page for the appendices in Document C and its sub-sections.

Response:

A contents page has been added to document C and reuploaded to NICE DOCs

Patient organisation submission

Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis ID1521

Thank you for agreeing to give us your organisation's views on this technology and its possible use in the NHS.

You can provide a unique perspective on conditions and their treatment that is not typically available from other sources.

To help you give your views, please use this questionnaire with our guide for patient submissions.

You do not have to answer every question – they are prompts to guide you. The text boxes will expand as you type.

Information on completing this submission

- Please do not embed documents (such as a PDF) in a submission because this may lead to the information being mislaid or make the submission unreadable
- We are committed to meeting the requirements of copyright legislation. If you intend to include **journal articles** in your submission you must have copyright clearance for these articles. We can accept journal articles in NICE Docs.
- Your response should not be longer than 10 pages.

About you	
1.Your name	

2. Name of organisation	The Multiple Sclerosis Society (MS Society)
3. Job title or position	
4a. Brief description of the organisation (including who funds it). How many members does it have?	The MS Society is a leading patient organisation representing the over 100,000 people living with MS in the UK. We are a registered charity and receive no government subsidy, we are funded by charitable fundraising through individual donations, philanthropic donors and legacies.
4b. Do you have any direct or indirect links with, or funding from, the tobacco industry?	No
5. How did you gather information about the experiences of patients and carers to include in your submission?	We have prepared this submission utilising our extensive networks and communication channels that keep us in touch daily with people living with MS and those affected by the condition. The case studies represented here were gathered from members of our MS Research Network; a network that connects researchers, academics and people with MS who want to hear about the latest advancements in medical research and find out how to get in involved in clinical trials, of which the MS Society is a major funder.
	Subsequent to our call for case studies to the MS Research Network, we interviewed people who responded and have ensured that there are diverse experiences represented. The

	responded included individuals currently using peginterferon beta-1a and responding well as well as and people who had used it and switched to another treatment. We need this in order to demonstrate a rounded picture of its benefits.
Living with the condition	
6. What is it like to livewith the condition? Whatdo carers experience when	MS is a neurological condition that affects the brain and spinal cord. It is unpredictable, highly individualised and is often painful and exhausting to live with. Its symptoms are often invisible and people living with MS are often negatively impacted by a relatively poor public understanding of the condition and its symptoms.
caring for someone with the condition?	Most people living with MS (approximately 80%) live with its relapsing-remitting form, which is characterised by periods of intense disease activity called 'relapses' that coincides with an increase in severity of symptoms, such as loss of mobility, fatigue and other motor or muscle impairments, including temporary or long-lasting blindness, which is followed by periods where symptoms reduce or stop completely.
	As the range of symptoms above demonstrates, the condition is highly variable and complex so that for some patients there is little meaningful difference between living with a relapsing form of MS and a progressive form of the disease.
	Common less visible symptoms include but are not limited to:
	- low mood
	- fatigue
	- depression
	- cognitive difficulties
	- neuralgia and other forms of neuropathic pain

Current treatment of the condition in the NHS	
7. What do patients or	People with MS regularly tell us through the MS Society's national surveys that they experience
carers think of current	an inconsistency in standard of care in the NHS, whether it be in diagnosis, treatment or what support services are available.
treatments and care	This inconsistency seems to be dependent on a few factors, namely:
available on the NHS?	- which nurse specialist, GP, consultant neurologist a patient sees regularly
	- which NHS Trust manages their care; and,
	- which area of the UK they live in.
	We know for instance that when we last conducted a national survey of people with MS in 2016, only 56% of people who could benefit from a disease modifying therapy (DMT) were taking one. This was up from 40% in 2013 but is significantly lower than the MS Society's goal of 70% by 2019 <i>('Is Access to Treatment Still a Lottery?</i> MS Society, 2016). The results of our updated survey will be published in 2020 (<i>'My MS MY Needs'</i> MS Society, forthcoming).
	In the same survey in 2016 we found that access to a DMT was highly dependent on receiving timely support from MS specialists. The survey found of the 1 in 10 respondents that had not seen an MS nurse or neurologist in the past year, just 12% were taking a disease modifying therapy compared to 73% of those who had seen an MS nurse of neurologist in the past year.
	With no national standards of care for MS services and without a national clinical director for neurological services in the NHS, this variation may not be surprising. However, the effect this has on receiving adequate and timely clinical interventions means that patients do not always

	receive the right treatment at the right time and receive conflicting advice about managing symptoms.
	Lack of standards for clinicians to be monitored and benchmarked against is a source frustration for clinicians and service users alike and is the cause of significant barriers to improving services.
	The variation in experience that results is a significant cause distress for people with MS and their carers, especially when someone moves local authority or CCG area, where services may be delivered differently.
	The MS Society Helpline receives daily calls referring to the complexity of MS services. People commonly tell us they spend time 'battling' services to get the right treatment for them due to the highly individualised nature of the condition. This is a waste of time that patients and carers could be spending better managing the impact of the condition.
	One individual highlighted that this experience is notable when compared with treatment experienced outside the UK. One individual noted that in Singapore they had contact with consultant neurologists much more regularly and received MRI scans every 6-months to check on the progression of the disease. In the Netherlands, they had more frequent contact with nurse specialists than they now do in the UK.
8. Is there an unmet need for patients with this condition?	In absence of a cure, the main unmet need comes in the form of effective treatments to reduce the severity and impact of the disease for people living with progressive forms of the disease.
	There are also significant unmet care needs for people living with MS, both due to inconsistency in primary and secondary care, and in common with other disabling conditions, significant problems receiving social care support. Specifically, in a 2016 survey focusing on the MS community's social care needs, we found that 1 in 3 people with MS that need help getting dressed, fed and washed were not getting the essential care and support they needed (' <i>My MS My Needs'</i> MS Society, 2016).

	Remaining in employment is also of critical importance. We know that within 10 years of diagnosis, around 50% of people with MS will have left employment, with all the associated financial, social and psychological consequences. We also know that those who are not in and looking for work due to their MS lose almost 20 working years on average. Cost effectiveness calculations by NICE and other government agencies do not take account of the burden of loss of work on the individual, but particularly do not account for the impact it has on carers having to give up work in order to support those they care for.
Advantages of the techr	nology
9. What do patients or	Clinical trials have demonstrated the effectiveness of peginterferon beta-1a compared to
carers think are the	placebo and confirmed that it has a similar efficacy to other beta interferons. Peginterferon beta-1a and other beta interferons are currently the only effective treatments for people
advantages of the	secondary progressive who still have significant relapses.
technology?	As mentioned, we spoke to a small sample of people who have taken peginterferon beta-1a and are responding well, and also those who stopped using peginterferon due to side effects.
	The advantages of peginterferon that patients clearly demonstrated were that it is:
	 easy to administer through individual injection easy to store at home via refrigeration allowed them to manage flu-like side effects better and any other side effects can be managed effectively with generic treatments like ibuprofen and paracetamol can be delivered at home if needed time efficient due to longer intervals. The allowed one individual we spoke to avoid necrosis, which when on a daily dose treatment appeared on sites around the leg, which were embarrassing and made physical activities more difficult.

Disadvantages of the technology	
10. What do patients or	Three individuals experienced severe side effects including neuralgia from using peginterferon
carers think are the	beta-1a. One individual said that the side effects were intolerable and led to them to refusing to be treated with any other DMT.
disadvantages of the	
technology?	
Patient population	
11. Are there any groups	Peginterferon beta-1a is likely to be a preferred treatment option for people who are risk
of patients who might	adverse and have a relatively low level of MS activity.
benefit more or less from	In line with the MS Trust, we would not expect peginterferon to be used for very active releasing remitting MS (also known as rapidly evolving severe MS or highly estive despite
the technology than	relapsing remitting MS (also known as rapidly evolving severe MS or highly active despite previous treatment) for which more effective treatments would be used (fingolimod,
others? If so, please	natalizumab, cladribine, ocrelizumab, alemtuzumab).
describe them and explain	
why.	

Equality	
12. Are there any potential equality issues that should be taken into account when considering this condition and the technology?	 Women are three times more likely to be diagnosed with MS than men, therefore any reduction in treatment options would have a direct and disproportionate impact on women and a double impact on women living with disabilities. All the patients we spoke to for the purposes of this appraisal were women, one of whom was a single mother of three who was a part time student. When approached to be interviewed, the Society offered to nominate her to appear at the technology appraisal meeting. Due to the distance to travel (she lives in the North East of England) and her caring responsibilities she felt that she would be unable to participate. If meetings were held remotely via video call she would have felt more able to participate. This is an important issue to consider as it is patients like her that are commonly unrepresented in decision-making forums such as single technology appraisals.
Other issues 13. Are there any other issues that you would like the committee to consider?	This is a well-established treatment that services have the capacity to continue to administer, which in the context of significant financial constraints in the health system currently is important to consider.

Key messages

15. In up to 5 bullet points, please summarise the key messages of your submission:

• Patient choice when it comes to treatments is paramount for people with MS. Any reduction in choice is likely to lead to significant distress for people currently using and responding well to peginterferon beta-1a.

• Peginterferon beta-1a is an effective treatment option for people who depend on its ease of administration and ready access.

• Peginterferon beta-1a offers an effective treatment option that has a reduced impact on stretched services due to it being self-administered and it being able to be stored at home.

• Peginterferon beta-1a has a good safety profile.

• Peginterferon beta-1a offers a treatment option for those with less severe active disease and benefits most of its users due to increased intervals between injections compared to other beta interferons.

Thank you for your time.

Please log in to your NICE Docs account to upload your completed submission.

.....

Your privacy

The information that you provide on this form will be used to contact you about the topic above.

Please tick this box if you would like to receive information about other NICE topics.

For more information about how we process your personal data please see our privacy notice.

.....

Patient organisation submission

Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis ID1521

Thank you for agreeing to give us your organisation's views on this technology and its possible use in the NHS.
You can provide a unique perspective on conditions and their treatment that is not typically available from other sources.
To help you give your views, please use this questionnaire with our guide for patient submissions.
You do not have to answer every question – they are prompts to guide you. The text boxes will expand as you type.
Information on completing this submission
 Please do not embed documents (such as a PDF) in a submission because this may lead to the information being mislaid or make the submission unreadable

- We are committed to meeting the requirements of copyright legislation. If you intend to include **journal articles** in your submission you must have copyright clearance for these articles. We can accept journal articles in NICE Docs.
- Your response should not be longer than 10 pages.

About you	
1.Your name	

2. Name of organisation	Multiple Sclerosis Trust
3. Job title or position	
4a. Brief description of the organisation (including who funds it). How many members does it have?	The MS Trust is a UK charity dedicated to making life better for anyone affected by MS. The MS Trust is in contact with over 40,000 people affected by MS - that's people with MS, their families, friends and the health care professionals who help manage MS. Our core belief is that the best outcomes will come from well-informed people with MS making decisions in partnership with their specialist health professionals, and our aim is to support both sides of this partnership as much as we can. We provide expert information to help people with MS manage their own condition, and, uniquely, we inform and educate the health and social care professionals who work with them about best practice in MS treatment and care. We receive no government funding we are not a membership organisation. We rely on donations, fundraising and gifts in wills to fund our services.
4b. Do you have any direct or indirect links with, or funding from, the tobacco industry?	None
5. How did you gather information about the experiences of patients and carers to include in your submission?	We have prepared this submission based on our experience of supporting people affected by MS at all stages of the condition. We speak daily to people who are dealing with issues relating to MS: coping with the impact of diagnosis, coping with physical, emotional and financial consequences of MS and making difficult decisions about treatment choices. To gain further insight into the experience of people taking peginterferon, we interviewed people who are currently taking this drug. We also reviewed feedback on peginterferon in survey data collected between 20 December 2017 and 10 January 2018 in response to the Appraisal Consultation Document for TA527.

Living with the condition	iving with the condition	
6. What is it like to live with the condition? What do carers experience when caring for someone with the condition?	MS is commonly diagnosed between the ages of 20 and 40, at a time when people are developing careers, starting families, taking on financial obligations. It is a complex and unpredictable condition which has an impact on all aspects of life - physical, emotional, social and economic. These are profoundly important not just for the person diagnosed with MS, but for their families as well and not taken account of in cost effectiveness calculations.	
	MS is sometimes mild, frequently relapsing remitting, but often progressive with gradually increasing disability. Although the degree of disability will vary, the uncertainty is universal. Even in the early stages of MS, cognition, quality of life, day-to-day activities and the ability to work can be markedly affected. As the disease progresses, increasing disability – such as difficulties in walking – imposes a heavy burden on people with MS and on their families, who often act as informal carers. It also leads to substantial economic losses for society, owing to diminished working capacity.	
	Good management of MS can be a huge challenge to health professionals because the disease course is unpredictable, symptoms endlessly variable and the psychosocial consequences can impact as severely as the physical symptoms. People with MS require health services that are responsive to this breadth of need and which take a holistic view of the condition including its impact on the individual and their carers.	
	Approximately 80% of people with MS will have relapsing remitting MS (RRMS). MS relapses are unpredictable in onset, severity, type of symptoms, and duration. Recovery is often incomplete, leading to accumulation of disability with each successive relapse. Residual disability may be apparent, such as impaired mobility, but may also be less overt, such as depression, fatigue, cognitive problems or sexual dysfunction. The more invisible consequences of a relapse can often be overlooked by health professionals, family and work colleagues yet impact on quality of life and capacity to remain in employment as profoundly as more apparent symptoms. Many of these invisible symptoms are sensitive areas and can be difficult to recognise or talk about, putting an extra burden on a person with MS to deal with on their own.	
	Relapses have a significant impact on the ability to work, leading to time off work (and potentially loss of employment) both for the person with MS and informal carers, resulting in considerable direct and indirect	

	financial burden, both for the individual, their family and the state. They can have a profound effect on a person's daily activities, social life and relationships and present considerable psychosocial and emotional challenges for both the individual and for family and friends. In a cash-strapped NHS, the reality is that services to support people coping with the effects of a relapse, such as physiotherapy or the provision of equipment or carers, are often limited or non-existent. The quality of and access to care is highly dependent on where someone lives. Individuals contacting the MS Trust frequently report that the urgent access to physiotherapists or occupational therapists necessitated by a rapid onset of symptoms is rarely possible. For example, a caller to our enquiry service reported a 10 week waiting list to see a physiotherapist for treatment of walking problems following a relapse. As well as prolonging the effect of the relapse on someone's life, these delays risk compounding problems, introducing further distress to the individual and cost to the NHS.
	drugs (DMDs) early in the disease to prevent axonal damage and irreversible disability. Current practice in the management of RRMS is active and acknowledges that if people with MS continue to have relapses while on therapy, this should prompt a discussion about switching treatments. State of the art approach to treating relapsing remitting MS aspires to minimal or no evidence of disease activity; signs of MS activity trigger a treatment review and escalation to an alternative disease modifying drug is considered.
	A treatment which either eliminates or reduces the frequency and severity of relapses is a major benefit for people affected by relapsing forms of MS.
Current treatment of the cond	ition in the NHS
7. What do patients or carers think of current treatments and care available on the NHS?	MS care involves a mix of clinical management of symptoms, responsive services to manage relapses and other acute deteriorations, therapies including physiotherapy and occupational therapy, tailored, evidence based information, support for effective self-management and, for those with RRMS, access to the range of DMDs and support to make the choice that is right for their condition, their lifestyle and their treatment goals. The majority of people with RRMS are eager to start treatment with one of the DMDs and

 aware of the importance of starting treatment soon after diagnosis. A number of DMDs are available for relapsing remitting MS: beta interferons glatiramer acetate teriflunomide dimethyl fumarate fingolimod ocrelizumab cladribine natalizumab alemtuzumab It is not possible to say which of these treatments are preferred; the widening range of DMDs gives greater scope for personalised treatment with a different mechanism of action. Different responses to DMDs from one person to another are not easily captured in clinical trial data but are important to address in clinical practice. Through different aspects of our work with people affected by MS, we are aware that a very wide range of a drug and the risk of side effects are key factors, as is evidence of their effect on the underlying course of the condition and their impact on disease progression. Other issues will also be important such as the number of years a drug has been in routine use, route of administration, tolerability and the impact it has on daily life, family and work commitments or plans to start a family. Shared decision making which takes account of personal preferences and clinical advice will result in selection of a treatment that is best for an individual. This in turn leads to greater adherence and, consequently, effectiveness of the DMD.	
 beta interferons glatiramer acetate teriflunomide dimethyl fumarate fingolimod ocrelizumab cladribine natalizumab alemtuzumab alemtuzumab alemtuzumab tis not possible to say which of these treatments are preferred; the widening range of DMDs gives greater scope for personalised treatments. If MS remains active despite taking one of the DMDs there is more potential to switch to a treatment with a different mechanism of action. Different responses to DMDs from one person to another are not easily captured in clinical trial data but are important to address in clinical practice. Through different aspects of our work with people affected by MS, we are aware that a very wide range of the condition and their impact on disease progression. Other issues will also be important such as the number of years a drug has been in routine use, not the stat a family. Shared decision making which takes account of personal preferences and clinical advice will result in selection of a treatment that is best for an or space to reatment such a stat a family. Shared decision making which takes account of personal preferences and clinical advice will result in selection of a treatment that is best for an or space to so the condition and their impact on disease progression. 	aware of the importance of starting treatment soon after diagnosis.
 glatiramer acetate teriflunomide dimethyl fumarate fingolimod ocrelizumab cladribine natalizumab alemtuzumab alemtuzumab tis not possible to say which of these treatments are preferred; the widening range of DMDs gives greater scope for personalised treatments. If MS remains active despite taking one of the DMDs there is more potential to switch to a treatment with a different mechanism of action. Different responses to DMDs from one person to another are not easily captured in clinical trial data but are important to address in clinical practice. Through different aspects of our work with people affected by MS, we are aware that a very wide range of factors can contribute to an individual's preferences for treatments. The balance between effectiveness of a drug and the risk of side effects are key factors, as is evidence of their effect on the underlying course of the condition and their impact on disease progression. Other issues will also be important such as the number of years a drug has been in routine use, route of administration, tolerability and the impact to takes account of personal preferences and clinical advice will result in selection of a treatment that is best for an 	A number of DMDs are available for relapsing remitting MS:
 teriflunomide dimethyl fumarate fingolimod ocrelizumab cladribine natalizumab alemtuzumab alemtuzumab alemtuzumab tis not possible to say which of these treatments are preferred; the widening range of DMDs gives greater scope for personalised treatments. If MS remains active despite taking one of the DMDs there is more potential to switch to a treatment with a different mechanism of action. Different responses to DMDs from one person to another are not easily captured in clinical trial data but are important to address in clinical practice. Through different aspects of our work with people affected by MS, we are aware that a very wide range of factors can contribute to an individual's preferences for treatments. The balance between effectiveness of a drug and the risk of side effects are key factors, as is evidence of their effect on the underlying course of the condition and their impact on disease progression. Other issues will also be important such as the number of years a drug has been in routine use, route of administration, tolerability and the impact it has on daily life, family and work commitments or plans to start a family. Shared decision making which takes account of personal preferences and clinical advice will result in selection of a treatment that is best for an 	beta interferons
 dimethyl fumarate fingolimod ocrelizumab cladribine natalizumab alemtuzumab alemtuzumab lt is not possible to say which of these treatments are preferred; the widening range of DMDs gives greater scope for personalised treatments. If MS remains active despite taking one of the DMDs there is more potential to switch to a treatment with a different mechanism of action. Different responses to DMDs from one person to another are not easily captured in clinical trial data but are important to address in clinical practice. Through different aspects of our work with people affected by MS, we are aware that a very wide range of factors can contribute to an individual's preferences for treatments. The balance between effectiveness of a drug and the risk of side effects are key factors, as is evidence of their effect on the underlying course of the condition and their impact on disease progression. Other issues will also be important such as the number of years a drug has been in routine use, route of administration, tolerability and the impact it has on daily life, family and work commitments or plans to start a family. Shared decision making which takes account of personal preferences and clinical advice will result in selection of a treatment that is best for an 	glatiramer acetate
 fingolimod ocrelizumab cladribine natalizumab alemtuzumab alemtuzumab alemtuzumab It is not possible to say which of these treatments are preferred; the widening range of DMDs gives greater scope for personalised treatments. If MS remains active despite taking one of the DMDs there is more potential to switch to a treatment with a different mechanism of action. Different responses to DMDs from one person to another are not easily captured in clinical trial data but are important to address in clinical practice. Through different aspects of our work with people affected by MS, we are aware that a very wide range of factors can contribute to an individual's preferences for treatments. The balance between effectiveness of a drug and the risk of side effects are key factors, as is evidence of their effect on the underlying course of the condition and their impact on disease progression. Other issues will also be important such as the number of years a drug has been in routine use, route of administration, tolerability and the impact it has on daily life, family and work commitments or plans to start a family. Shared decision making which takes account of personal preferences and clinical advice will result in selection of a treatment that is best for an 	teriflunomide
 ocrelizumab cladribine natalizumab alemtuzumab alemtuzumab It is not possible to say which of these treatments are preferred; the widening range of DMDs gives greater scope for personalised treatments. If MS remains active despite taking one of the DMDs there is more potential to switch to a treatment with a different mechanism of action. Different responses to DMDs from one person to another are not easily captured in clinical trial data but are important to address in clinical practice. Through different aspects of our work with people affected by MS, we are aware that a very wide range of factors can contribute to an individual's preferences for treatments. The balance between effectiveness of a drug and the risk of side effects are key factors, as is evidence of their effect on the underlying course of the condition and their impact on disease progression. Other issues will also be important such as the number of years a drug has been in routine use, route of administration, tolerability and the impact it has on daily life, family and work commitments or plans to start a family. Shared decision making which takes account of personal preferences and clinical advice will result in selection of a treatment that is best for an another set.	dimethyl fumarate
 cladribine natalizumab alemtuzumab alemtuzumab It is not possible to say which of these treatments are preferred; the widening range of DMDs gives greater scope for personalised treatments. If MS remains active despite taking one of the DMDs there is more potential to switch to a treatment with a different mechanism of action. Different responses to DMDs from one person to another are not easily captured in clinical trial data but are important to address in clinical practice. Through different aspects of our work with people affected by MS, we are aware that a very wide range of factors can contribute to an individual's preferences for treatments. The balance between effectiveness of a drug and the risk of side effects are key factors, as is evidence of their effect on the underlying course of the condition and their impact on disease progression. Other issues will also be important such as the number of years a drug has been in routine use, route of administration, tolerability and the impact it has on daily life, family and work commitments or plans to start a family. Shared decision making which takes account of personal preferences and clinical advice will result in selection of a treatment that is best for an	fingolimod
 natalizumab alemtuzumab It is not possible to say which of these treatments are preferred; the widening range of DMDs gives greater scope for personalised treatments. If MS remains active despite taking one of the DMDs there is more potential to switch to a treatment with a different mechanism of action. Different responses to DMDs from one person to another are not easily captured in clinical trial data but are important to address in clinical practice. Through different aspects of our work with people affected by MS, we are aware that a very wide range of factors can contribute to an individual's preferences for treatments. The balance between effectiveness of a drug and the risk of side effects are key factors, as is evidence of their effect on the underlying course of the condition and their impact on disease progression. Other issues will also be important such as the number of years a drug has been in routine use, route of administration, tolerability and the impact it has on daily life, family and work commitments or plans to start a family. Shared decision making which takes account of personal preferences and clinical advice will result in selection of a treatment that is best for an 	ocrelizumab
 alemtuzumab It is not possible to say which of these treatments are preferred; the widening range of DMDs gives greater scope for personalised treatments. If MS remains active despite taking one of the DMDs there is more potential to switch to a treatment with a different mechanism of action. Different responses to DMDs from one person to another are not easily captured in clinical trial data but are important to address in clinical practice. Through different aspects of our work with people affected by MS, we are aware that a very wide range of factors can contribute to an individual's preferences for treatments. The balance between effectiveness of a drug and the risk of side effects are key factors, as is evidence of their effect on the underlying course of the condition and their impact on disease progression. Other issues will also be important such as the number of years a drug has been in routine use, route of administration, tolerability and the impact it has on daily life, family and work commitments or plans to start a family. Shared decision making which takes account of personal preferences and clinical advice will result in selection of a treatment that is best for an 	cladribine
It is not possible to say which of these treatments are preferred; the widening range of DMDs gives greater scope for personalised treatments. If MS remains active despite taking one of the DMDs there is more potential to switch to a treatment with a different mechanism of action. Different responses to DMDs from one person to another are not easily captured in clinical trial data but are important to address in clinical practice. Through different aspects of our work with people affected by MS, we are aware that a very wide range of factors can contribute to an individual's preferences for treatments. The balance between effectiveness of a drug and the risk of side effects are key factors, as is evidence of their effect on the underlying course of the condition and their impact on disease progression. Other issues will also be important such as the number of years a drug has been in routine use, route of administration, tolerability and the impact it has on daily life, family and work commitments or plans to start a family. Shared decision making which takes account of personal preferences and clinical advice will result in selection of a treatment that is best for an	natalizumab
greater scope for personalised treatments. If MS remains active despite taking one of the DMDs there is more potential to switch to a treatment with a different mechanism of action. Different responses to DMDs from one person to another are not easily captured in clinical trial data but are important to address in clinical practice. Through different aspects of our work with people affected by MS, we are aware that a very wide range of factors can contribute to an individual's preferences for treatments. The balance between effectiveness of a drug and the risk of side effects are key factors, as is evidence of their effect on the underlying course of the condition and their impact on disease progression. Other issues will also be important such as the number of years a drug has been in routine use, route of administration, tolerability and the impact it has on daily life, family and work commitments or plans to start a family. Shared decision making which takes account of personal preferences and clinical advice will result in selection of a treatment that is best for an	alemtuzumab
factors can contribute to an individual's preferences for treatments. The balance between effectiveness of a drug and the risk of side effects are key factors, as is evidence of their effect on the underlying course of the condition and their impact on disease progression. Other issues will also be important such as the number of years a drug has been in routine use, route of administration, tolerability and the impact it has on daily life, family and work commitments or plans to start a family. Shared decision making which takes account of personal preferences and clinical advice will result in selection of a treatment that is best for an	greater scope for personalised treatments. If MS remains active despite taking one of the DMDs there is more potential to switch to a treatment with a different mechanism of action. Different responses to DMDs from one person to another are not easily captured in clinical trial data but are important to address in
	factors can contribute to an individual's preferences for treatments. The balance between effectiveness of a drug and the risk of side effects are key factors, as is evidence of their effect on the underlying course of the condition and their impact on disease progression. Other issues will also be important such as the number of years a drug has been in routine use, route of administration, tolerability and the impact it has on daily life, family and work commitments or plans to start a family. Shared decision making which takes account of personal preferences and clinical advice will result in selection of a treatment that is best for an

8. Is there an unmet need for patients with this condition?	Beta interferon drugs are well established treatments for relapsing remitting multiple sclerosis, having been prescribed on the NHS since 2002. Consequently, the risk/benefit profile is very well known by both neurologists and people with MS. For those people with a more cautious approach to treatments, this wealth of experience means that the beta interferon drugs continue to represent a preferred first-line choice.
	However, presently available beta interferon drugs require self-injecting once to four times each week. Self-injecting can be painful and can lead to skin reactions and complications at injection sites so a treatment which reduces injection frequency would allow more time for the skin to recover.
	One of the more common side effects of the beta interferon drugs is flu-like symptoms such as headache, muscle ache and stiffness, chills or fever which occur following injection. For some people, flu-like side effects can be severe and have a significant impact on work and family commitments. A treatment which reduces injection frequency would provide more opportunity to limit the impact of these side effects by allowing greater flexibility in the timing of injection.
	Clearly, the most significant unmet need for people with MS is a cure. In the absence of a cure, people with MS want to live a life free from the impact of their disease. For many people, the ultimate goal of taking one of the DMDs is to reduce their risk of disease progression and future disability. Inevitably, the frequency and severity of relapses rank highly for those with RRMS, not just for the disruption and distress that relapses cause, but also because of the risk of residual disability and increased chances of conversion to secondary progressive MS. Ranking the impact of individual symptoms is difficult and ultimately inadequate as the condition varies so widely between individuals.
	People with MS are increasingly aware of the significance of reducing or eliminating signs of sub-clinical disease activity in improving long term outcomes. There is a growing recognition that regular clinical evaluation and regular MRI scans are required to fully assess MS activity and response to DMDs.
	Remaining in employment is of critical importance to people with MS. Within 10 years of diagnosis, around 50% of people with MS will have left employment, with all the associated financial, social and psychological consequences. Cost effectiveness calculations do not take account of the burden of loss of work on the individual, their family and society.

Advantages of the technology		
9. What do patients or carers	Clinical trials have demonstrated the effectiveness of peginterferon compared to placebo and confirmed	
	Clinical trials have demonstrated the effectiveness of peginterferon compared to placebo and confirmed that it has a similar efficacy to other beta interferons. Peginterferon has been prescribed as an NHS treatment since 2015; despite the introduction of oral treatments and treatments with a greater efficacy it has continued to be a popular option for people with RRMS. To gain further insight into the experience of people taking peginterferon, we interviewed people who are currently taking this drug. We also reviewed feedback on peginterferon in survey data collected between 20 December 2017 and 10 January 2018 in response to the Appraisal Consultation Document for TA527. As noted above, the majority people with RRMS wish to start treatment with one of the DMDs soon after diagnosis in order to reduce relapse rates and 'silent' MS activity as well as delay long term disability. For some people, after discussion with MS neurologists and MS specialist nurses, beta interferons are the preferred treatment because they are well established and have a very low risk of serious side effects. Overwhelmingly, fortnightly administration was the most important factor influencing people's choice of peginterferon over other self-injected DMDs. People identified a number of advantages that this offered: • allowed them to manage timing of flu-like side effects and minimise the impact of this side effect on work and family commitments • longer interval between using an injection site allows more time for injection reactions to resolve • improved adherence – several people commented that it was easier to remember a fortnightly	
	 Improved adherence - several people commented that it was caster to remember a fortnightly injection than to remember to take oral medications once or twice daily less frequent dosing means less frequent reminder of MS, making it easier to cope with the emotional and psychological impact of MS one person who travels a lot on business noted that injection packs can be bulky, so packing one or two doses needed for a business trip was much more convenient than packing sufficient for daily dosing 	

Peginterferon's pre-filled pen-style injector was described as being very easy to use, which is particularly important for people with manual dexterity, visual or cognitive problems.
One person chose peginterferon over the other beta interferons because the incidence of neutralising antibodies is lower ¹ , making it less likely to lose efficacy over time. They had identified this difference through their own in-depth research, highlighting the importance people place on making decisions about choosing a DMD.
While some people had chosen peginterferon as their first option, others had started with one of the other DMDs. A number had originally chosen Avonex (interferon beta 1a, weekly injection) because they preferred the lower frequency of injections, then later switched to peginterferon for the even lower injection frequency. Others switched from Avonex to peginterferon because peginterferon's subcutaneous injection suited them better than Avonex's intramuscular injection. In addition, some people switched to peginterferon after experiencing intolerable side effects on oral treatments.
An advantage noted by several people was the fact that, while peginterferon is normally stored in the fridge, it can be kept at room temperature for up to 28 days (compared to 7 or 14 days for other beta interferons), making it very practical when travelling.
Finally, one of the people interviewed described how initially they had felt unhappy about injecting peginterferon, but now see this in a more positive light and feel empowered by it, recognising that it is part of their strategy to manage their MS.

¹ White JT, Newsome SD, Kieseier BC, et al. Incidence, characterization, and clinical impact analysis of peginterferon beta1a immunogenicity in patients with multiple sclerosis in the ADVANCE trial. Ther Adv Neurol Dis 2016; 9(4): 239-249. <u>https://www.ncbi.nlm.nih.gov/pubmed/27366230</u>

Disadvantages of the technology		
10. What do patients or carers	People identified a few disadvantages, but also explained how these had been resolved.	
think are the disadvantages of the technology?	One person initially experienced painful injections, but this was avoided by improving injection technique with help from the Biogen support nurse.	
	Several people described the development of a big red patch over several days at the injection site which takes some time to fade, however this was cosmetic only, and did not lead to discomfort.	
	In common with the other beta interferons, peginterferon causes a flu-like side effect. All the people we spoke to found that this lessened over time and were able to do their injection at a time when this side effect had minimal impact. Other measures such as drinking plenty of water the day before injection and taking paracetamol or ibuprofen before the injection also reduced flu-like side effects.	
	One individual who switched from weekly Avonex to fortnightly peginterferon found the flu-like side effect more severe, which they felt was the result of taking a larger amount of beta interferon in a single injection. They had a difficult transition between the two drugs and after four months were offered the opportunity to go back to Avonex, but side effects began to improve and they have now been taking peginterferon for two years.	
Patient population		
11. Are there any groups of patients who might benefit more or less from the technology than others? If so, please describe them and explain why.	Peginterferon is likely to be a preferred treatment option for people who are risk adverse and have a relatively low level of MS activity. For this group, fortnightly injection offers minimal treatment burden and a more easily manageable side effect burden. We would not expect peginterferon to be used for very active relapsing remitting MS (also known as rapidly evolving severe MS or highly active despite previous treatment) for which more effective treatments would be used (fingolimod, natalizumab, cladribine, ocrelizumab, alemtuzumab).	

Equality		
12. Are there any potential	None.	
equality issues that should be		
taken into account when		
considering this condition and		
the technology?		
Other issues		
13. Are there any other issues	The committee is in the unusual position of appraising a drug which has been prescribed by the NHS	
that you would like the	since 2015. Peginterferon is an established treatment with well-defined safety profile. MS teams are very	
committee to consider?	experienced with this agent; there is a wealth of published research and clinical experience confirming its general safety; there are well-established services to initiate and monitor treatment. Despite the availability of alternative treatments, peginterferon along with other beta interferons and glatiramer acetate continue to be prescribed widely.	
	Although it is now an established product, compared to other beta interferons and glatiramer acetate, peginterferon should be considered innovative. Pegylation extends circulating half-life and therefore reduces injection frequency, making it an attractive option for patients.	
	Extensive real-world experience of DMDs has confirmed that at an individual patient level, different products suit different individuals. There are significant differences between the DMDs in terms of ease of use, dosing schedules, storage, side effects, safety during pregnancy and tolerability. The availability of a range of treatment options accommodates the widest possible range of patient and clinician preferences, enhances patient adherence and, consequently, clinical effectiveness.	

Key messages

15. In up to 5 bullet points, please summarise the key messages of your submission:

Peginterferon beta-1a offers the security of an established treatment combined with a less frequent (fortnightly) dosing regimen.

- At least comparable efficacy at reducing relapse rates compared to current beta interferon drugs
- Consequent avoidance of residual disability
- Established drug with well-known risk/benefit profile
- Less frequent injection frequency compared to presently available beta interferon drugs which enables people to better plan their injections around work and other commitments
- Improved quality of life, reduced steroid administration and fewer hospital admissions (resulting from lower relapse rate)

Thank you for your time.

Please log in to your NICE Docs account to upload your completed submission.

.....

Your privacy

The information that you provide on this form will be used to contact you about the topic above.

Please tick this box if you would like to receive information about other NICE topics.

For more information about how we process your personal data please see our privacy notice.

.....

Professional organisation submission

Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis ID1521

Thank you for agreeing to give us your organisation's views on this technology and its possible use in the NHS.

You can provide a unique perspective on the technology in the context of current clinical practice that is not typically available from the published literature.

To help you give your views, please use this questionnaire. You do not have to answer every question – they are prompts to guide you. The text boxes will expand as you type.

Information on completing this submission

- Please do not embed documents (such as a PDF) in a submission because this may lead to the information being mislaid or make the submission unreadable
- We are committed to meeting the requirements of copyright legislation. If you intend to include **journal articles** in your submission you must have copyright clearance for these articles. We can accept journal articles in NICE Docs.
- Your response should not be longer than 13 pages.

About you	
1. Your name	
2. Name of organisation	Association of British Neurologists (ABN)

3. Job title or position	
4. Are you (please tick all that apply):	 an employee or representative of a healthcare professional organisation that represents clinicians? a specialist in the treatment of people with this condition? a specialist in the clinical evidence base for this condition or technology? other (please specify):
5a. Brief description of the organisation (including who funds it).	The ABN is an independent professional representative body for neurologists within the UK. It is funded through membership fees from its members and charitable donations.
5b. Do you have any direct or	No
indirect links with, or funding	
from, the tobacco industry?	
The aim of treatment for this c	condition
6. What is the main aim of	To reduce clinical relapses associated with relapsing-remitting (RR) multiple sclerosis (MS) and slow
treatment? (For example, to	clinical disability progression.
stop progression, to improve	
mobility, to cure the condition,	

or prevent progression or	
disability.)	
7. What do you consider a	
,	Reduction of relative relapse rate compared to best supportive care.
clinically significant treatment	
response? (For example, a	Relative reduction in confirmed disability progression compared to best supportive care is more difficult to
reduction in tumour size by	ascertain due to the longer term nature of data needed to determine this in comparison to relapse rates.
x cm, or a reduction in disease	
activity by a certain amount.)	
8. In your view, is there an	Yes in a wider sense there is a need in RR MS for 'safe'/low risk therapies which have efficacy and are well
unmet need for patients and	tolerated.
healthcare professionals in this	This technology in part meets this unmet need in some people in that it has good long-term safety (as
condition?	demonstrated by similar technology – beta interferons) but also due to its lower injection frequency (fortnightly) and lower rate of formation of neutralising antibodies compared to other beta interferons potentially means it may in some people be better tolerated and more efficacious.
What is the expected place of	the technology in current practice?
9. How is the condition	Standard of care in a majority of people with RR MS is using disease modifying therapies (DMT) or which
currently treated in the NHS?	this technology is one.
Are any clinical guidelines used in the	ABN Guidelines published in 2017 in Practical Neurology
treatment of the	

	condition, and if so, which?	NHSE Treatment algorithm for DMT in RR MS. https://www.england.nhs.uk/commissioning/wp- content/uploads/sites/12/2019/03/Treatment-Algorithm-for-Multiple-Sclerosis-Disease-Modifying-Therapies- 08-03-2019-1.pdf
•	Is the pathway of care well defined? Does it vary or are there differences of opinion between professionals across the NHS? (Please state if your experience is from outside England.)	Pathway is broadly defined by the NHSE Treatment algorithm (https://www.england.nhs.uk/commissioning/wp-content/uploads/sites/12/2019/03/Treatment-Algorithm-for- Multiple-Sclerosis-Disease-Modifying-Therapies-08-03-2019-1.pdf) but it is recognised that some variation exists and there is no one set defined pathway. MDT meetings are used in all prescribing units for the use of 'higher efficacy' DMTs.
•	What impact would the technology have on the current pathway of care?	It would provide a therapy option to a relatively small number of people with RR MS who prefer on the grounds of safety or convenience an infrequent injection therapy with minimal systemic immune suppression. It is likely to represent a niche area but still valuable for those people on the therapy who have no other DMT options.
useo the s	Will the technology be d (or is it already used) in same way as current care HS clinical practice?	Yes it would be used as laid out in the current NHSE treatment algorithm.
•	How does healthcare resource use differ between the technology and current care?	It should not have any impact as this technology is similarly used and priced to other beta interferon preparations.

 In what clinical setting should the technology be used? (For example, primary or secondary care, specialist clinics.) 	As above – mainly in a small group of people who prefer from a safety and/or convenience aspect an infrequent injection therapy with minimal systemic immunosuppression. Increasingly all DMTs are prescribed through neuroscience centres or designated prescribing centres as agreed with NHSE.
• What investment is needed to introduce the technology? (For example, for facilities, equipment, or training.)	This technology should not require any additional investment.
11. Do you expect the technology to provide clinically meaningful benefits compared with current care?	It adds to our clinical options but take up has been in a small number of people as there are several other choices available to most people with RR MS. In those who have taken up the technology it has proved to be a valuable therapy.
• Do you expect the technology to increase length of life more than current care?	Equivalent to other beta interferon technologies.
Do you expect the technology to increase health-related quality of life more than current care?	Equivalent to other beta interferon technologies but the less frequent injections may add to this.

12. Are there any groups of	As per NHSE Treatment algorithm
people for whom the	
technology would be more or	
less effective (or appropriate)	
than the general population?	
The use of the technology	
13. Will the technology be	No impact as similar therapies available already and this technology is not expected to have a large uptake
easier or more difficult to use	amongst people with MS.
for patients or healthcare	
professionals than current	
care? Are there any practical	
implications for its use (for	
example, any concomitant	
treatments needed, additional	
clinical requirements, factors	
affecting patient acceptability	
or ease of use or additional	
tests or monitoring needed.)	

14. Will any rules (informal or	Yes as per current NHSE Treatment Algorithm. No additional testing necessary.
formal) be used to start or stop	
treatment with the technology?	
Do these include any	
additional testing?	
15. Do you consider that the	No
use of the technology will	
result in any substantial health-	
related benefits that are	
unlikely to be included in the	
quality-adjusted life year	
(QALY) calculation?	
16. Do you consider the	Yes. The additional pegylation of the beta-interferon molecule allows for less frequent injections and a
technology to be innovative in	significantly lower rate of neutralising antibody formation which may improve compliance, tolerance and
its potential to make a	potentially some possible improvement in efficacy.
significant and substantial	
impact on health-related	
benefits and how might it	

improve the way that current	
need is met?	
 Is the technology a 'step- change' in the management of the condition? 	No it offers a possibly improved method of delivery of a pre-existing molecule.
Does the use of the	Yes in a relatively small group of people with MS who are not able to tolerate other DMTs or have
technology address any particular unmet need of the patient population?	significant concern regarding safety of other DMTs which may suppress systemic immune activity.
17. How do any side effects or	All injectable DMTs may cause skin bruising or itching and occasional localised infection. Beta interferons
adverse effects of the	can cause in up to 50% of people who take them 'flu-like symptoms' usually on the day of injection. Usually
technology affect the	the medications are well tolerated.
management of the condition	
and the patient's quality of life?	
Sources of evidence	
18. Do the clinical trials on the	Yes
technology reflect current UK	
clinical practice?	

• If not, how could the results be extrapolated to the UK setting?	n/a
• What, in your view, are the most important outcomes, and were they measured in the trials?	Outcomes of efficacy – relative relapse rate, disability progression, MRI activity, evidence of impaired to equivalent DMTs. Yes this was measured in appropriate clinical trials.
If surrogate outcome measures were used, do they adequately predict long-term clinical outcomes?	MRI markers of inflammatory action were used as is standard for clinical trials in this area. They are not full surrogate outcome measures but have a relationship with treatment efficacy.
• Are there any adverse effects that were not apparent in clinical trials but have come to light subsequently?	No.
19. Are you aware of any relevant evidence that might not be found by a systematic review of the trial evidence?	No.
20. Are you aware of any new evidence for the comparator	No.

treatment(s) since the	
publication of NICE technology	
appraisal guidance [TAXXX]?	
[delete if there is no NICE	
guidance for the comparator(s)	
and renumber subsequent	
sections]	
21. How do data on real-world	Equivalent.
experience compare with the	
trial data?	
Equality	
22a. Are there any potential	None known.
	None known.
22a. Are there any potential	None known.
22a. Are there any potential equality issues that should be	None known.
22a. Are there any potential equality issues that should be taken into account when	None known.
22a. Are there any potential equality issues that should be taken into account when	None known.
22a. Are there any potential equality issues that should be taken into account when considering this treatment?	
 22a. Are there any potential <u>equality issues</u> that should be taken into account when considering this treatment? 22b. Consider whether these 	

Topic-specific questions	
23 To be added by technical	
team at scope sign off. Note	
that topic-specific questions	
will be added only if the	
treatment pathway or likely use	
of the technology remains	
uncertain after scoping	
consultation, for example if	
there were differences in	
opinion; this is not expected to	
be required for every	
appraisal.]	
if there are none delete	
highlighted rows and	
renumber below	
Key messages	

24. In up to 5 bullet points, please summarise the key messages of your submission.

- Fewer injections
- Good safety profile
- Equivalent efficacy to similar available DMTs
- Niche/low take-up by patients
- Possible better tolerance than other beta-interferons

Thank you for your time.

Please log in to your NICE Docs account to upload your completed submission.

.....

Your privacy

The information that you provide on this form will be used to contact you about the topic above.

Please tick this box if you would like to receive information about other NICE topics.

For more information about how we process your personal data please see our privacy notice.

.....

Charlotte Brown Plegridy Personal Statement

I was officially diagnosed with RRMS in 2012 although I had my first relapse in 2007. My mum was diagnosed with PPMS when I was a child and I have watched her deteriorate. She is now fully chair bound and has only limited use of her hands. I have been very lucky with symptoms and have none day to day – just some brought on by exercise. My relapses have lasted between 6 weeks and 6 months and have been sensory/visual.

I was first offered DMDs in 2016 when I started taking Tecfidera. Initially I had no side effects from this and it seemed like the perfect treatment but about 3 months in I developed an allergy to sulphites/sulphates and one of the ingredients in the Tecfidera tablet in SLS (Sodium Lauryl Sulphate) so I was unable to continue this treatment.

I began plegridy at the end of 2016 and have been taking it ever since. I do suffer from the achy/flu like side effects sometimes but generally if I am well hydrated these can be kept at bay with ibuprofen and taking it easy. I am a busy mum and foster mum and so neither taking plegridy nor the side effects interfere with my very busy day to day life. The main advantage for me of plegridy is that it is only fortnightly and so I am not constantly reminded of the diagnosis I have – especially having seen my mum suffer so. I am able to live life as normal – I can take my medication at home and after my children have gone to bed so it doesn't remind them either.

The physical impact of MS and DMDs is relatively easy to measure and record but the mental toil it takes is massive and as I am lucky enough not to be reminded everyday by symptoms I am thankful to be able to take a treatment that enables me to live a normal life and not have to remember what the future might hold (until someone finds a cure of course!!.)

Produced by:	Warwick Evidence
Authors:	Amy Grove, Assistant Professor, Warwick Evidence
	Peter Auguste, Research Fellow, Warwick Evidence
	Jacoby Patterson, Senior Researcher, Warwick Evidence
	Wendy Knerr, Senior Researcher, The Write Effect
	Xavier Armoiry, Honorary Clinical Research Fellow, Warwick
	Evidence
	Mubarak Patel, Research Assistant, Warwick Evidence
	Sam Johnson, Information Specialist, Warwick Evidence
	Rachel Court, Information Specialist, Warwick Evidence
	Chris Stinton, Senior Research Fellow, Warwick Evidence
	Oliver Putt, Academic Foundation Year Doctor, Warwick
	Evidence
	Farah Kidy, Academic Clinical Fellow, Warwick Evidence
	Vijith Gunasekera, Honorary Clinical Research Fellow, Warwick
	Evidence
	Harpal Aujla, Honorary Clinical Research Fellow, Warwick
	Evidence
	Olga Ciccarelli, Professor of Neurology, University College of
	London
	Carl Counsell, Clinical reader, University of Aberdeen
	Aileen Clarke, Professor, Warwick Evidence
Correspondence to:	Dr Amy Grove, Warwick Evidence, Warwick Medical School, University of Warwick, Coventry, CV4 7AL. Tel: +44 (0) 2476574046. Email: <u>A.L.Grove@warwick.ac.uk</u>

Title: *Peginterferon beta-1a for treating relapsing–remitting multiple sclerosis (ID1521)*

Date completed:Errata included (29/08/2019)

Source of funding: This report was commissioned by the NIHR HTA Programme as project number 12/88/20.

Declared competing interests of the authors

Prof. Olga Ciccarelli received consultancy fees from Novartis, Biogen-Idec and General-Electric, Genzyme, All payments were made to her employer, UCL Institute of Neurology. She also received reimbursement for attending a symposium from Novartis and ECTRIMS, and funds for research from the UK MS Society, EPSRC, UCLH and BRC

Prof. Carl Counsell received funding through Biogen-Idec, who provided some funding for a departmental MS nurse.

Acknowledgements

We would like to thank Emma Loveman, Senior Researcher, Effective Evidence who read the report and provided quality assessment.

Rider on responsibility for report

The views expressed in this report are those of the authors and not necessarily those of the NIHR HTA Programme. Any errors are the responsibility of the authors. Copyright belongs to The University of Warwick.

This report should be referenced as follows

Grove A, Auguste P, Patterson J, Knerr W, Armoiry X, Patel M, Johnson S, Court R, Stinton C, Putt O, Kify F, Gunasekera V, Aujla H, Ciccarelli O, Counsell C, Clarke A. Peginterferon beta-1a for treating relapsing–remitting multiple sclerosis, Warwick Evidence, 2019: A Single Technology Appraisal.

Contributions of authors

Peter Auguste (Research Fellow) and Vijith Gunasekera (Clinical Research Fellow) reviewed and critiqued the cost-effectiveness evidence and undertook additional analyses; Oliver Putt (Academic Foundation Year Doctor) and Farah Kidy (Academic Clinical Research Fellow) provided the clinical summary; Amy Grove (Assistant Professor) co-ordinated and conducted the critique of the clinical effectiveness evidence and co-ordinated the project and the report; Mubarak Patel (Research Assistant) reviewed and critiqued the statistics and undertook any additional analyses; Jacoby Patterson (Senior Researcher) and Wendy Knerr (Senior Researcher) conducted the critique of clinical effectiveness evidence; Chris Stinton (Senior Research Fellow) critiqued the mixed treatment comparisons. Sam Johnson (Information Specialist) and Rachel Court (Information Specialist) critiqued the company searches and undertook additional searches; Harpal Aujla (Clinical Research Fellow) reviewed and critiqued the company submission, (Olga Ciccarelli (Clinical Professor) provided expert clinical advice; Carl Counsell (Reader) provided expert clinical advice; Carl Counsell (Reader) provided expert clinical advice; Scritique,

Aileen Clarke (Professor) reviewed and critiqued the company submission, clinical and costeffectiveness evidence and report.

Please note that: Sections highlighted in yellow and underlined are <u>'academic in confidence'</u> (AIC). Sections highlighted in aqua and underlined are <u>'commercial in confidence' (CIC)</u>. Figures that are CIC have been bordered with blue.

TABLE OF CONTENT

TABLE	E OF CON	TENT	4
LIST O	F TABLE	S	7
LIST O	F FIGURE	Ξδ	9
1 S	SUMMAR	Υ	12
1.1	Critique	of the decision problem in the company's submission	12
1.2	Summar	y of clinical effectiveness evidence submitted by the company	14
1.3	Summar	y of the ERG's critique of clinical effectiveness evidence submitted	15
1.4	Summar	y of cost-effectiveness submitted evidence by the company	17
1.5	Summar	y of the ERG's critique of cost-effectiveness evidence submitted	19
1.6	ERG con	nmentary on the robustness of evidence submitted by the company	20
	1.6.1	Strengths	20
	1.6.2	Weaknesses and areas of uncertainty	21
1.7	Summar	y of exploratory and sensitivity analyses undertaken by the ERG	22
	1.7.1	Exploratory analyses related to cost-effectiveness	22
2 B	BACKGRC	DUND	23
2.1	Critique	of company's description of underlying health problem	23
	2.1.1	Disease overview	23
	2.1.2	Prognosis and disease monitoring	25
	2.1.3	Burden of MS	26
2.2	Critique	of company's overview of current service provision	26
3 C	Critique of	company's definition of decision problem	
3.1	Populatio	on	30
3.2	Intervent	tion	31
3.3	Compara	itors	31
3.4	Outcome	28	32
3.5	Other rel	evant factors	32
4 C	CLINICAL	EFFECTIVENESS	34
4.1	Critique	of the methods of reviews	34
	4.1.1	Searches	35
	4.1.2	Inclusion criteria	
	4.1.3	Critique of data extraction	39
	4.1.4	Quality assessment	39
	4.1.5	Evidence Synthesis	42

	4.2	Critique	e of trials of the technology of interest, their analysis and interpretation	43
		4.2.1	Conduct of the trial	43
		4.2.2	Randomisation	44
		4.2.3	Patient withdrawals	46
		4.2.4	Missing data	47
		4.2.5	Dosage	48
		4.2.6	Outcomes	48
		4.2.7	Description and critique of the company's approach to trial statistics	52
		4.2.8	Subgroups	55
		4.2.9	Baseline characteristics	57
		4.2.10	Primary and secondary clinical and MRI results for ADVANCE	61
		4.2.11	ATTAIN extension study	62
		4.2.12	Safety (adverse events)	62
	4.3		e of trials identified and included in the indirect comparison and/or multiple trea	
	4.4	Critique	e of the indirect comparison and/or multiple treatment comparison	86
		4.4.1	Appropriateness of the MTC	86
	4.5	Summa	ry of critique of the MTC	94
	4.6	Additio	nal work on clinical effectiveness undertaken by the ERG	95
	4.7	Conclus	sions of the clinical effectiveness section	96
5	(COST-EF	FECTIVENESS	97
	5.2	ERG co	mment on company's review of cost-effectiveness evidence	99
		5.2.1	Search strategy	99
		5.2.2	Inclusion criteria	100
		5.2.3	Included studies	102
		5.2.4	Systematic review of studies reporting resource use and costs	102
		5.2.5	Systematic review of HRQoL studies	103
		5.2.6	Results	103
		5.2.7	Conclusions	103
	5.3	Summa	ry and critique of company's submitted economic evaluation by the ERG	104
		5.3.1	NICE reference case checklist	104
		5.3.2	Model structure	105
		5.3.3	Population	107
		5.3.4	Intervention and comparators	107
		5.3.5	Perspective, time horizon and discounting	

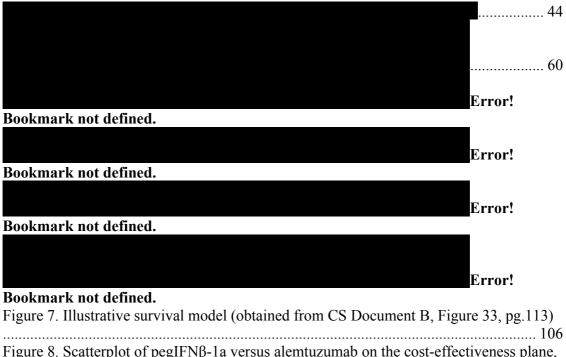
		5.3.6	Transitions	108			
		5.3.7	Mortality	116			
		5.3.8	Stopping rules	117			
		5.3.9	Treatment effects	118			
		5.3.10	Health-related quality of life	120			
		5.3.11	Resource use and costs	124			
		5.3.12	Overview of model assumptions and ERG critique	131			
	5.4	Cost-effe	ectiveness results	134			
		5.4.1	Cost-effectiveness results: pegIFNβ-1a versus comparators at list prices	134			
		5.4.2	Model validation and face validity check	141			
	5.5	Explorate	ory and sensitivity analyses undertaken by the ERG	145			
		5.5.1	The ERG's suggested amendments	145			
		5.5.2	Probabilistic sensitivity analysis	148			
	5.6	Conclusi	ons of the cost-effectiveness section	148			
6			F ADDITIONAL CLINICAL AND ECONOMIC ANALYSES UNDERTAK				
	6.1	Impact o	f ERG changes on the company's base-case results	149			
		6.1.1 its comparat	Impact of ERG's suggested changes on comparison between peginterferon between regimerferon between peginterferon between peginterfer				
	6.2	Results o	of ERG base-case analysis	152			
		6.2.1	ERG's base-case deterministic results	153			
		6.2.2	ERG's probabilistic sensitivity analysis results	153			
		6.2.3	ERG scenario analysis	155			
7		END OF LI	IFE	158			
8		OVERALL	CONCLUSION	158			
9		REFERENCES160					
1()	APPENDIC	CES	168			

LIST OF TABLES

2
4
5
)
7
)
8
1
3
5

Error! Bookmark not

defined.


Error!

Bookmark not defined.

Table 13. Comparison of MTC in ID527 ⁴ reported in Melendez-Torres et al 2017 ⁶ and	
MTCs in the CS	77
Table 14. Primary and secondary outcome results comparison from CS MTC and MTC	in
Melendez-Torres et al 2017 ⁶	80
Table 15. Eligibility criteria for cost-effectiveness searches (obtained from CS Docume	nt
C Appendix G, pg.160-161)	01
Table 16. NICE reference case checklist	04
Table 17. Baseline distribution of people by EDSS	06
Table 18. Intervention and comparators included in the cost-effectiveness analysis 1	07
Table 19. Natural history matrix based on information from the British Columbia datase	et
for people ≥ 28 years	09
Table 20. Transition probabilities from RRMS to SPMS based on the London, Ontario	
cohort 1	10
cohort	I,
Ontario cohort	11
Table 22. Annualised relapse rates for people with RRMS and SPMS 1	12
Table 23. Annualised risk of all-cause discontinuation and discontinuation due to adverse	se
drug reaction	14
Table 24. Updated annualised risk of all-cause discontinuation	15
Table 25. Relative risks for RRMS and SPMS mortality 1	17
Table 26. Relative risks for RRMS and SPMS mortality (interpolated) 1	17
Table 27. Hazard ratios for confirmed disability progression for all DMTs compared to	
placebo at 3 and 6 months1	18
Table 28. Annualised relapse rates for a natural history cohort, using UK MS Survey an	
Patzold., 1982 ¹⁰⁹ and values from alternative sources	19
Table 29. Rate ratio on annualised relapse rates for each DMT compared to placebo 12	20
Table 30. Summary of utility values used in company's cost-effectiveness analysis base	
on information reported by Orme et al., $(2007)^9$ 1	21

Table 31. Summary of utility values obtained from Thompson et al., 2017 ⁸	121
Table 32. Caregivers' utility decrements by EDSS	
Table 33. Disutility and duration associated with serious adverse events and non-serious	ous
	123
Table 34. Posology, unit costs for peginterferon beta-1a and the comparators (obtain	ed
from the company's response to the ERG's clarification questions)	
Table 35. Disease management costs by EDSS level (2017/18 values)	128
Table 36. Annual monitoring costs by disease modifying therapy (2017/18 values)	
Table 37. Cost of managing adverse events (2018 values)	
Table 38. Model assumptions with ERG's comments	
Table 39. Company's deterministic base-case results	
Table 40. Company's probabilistic sensitivity analysis results	
Table 41. PSA results for pegIFN β -1a compared to other comparators (WTP thresho	
£20,000 per QALY)	
Table 42. Description of the company's scenario analyses in comparison to the base-	case
	141
Table 43. Disaggregated clinical model outcome results of the base-case for Peg-IFN	Jβ-1a
versus the comparators	
Table 44. Disaggregated economic model outcome results of the base-case for Peg-I	
1a versus the comparators	
Table 45. Increased risk of mortality using the interpolated values from Pokorski et	
al.(1991) ¹¹	145
Table 46. Caregivers utility decrements obtained from Ganie et al., (2008) ¹⁰	
Table 47. Annualised risk of all-cause discontinuation	
Table 48. RRMS relapse frequency from the ID527 ⁴	
Table 49. SPMS relapse frequency from the ID527 ⁴	147
Table 50. Exploratory results, using interpolated relative risk obtained from Pokorsk	i et
al., (1997) ¹¹	
Table 51. Exploratory analysis, using the caregivers' utility decrements obtained from	m
Gani et al., (2008) ¹⁰	
Table 52. Exploratory analysis, using a parity of 5% per annum for all DMTs	
Table 53. Exploratory analysis, using the relapse frequency from the ID527 ⁴ assessm	
Table 54. Exploratory analysis, using the relapse frequency from the ID527 ⁴ assessm	
Table 55. Changes made to the company's base-case with justifications	
Table 56. ERG's deterministic base-case results (using list prices)	
Table 57. ERG's probabilistic sensitivity analysis results (using list prices)	
Table 58. All-cause discontinuation weighted by person-time.	
Table 59. ERG scenario analysis, using utility values reported in ID527 ⁴ assessment	
Table 60. ERG scenario analysis, assuming no treatment waning on CDP6M	
Table 61. ERG scenario analysis, assuming no treatment waning on CDP6M	
Table 62. ERG scenario analysis, assuming no treatment waning on CDP6M	

LIST OF FIGURES

Figure 8. Scatterplot of pegIFN β -la versus alemtuzumab on the cost-effectiveness plate	ane,
company base-case using list prices	. 137
Figure 9. Cost-effectiveness acceptability curve, company base-case using list prices	. 138
Figure 10. Tornado diagram for the comparison between pegIFNβ-1a and alemtuzum	ab,
using the assumed PAS for comparators	. 140
Figure 11. Scatterplot of pegIFNβ-1a versus alemtuzumab on the cost-effectiveness	
plane, ERG's base-case using list prices	. 154
Figure 12. Cost-effectiveness acceptability curve, company base-case using list prices	s 155

DEFINITION OF TERMS AND LIST OF ABBREVIATIONS

4.534		
ABN	Association of British Neurologists	
AE	Adverse events	
ALT	Alanine aminotransferase	
ARR	Annualised relapse rate	
CDP	Confirmed disability progression	
CDP3/6/12M	Confirmed disability progression 3/6/12 months	
CEAC	Cost-effectiveness acceptability curve	
CHMP	Committee for Medicinal Products for Human Use	
CI	Confidence interval	
CNS	Central nervous system	
CrL	Credible interval	
CS	Company submission	
CSR	Clinical study report	
DMTs	Disease modifying therapies	
EDSS	Expanded disability status scale	
EMA	European Medicines Agency	
EPAR	European public assessment report	
EQ-5D	EuroQol five dimensions	
ERG	Evidence review group	
GA	Glatiramer acetate	
Gd	Gadolinium	
Gd+	Gadolinium-enhancing	
HCHS	Hospital and community health service	
HR	Hazard ratio	
HRQoL	Health-related quality of life	
ICER	Incremental cost-effectiveness ratio	
IFNs	Interferons	
ΙΓΝβ	Interferon beta	
IM	Intramuscular	
ITT	Intention to treat	
IQWiG	Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen	
KM	Kaplan-Meier	
LOCF	Last observation carried forward	
LY	Life year	
MS	Multiple sclerosis	
MSFC	Multiple sclerosis functional composite	
MRI	Magnetic resonance imaging	
MTA	Multiple technology appraisal	
MTC	Mixed treatment comparison	
NEDA	No evidence of disease activity	
NHS	National health system	
NHSEED	National nearin system NHS's economic evaluation database	
NICE	The National Institute for Health and Care Excellence	
ONS	UK Office for national statistics	
OR	Odds ratio	

PASAT3	Paced audio serial addition test 3	
PAS	Patient access scheme	
PEG	Polyethylene glycol	
pegIFNβ-1a	Peginterferon beta-1a	
PICOS	Population, intervention, comparator, outcome, study design	
PML	Progressive multifocal leukoencephalopathy	
PRMS	Progressive relapsing multiple sclerosis	
PSA	Probabilistic sensitivity analysis	
PRISMA	Preferred reporting items for systematic reviews and meta-analyses	
PSS	Person social service	
PSSRU	Personal social services research unit	
QALYs	Quality adjusted life years	
Q2W	Every 2 weeks	
Q4W	Every 4 weeks	
RCT	Randomised controlled trial	
RoB	Risk of bias	
RR	Rate ratio	
RRMS	Relapsing remitting multiple sclerosis	
RSS	Risk sharing scheme	
SAE	Serious adverse events	
SC	Subcutaneous	
SE	Standard error	
SD	Standard deviation	
SDMT	Symbol digit modalities test	
SLR	Systematic literature review	
SmPC	Summary of product characteristics	
SPMS	Secondary progressive multiple sclerosis	
SUCRA	Surface under the cumulative ranking curve	
VTF	Visual function test	
WTP	Willingness-to-pay	

1 SUMMARY

1.1 Critique of the decision problem in the company's submission

The company submission (CS) decision problem matches the intervention and outcomes described in the NICE final scope¹, as displayed in Table 1.

The CS decision problem differs from the NICE scope¹ for the population and comparators.

-The NICE final scope¹ addresses people with RRMS, which is consistent with the marketing authorisation

-The CS decision problem is restricted to exclude subpopulations of patients with highly active or rapidly evolving severe RRMS. The ERG consider this appropriate as it is unlikely that pegIFNβ-1a would be used in these subgroups in clinical practice -The NICE final scope states that "*People who could not tolerate previous treatment*" should be considered as a subgroup if the evidence allows.¹ However, the CS decision problem states that "*most clinical trials generally have exposure to previous disease modifying therapies (DMTs) within a specified time frame (or any exposure at all) as an exclusion criterion*"

-The comparators in the CS decision problem differ from the NICE scope¹ because they exclude those interventions which are indicated for patients with highly active or rapidly evolving severe RRMS (i.e., cladribine, natalizumab, fingolimod).

The CS provides no evidence of the effectiveness or cost-effectiveness of Peginterferon beta-1a (pegIFN β -1a) to the population including highly active or rapidly evolving severe RRMS.

	NICE	CS	ERG comment
Population	People with relapsing-remitting multiple sclerosis (RRMS)	People with RRMS that is not highly active or rapidly evolving severe	The ERG consider the exclusion of these subpopulations to to be appropriate
Intervention	Peginterferon beta-1a	As per scope	-
Comparator	For people with RRMS: • alemtuzumab • dimethyl fumarate	The comparators are for people with RRMS that is not highly active or	The ERG consider the exclusion of interventions which are

Table 1. ERG comparison of NICE ¹ and CS decision problem	Table 1.	ERG c	comparison	of NICE ¹	and CS	decision	problem
--	----------	-------	------------	----------------------	--------	----------	---------

	 teriflunomide beta interferon glatiramer acetate ocrelizumab (only if alemtuzumab is contraindicated or otherwise unsuitable) For people with rapidly-evolving severe relapsing-remitting multiple sclerosis: alemtuzumab cladribine natalizumab ocrelizumab (only if alemtuzumab is contraindicated or otherwise unsuitable) For people with highly active relapsing-remitting multiple 	rapidly evolving severe. •Alemtuzumab •Dimethyl fumarate •Teriflunomide •IFNβ •Glatiramer acetate •Ocrelizumab (only if alemtuzumab is contraindicated or otherwise unsuitable)	listed in the NICE scope to be appropriate as they align to the exclusion of the highly active or rapidly evolving severe subpopulations
Outcomes	sclerosis despite previous treatment: • alemtuzumab • fingolimod • ocrelizumab (only if alemtuzumab is contraindicated or otherwise unsuitable) The outcome measures to be considered include:	As per scope. The CS Document B Table	The ERG consider this restriction in outcomes
	 relapse rate severity of relapse disability (for example, expanded disability status scale [EDSS]) symptoms of multiple sclerosis (such as fatigue, cognition and visual disturbance) freedom from disease activity (for example lesions on magnetic resonance imaging [MRI] scans) mortality adverse effects of treatment health-related quality of life 	1 states some outcomes (severity of relapse, symptoms, and freedom from disease activity) could not be assessed in a mixed treatment comparison (MTC) due to lack of comparative data or heterogenous definitions or scales	assessment to be non- ideal however, recognise that it is a limitation of the evidence available

1.2 Summary of clinical effectiveness evidence submitted by the company

The clinical effectiveness evidence in the CS comes from a single randomised controlled trial (RCT), the ADVANCE trial of pegIFNβ-1a in people with RRMS.² The trial was an international, randomised phase III double-blind parallel-group, placebo-controlled study (1 year [year 2 patients were blinded only to treatment frequency]) which included 26 countries from India, Northern America, Western Europe, Eastern Europe and the 'rest of world'. The ADVANCE trial was designed to evaluate the effectiveness of pegIFN-β-1a (125 µg subcutaneous [SC] every 2 weeks) compared with placebo. A beneficial effect was found for relapse outcomes, disability progression and freedom from disease activity for patients with RRMS. For health related quality of life (HRQoL) measures, 125 µg of SC pegIFN-β-1a every 2 weeks was not different from placebo. Relapse severity outcomes were not reported. Groups were not significantly different with respect to mortality. 1516 patients were randomised and 1512 patients entered the trial:

- In year 1, patients received SC injections with pre-filled syringes of placebo (n=500), pegIFNβ-1a at a dose of 125 µg once every 2 weeks (n=512), or pegIFNβ-1a 125 µg once every 4 weeks (n=500). A total of 456 placebo patients and 438 pegIFNβ-1a 125 µg once every 2 weeks completed year 1. Treatment every 4 weeks is not included in the marketing authorisation, this is not discussed in detail in the CS and will not be described in this report
- At the end of 48 weeks, the 456 patients in the placebo group were randomly re-assigned to pegIFNβ-1a 125 µg every 2 weeks (n=228) or 4 weeks (n=228). Of these, 196 patients completed year 2 in the every 2 week group (200 in the 4 week group).

Pre-specified primary outcome (intention to treat [ITT]) population):

The primary endpoint was annualised relapse rate (ARR) at week 48, based on number of relapses. At week 48, the ARR rate was 0.397 relapses per patient-year (95% Confidence Internal [CI], 0.328, 0.481) in the placebo group and 0.256 (95% CI, 0.206, 0.318) in the pegIFNβ-1a every 2 weeks group.

Secondary outcomes (ITT population):

- The secondary efficacy endpoints were the number of new or newly enlarging hyperintense lesions at 1 year, proportion of patients who relapsed, and proportion of patients with disability progression at 48 weeks which is reported in the CS as continuing disability progression (CDP) at 3 and 6 months (CDP3M and CDP6M)

- Patients treated with pegIFNβ-1a every 2 weeks had fewer new or newly enlarging hyperintense lesions on T2-weighted images at 48 weeks than patients in the placebo group (3.6 9 [5% CI, 3.1, 4.2] versus 10.9 [95% CI, 9.6, 12. 5]). The CS reported the adjusted lesion mean ratio as 0.33 (95% CI, 0.27,0.40; P < 0.0001) for pegIFNβ-1a every 2 weeks versus placebo. Lesions were significantly smaller for those patients taking pegIFNβ-1a compared to placebo (P <0.0001)
- The proportion of patients with a relapse at 48 weeks was 0.291 (Standard error [SE], 0.0206) in the placebo group, 0.187 (SE, 0.0178) in the every 2 week group (Hazard Ratio [HR], 0.61 [95% CI, 0.47,0.80] P=0.0003)
- Disability progression at 48 weeks was 0.105 (SE, 0.0142) in the placebo group and 0.068 (SE, 0.0119) in the intervention group (HR, 0.62 [95% CI, 0.40,0.97] P=0.0383). The CS reports that the pegIFNβ-1a every 2 week group significantly reduced the risk of CDP3M at year 1 by 38% compared with placebo (estimated proportion of patients who progressed for every 2 week versus placebo: 0.068 versus 0.105), resulting in an HR of 0.62 (95% CI, 0.40,0.97 P=0.0383)

In year 2, patients receiving pegIFN β -1a every 2 weeks significantly reduced the CDP3M over 2 years by 37% when compared with delayed treatment (HR, 0.63 [95% CI, 0.43,0.94] P=0.0223)

- Post hoc analysis demonstrated that pegIFNβ-1a every 2 weeks significantly reduced the risk of CDP6M at year 1 compared with placebo by 54%, resulting in an HR of 0.46 (95% CI, 0.26, 0.81, P=0.0069)
- In year 2, early initiation of pegIFNβ-1a every 2 weeks significantly reduced the risk of CDP6M by 41% compared with delayed treatment (estimated proportion of patients who progressed every 2 weeks versus delayed treatment: 0.077 versus 0.119), resulting in an HR of 0.59 (95% CI, 0.38,0.90 P=0.0137).²

The CS also draws upon the ATTAIN study, which is a 2-year extension study of ADVANCE.³ Patients in ATTAIN received the same dosing regimen that they had received in year 2 of ADVANCE. ATTAIN was not used to populate the economic model but is included in the CS as it provides supplementary evidence for the long-term efficacy and safety profiles of pegIFNβ-1a.

1.3 Summary of the ERG's critique of clinical effectiveness evidence submitted

The Evidence Review Group (ERG) have the following concerns about ADVANCE,² the sole source of randomised comparative evidence for the value of pegIFN β -1a:

- ADVANCE was conducted across 26 countries. The majority were from Eastern Europe (69%), followed by India (11%) and Western Europe (8%). Only 14 patients were enrolled from the UK. It is unclear if these populations, or the care they receive, are representative of the care currently provided or likely to be received in the UK
- Patient withdrawal was uneven across arms. The 1-year placebo-controlled treatment period was followed by a second year of treatment, during which all patients initially allocated to placebo were re-randomised to receive either pegIFNβ-1a every 2 weeks (n=228) or every 4 weeks (n=228); total 456 (i.e., 91.2% of the original placebo group). The patients who received pegIFNβ-1a every 2 weeks or every 4 weeks in year 1 remained on their assigned treatment regimen in year 2 (every 2 weeks, n=438/512 [85.5%]; every 4 weeks, n = 438/500 [87.6%]). This represents differential drop-out between the placebo (n=44) and pegIFNβ-1a every 2 week group (n=74) by the end of year 1 of ADVANCE (14.5% from the every 2 week group, and 8.8% from the placebo arm, in year 1²). Withdrawal of consent was the most common reason for discontinuing study treatment
- The proportion of patients who discontinued study treatment or withdrew in the first 48 weeks due to adverse events (AE) was also lower in the placebo group compared with the intervention group. In the every 2 week arm, n=25 discontinued due to an AE and n=25 withdrew due to an AE; in the placebo arm the figures were n=7 and n=6, respectively
- The rates of AE were generally similar between treatment and placebo, with the exception of treatment-related AE: 90% of the pegIFNβ-1a (2-week) group had at least 1 compared to only 53% of the placebo group.

Further important issues:

- The systematic literature review methods were appropriate when checked. The ERG noted some discrepancies in quality appraisal of studies included in the mixed treatment comparisons (MTC)
- The MTC results seem appropriate. The ERG performed a comparison of trials and studies included in the analysis for ARR, CDP3 and CDP6M outcomes between the CS MTC and those performed in a previous technology appraisal, ID527⁴ and noted some minor discrepancies

- There was little information on which to examine consistency in the MTCs. The results of the tests of potential inconsistency which were presented appear to be appropriate
- Transitivity in the MTCs included in the CS is unclear, there is some evidence to suggest that the assumption of transitivity has been violated. The ERG note systematic differences between studies in the disease duration of the patient populations, study publication dates, age inclusion criteria, MS diagnostic criteria, EDSS cut-off criteria, follow-up time between studies and lack of detail regarding previous relapses/treatments
- It was difficult to assess heterogeneity of patient characteristics and the clinical similarity of study populations was often unclear. Studies were included despite heterogeneity and the acceptability of this is unclear, however it appears to be appropriate to avoid the use of arbitrary cuts off points
- The methods of statistical analysis for the MTCs presented in the CS is appropriate.

1.3 Summary of cost-effectiveness submitted evidence by the company

The submission received by the ERG included: 1) a systematic review of economic evaluations, and studies that reported resource use and costs, or HRQoL for the management of people with RRMS and 2) an electronic version of the company's *de novo* Markov model programmed in Microsoft Excel.

The search for cost-effectiveness analyses identified 66 studies (1 February 2016 and May 2019). Of these, 12 were undertaken in the UK, of which two (Hernadez et al., 2017^5 and Melendez-Torres et al., 2017^6) studies were undertaken in England, with both studies comparing pegIFN β -1a with other DMTs. Some study characteristics and results were reported for these studies. The search strategy also identified 29 studies reporting HRQoL. Of these, 11 studies reported utility values by EDSS level, of which two studies (Kobelt et al., 2017^7 and Thompson et al., 2017^8) included participants from the UK. Both studies included the same participants and reported the same utility values by EDSS. However, for consistency, the company used the utility values obtained from Orme et al., $(2007)^9$ which included participants from the UK. Both studies included the same participants and reported the same utility values by EDSS.

Biogen Idec used a Markov model to assess the cost-effectiveness of pegINF β -1a 125 μ g compared to other DMTs for treating people with RRMS. The company's illustrative model structure comprised EDSS health states for people with RRMS and secondary progressive MS

(SPMS), and those experiencing relapses, treatment-related AE and treatment discontinuations. From all health states there was a risk of death.

The model starts with a hypothetical cohort of people aged 36 years, distributed across RRMS EDSS levels 0 to 4.5, reflecting the mean age and distribution of the participants in the ADVANCE trial. Disease progression for people with RRMS was based on transition probabilities derived from the British Columbia natural history cohort. On progression to SPMS, natural history progression was based on transition probabilities derived from the London, Ontario cohort. In each cycle, people may have experienced relapses, treatment-related AE or discontinued treatment, all of which are captured in separate health states.

Treatment effects were assumed to delay disease progression of RRMS and reduce the frequency of relapses. Information about treatment effect was based on the company's MTC. Information on utilities were based on information from Orme et al. (2007),⁹ which were derived from utility values from the UK MS survey. Caregivers utility decrements were based on information obtained from Acaster et al., (2013).¹¹³ Disutility values for people who experienced AE associated with each DMT were obtained from various sources. Age- and gender-specific all-cause mortality rates for a UK general population were derived from the UK Office for National Statistics (ONS) data, and adjusted using the mortality rates obtained from various published sources.

The analysis was undertaken from the National Health Service (NHS) and Personal Social Service (PSS) perspective, with the main outcomes life-years (LY) and quality-adjusted life-years (QALYs) gained over a 50-year time horizon. The company's base-case results were presented as an incremental cost-effectiveness ratio (ICER), expressed as cost per QALYs gained. Both costs and effects were discounted at 3.5% per annum. A number of deterministic one-way sensitivity analyses and scenario analyses were undertaken, as well as probabilistic sensitivity analysis (PSA) based on the outcome cost per QALY only.

Base-case results showed that treatment with pegINFβ-1a 125µg dominated all comparators except treatment with alemtuzumab 12mg. Alemtuzumab 12mg when compared to SC pegINFβ-1a 125µg was more costly and more effective, with an ICER of approximately £1200 per QALY gained. Base-case results were robust across all scenario analyses undertaken. Results for the PSA

showed that at a willingness-to-pay (WTP) threshold for a QALY, pegINF β -1a 125 μ g had a 0.17 probability of being cost-effective when compared to alemtuzumab 12mg. In comparison to all other comparators pegINF β -1a 125 μ g had probabilities >0.85 of being cost-effective.

1.4 Summary of the ERG's critique of cost-effectiveness evidence submitted

Whilst the ERG consider the economic model structure to be appropriate, we have some concerns that relate to some of the model inputs.

Interpolated disease-specific relative risk obtained from Pokorski et al., (1997)¹¹

The ERG agrees that there is an increased risk of mortality compared to the general population. Mortality multipliers applied to some EDSS levels might have been over- or underestimated. For example, people with EDSS 0, it is assumed that there is a 1.6 increased risk of mortality compared to the general population. Conversely, the interpolated value for EDSS 0 assumes that there is no increased risk of mortality compared to the general population. The ERG considers the interpolated values to better reflect the increased risk of mortality compared to the general population.

Caregivers utility decrements obtained from Gani et al., (2008)¹⁰

Caregivers utility decrements for EDSS 5-5.5 and 6-6.5 appear to be higher compared to the utility decrements for more severe EDSS levels. However, we would expect the caregivers' utility decrements to increase as EDSS levels rise.

All-cause discontinuation risk using a parity of 5% per annum

RCTs may not be the best way to capture real-life tolerability/discontinuations. First, RCTs can be considered artificial, with highly selected/motivated participants. Second, there may be various non-clinical reasons for discontinuation. Third, limited long-term follow-up. Given the limitations, the ERG considers it more appropriate to use estimates from post-marketing surveillance/real life clinical studies (e.g., Risk sharing scheme [RSS]), as these can provide better rates for discontinuation.

A parity of 5% per annum was used in a previous assessment, which was based on evidence from the RSS. The ERG acknowledges that some of the DMTs (pegIFN β -1a, teriflunomide, alemtuzumab, dimethyl fumerate, and ocrelizumab) included in the economic analysis were not included in the RSS. The ERGs preference would be to use 5% per annum for the older DMTs

and another estimate for newer DMTs. However, given the paucity of real-life studies following up people on newer DMTs, we assumed that the discontinuation rate is the same for the newer DMTs. The ERG clinical advisor suggested that there is no good reason why the annual all-cause discontinuation for pegIFNβ-1a is higher compared to other interferons (IFNs).

<u>RRMS relapse frequency from the ID527⁴ assessment Melendez-Torres et al., (2017)⁶</u>

Values used in the company's base-case show that there is a steady decrease in the annual relapse rates, where in some more severe EDSS states the annual relapse rates were slightly higher than less severe EDSS states. The ERG clinical advisors suggested that they would expect there to be gradual decrease in the annual relapse frequency. The ERG considered the values reported in ID527 assessment, which is based on the British Columbia cohort to be more appropriate.

<u>SPMS relapse frequency from the ID527⁴ assessment</u> Melendez-Torres et al., (2017)⁶ People with SPMS are characterised by increasing disability commonly without relapses; though some people continue to experience relapses. We considered that some of the values used in the company's base-case are likely to overestimate the annual relapse rate. For example, the annual relapse rate for people with EDSS 3-3.5 SPMS) is 0.875, which is higher than EDSS 2-2.5 (SPMS) with a value of 0.4650. This suggests that people in EDSS 3-3.5 health state experience more relapses than people in EDSS 2-2.5. Furthermore, the annual relapse rate for people in EDSS 3-3.5 (SPMS) is more frequent than people in the corresponding health state but with RRMS (0.720). The ERG considered the ID527⁴ assessment values to be more appropriate because the relapse rates decrease as EDSS levels increase and the annual relapse rates in people with SPMS are less than the relapse rates for people with RRMS.

1.5 ERG commentary on the robustness of evidence submitted by the company

1.5.1 Strengths

The company's systematic literature review methods were appropriate and the MTC results seem appropriate. The appraisal of the single pivotal trial submitted as evidence for effectiveness of pegINF β -1a was satisfactory.

The company's model is logical and it depicts the natural history for people living with RRMS, with an appropriate cycle length of one year to capture any changes in the disease progression. In general, the process of identifying and justifying the choice of key model inputs were transparent. The economic analysis conforms to the NICE reference case in that the perspective, discount, and the lifetime horizon was considered to be long enough to capture the costs and benefits of pegIFN β -1a and other DMTs. The assumptions made in order to have a workable model were plausible, and the economic model submitted allowed for a range of scenario analyses to be undertaken.

1.5.2 Weaknesses and areas of uncertainty

The ERG were concerned about ADVANCE,² as the sole source of randomised comparative evidence for the value of pegIFN β -1a because only 14 patients were enrolled from the UK, therefore the generalisability to a UK population is unclear. There was uneven withdrawal across trial arms by the end of year 1 ADVANCE (14.5% from the every 2 week group, and 8.8% from the placebo arm) which represents differential drop-out between the placebo (n=44) and pegIFN β -1a every 2 week group (n=74) by the end of year 1, in year 1²). The proportion of patients who discontinued study treatment or withdrew in the first 48 weeks due to AE was also lower in the placebo group compared with the intervention group (every 2 week n=25 discontinued due to an AE and n=25 withdrew due to an AE; in the placebo arm the figures were n=7 and n=6, respectively). Finally, treatment-related AE were 90% of the pegIFN β -1a (every 2 week) group experiencing 1 event compared to 53% of the placebo group. Overall, these concerns may mean that the results obtained in ADVANCE could potentially be biased, and therefore need to be interpreted with caution. The ERG consider the differential drop-out might introduce bias, as there are potential differences in characteristics of subjects who dropped out, compared to the subjects who remained in the study. However, the ERG are not able to confirm the differences due to lack of data.

The ERG noted some discrepancies in quality appraisal of studies included in the MTC, and in the inclusion of trials and studies included in the analysis for ARR, CDP3 and CDP6M outcomes between the CS MTC and those performed in ID527⁴. There was little information on which to examine consistency of the MTCs, and transitivity of the MTCs included in the CS is unclear, there is some evidence to suggest that the assumption of transitivity has been violated.

There was evidence of lack of critical appraisal of the economic evidence identified by the systematic review. For example, the company undertook a systematic review of the HRQoL evidence and identified 11 studies that reported results by EDSS score. However, there was not adequate discussion/justification about why the evidence was not appropriate for the economic model. The company further stated that for consistency and in line with other technology appraisals it was more appropriate to use those by Orme et al., (2007).⁹ The ERG have highlighted areas of uncertainty: 1) An annualised discontinuation rate, as the rate of discontinuations may change over time (for example, early higher rate of discontinuations due to adverse effects/tolerability, then plateau, then later increase due to progression to SPMS or inactive MS), 2) Long-term all-cause discontinuation of newer DMTs obtained from a real-world setting, 3) the impact of treatment switching to other lines of DMTs. The model assumes that people do not receive other DMTs when they discontinued treatment and 4) whether there is evidence to support treatment waning.

1.6 Summary of exploratory and sensitivity analyses undertaken by the ERG

1.6.1 Exploratory analyses related to cost-effectiveness

The ERG made some amendments to the company's base-case model inputs. In general, the company's base-case results were robust to making each individual change while holding all other input parameters constant. The ERG's preferred base-case consists of making the following changes simultaneously:

- Interpolated disease-specific relative risk obtained from Pokorski et al., (1997)¹¹
- Caregivers utility decrements obtained from Gani et al., (2008)¹⁰
- All-cause discontinuation risk using a parity of 5% per annum
- RRMS relapse frequency from the ID527⁴ assessment (Melendez-Torres et al., 2017)⁶
- SPMS relapse frequency from the ID527⁴ assessment (Melendez-Torres et al., 2017)⁶

Under the ERGs preferred assumptions, and taking the list price for each DMT, the results showed that alemtuzumab dominated all strategies by being the least costly and most effective treatment strategy. Results from the PSA show that at a willingness-to-pay threshold of £20,000 per QALY, there was a 0.28 probability that pegIFN β -1a was cost-effective when compared to alemtuzumab.

2 BACKGROUND

2.1 Critique of company's description of underlying health problem.

2.1.1 Disease overview

The CS provides a good disease overview and describes the underlying health condition with emphasis on its types, prevalence, symptoms and risk factors. The CS correctly states that disease onset is due to complex interactions between environmental and genetic factors. It describes smoking, adolescent obesity, and the Epstein-Barr virus as associated with an increased risk of developing multiple sclerosis (MS) (CS Document B, pg.18) however, it should be noted that this is not an exhaustive list. The ERG notes that Vitamin D deficiency has been shown to have an impact on disease activity and progression.^{12, 13}

2.1.1.1 Types of MS

The CS provides a succinct and accurate definition of the three main types of MS. It states that RRMS affects 85% of newly diagnosed patients (this is taken from the 2008 WHO Multiple Sclerosis Atlas).¹⁴ The ERG notes that this document was updated in 2013, however, the update does not state any change in the given statistics.¹⁵

2.1.1.2 Epidemiology

MS is described in the CS as one of "*the leading cause(s) of non-traumatic [central nervous system] CNS morbidity and mortality in young and middle-aged adults*" which generally manifests itself between the ages of 25 and 35 (CS Document B, B.1.3.1.2 pg.18). A review of literature revealed that the peak incidence for MS in the UK occurs between 40 and 50 years of age.¹⁶ In Document B, B.1.3.1.2, the CS references a significant amount of data from the MS Trust website that does not cite any peer reviewed publications (CS Document B, reference ID29). Therefore, the values may underestimate the number of people living with MS in the UK. A study completed in 2010 estimated that 126,669 people in the UK were living with MS and 6,003 with new diagnoses in a year.¹⁶ This is currently the most comprehensive study regarding the prevalence and incidence of MS across the UK. The MS society produced an estimate in 2018 using data from the Mackenzie paper¹⁶ and extrapolating forward suggested that there are over 110,830 people with MS in the UK, and that each year around 5,190 people are newly diagnosed with the condition.¹⁷ The CS states that patients with MS require expensive support throughout life, this is valid.⁷

2.1.1.1 Pathophysiology

The CS summarises the pathophysiology of MS which is not well understood. It focuses on the intrinsic model hypothesis which suggests that initiation of the immune cascade occurs within the CNS, but tends to neglect to discuss the extrinsic model.¹⁸ The CS also mentions the role of T-helper cells in the pathogenesis of MS, however fails to mention that newer studies suggest that B cells have a larger role than previously thought.¹⁹

2.1.1.2 Presentation

Clinical symptoms

The ERG note that the CS has discussed a range of symptoms experienced by patients with MS (CS Document B, pg.19). However the ERG note that the CS does not describe some of the most common presenting symptoms including:¹⁵

- Sensory (40%)
- Motor (39%)
- Fatigue (30%)
- Visual (30%)
- Balance (24%)
- Sexual (20%)
- Urinary (17%)
- Pain (15%)
- Cognitive (10%)

The ERG also note that the CS states: "*Later in the disease course, cognitive problems are the most common symptoms affecting 40%-70% of patients with MS*" (Document B, B.1.3.1.4 pg.19). The document that is referenced for this statistic does not state that cognitive problems are the most common.¹⁵ And other literature also suggests that fatigue or limb disability are more common, however it should be noted that symptoms can be dependent on age, gender, disease progression as well as disease severity.²⁰

Imaging features

The CS provides a reasonable description of the main MRI sequences used for MS (2012).²¹ The ERG note that there are now newer, more complex, imaging sequences allowing better insights into pathophysiology and improved specificity for diagnosis.²² For example, the use of double inversion recovery or phase sensitive inversion recovery may be beneficial in the detection of cortical lesions.

2.1.1.3 Diagnostic criteria

The CS states the use of the McDonald criteria for diagnosis of RRMS and acknowledges the 2017 update.¹⁹ However, the ERG note that the criteria provided in CS Document B, page 20 are for the 2005 McDonald criteria. The McDonald criteria incorporate MRI into the diagnostic assessment that focuses on neurological history, examination and a variety of paraclinical laboratory examinations.¹⁹

2.1.2 Prognosis and disease monitoring

The ERG were unable to verify the value that 50-60% of patients develop SPMS within 15-20 years (CS Document B, pg.20) however, it is widely accepted that untreated patients with RRMS will develop SPMS.²³

Risk factors for disease progression

The ERG believe the CS offers a good summary for risk factors (CS Document B, pg.20) however, it again neglects to comment on Vitamin D as previously mentioned. Table 3 (CS Document B pg.21-23) provides a summary of different outcome measures however it should be noted that it is not conclusive.^{24, 25}

Measurement of disability

As described in the CS, the EDSS can be used to measure disease progression (CS Document B, pg.24). The EDSS does have limitations, including being scored by a clinician thus at risk of subjective bias, it is also argued by some professionals that the scale is non-linear.²⁶ The citation provided (54, 55 from CS Document B) does not deliver detailed information which is available elsewhere.^{26, 27} The ERG would like to clarify that the eight domains are as follows:

- 1. Pyramidal
- 2. Cerebellar

- 3. Brainstem
- 4. Sensory
- 5. Bowel and bladder function
- 6. Visual function
- 7. Cerebral function
- 8. Other

Disability progression

The CS describes disability progression citing papers with patient populations from the West of France which can be considered equivalent to the UK in terms of population characteristics.²⁸ The CS summary of disease progression with relation to relapses is valid (CS Document B, pg.24), however, the ERG are concerned that some statistics are incorrectly presented. An example would include "42% of patients experiencing a permanent residual deficit of ≥ 0.5 EDSS points following a relapse" (CS Document B, pg.24). The cited paper states that 42% of patients had a residual deficit of at least 0.5 EDDS units at an average of 64 days, the paper proceeds to state that there is a suggestion of permanence.²⁹ The summary regarding ongoing MRI activity on disability progression is reasonable.

2.1.3 Burden of MS

The ERG consider that the CS description of the impact of MS on the patient and care giver are appropriate (CS Document B, B.1.3.2 pg.25). The ERG note that the CS states "*Patients with MS have worse QoL scores than patients with epilepsy, diabetes, recent myocardial infarction, and hypertension*" (CS Document B, pg25). However, the ERG note that scores for MS patients are lower in some domains (physical functioning, role limitations-physical, energy, and social function) when compared to epilepsy patients however are equal in other domains (emotional wellbeing, and role limitations-emotional).³⁰ The ERG consider the assumptions around the societal and healthcare burden of MS are reasonable.

2.2 Critique of company's overview of current service provision

The CS is focussed on DMTs which are the main treatments for patients with RRMS. Current service provision and a significant portion of the NICE MS guidelines (CS Document B,

B.1.3.3.2 pg.28) describe the management of symptoms associated with MS (such as fatigue and spasticity) and with the management of relapses.

The CS has appropriately raised the issue of complexity with treatment choice as the number of available DMTs increases. The UK Association of British Neurology (ABN) guidelines $(2015)^{31}$ outlines the range of DMTs which are available in order to meet the clinical and individual needs for each patient. The ABN divides DMTs into two categories, drugs of moderate or of high efficacy (CS Document, B B.1.3.3.2 pg.29). Alternatives to pegIFNβ-1a which are currently available in the NHS are outlined in Figure 2 (CS Document B, pg.30). The CS provides a general summary about interferons on page 32 (Document B, pg.32) which the ERG consider to be accurate.

The CS highlights the importance of shared decision making which involves identification of goals, benefits and risks of treatments. The CS notes that "*most patients require a change in therapy over the course of their disease, and achieving treatment goals requires careful planning*" (CS Document B, pg.27). However, indications for stopping and starting treatment are not fully described. The NHS England treatment algorithm for MS DMTs suggests that treatment should be initiated only in those who are ambulant and have no evidence of non-relapsing disease.³² Stopping criteria for the current drug include intolerability, ineffectiveness, developing secondary progressive disease or the inability to walk.³²

The CS (Document B, pg.30) presents a summary of the NHS England treatment algorithm. The ERG note some differences in the summary presented in the CS and the updated 2019 algorithm:³²

- Ocrelizumab is offered as an alternative to alemtuzumab wherever the latter appears in the algorithm
- In order to be eligible for treatment, patients with a single clinical episode must satisfy the McDonald diagnostic criteria
- Glatiramer acetate (GA) is a first-line and alternative first-line treatment option for patients with RRMS (one relapse in two years) or a single clinical episode satisfying the McDonald diagnostic criteria
- For patients with RRMS with one relapse in the last two years, no treatment is not a preferred option

- There is a difference in the recommendation between interferon beta 1a and 1b with the latter only appearing in the "2 significant relapses in 2 years" pathway
- Natalizumab only appears in the "rapidly evolving severe MS" pathway.

The ERG clinical expert states that the NHS England treatment algorithm included in the CS "mostly" provides an appropriate reflection of clinical practice. However, they note that "some patients with 2 relapses in 2 years opt for no treatment because of doubt over reduction in long term disability/prevention of secondary progression with 1st line DMTs". The ERG clinical expert also notes that "some clinicians would be nervous of using highly active agents in sequence i.e., changing from natalizumab to alemtuzumab to cladbribine (in any order) because do not know the long term toxicity".

The CS highlights the differential effect of DMTs on disability. The ABN recommendations suggest that the relationship between relapse rate, DMTs and disability is complex.³¹ However, there is a consensus that DMTs do not affect the development of disability where this is unrelated to relapses.³¹

The ERG note the association between reduced treatment adherence and poor outcomes including more frequent and severe relapses, increased health system use, poorer mental health and lower employment prospects is summarised in the literature.³³⁻³⁹ However, since these are all cross-sectional studies a causal relationship cannot be assumed.

The CS describes issues of poor patient compliance and adherence with interferons (Document B B.1.3.3.5 pg.32). In a large MS database study, Fox et al., (2013) found that patients were significantly more likely to stop the once daily SC GA than either weekly IFNβ-1a (P=0.0007) or alternate day IFNβ-1b (P=0.0010).³⁹ However, there was no significant difference between weekly intramuscular (IM), three times a week SC or alternate day SC interferon beta (IFNβ) regimens. This would suggest that the relationship between frequency of dosing and adherence is not linear and may be mediated by drug effects or type of injection.

Furthermore, specific to injections, anxiety and dependency on others have been noted as barriers to treatment compliance.⁴⁰ Several additional groups of barriers to treatment adherence have been identified. Perceived lack of efficacy was the most common reason given for treatment cessation in a large MS database.³⁹ In multivariable analysis of questionnaires completed by patients and

health professionals, ease of injection (odds ratio [OR] 1.47 [95% CI, 1.15,1.87]), satisfaction with treatment (OR 1.54, [95%,CI, 1.20,1.98]), being treated at an MS centre (OR 1.36, [95% CI, 1.09,1.71]), having had a discussion about adherence (OR 1.54 [95% CI, 1.14,2.10]) and excellent family support (OR 1.33 [95% CI, 1.06,1.67]) were all significantly associated with treatment adherence.³⁶ However, a causal relationship cannot be assumed between frequency of injections and adherence.

The potential advantages of pegylation on pharmacodynamics, thermal stability and immunogenicity are described in detail in the CS (Document B, B.1.3.4.1 and B.1.3.4.1 pg.33). The ERG consider these to be appropriate.⁴¹ The CS reports "36% reduction in annualised relapse rate (ARR) rate ratio (RR) 0.644 (95% CI 0.500 - 0.831)" in the first year of treatment with pegIFNβ-1a (CS Document B, pg.34) and suggests that this is not dissimilar to drugs which NICE has included in first-line recommendations for RRMS.⁴ The CS proposes potential benefits of pegIFNβ-1a compared with other IFNs and GA including:

- PegIFNβ-1a has a prolonged circulation time in comparison to other IFNs and GA, which results in reduced frequency of administration (every 2 week dose)
- PegIFNβ-1a does not require cold chain and can be kept at room temperature for 30 days
- Pegylation can decrease drug immunogenicity by shielding antigenic determinants, which may result in a lower incidence of neutralising antibodies. This could potentially have an impact on efficacy.^{41, 42} (CS Document B, B.1.3.4.2 pg.33).

The CS state that "*no equity issues are foreseen*" (Document B, B.1.4 pg.33). The ERG consider this to be appropriate.

3 Critique of company's definition of decision problem

3.1 Population

The CS population differs in part from the final NICE scope.¹ The final scope defined the population as "*people with relapsing-remitting multiple sclerosis*".¹ The population in the CS decision problem (CS Document B, Table 1 pg.13) had RRMS but excluded subpopulations of patients with highly active or rapidly evolving severe RRMS.

Highly active subpopulations were defined as patients who "have disease activity despite previous treatment" (CS Document B, Table 1 pg.13). High disease activity was defined as "failure to respond to at least 1 year of treatment with a DMT and either, ≥ 1 relapse in the previous year with either ≥ 9 T2 lesions and/or ≥ 1 Gd+ lesion, or unchanged or increased relapse rate, or ongoing severe relapse compared with the previous year".⁴³ The CS states that there are "limited data available to assess the efficacy of pegIFN β -1a in the highly active subgroup" (CS Document B, Table 1 pg13). Rapidly evolving severe RRMS subpopulations were defined "as one or more disabling relapses in 1 year, and with ≥ 1 (Gadolinium) Gd+ lesion or a significant increase in T2 lesion load compared with a previous recent MRP".⁴³ The company state that pegIFN β -1a should not be assessed in this subpopulation as it is "highly unlikely to be used in this population in clinical practice" (CS Document B, Table 1 pg.14). The ERG clinical advisors agreed with the subpopulation restrictions, and suggest that there are more effective options in these scenarios.

The company suggest that the subpopulations were excluded for consistency with the current recommendations within the NHS England DMT algorithm for first-line therapy, and for consistency with the exclusion criterion (previous treatment with IFN for more than 4 weeks) in the included pivotal trial (CS Document B, Table 1 pg.13). The ERG's clinical advisor confirmed that the NHS England DMT algorithm presented in CS Figure 2 (CS Document B, pg.30) is a mostly accurate description of NHS clinical practice (see Section 2.2) and that the exclusion criteria of the pivotal trial are reasonable. The clinical evidence submitted by the company (ADVANCE)² matches the patient population described in the CS decision problem.

The European Public Assessment Report (EPAR) states that "*Plegridy is indicated in adult patients for the treatment of relapsing remitting multiple sclerosis*".⁴⁴ The company reported that

"the [Committee for Medicinal Products for Human Use] CHMP considered lack of data in patients with high disease activity" (CS Document B, Table 1 pg.13). The ERG note that the lack of data reflects the exclusion criteria of the pivotal trial.

Overall, the ERG considers the exclusion of highly active and rapidly evolving severe subgroups populations of RRMS to be appropriate.

3.2 Intervention

The intervention in the decision problem is pegylated interferon β -1a (pegIFN β -1a) which matches the NICE final scope.¹ The company provides a description of the technology and the mechanism of action of pegIFN β -1a (CS Document B, pg.17) which the ERG confirm is consistent with the summary of product characteristics (SmPC).

Pegylated interferon β -1a is a medication administered SC using a prefilled syringe/autoinjector. The recommended dosage is 125 µg administered SC every two weeks by self-injection. In pegIFN- β -1a, polyethylene glycol (PEG) is added to the N-terminus of beta-interferfon-1a, allowing for less frequent administration.⁴ The company report that although the mechanism of action of pegIFN β -1a is not fully understood, it is thought to reduce disease activity in MS by a similar mechanism to that of non-pegIFN β -1a. In that, it binds to the type I interfon receptor on the surface of cells which leads to regulation of interfon-responsive gene expression.⁴⁴

3.3 Comparators

The comparators described in the company decision problem are partially consistent with the NICE final scope.¹

The CS decision problem matches the NICE final scope for patients with RRMS. The comparators are: alemtuzumab, dimethyl fumarate, geriflunomide, IFN β , GA and ocrelizumab (only if alemtuzumab is contraindicated or otherwise unsuitable). The ERG's clinical advisor confirmed these comparators are appropriate, but stated that some patients with two relapses in two years may opt for no treatment, and this circumstance is not considered in the NHS England: treatment algorithm for MS DMTs.³²

The comparators in CS decision problem differ from the NICE final scope due to the exclusion of people with rapidly evolving serve RRMS and highly active RRMS despite previous treatment. Therefore, the following treatments for rapidly evolving severe RRMS; (cladribine, natalizumab); and for highly active RRMS (fingolimod); are not included in the CS decision problem.

The comparators included in the company decision problem align to the population included in the NICE final scope, as outlined above in Section 3.1. The ERG considers the exclusion of highly active and rapidly evolving severe RRMS comparators appropriate.

3.4 Outcomes

The outcomes in the company decision problem match the NICE final scope.¹ These include; relapse rate, severity of relapse, disability (e.g., EDSS [reported as CDP3/6/12]) symptoms of MS (such as fatigue, cognition and visual disturbance), freedom from disease activity (e.g., lesions on MRI scans), mortality, adverse effects of treatment and HRQoL. The ERG provide a critique of outcomes where possible in the clinical effectiveness review (see Section 4.2.6).

The company state that "some outcomes (severity of relapse, symptoms, and freedom from disease activity) could not be assessed in the CS MTC due to lack of comparative data or heterogenous definitions or scales" (CS Document B, Table 1 p15). Please see Section 4.3.1.4 for more detail. The ERG consider this restriction in outcomes assessment to be non-ideal however, recognise that it is a limitation of the evidence available.

3.5 Other relevant factors

The European Medicine Agency issued a marketing authorisation (17^{th} July 2014) for the use of pegIFN β -1a in the treatment of adults with RRMS.⁴⁴

The ERG note that the EPAR states "*The safety and efficacy of Plegridy in patients over the age of 65 have not been sufficiently studied due to the limited number of such patients included in clinical trials*".⁴⁴

The company note that there is no Patient Access Scheme (PAS) in place.

The NICE final scope states that the following subgroup should be considered if the evidence allows; "*People who could not tolerate previous treatment*".¹ The CS decision problem states that "*Due to lack of evidence this subgroup is not included in the submission*" (CS Document B, Table 1 pg16). The company suggest that this subgroup is relevant in clinical practice, which the ERG clinical advisors have confirmed. However, the CS continues "*most clinical trials generally have exposure to previous DMTs within a specified time frame (or any exposure at all) as an exclusion criterion*" (CS Document B, Table 1 pg16). As described in Section 3.4 the ERG considers the exclusion of "*people who could not tolerate previous treatment*" as appropriate due to lack of evidence. In this appraisal, 83% of subjects in the pivotal trial (ADVANCE) were MS treatment-naive and the remaining 17% had previously discontinued treatments.²

4 CLINICAL EFFECTIVENESS

4.1 Critique of the methods of reviews

The CS undertook two systematic reviews of evidence which are relevant to the company's decision problem; a systematic literature review (SLR) that evaluated clinical effectiveness evidence, and an SLR of cost-effectiveness evidence.

The SLR which evaluated clinical effectiveness of pegIFN β -1a in adult patients with RRMS was presented in CS Document B, page 36; and the ERG critique is provided below. The processes (methods and number of reviewers) for study selection and data extraction were described in the CS and appear to be appropriate. Table 2Table 2 provides the ERG quality assessment of the CS clinical effectiveness SLR. Overall, the ERG consider the chance of systematic error in the clinical effectiveness SLR to be low.

CRD Quality Item	Yes/No/Uncertain with comments
1. Are any inclusion/exclusion criteria reported relating to the primary studies which address the review question?	Yes. Eligibility criteria were reported for the systematic review, however, there are inconsistencies in the reporting of the numbers of included studies which appear to be related to the numbers of hits in the searches and update searches (rather than the number of included studies) (see Section 4.1.1).
2. Is there evidence of a substantial effort to search for all relevant research?	Yes
3. Is the validity of included studies adequately assessed?	Yes. However, ERG judgements differ for some items in the MTC (see Section 4.3.1.1)
4. Is sufficient detail of the individual studies presented?	Yes. Details of the RCTs of the intervention and comparators were described in sufficient detail. The company assessed the quality of the included trial (ADVANCE); ² the ERG generally agreed with the company's assessment although there were some differences in judgements (see Section 4.1.4).
5. Are the primary studies summarised appropriately?	Yes. Results for the pivotal RCT (ADVANCE) and 2-year follow up study (ATTAIN) are presented in tabular and narrative form in the CS Document B, page 36-46. Other trials included in the synthesis were not reported in detail. However, following clarification (clarification question A8) study details of studies included in the systematic review were provided.

Table 2. Quality assessment of the CS systematic review of clinical effectiveness

The submitted evidence is generally consistent with the company decision problem defined in the CS.

4.1.1 Searches

Literature searches were conducted as part of a wider review for treatment of either RRMS or SPMS and for approved treatments or treatments expected to be approved in the future (CS Document C, D.1.2). The CS differs from the NICE scope¹ and reference case as it focuses on RRMS and excludes highly active MS or rapidly-evolving severe subpopulations (see Section 3.1 2). Only DMT's with a positive reimbursement decision by NICE for patients with RRMS that was not highly active or rapidly evolving sever were included in the MTC (CS Document C, D.1.2), therefore natalizumab, daclizumab, fingolimod and cladribine were excluded. Daclizumab was initially included in the SLR but it was withdrawn during the SLR. The MTC identified studies for pegIFNβ-1a and relevant comparators (CS Document C, D.1.2). This found 32 studies (561 papers) of which five studies were excluded because they could not be incorporated into any analyses, leaving 27 studies in the MTC (CS Document B, Table 16 pg.69).

The SLR reported in CS Document B, Section B.2.1 and CS Appendix Document C, D1.1 searched a comprehensive range of databases and trial registries. The ERG consider an appropriate range of natural language and thesaurus search terms were used to search for the disease and all relevant interventions as identified by the scope¹ and were combined using the relevant syntax. The original searches were run in October 2014, with seven subsequent update searches performed up to December 2018. There were two typographical errors in reporting actual search dates, but confirmation was received in the clarification response (A1) that the final searches were conducted in December 2018. There were no language or age limits. The searches were as follows:

- Separate, rapid appraisal searches identified systematic reviews, protocols, HTAs and guidelines via the CDSR, DARE, HTA, NIHR, Prospero, NICE, CADTH and KSR Evidence databases
- Database searches were conducted in Medline, Embase and PubMed using a recognised RCT search filter. This may have missed systematic reviews and meta-analyses, which can be a source of primary studies. PubMed was searched to retrieve non Medline papers but no MeSH terms were used in the PubMed search. The presentation of the Web of Science search was not clear, but the strategy appears reasonable. The search was limited to the SCI database, excluding the conference proceedings databases
- Trial databases were used to identify completed and ongoing trials
- Conferences were searched via Embase and Northern Light Life Sciences Conference abstracts (OVID).

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) diagram Figure 1 (CS Document C, Appendix D, pg.37) contains discrepancies in the reported search results. The ERG noted a discrepancy in the search number (n=30,866) presented in Figure 1 compared to the combined number of results for the individual searches (n=29,865 not including the references for previous Biogen MTCs ([n=118] and handsearching [n=12]) listed in Tables 1 to 21 (CS Document C, Appendix D). The ERG queried the discrepancy during the clarification stage. However, the ERG consider these to not be resolved by the clarification response (A2). The additional tables provided (Table 1 and Table 2, clarification response A2) record the search numbers of the updated searches, which indicate that the search numbers recorded are cumulative. For the rapid appraisal searches and the trial databases, the final cumulative number is less than the de-duplicated number reported in the PRISMA diagram. The ERG conclude that differences may be due to the difficulties in running complex searches and update searches in these databases. Rapid searches record retrieved in December 2018 reported as 395 whilst 461 reported in PRISMA. For the Trial databases, 1997 references were retrieved in December 2018 but 2296 reported in PRISMA. In addition, 45 SmPCs and EPARs were reported in the PRISMA but only 39 listed in the recorded search run in December 2018 (26 SmPCs and 13 EPARs).

4.1.2 Inclusion criteria

Eligibility criteria for the CS SLR are stated in CS Document C, page 30 Table 22, described in PICOS format. Table 3 compares the CS PICOS and the ERG summary of study selection criteria. Study inclusion was not limited by language or publication date. The ERG consider this to be appropriate.

Domain	Inclusion criteria	ERG comment
Population	CS Document C, page 30 Table 22	The ERG note that the literature
	states the population is "Adults	searches for this review were conducted
	$(\geq 18 \text{ years})$ with a confirmed diagnosis	as part of a wider programme of
	of rapidly evolving severe (RES) or	research on treatments for either RRMS
	relapsing/remitting multiple sclerosis	or SPMS (CS Document B, pg.27).
	(RRMS)".	All EU-approved treatments or
		treatments expected to be approved in
		the near future in either CIS, RRMS or
		SPMS were identified. Only studies
		including RRMS patients were included
		in this CS SLR. The ERG consider this
		appropriate as it aligns to the CS

Table 3. Study selection criteria

		decision problem.
	The CS reports on CS Document C, page 30 "In some studies, the patient population was composed predominantly of patients with one type of MS but may have included a small proportion of patients with other types of MS."	The ERG notes that the CS does not provide citations for these studies. The response to the clarification A8 (Table 7, pg.27) states that the proportion of patients with SPMS was not stated in BEYOND, Bornstein 1987 and Crentsil 2012, while O'Connor 2006 specified 11.5-13.1% SPMS between the treatment groups, TEMSO 3.3-6.1%, TENERE 0-0.9% and TOWER 1% SPMS.
	The CS states that the SLR "allowed the inclusion of studies where $\geq 85\%$ of the patient population were classified as RRMS in all treatment arms". ⁴⁵ The CS notes that this was the recommended cut off in the IQWiG (Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen) methods guide.	The ERG found that the threshold reported in the cited recommendations of the IQWiG was actually 80% rather than 85%. However, the reported percentages of the populations with RRMS in the included studies was \geq 85% for all the studies. ⁴⁵
Intervention	Polyethylene Glycolated Interferon beta-1a (pegIFNβ-1a, Plegridy [®]) is listed as the intervention in CS Document C, Table 22 page 30.	-
Comparator(s)	 There were nine comparators including standard care (11 separate medicines including placebo) Alemtuzumab (Lemtrada®) Ocrelizumab Dimethyl fumarate (Tecfidera®) Teriflunomide (Aubagio®) Interferon beta-1a (IFNβ-1a, Avonex®) IFNβ-1a 22 mcg or 44 mcg (Rebif®) IFNβ-1b (Betaferon®, Betaseron®, Extavia®) Glatiramer acetate (Copaxone®) Standard care (± placebo) 	The CS (Document C, D.1.2 pg.29) states that "Only disease-modifying therapies (DMTs) with a positive reimbursement decision by NICE for patients with RRMS that was not highly active or RES were included in the mixed-treatment comparison (MTC)" and that "only DMTs that were used at European Medicines Agency (EMA)– approved doses were included". The ERG consider this to be appropriate as it is in line with the CS decision problem.
Outcomes	Clinical outcomes were reported as efficacy, tolerability and safety outcomes.	The ERG consider these to be appropriate, but note the discrepancy to the outcomes listed in the NICE

	Efficacy outcomes:	decision problem.
	• ARR	
	• Severity of relapse (e.g.,	Discrepancies include the following:
	proportion of patients with	• EDSS is not listed as an
	relapses requiring	outcome, (disability is reported
	hospitalisation)	as CDP3/6/12)
	• CDP sustained for 3 months	, i i i i i i i i i i i i i i i i i i i
	• <i>CDP</i> sustained for 6 months	• HRQoL is not listed as an
	 CDP sustained for 12 months 	outcome, (Quality-of-Life: SF-
	•	36, Global VAS, MSIS is
	Symptoms of MS, including	reported)
	cognition, fatigue and visual	
	disturbance	• Tolerability outcomes and
	• Freedom from disease activity,	SAEs were not listed in the
	e.g., No Evidence of Disease	
	Activity (NEDA)	NICE decision problem.
	• Quality-of-Life: SF-36, Global	
	VAS, MSIS	
	Tolerability Outcomes:	
	• Discontinuations due to any	
	cause	
	• Discontinuations due to AEs	
	Safety outcomes:	
	• Any Adverse Events (AE)	
	Any Serious Adverse Events	
	(SAE)	
	Mortality	
Study design(s)	The CS SLR included published or	The ERG note that the CS Document C,
Sindy design(s)	unpublished prospective	D.1.1 page 4 report electronic databases
	RCTs.	and grey literature sources, including
	IC 15.	
		trial registries and conference abstracts,
		were searched and updated. The ERG
		found no further information on seeking
		unpublished material (e.g., contacting
		authors).

The CS Document B, page 67 states that "*The selection of studies for inclusion in the final MTC* was conducted in two stages. In the first stage studies were selected for inclusion in the systematic review based on the PICOS criteria [listed in Table 3]. These studies were then considered for inclusion in the analysis based on the similarity criteria (trials should be similar for moderators of relative treatment effect)". The ERG note that the CS SLR did not exclude any studies based on clinical heterogeneity, but the CS state that "there was some heterogeneity between studies", (CS Document B, pg.67). Heterogeneity is discussed further in Section 4.4.1.

The CS provides a PRISMA flowchart for the systematic review (CS Document C, Appendix D Figure 1 pg.37) which provides numbers included and excluded at each stage. Reasons for exclusions are reported in CS Document C Appendix D, Table 29 for those assessed at full text assessment. List of excluded studies is reported in CS Document C Appendix D, Table 30. The ERG inspected the lists of included and excluded studies (Document C Table 26 and Table 30) and although the reasons for exclusion of studies by the ERG were not always identical to those given by the CS, the same studies were classified as included or excluded. Therefore, the ERG consider the excluded studies appropriate according to the criteria presented in Table 3. Additional references were provided by the company in response to clarification question A3.

4.1.3 Critique of data extraction

The CS Document C, page 31 states that "Forms for data extraction were individually designed and piloted using Microsoft Excel 2010. Data extraction was performed by two reviewers independently. Any discrepancies were resolved through discussion or through consultation with a third reviewer." The ERG consider this approach acceptable.

The ERG note that data were extracted for relevant outcomes (CS Document C, Table 22 pg.30). However, as described in Table 3 the outcomes listed in the SLR inclusion criteria differ slightly from those stated in the NICE decision problem, for example "*disability (for example, expanded disability status scale [EDSS])*" is reported as CDP3/6/12 in the CS.¹

4.1.4 Quality assessment

The company provided a quality assessment of the ADVANCE² trial using the Cochrane risk of Bias (RoB) tool for RCTs, not the NICE checklist, (a quality appraisal of the comparator trials was done for the MTC and is reported separately, see Section 4.3.1.1). The quality assessment of the ADVANCE trial was reported in CS Document C, Table 24 page 31, although the ERG note that this was not the same as the one supplied in the Biogen Data Extraction excel spreadsheet dated August 2018 (CS Reference pack C).

The company assessed the ADVANCE study as having a low RoB on all measures (CS Document C, Appendix D, Table 24, pg.31), in contrast to the previous network meta-analysis conducted by Melendez-Torres et al, 2017 (for TA ID527⁴) which noted a high RoB related to blinding, incomplete outcome data (due to differential attrition between arms) and 'other' RoB because the study was conducted by the drug manufacturer.⁶

The ERG conducted a quality assessment of the ADVANCE² trial using the Cochrane RoB tool and the NICE criteria. These are compared to the quality assessment conducted by the company in Table 4. Overall, the ERG consider the RoB for ADVANCE² to be unclear.

RoB	CS	CS Comment	ERG	ERG rationale
item	RoB		judgement	
Randomis ation	Low	Randomisation used a centralised IXRS and was stratified by site. At randomisation, the IXRS was to assign a unique 6- digit subject identification number to each subject.	Low	Agree. Randomisation was done by a centralised interactive voice response and web system, stratified by site
Allocatio n concealm ent	Low	Randomisation was done by a centralised interactive voice response and web system, stratified by site.	Low	Agree. Performed using a centralised interactive voice/web response system.
Are participan ts blinded?	Low	All study management and site personnel, investigators, and patients were masked to treatment assignment. Appropriate matched placebo medication was used.	Unclear	Disagree. The level of side effects - namely injection site reactions – may have introduced a risk of bias related to blinding of participants, particularly as injection sites were not covered. However, the ERG note that this critique often occurs in drug trials of this type
Are caregiver s blinded?	Low	All study management and site personnel, investigators, and patients were masked to treatment assignment.	Unclear	Disagree. The level of side effects - namely injection site reactions – may have introduced a risk of bias related to blinding of caregivers particularly as injection sites were not covered. However, the ERG note that this critique often occurs in drug trials of this type
Blinding of assessors	Low	All study management and site personnel, investigators, and patients were masked to treatment assignment. Central MRI reading centre by an assessor masked to treatment allocation.	Unclear	Disagree. The level of side effects - namely injection site reactions – may have introduced a risk of bias related to blinding of assessors, particularly as injection sites were not covered. However, the ERG note that this critique often occurs in drug trials of this type

Table 4. ERG assessment of trial quality using Cochrane RoB and NICE checklist

RoB	CS	CS Comment	ERG	ERG rationale
item	RoB		judgement	
Incomplet e outcome data	Low	The ITT population for year 1 included all randomised patients who received at least one dose of study drug, only 4 patients were excluded, low risk.	Judgement Low for Year 1	Agree. At baseline: 500 placebo patients; 512 pegIFN beta-1a every 2 weeks and 500 pegIFN beta-1a every 4 weeks. 1332/1512 (88%) patients completed Year 1 of study and continued with active treatment in Year 2 (patients receiving placebo in Year 1 re- randomized to pegIFN beta-1a every 2 or 4 weeks at Week 48). Completed Year 2: pegIFN beta-1a every 2 weeks, 391/438 (89%), pegIFN beta-1a every 4 weeks, 411/438 (94%), and delayed treatment 396/456 (87%); total
	High risk	The analysis population for year 2 included only those patients who completed year 1 of the study, high risk.	High risk	completing year 2: 1198 of the original 1512 (79%). ⁴⁶ Agree: The analysis population for year 2 included only those patients who completed year 1 of the study.
Selective reporting	·····		Low	Agree. Note, the CS reported all outcomes relevant to the economic evaluation (or specified in the NICE scope ¹), but did not report data on all outcomes measured in the trial as reported in the trial publication ² and the CSR (pg.77, 80, 82).
Other biases			High	Disagree. The study was funded by the drug manufacturer. There was differential drop-out between the placebo and every 2 week intervention group by the end of year 1. In placebo: 44 discontinued, in the intervention group (every 2 week) 74 discontinued).
Overall risk of bias	Unclea r	N/A	Unclear	N/A
	NICE c	hecklist item	ERG judgement	ERG rationale
Was randor	nisation ca	urried out appropriately?	Yes	As above
Was the con adequate?	ncealment	of treatment allocation	Yes	As above
Were the groups similar at the outset of the study in terms of prognostic factors?		Yes	The ERG note that the placebo group is marginally numerically (but not statistically) less severe than the intervention group, therefore the differential works in the direction of the null hypothesis.	
Were the care providers, participants and outcome assessors blind to treatment allocation?		Uncertain	As above	
		ected imbalances in	Yes	There was a differential drop-out between the
drop-outs b			105	placebo and every 2 week group by the end of year 1 (456/500 versus 438/512, P=0.005)
-		to suggest that the authors mes than they reported?	Yes	As above

RoB	CS	CS Comment	ERG	ERG rationale
item	RoB		judgement	
Did the analysis include an ITT analysis? If so,		Yes in year	As above	
was this appropriate and were appropriate		1		
methods used to account for missing data?				
ITT = intent to RoB = risk of		S = Interactive Voice/Web Respons	e System; MRI = m	agnetic resonance imaging; N/A = not applicable;

4.1.5 Evidence Synthesis

A narrative review was provided (CS Document B, B.2.3.1 pg.39) of the single included trial (pegylated interferon beta-1a for relapsing-remitting multiple sclerosis (ADVANCE): a randomised, phase 3, double-blind study: NCT00906399)² for the direct evidence for the placebocontrolled double-blind period of 1 year. Where possible the ERG has checked key data presented in the CS against those in the CSR provided by the company for this appraisal, and the trial publication² and found several differences.

The CS does not provide details on reasons for withdrawal of consent in ADVANCE. The ERG found no comparison of baseline characteristics between completers and subjects who dropped out in any documents provided as part of the CS. While the CSR reports the number of participants who 'withdrew consent' and details of 'other' reasons for withdrawal (CSR, 10.1.2 pg.126), this was a combined figure for both years 1 and 2, with reference to appendices that were not submitted in the CS reference pack. This appendices were requested from the company, and subsequently provided at clarification in response to clarification question A16. The ERG reviewed the CSR appendices regarding drop-outs, however the ERG failed to identify any further information about the characteristics of subjects who dropped out or completed the trial (see Section 4.2.3 for further discussion).

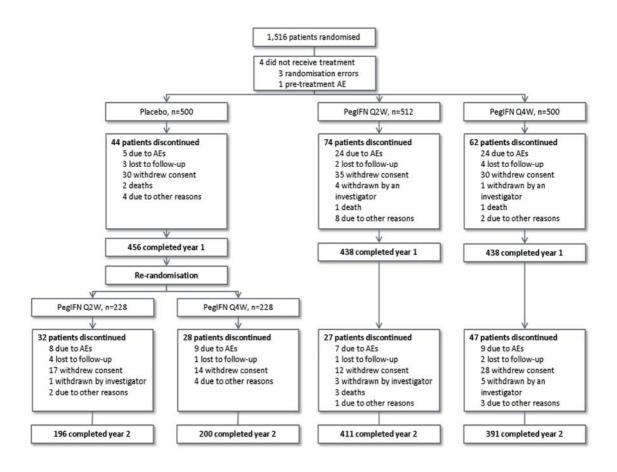
In addition, the CS does not report how missing data from drop-outs were dealt with; (these data are reported in the trial report²) or the differential drop-out between the placebo and every 2 week group by the end of year 1. The ERG are concerned that the results obtained in ADVANCE could potentially be biased due to these issues, and therefore need to be interpreted with caution.

ATTAIN extension study

In addition the CS reports on ATTAIN (Long-term outcomes of peginterferon beta-1a in multiple sclerosis: results from the ADVANCE extension study, ATTAIN: NCT01332019)³ which is an

extension of ADVANCE, where subjects received the same dosing regimen that they received in year 2 of ADVANCE. ATTAIN is described in detail in CS Document B, page 44-46. In Table 6 (CS Document B, pg.41) the ADVANCE efficacy endpoints are described, ATTAIN endpoints are listed in CS Document B, Table 8 page 45. Results are mainly presented in figures and as HRs between groups for both ADVANCE and ATTAIN. The CS states that the ATTAIN study was not used to inform the economic model (CS pg.38) but "*was included as supplementary evidence for long-term efficacy and safety*" (in CS sections B.2.2 to B.2.6). Therefore, ATTAIN is assessed separately in the ERG report.

Summary


As only one trial was included, no meta-analysis was conducted in the CS. The CS SLR identified 27 studies that were eligible for inclusion in indirect and mixed treatment comparisons of at least one outcome. See Section 4.4 for critique of the indirect and mixed treatment comparisons.

4.2 Critique of trials of the technology of interest, their analysis and interpretation

Evidence for the clinical effectiveness on pegIFN β -1a is presented from a single pivotal RCT,² which is described in the CS (Document B, B.2.3.1 pg.39) and for which CSRs were provided by the company. Neither the company nor the ERG identified any other relevant RCTs that meet the NICE decision problem. The CS provides summary information about the trial design, intervention, population, patient numbers (e.g., how many were eligible, randomised, allocated and dropped out), outcomes and statistical analyses.

4.2.1 Conduct of the trial

The ADVANCE trial was a phase 3, double-blind, multi-centre, placebo-controlled RCT sponsored by the company (Biogen Idec.), which lasted 1 year (48 weeks).² After year 1 of the trial, patients in the placebo group were re-randomised to receive treatment (CS Document C, Figure 2, pg.140) reproduced in Figure 1).

Figure 1. Patient disposition in ADVANCE reproduce from Document C Figure 2

Summary details of the ADVANCE trial were provided in the CS (Document B, B.2.3.1) and in CS Document C, Appendices D, E and F. In addition, the trial is reported in a number of peer review publications^{2, 47}, the NCT and a CSR which was provided to the ERG for this appraisal.

4.2.2 Randomisation

ADVANCE was designed to investigate the use of SC pegIFN β -1a in people with RRMS. Participants were assigned randomly in a 1:1:1 ratio to receive an injection of either pegIFN β -1a 125 mcg every 2 weeks (Q2W) or every 4 weeks (Q4W), or placebo, for a double-blind controlled period of 48 weeks.² The company reports (CS Document B, Table 7 pg.42) that only the 2-week dosage is currently licensed and is therefore the focus of the CS. The ERG confirm that pegIFN β -1a 125 mcg every 2 weeks is the licensed dose, and therefore also the focus of ERG report. The CS does not report the dates when randomisation took place nor of the study period. A previous meta-analysis reports the study period as June 2009 to November 2011.⁶ The CSR notes the study cut-off date was **sector** (year 1, after which placebo patients received the treatment).

The key inclusion criteria are reported in the CS Table 6 (CS Document B, pg.40) and CSR (2013, pg.53). In summary, these were age 18-65 years; confirmed diagnosis of RRMS as defined by McDonald criteria 1 through 4; EDSS score 0.0-5.0; at least 2 medically documented relapses within the last 3 years with at least 1 of these in the last 12 months prior to randomisation; and ability and willingness to practice effective contraception during the study and for 3 months after the last dose of study treatment (where appropriate). The ERG note that in the pegIFN β -1a 2-week group, the EDSS score for 1 participant exceeded the upper limit of 5 specified in the protocol (CS Document B, pg.41).

Relapse within 50 days prior to randomisation and/or not stabilised from a previous relapse, primary progressive, secondary-progressive, or progressive relapsing MS, known allergy to any component of the pegIFNβ-1a formulation and history of hypersensitivity or intolerance to paracetamol, ibuprofen, naproxen, or aspirin were all key medical exclusion criteria. In addition, participants were excluded if they had undergone prior treatment with interferon that exceeded 4 weeks, and they had to have discontinued interferon treatment 6 months prior to the first day of the study. Previous treatment with pegIFNβ-1a, total lymphoid irradiation, cladribine, T-cell or Tcell receptor vaccination, fingolimod, any therapeutic monoclonal antibody (including natalizumab), or GA within 4 weeks prior to randomisation would also result in exclusion from the study. Additional exclusion criteria were listed on pages 53-55 of the CSR. The ERG clinical expert considers these exclusion criteria to be reasonable.

A flow-chart of participants through the ADVANCE trial was presented in CS Document C Appendix D (D.4, Figure 2, pg.140): 1516 were randomised and 1512 received at least one dose of the assigned treatment (>99%). Of the 4 participants who did not receive at least one dose, 3 were due to randomisation error and 1 to an AE prior to first dose. Of those randomised, 500 were assigned to receive pegIFN β -1a every 4 weeks, 512 were assigned to receive it every 2 weeks, and 500 were assigned to placebo (see Figure 1).

4.2.3 Patient withdrawals

The ERG calculated trial attrition from the Q2W treatment arm to be 14.5% (n=74/512) and from the placebo arm, 8.8% (n=44/500), based on data from the trial publication (Figure 1 pg.4).²

Reasons for withdrawals were similar in the two treatment groups, primarily withdrawal of consent (accounting for about half of withdrawals, based on ERG calculations) and AE (accounting for around one-third of withdrawals)(See Calabresi et al., 2014 Figure 1²) (see Table 5). Drop-out from the placebo arm was overwhelmingly due to withdrawal of consent. Withdrawal from the study was more likely within the first **Constant** of the trial, but was (CSR Table 76, pg.420).

The 1-year placebo-controlled treatment period was followed by a second year of treatment, during which all patients initially allocated to placebo were re-randomised to receive either pegIFN β -1a Q2W (n=228) or Q4W (n=228); total 456 (i.e., 91.2% of the original placebo group), while patients who received pegIFN β -1a Q2W or Q4W in year 1 remained on their assigned treatment regimen in year 2 (Q2W, n=438/512 [85.5%]; Q4W, n=438/500 [87.6%]) (CS Document B, pg.40).

The ERG considers that there is a differential drop-out between the placebo and Q2W groups by the end of year 1 (placebo 456/500 versus Q2W 438/512, P=0.005). Therefore, the year 2 population is no longer an ITT population (due to drop-out and re-randomisation). This differential drop-out was discussed in the published article of the ADVANCE study,² where authors state that "*The proportion of patients who discontinued study treatment or withdrew in the first 48 weeks was slightly lower in the placebo group compared with the intervention groups, as a result of differences in adverse events*".² However, this is not reported in the CS. The information was requested during clarification (A16), and although supplementary CSR appendices were provided by the company, the ERG were unable to compare characteristics of completers and drop-outs for ADVANCE. The data which was submitted by the company in response to clarification A16 did not display demographic data for drop-outs. The ERG consider the differential drop-out might introduce bias, as there are potential differences in characteristics of subjects who dropped out, compared to the subjects who remained in the study. However, the ERG are not able to confirm the differences due to lack of data.

The CS did not report the numbers of participants in the treatment or control groups in year 1 of ADVANCE who withdrew consent or gave 'other' reasons for withdrawal. This was reported in the CSR, including numbers who withdrew due to relapse or lack of effect (CSR, 10.1.2, p126), as a combined figure for both years 1 and 2, with reference to appendices that were not submitted in the reference pack. The trial publication (Calabresi et al., 2014, Figure 1) stated the number of participants in each group during year 1 who discontinued: 74 in the Q2W arm and 44 in the placebo arm, with the majority of discontinuations in the Q2W group due to AE (n=24) and withdrawal of consent (n=35), in the placebo arm due to withdrawal of consent (n=30) (see Table 5).²

Table 5. Differential drop-out between the placebo and Q2W groups by the end of year 1

Discontinuation cause	Placebo	pegIFNβ-1a every 2 weeks
AE	5	24
Influenza-like illness	-	4
Lost to follow up	3	2
Withdrew consent	30	35
Investigator decision	-	4
Death	2	1
Other	4	8
Total	44	74

In year 1, n=25 participants discontinued study treatment due to AE and n=25 withdrew from the study due to AE in the Q2W treatment arm; in the placebo arm the figures were n=7 and n=6, respectively (CSR, Table 42, pg.258).

Further details of the reasons why participants 'withdrew consent' and details of 'other' reasons for withdrawal were requested by the ERG during clarification (question A16) and provided by the company (CSR appendices 16.2.1 and 16.2.7) as combined figures for ADVANCE and ATTAIN. Based on Table 3 in CSR Appendix 16.2.1, the most common reason for withdrawal from the Q2W arm over both years was 'unspecified'.

4.2.4 Missing data

The trial publication reports: "Data after patients switched to alternative multiple sclerosis drugs were deemed missing; all missing data were imputed on the basis of previous visit data assuming a constant rate of lesion development. 18 participants in the placebo group, 23 in the every 4 weeks group, and 18 in the every 2 weeks group had imputed data."² Based on ERG calculations, data were imputed for 3.6% of the Q2W and placebo arms (3.5% and 3.6% respectively).

The ERG note that CS Document B, does not discuss missing data. In CS Document C (pg.35), the company states that missing values were calculated from the available data. In the CSR for ADVANCE, section 9.7.2.2, page 94, it states "*These missing MRI data were imputed up to Week* 48, regardless of reasons, using the principle of constant rate of lesion development and the method of last observation carried forward (LOCF)", only for the T2 Hyprintense Lesions, which is the same as stated the trial publication (see Calabresi et al., 2014, footnotes Table 2).² The ERG could not locate details on imputation for ARRs or disability progression.

4.2.5 Dosage

The trial publication states that dose escalation (titration) took place over the first four weeks of treatment for participants assigned to receive pegIFN β -1a, to allay influenza-like symptoms, with a starting dose of 63 µg, 94 µg at week 2 and the target dose of 125 µg from week 4 onward. After the 4-week titration, injection of either pegIFN β -1a or placebo was delivered every two weeks to all participants, with participants assigned to receive pegIFN β -1a every 4 weeks given alternate injections of placebo and pegIFN β -1a.² Placebo was a matched diluent, given with a matched pre-filled syringe.²

Treatment compliance was calculated by the number of doses a subject received divided by the number of injections the subject was expected to take, (and) was greater than 99% across treatment groups. The ERG confirmed with the clinical expert that this was an appropriate way to measure and report compliance.

4.2.6 Outcomes

The outcomes reported in the CS for ADVANCE generally matched the NICE final scope¹ and company decision problem (see Section 3.4). The ERG note that ADVANCE reported CDP3M and CDP6M (post-hoc analysis) as measures of disability progression. In CS Document B, Table 6, (pg.41) the company states for secondary efficacy outcomes: "*CDP3M at 1 year, and post hoc analysis of CDP6M at 6 months that was defined as a* \geq 1.0-point increase on the EDSS from baseline EDSS \geq 1.0 that was sustained for 3 or 6 months, or a \geq 1.5-point increase on the EDSS from baseline EDSS = 0.0 that was sustained for 3 or 6 months."

The CS provides a list of the primary and some secondary efficacy outcomes in CS Document B, Table 6 page 198 (further description in CS Document B Table 3, and CSR 9.5.2.1 pgs.77-80). The ERG have provided a brief overview of these outcomes in Table 6. The company reports that the primary outcome was ARR at 1 year. Secondary outcomes were the proportion of patients relapsed at 1 year; number of relapses requiring IV steroid use; number of MS-related hospitalisations; progression of disability as measured by both the EDSS and the Multiple Sclerosis Functional Composite (MSFC); visual function measured by the Visual Function Test (VFT); cognitive changes measured by the Symbol Digit Modalities Test (SDMT). These endpoints were analysed at the end of treatment year.

The CS Document B, Table 3 (Outcome measures commonly used in MS studies, pg.21) states "*EDSS… does not capture cognitive disability*". However, page 24 of the CS states "*EDSS is the standard measure used in clinical practice (as well as economic evaluation models) to measure disease progression in MS*", due to the ability to measure delay in disability progression of MS, it was clinically relevant. Although EDSS is not directly reported in the CS SLR, the ERG consider the inclusion of EDSS important for the assessment of cost-effectiveness.

The ERG note that the trial results for outcome measures are reported in section CS Document B B.2.6.1 (pg.48-51) and in CS Document C Appendix L, section L.2. The CS reports data for the primary outcome (ARR at 1 year) and five of the secondary/tertiary outcomes (proportion of patients relapsed at 1 year, number of relapses requiring IV steroid use, number of MS-related hospitalisations, progression of disability as measured by EDSS, number of new or newly enlarging T2 hyperintense lesions at 1 year), all of which showed a positive effect compared to placebo. The CS provides data for progression of disability as measured by the SDMT in Document C Table 106 page 430.

CS outcome	In line with	ERG comment
	NICE	
Versit (ADVANCE 4stal)	Scope. ¹	
Year 1 (ADVANCE trial) Primary outcome (CS Document B Tab		
ARR at 1 year (week 48)	Yes (relapse	Standard key outcome.
ARR at 1 year (week 48)	rate)	This indicates the number of relapses a
	ruce)	patient would expect to have on average
		every year. Differences in the annualised
		relapse rate are measured as a rate ratio,
		which suggests the percentage difference in
		rate between two groups. A rate ratio of
		0.75 in group 1 compared with group 2
		means that group 1 has 25% fewer relapses
		than group 2. In MS, an improvement of one
		drug over another would be represented by a
Company and any action of CC Data and the		rate ratio of < 1.6
Secondary outcomes (CS Document B Proportion of patients relapsed at 1 year		SR 9.5.2.1 pgs.77 and 80) Standard
and 2 years	Yes (relapse rate)	Stanuaru
Number of relapses requiring IV steroid	Yes (severity	Additional
use	of relapse)	/ Multionul
Number of MS-related hospitalisations	Yes	Additional
1	(symptoms of	
	MS)	
Disability progression (CDP3M and	Yes	Standard key outcome.
CDP6M) defined as $a \ge 1.0$ -point	(disability)	
increase on the EDSS from baseline		The CS Document B Table 3 includes
EDSS \geq 1.0 that was sustained for 3 or		EDSS, CDP and MSFC as scales of
6 months, or a \geq 1.5-point increase on the EDSS from baseling EDSS = 0.0		disability progression. ADVANCE reported
the EDSS from baseline EDSS = 0.0 that was sustained for 3 or 6 months		CDP.
that was sustained for 5 of 6 months		Time to disability progression indicates how
		quickly a patient would expect to have
		disability progression compared with
		another patient. This is measured as a HR. A
		HR of < 1 in group 1 compared with group
		2 means that group 1 will take longer to
		have disability progression. In MS, an
		improvement of one drug over another
		would be represented by a HR of <1.6
		Many trials require that an initial sign of
		disability progression be confirmed at a
		repeat visit 3 (or 6) months later. Thus, time
		to disability progression confirmed at 3 months is the time to disability progression
		when that disability progression has been
		subsequently confirmed 3 months after the
		visit when progression was first detected.
		Similarly, time to disability progression
		confirmed at 6 months is the time to
		progression when that progression has been
		subsequently confirmed 6 months after the
		visit when it was first detected. ⁶

Table 6. CS reported outcomes and ERG comments

Disability progression: Multiple	Yes	Additional
Sclerosis Functional Composite	(disability)	
Visual function: Visual Function Test	Yes	Additional
	(disability)	
Cognitive changes (Symbol Digit	Yes	Additional
Modalities Test, SDMT)	(disability)	
Paced Audio Serial Addition Test 3	Yes	Additional
(PASAT 3)	(disability	
	progression)	
Tertiary (MRI) outcomes (CS Documer		
Mean number of new or newly	Yes (freedom	Standard
enlarging T2 hyperintense lesions and	from disease	
Gd+ lesions	activity)	
New T1 hypointense lesions	Yes (freedom	Additional
	from disease	
	activity)	
New active lesions (the sum of	Yes (freedom	Additional
gadolinium-enhancing plus non-	from disease	
enhancing new or newly enlarging T2	activity)	
hyperintense lesions)		
Volume of new or newly enlarging	Yes (freedom	Additional
T2 hyperintense, gadolinium-enhancing,	from disease	
and T1 hypointense lesions	activity)	
Brain atrophy	Yes (freedom	Additional
	from disease	
	activity)	
Magnetisation transfer ratio	Yes (freedom	Additional
	from disease	
	activity)	
Year 2 (ATTAIN extension trial CS Do	cument B Table	
ARR	Yes	Standard key outcome. As above
	(relapse rate)	
Proportion of patients relapsed	Yes	Additional
	(relapse rate)	
Disability progression	Yes	Additional
	(disability)	
Mean number of new or newly	Yes (freedom	Additional
enlarging T2 hyperintense lesions and	from disease	
Gd+ lesions	progression)	
progression sustained at 6 months EDSS = Expande enhancing; MRI = magnetic resonance imaging; Mc MS = multiple sclerosis; pegIFNβ-1a = pegylated in remitting multiple sclerosis; SC = subcutaneou.	d Disability Status Sc Donald criteria 1-4 = terferon; Q2W = ever	

Note: Relapses were defined as new or recurrent neurologic symptoms not associated with fever or infection, lasting \geq 24 hours, and accompanied by new objective neurological findings upon examination by a neurologist. Relapses were required to be confirmed by an independent committee consisting of 8 blinded neurologists with expertise in MS (3 neurologists were voting members, with 1 substitute member at any one time). New or recurrent neurologic symptoms that occurred < 30 days following the onset of a protocol-defined relapse were considered part of the same relapse (i.e., if 2 relapses had onset days that were \leq 29 days apart, they were counted only as 1 relapse, and the onset date used in the analysis was the onset date of the first relapse).²

The ERG did not locate any information regarding 'Time to Sustained Progression of Disability' assessed using the Paced Auditory Serial Addition Test (PASAT 3), which was an outcome that

was measured in the ADVANCE trial. However, the CSR (section 11.2.3.1.7.) reports: "

The company's interpretation of outcome data and effectiveness is appropriate, but it is unclear why they have not reported data for all outcomes included in the CSR (as described in the RoB see Table 4).

4.2.7 Description and critique of the company's approach to trial statistics

Statistical analyses are summarised in CS Document B, Table 10 (pg.46).

4.2.7.1 Trial statistics for ADVANCE

Primary outcome

The pre-specified primary end point in the trial was defined as "the annual relapse rate (ARR) of relapsing-remitting multiple sclerosis (RMSS) at week 48, based on the number of relapses, from the point of baseline".² The efficacy analysis was completed on the ITT population which was defined as all subjects randomly assigned to received study treatment (pegIFN β -1a or placebo).²

The null hypothesis was that treatment with pegIFN β -1a would not result in a statistically significant reduction in ARR at 48 weeks, compared with placebo. The alternate hypothesis was that treatment with pegIFN β -1a would result in a statistically significant reduction in ARR at 48 weeks, compared with placebo. Statistical tests were two-sided, with an overall type 1 error of 0.05.

According to Table 10 in the CS (Document B, Table 10 pg.47), "The primary end point was analysed using negative binomial regression, adjusted for baseline EDSS score (< 4 vs. \geq 4), baseline age (< 40 vs. \geq 40 years), and baseline relapse rate (number of relapses in 3 years prior to study entry divided by 3). A sequential closed testing procedure was used to control the type I error rate. For the primary end point, the pegIFN β -1a Q2W group was compared with placebo; if the difference between the pegIFN β -1a Q2W group vs. placebo was statistically significant ($P \leq 0.05$), the comparison of pegIFN β -1a Q4W group vs. placebo could also be performed and considered statistically significant if $P \leq 0.05$; however, if statistical significance was not achieved with the pegIFN β -1a Q2W group vs. placebo, the comparison of the pegIFN β -1a Q4W group vs. placebo was not considered statistically significant, regardless of P value."

The Kaplan-Meier (KM) plot for the primary outcome in the ADVANCE study is shown in Figure 2 of the trial publication (Calabresi et al., 2014 Time to first relapse over 48 weeks), and Figure 3 of the trial publication shows the Time to Disability Progression over 48 weeks KM plot.² The ERG consider this analysis to be appropriate for these outcomes. See Section 4.2.10 for primary results of ADVANCE.

Potential shortcomings in estimating the primary outcomes

The analysis (up to 48 weeks; placebo=500, Q2W=512, [Q4W=500]) did not include any imputation of missing data of the primary outcome ARR, or disability progression, but rather defined study duration of withdrawals depending on when a patient withdrew from the study: "*If patients withdrew from the study or switched to an alternative MS medication before 1 year, the total number of days was defined as the number of days from the date of the first dose to the last date on study or last date prior to the switch*", see Table 10, page 47 of CS. Therefore, after 48 weeks, 1332 patients completed ADVANCE (456, 438, 438 respectively).² The ERG assessed these calculations and are satisfied they are a true representation.

Censoring was defined as, "*Relapses that occurred after patients received any alternative approved MS treatments such as chronic immunosuppressant therapy or other immunomodulatory treatments were excluded from the analyses of relapse rate, and the patient's time on study was censored at the time the alternative MS medication was started*" (in Table 10 of CS, pg.47). As this was a time-to-event analysis (time to first relapse over 48 weeks) based on pegIFNβ-1a, other MS medication may affect the time to first relapse, so the ERG considers this approach as appropriate.

Five sensitivity analyses (three prespecified and two post-hoc) of ARR at year 1 were performed; these differed from the primary analysis by using:

- The per protocol population (prespecified)
- Poisson regression model (prespecified)
- All relapses recorded on the unscheduled relapse assessment CRF (prespecified)
- Protocol-defined objective relapses recorded on the unscheduled relapse assessment CRF (post hoc)
- Baseline Gd+ lesion (presence vs. absence) as a covariate in the model (post-hoc)

The ERG considers these sensitivity analyses as appropriate.

Section B.2.6.1 of the CS states: "Five sensitivity analyses (three prespecified and two post-hoc) of the ARR at year 1 were performed as described in Table 10 in section B.2.4. The results of all five analyses were consistent with the primary efficacy results, showing that pegIFN β -1a Q2W resulted in statistically significant reductions in the ARR compared with placebo, ranging from 33.8% to 38%", compared to the 35.6% reduction in the ITT population. The ERG consider this analysis to be appropriate for these outcomes.

Secondary and tertiary outcomes

The secondary efficacy endpoints were the number of new or newly enlarging hyper-intense lesions on T2-weighted images (relative to baseline MRI), proportion of patients who relapsed, and the proportion of patients with disability progression at 48 weeks. The tertiary pre-specified MRI endpoints at 48 weeks were the number of gadolinium-enhancing lesions, new T1 hypointense lesions, and new active lesions (sum of gadolinium-enhancing plus non-enhancing new or newly enlarging T1 hyperintense, gadolium-enhancing, and T1 hypo-intense lesions, brain atrophy, and magnetisation transfer ratio.² See Section 4.2.10 for secondary and tertiary results of ADVANCE.

Potential shortcomings in estimating the secondary and tertiary outcomes

The ERG considers the post-hoc analysis of CDP6M at one year appropriate as it is a secondary efficacy outcome over the course of the ATTAIN study (up to 240 weeks). However, the ERG note that 1,076 patients took part in the ATTAIN study, of whom 376 received continuous pegIFNβ-1a Q2W and 171 received delayed treatment with pegIFNβ-1a Q2W (CS Document B, pg.45). Therefore, the total Q2W at the beginning of ATTAIN was 547. The ARR values for year 5 of ATTAIN were based on smaller samples (pegIFNβ-1a Q2W was 185) (CS Document C, pg.425), i.e., by year five this number represents only 33.8% of the Q2W group, so there is potentially a high risk of bias by year five due to large drop-out.

4.2.7.2 Trial statistics for ATTAIN

The pre-specified primary end points in the trial were: the incidence of AE, SAE, discontinuations of study treatment due to an AE, and laboratory abnormalities. The secondary endpoints included MS relapse outcomes, MRI outcomes, disability outcomes, and

immunogenicity, adjusting for baseline EDSS score (<4.0 versus \geq 4.0), baseline relapse rate, and age (<40 versus \geq 40). Mean number of gadolinium-enhancing (Gd+) lesions, new/newly enlarging T2 lesions, and new T1 hypointense lesions were evaluated in each study year by pegIFNβ-1a dosing frequency in the ATTAIN population.

The efficacy analysis was completed on the study population which was defined as all patients who received at least one dose of treatment while enrolled in ATTAIN. The population includes all subjects who entered ATTAIN and received at least 1 dose of study treatment.³ This is compared to the ITT of ADVANCE which states that the ITT population was defined as all subjects who were randomised and received at least 1 dose of study treatment (pegIFNβ-1a or placebo).² As in ADVANCE, the two treatment groups were patients given pegIFNβ-1a injections every 2 weeks, and the other every 4 weeks.

The null hypothesis was the incidence of AEs, SAEs, discontinuations of study treatment due to an AE, and laboratory abnormalities were constant across the treatment groups. The alternate hypothesis was the treatment with pegIFN β -1a injections every 2 weeks would result in a statistically significant reduction in the incidence of AEs, SAEs, discontinuations of study treatment due to an AE, and laboratory abnormalities compared to pegIFN β -1a injections every 4 weeks. Statistical tests were two-sided, with an overall type 1 error of 0.05.

According to Table 10 of the CS (Document B, pg.46), all summary analyses of AEs were based on the principle of treatment emergence. In a given data set, an event was considered to be treatment emergent if it had an onset date on or after the date of first study treatment, or if it was present before the start of study treatment and subsequently worsened. In general, AEs were analysed based on incidence, defined as the proportion of patients who had at least one occurrence of an event out of the number of patients in the relevant safety analysis population. The ERG consider this analysis to be appropriate for these outcomes.

4.2.8 Subgroups

The company reports 12 pre-planned subgroups (CS, Table 6, pg.41 and Document B pg.41) which were not included in the NICE final scope. The NICE final scope¹ listed one additional subgroup (people who could not tolerate previous treatment) which was not reported in the CS.

- ARR between patients who withdrew before the end of year 1 and those who completed year 1.
- Baseline EDSS (EDSS < 4.0 vs. EDSS ≥ 4.0)
- Age at baseline (< 40 vs. \geq 40 years)*
- Sex*
- Region
- Baseline weight*
- Baseline number of relapses in the 3 years prior to study entry
- Time since most recent pre-study relapse (months) ($\leq 4 \text{ vs.} > 4 \text{ months}$
- Baseline McDonald criteria
- Prior MS treatment
- Baseline Gd+ lesions*
- Baseline T2 lesion volume

In CS Document B, footnote to Table 6 also states, however, that "*Due to the number of outcomes and subgroups, only those which were felt to be relevant will be presented. Therefore, results for those subgroups marked with an asterisk (*) will not be presented*". The ERG note that there was no definition provided of what the company "*felt to be relevant*". Yet the subgroup results presented for ARR for ADVANCE (CS Document B, pg.59) did not include ARR between patients who withdrew before the end of year 1 and those who completed year 1, or region (both specified for inclusion), but did include Baseline Gd+ lesions(*) (specified not to be presented).

Results for the subgroups of patients who withdrew before the end of year 1 versus those who completed year 1, could not be located by the ERG in CS Document C (Table 32 summary of subgroup analyses of ADVANCE at 1 year). The ERG consider that data for subgroups who withdrew before the end of year 1 might not be captured if the participants dropped out. However, the ERG note that the other subgroup data add up to the original numbers randomised, so it is assumed therefore that the data from subjects who dropped out are included. The CS Document B, page 47 states that in ADVANCE, "*If patients withdrew from the study or switched to an alternative MS medication before 1 year, the total number of days was defined as the number of days from the date of the first dose to the last date on study or last date prior to the switch"*. The ERG interprets this as data were included but censored, however the ERG note that this is not clearly stated in the CS.

4.2.9 **Baseline characteristics**

The ERG generated Table 7 to summarise the key baseline characteristics of the trial ITT populations for ADVANCE year 1 (randomised population), and for the population included in year 2. The ERG consider that there were no meaningful differences at baseline in demographic or disease characteristics between participants receiving pegIFN β -1a (at 2 or 4 week intervals) and those in the placebo arm in the ADVANCE trial.

During clarification the ERG requested information on the patient characteristics at the start and completion of both ADVANCE and ATTAIN (clarification question A4); the data provided is reflected in Table 7. The only substantial difference between the ADVANCE and ATTAIN trials was for race: in the former, nearly three-quarters (around 70%) of participants were white, while for ATTAIN the company reports just over one-third (34-40%) were white and race was not reported for half of the study participants. The CS reports data on race for ADVANCE but not for ATTAIN, and there is no explanation for the missing data on race.

Table 7. Baseline characteristics of ITT population^a

				ADVANCE				ATTAIN	
		Year 1			Ye	ar 2			
Characteristics	pegIFNβ-1a Q2W n=512	pegIFNβ-1a Q4W n=500	Placebo n=500	Continuous pegIFNβ-1a Q2W n=376	Delayed pegIFNβ- 1a Q2W n=171	Continuous pegIFNβ-1a Q4W n=354	Delayed pegIFNβ- 1a Q4W n=175	Continuous pegIFN β -1a Q2W n = 376	Continuous pegIFNβ-1a Q4W n=354
Age, mean (SD)	36.9 (9.8)	36.4 (9.9)	36.6 (9.8)	39 (9.73)	38.2 (9.27)	38.1 (9.91)	38.2 (10.06)	39.0 (9.73)	38.1 (9.91)
Sex, % female	71	70	72	74	74	71	73	72	71
Race, % White	81	82	82	35	40	34	38	NA	NA
Years since onset of MS symptoms, mean (SD)	6.9 (6.61)	6.5 (6.07)	6.3 (6.28)					8.5 (6.27)	8.1 (6.11)
Median	5.0	4.0	4.0						
Years since diagnosis, mean (SD) median	4.0 (5.09) 2.0	3.4 (4.36)	3.5 (4.63) 2.0	5.7 (4.99)	5.3 (4.8)	5.2 (4.46)	5.4 (4.03)	NA	NA
EDSS, mean	2.47 (1.25)	2.48 (1.24)	2.44 (1.18)	2.43 (1.27)	2.3 (1.19)	2.35 (1.18)	2.38 (1.08)	2.39 (1.34)	2.41 (1.37)
(SD) < 4, % >= 4, %	83 17	83 17	86 14	83 17	88 12	86 14	90 10	,	[n=352]
Relapses in previous year, mean (SD)	1.6 (0.7)	1.5 (0.6)	1.6 (0.7)	1.6 (0.69)	1.5 (0.65)	1.5 (0.61)	1.6 (0.68)	NA	NA
Relapses in previous 3 years, mean (SD)	2.6 (1.0)	2.5 (0.8)	2.6 (1.0)	2.6 (1.01)	2.5 (1.04)	2.4 (0.67)	2.5 (0.83)	NA	NA
Number of lesions, mean (SD) T2	48.7 (36.83)	51.4 (35.99)	50.6 (36.65)	50.2 (38.33)	50.9 (34.93)	50.9 (36.01)	48.3 (34.68)	5.8 (12.23) [n=374]	14.8 (23.39) [n=353]

T1	27.8 (28.05)	29.6 (30.84)	28.1 (29.5) [CS reports SD=29.5,	29.1 (28.98)	26 (25.08)	29 (31.06)	26.3 (25.85)	29.1 (28.98)	29 (31.06)
GD+	1.2 (3.44)	1.8 (5.38)] 1.6 (3.81)	1.3 (3.65)	1.3 (3.54)	1.9 (5.74)	1.6 (3.36)	0.2 (1.18) [n=375]	0.6 (1.74) [n=353]
^a Data for ADVANCE ^b Data for ATTAIN at			ADVANCE data ar	e from tables provid	ed by the company	y in response to clari	fication question	A4. Greyed out = $Q4$	

The CS (Document B, pg.41) reports that 14 patients from the UK were included in the trial; the CSR specifies

(CSR pg.405). The ERG did not consider this to be reflective of adult patients with RRMS in the UK and requested clarification on why the company suggested it was generalisable. In response to clarification question A5 the company suggested "*most patients were from Eastern Europe*". The company suggested that "*Subgroup analysis by region has been performed for ADVANCE and suggests that the efficacy of pegIFNβ-1a is broadly similar across all populations, regardless of region*." The ERG suggest that there is a difference in efficacy between the three regions with **EVENDED**, the UK population were included in region 1. **EVENDED** was provided in response to clarification question A7. It shows that there is no statistically significant benefit for patients receiving pegIFNβ-1a in **EVENDED** but no analysis of interaction were presented to confirm a subgroup effect.

In clarification response A5, the company go on to state that "baseline characteristics from other comparator studies relevant to this appraisal" do not "significantly differ". The ERG suggests that there is potential variation geographically in outcomes and potentially in accompanying clinical practice, treatment physiotherapy and standards of care regimes.

4.2.10 Primary and secondary clinical and MRI results for ADVANCE

The primary and secondary clinical and MRI results for the pivotal trial were reported in the trial publication.² The results of ADVANCE have been reproduced by the ERG in Table 8 for completeness.

	Placebo group (n=500)	Peginterferon beta- 1a 125 μg every 2 weeks group (n=512)
Annualised relapse rate at 48 weeks		
Annualised relapse rate (95% CI)*	0.397 (0.328-0.481)	0.256 (0.206-0.318)
Rate ratio (vs placebo; 95% CI)		0.644 (0.500-0.831)
p value (vs placebo)		0.0007
Proportion of patients with a relapse at 48 weeks		
N	142	90
Estimated proportion relapsed (SE)	0.291 (0.0206)	0.187 (0.0178)
Hazard ratio vs pleace (95% CI)		0.61 (0.47-0.80)
p value (vs placebo)		0.0003
Disability progression at 48 weeks		
N	50	31
Estimated proportion with disability progression (SE)	0.105 (0.0142)	0.068 (0.0119)
HR vs placebo (95% CI)		0.62 (0.40-0.97)
P value (vs placebo)		0.0383
New or newly enlarging T2-weighted hyperintense		
lesions at 48 weeks		
Number of patients evaluated	476	457
Adjusted mean number of lesions (95% CI)	10.9 (9.6-12.5)	3.6 (3.1-4.2)
Lesion mean ratio (95% CI)		0.33 (0.27-0.40)
p value (vs placebo)		< 0.0001

Table 8. Primary and secondary clinical and MRI results for ADVANCE²

EDSS=Expanded Disability Status Scale. Peginterferon=pegylated interferon. *Based on negative binomial regression; adjusted for baseline EDSS (<4 vs \geq 4), baseline relapse rate, and age (<40 vs \geq 40). †Based on Cox proportional hazards model, adjusted for baseline EDSS (<4 vs \geq 4), age (<40 vs \geq 40), baseline relapse rate, and baseline gadolinium-enhancing lesions (presence vs absence). ‡Defined as \geq 1 · 0 point increase on the EDSS from a baseline EDSS \geq 1 · 0 sustained for 12 weeks or at least a 1 · 5 point increase on the EDSS of 0 sustained for 12 weeks. §Based on Cox proportional hazards model, adjusted for baseline EDSS and age (<40 vs \geq 40 years). ¶Intention-to-treat population with at least one post-baseline lesion on MRI scan. ||Data after patients switched to alternative multiple sclerosis drugs were deemed missing; all missing data were imputed on the basis of previous visit data assuming a constant rate of lesion development. 18 participants in the placebo group, 23 in the every 4 weeks group, and 18 in the every 2 weeks group had imputed data. **Based on negative binomial regression analysis, adjusted for region and baseline T2 lesion number

4.2.11 ATTAIN extension study

No non-RCTs of relevance were identified. However, data from an extension of the ADVANCE trial (ATTAIN³) were included in the CS. Overall, of the 1512 patients randomised in ADVANCE, 1076 (71%) continued treatment in ATTAIN³ (376 received continuous, and 171 received delayed treatment with pegIFN β -1a Q2W).

The proportion of the people in year 2 of ADVANCE Q2W group contained 376 subjects who received continuous pegIFN β -1a Q2W, and 171 who received delayed treatment with pegIFN β -1a Q2W, which equates to 73.9% (547 subjects out of 740). The slight variation in the percentages (71% overall versus 73.9% in the continuing group) represents the loss in the denominators of the continuing group (the 740) of the 44 patients in the placebo group who withdrew before entering year 2 of ADVANCE, so this is not an ITT population. In the clarification response to question A6, the ATTAIN population is referred to as "*the ITT population for the patients who entered this extension study*". However, the ERG do not consider this to be the ITT population. It is unclear to the ERG as to how reliable the estimates presented in ATTAIN are, for example the ARR by the end of year 5 in ATTAIN is based on only pegIFN β -1a Q4W 170 subjects of the original 529 starting ATTAIN [32.1%]) (CS Document C, pg.425).

The primary outcome of ATTAIN reached statistical significance. Over years 0-6, the adjusted ARR was significantly improved in the continuous pegIFN β -1a every-2-weeks group compared with the continuous every-4-weeks group (0.188 versus 0.263; P=0.0052). Year-over-year adjusted ARRs were generally reduced in the every-2-weeks group, shown in Figure 2 of Newsome et al., 2018, the trial publication.³

4.2.12 Safety (adverse events)

The CS provides an overview of safety related to pegIFN β -1a (Document B, B.2.10.2. pg.91 and Table 19 pg.92), which was assessed in four studies, including the ADVANCE study,² the extension study (ATTAIN³), a 1-year phase III study to assess patients switching from a non-pegylated IFN β to pegIFN β -1a, with focus on flu-like symptoms (ALLOW⁴⁸) and a

pharmacokinetic study to compare the incidence and frequency of AE (injection-site reactions and flu-like symptoms) on 30 healthy patients receiving pegIFNβ-1a or IFNβ-1a 44 mcg (COMPARE⁴⁹) (CS Document B, B.2.10). In ALLOW⁴⁸ the majority of patients (89.6%) who switched to pegIFNβ-1a from their previous IFNβ therapy did not experience new/worsening flulike symptoms over 8 weeks. In COMPARE⁴⁹ injection-site reactions were the most common AE reported with both treatment arms, most treatment-emergent AE were mild and overall incidence was similar between treatment groups. The CS reports safety data from the ADVANCE trial and the ATTAIN extension trial.

The CS does not specify the population for which it reports AE data for the ADVANCE trial. However, the ERG note that the CSR (Section 12, pg.255) states that

The safety data from the ADVANCE year 1 and 2 is summarised in Table 9.

	ADVANC	E year 1 ^ª	ADVANC	E year 2 ^b	ATTAIN ^c		
Event, %	pegIFNβ- 1a Q2W group n=512	Placebo n=500	pegIFNβ-1a Q2W group n=740, including those re- randomised from the placebo group	pegIFNβ- 1a Q4W group n=728	pegIFNβ- la Q2W group n=547	pegIFNβ-1a Q4W group n=529	
\geq 1 adverse event	94%	83%	94%	94%	87%	89%	
\geq 1 moderate or severe adverse event	66%	57%	70% ^d	71% ^d	NA	NA	
\geq 1 severe adverse event	18%	11%	21%	20%	73%	74%	
\geq 1 serious adverse event	11%	15%	16%	22%	16%	21%	
\geq 1 treatment- related adverse event	90%	53%	90%	88%	73%	76%	
Discontinuation due to adverse events	5% ^a	1%	6%°	6%°	5%	3%	
Withdrawal due to adverse events	5%	1%	6%	6%	4%	3%	
Death	<1%	<1%	<1%	<1%	NA	NA	
Common adverse events							

Table 9. Summary of adverse events in ADVANCE trial Year 1 and year 2

Injection-site erythema	62%	7%	64%	59%	41%	42%
Influenza-like illness	47%	13%	51%	50%	43%	44%
Pyrexia	45%	15%	43%	41%	24%	28%
Headache	44%	33%	42%	41%	29%	29%
Myalgia	19%	6%	19%	19%	12%	12%
Chills	17%	5%	17%	17%	11%	13%
Injection-site pain	15%	3%	17%	14%	6%	7%
Injection-site pruritus	13%	1%	15%	11%	6%	5%
Back pain	12%	11%	12%	12%	10%	10%
Arthralgia	11%	7%	11%	13%	10% ^g	9% g
Fatigue	10%	10%	12%	10%	10%	7%
Pain in extremity	9%	10%	10%	10%	10% ^g	10% ^g
Nausea		6% ^d	10%	9%	NA	NA
Overall infections	33%	39%			NA	NA
^a Data from Table 3, Cal ^b Data from Table 2, Kie ^c Data from CS Table 22 ^d Data from CS Docume	eseier et al 20 2, p96	15, p1033, ⁴¹ exc	ept where noted			

The CS reports that overall and treatment-related AE in year 1 (ADVANCE) were higher in the Q2W group than the placebo group (CS Document B, pg.93), and that rates in the Q2W groups were similar in year 2 to those in year 1 (CS Document B, pg.94). In the ADVANCE trial, any AE were experienced in 94% of patients in the pegIFNβ-1a Q2W arm and 83% in the placebo

^gData from Table Table 2, Newsome 2018,³ p5

arm.

Adverse events in year 2 of ADVANCE were reported for 740 people on the Q2W regimen (the original 512 plus the 228 transferring from placebo) (CS Document B, Table 16 pg.94). Any SAE (including MS relapse) were experienced by 11% in the Q2W group and 15% in the placebo arm in year 1, and by 16% of those in the Q2W group in year 2. Treatment discontinuations due to AE in the treatment arms were the same in years 1 and 2, 5% in the pegIFN β -1a Q2W group and 1% in the placebo arm in year 1, and 6% in the Q2W group in year 2 (see Table 9).

The company included the following AE in their economic analysis (see Section 5.3.11.5): arthralgia, back pain, fatigue, gastroenteritis, headache, immune thrombocytopenic purpura,

influenza-like illness, injection-site reaction, erythema, injection-site reaction-pain, injection site reaction, pruritus, meningitis listeria, nasopharyngitis, progressive multifocal leukoencephalopathy, pneumonia/urinary tract infection, and pyrexia. The ERG clinical experts consider other clinically important AE to be liver disturbance (clinical or biochemical, such as liver alanine aminotransferase (ALT) or other liver function change), and depression.

The ERG note that the company did not report AE related to liver disturbance or depression in the CS. The CSR states that, in year 1 (ADVANCE), for a full of subjects in the QW2 and placebo arms experienced a full of the CSR Table 64, pg.327). In year 2, for the CSR the experienced by for participants, both those who switched from placebo to receiving treatment in year 2, and those who received continuous treatment; there were no subjects reported as experiencing (CSR, Table 317, pg.2750).

The company reports the most common AE (those with an incidence $\geq 10\%$ in the intervention arm) as flu-like symptoms and injection-site reactions, and that they were mild or moderate in severity (CS Document B, pg.91). It states that these AE led to discontinuation of treatment in less than 1% of study participants, and that they decreased after the first 2 years of treatment based on results of the non-placebo-controlled extension trial (ATTAIN).³ Discontinuation due to any AE occurred in around 3% of participants (see Table 9).

The company reports that less than 1% of patients (4 in treatment arm, 1 in placebo arm) tested positive for IFN-neutralising antibodies in year 1 of the trial (CS Table 20, p92). The number of deaths among study participants was not reported in the CS. However, the ERG note that the CSR (pg.274) reported **among** all participants, including those in the 4-week treatment group, none of which the investigator considered related to the treatment.

The rates of AE were generally similar between treatment and placebo, with the exception of treatment-related AE: 90% of the pegIFN β -1a (2-week) group had at least 1 compared to only 53% of the placebo group. The ERG confirmed with the clinical experts that this type of AE is expected in this type of trial, and that injection related AE are "*very common but mild*".

The trial publication for ATTAIN provided the incidence of AE and SAE in patients who received pegIFN β -1a at any time during ADVANCE and ATTAIN.³ For clarity, the ERG have combined the reported incidence with that in ADVANCE in Table 10.

Event	AE and SAE n(%)							
	Advanc	e Year 1	ADVANCE Year 2	Attain Years 3-6				
	Placebo group (N=500)	pegIFNβ-1a every 2 weeks group (n=512)	pegIFNβ-1a every 2 weeks group (n=740)	ATTAIN pegIFNβ-1a every 2 weeks group (n=547)				
Any AE	417 (83%)	481 (94%)	699 (94%)	478 (87%)				
All SAEs	76 (15%)	55 (11%)	120 (16%)	90 (16%)				
Severe AEs	53 (11%)	90 (18%)	152 (21%)	73 (13%)				
Treatment-related AE	266 (53%)	459 (90%)	668 (90%)	399 (73%)				
Discontinuation of treatment due to AE	7 (1%)	25 (5%)	41 (6%)	26 (5%)				

Table 10. Comparison of incidence of AEs and SAEs in ADVANCE and ATTAIN adapted from adapted from CS Document B, Table 19 (pg. 92)

The ERG note the numerically higher proportion of events in the ADVANCE trial compared to ATTAIN and compared to placebo in year 1. Adverse events in year 2 of the ADVANCE study were reported for 740 people on the Q2W regimen (the original 512 plus the 228 transferring from placebo) (CS Document B, Table 16 pg.94).

4.2.12.1 Ongoing observational study

In the CS Document B, B.2.11 page 99-100, the company refer to an ongoing study "*The Plegridy Observational Programme*".⁵⁰ The CS Document B, Figure 31, presents the proportion of patients switching from pegIFNβ-1a to another DMT due to "*adverse events or lack of efficacy*". During clarification, the ERG requested further details on "*the reasons for patients switching treatment because of AE or lack of efficacy. For example, discontinuation by type of AE/SAE or because of problems with adherence or patient choice etc*". The ERG considered this information important for determining potential reasons for discontinuation due to AE and all cause discontinuation in a real world setting. In response to clarificatory were selected by study investigators from a pre-specified list of reasons for discontinuing pegIFNβ-1a in the CRF; therefore, no additional data are available regarding additional details on the reasons for discontinuing pegIFNβ-1a and switching to another DMT". Therefore, no further information is available to the ERG to assess potential reasons for discontinuation from pegIFNβ-1a.

4.3 Critique of trials identified and included in the indirect comparison and/or multiple treatment comparison

The CS SLR identified 27 studies that were eligible for inclusion in indirect and mixed treatment comparisons of at least one outcome. The search strategy is shown in CS Document C, Appendix D, page 4; the inclusion criteria in CS Document C, Table 22 page 30. The ERG consider the methods of searching, inclusion/exclusion and data extraction largely appear appropriate (see Section 4.1.2). The ERG noted discrepancies in reasons for exclusion compared to those presented in the CS. In Table 1A of Appendix A the ERG provides a comparison of included studies with the included studies listed in CS Document B, Table 16 "*for the primary and secondary outcomes*" and CS Document C, any discrepancies are discussed.

4.3.1.1 Trials included for comparisons of at least one outcome

The CS included 32 studies reported in 561 publications which are presented in CS (Document C Table 26, pg.39-74). Five studies reported no relevant outcomes (CS Document B Table 15, pg.68), leaving 27 with relevant outcomes. Quality assessments of the trials included in the MTCs were not provided in CS Documents B or C, only in the Biogen Data Extraction excel spreadsheet dated August 2018 (CS Reference pack C). The ERG conducted quality assessment of all trials included in the MTC (see Table 2B in Appendix B). The assessments were mostly similar although with some exceptions. Of note, more information is now available for some studies, for example, a full paper has now been published for the APEX trial⁵¹ allowing a more thorough examination of study quality than was possible using only the previously published abstracts. The identified trials listed in the CS were: ADVANCE,² APEX,⁵¹⁻⁵³ BEYOND,⁵⁴ Boiko 2017,⁵⁵ Bornstein 1987,⁵⁶ BRAVO,⁵⁷ Calabrese 2012,⁵⁸ CAMMS223,⁵⁹ CARE MS-I,⁶⁰ CARE MS-II,^{61,62} CombiRx,⁶³ CONFIRM,⁶⁴ Copolymer I study,⁶⁵ Crentsil 2012,⁶⁶ DEFINE,^{67, 68} Etemadifar 2006,⁶⁹ EVIDENCE,⁷⁰ GALA,⁷¹ GLOW,⁷² IFNB Multiple Sclerosis Study,⁷³ INCOMIN,⁷⁴ Mokhber 2014,⁷⁵ Mokhber 2015,⁷⁶ MSCRG,⁷⁷ O'Connor 2006,⁷⁸ OPERA I,^{79, 80} OPERA II,^{79, 81} PRISMS,⁸² REGARD,^{83, 84} TEMSO,^{85, 86} TENERE,⁸⁷ and TOWER.⁸⁸ Six further ongoing studies were identified and presented in CS Document C Table 27 page 74 (109MS305/NCT01838668,89 ABOVE, ⁹⁰ DELIVER-MS, ⁹¹ Khan 2008, ⁹² Khan 2009, ⁹³ and PLENO, ⁹⁴)

4.3.1.2 Direct evidence

The ERG consider that only one source of direct evidence was available. This is the ADVANCE trial described in the CS, which compared 1 year of pegIFN β -1a 125 mcg Q2W versus placebo.²

4.3.1.3 Mixed Treatment Comparisons

Mixed-treatment comparison was performed using a Bayesian approach (CS Document B, pg.66 [see Section 4.4.1.3 for a review of the methods of statistical analysis in the MTC]). A more indepth description of the MTC methods, analysis and results (compared to the CS Document A, B, C) was provided in The Biogen Full Report and The Biogen Full Report Appendices. These two documents have not previously been published, data from The Biogen Full Report and The Biogen Full Report Appendices have been provided to the ERG for this appraisal.

Only DMTs with a positive reimbursement decision for patients with RRMS that was not highly active or rapidly evolving severe by NICE were included in the MTC (CS Document B pg.65). This appears acceptable and in line with the CS decision problem described in Section 3.

After excluding five studies for no relevant outcomes (CS Document B Table 15, pg.68), there appear to be 23 studies for ARR and 11 or 12 studies for CDP3M and CDP6M (CS Document Table 16 pg.69). The ERG note that 12 studies were included in the network for CDP3M (ADVANCE,² BEYOND,⁵⁴ BRAVO,⁵⁷ CAMMS223,⁵⁹ CONFIRM,⁶⁴ DEFINE,⁶⁷ EVIDENCE,⁷⁰ OPERA I,⁷⁹ OPERA II,⁷⁹ PRISMS,⁸² TEMSO,⁸⁵ TOWER⁸⁸) (CS Document B on p80) and 13 studies were included in the network for CDP6M (ADVANCE,² BRAVO,⁵⁷ CAMMS223,⁵⁹ CARE MS-I,⁶⁰ CARE MS-II,^{61,62} CONFIRM,⁶⁴ DEFINE,⁶⁷ EVIDENCE,⁷⁰ OPERA I,⁷⁹ OPERA II,⁷⁹ PRISMS,⁸² TEMSO,⁸⁵ TOWER,⁶⁷ EVIDENCE,⁷⁰ OPERA I,⁷⁹ OPERA II,⁷⁹ OPERA,⁶¹ CONFIRM,⁶⁴ DEFINE,⁶⁷ EVIDENCE,⁷⁰ OPERA I,⁷⁹ OPERA II,⁷⁹ PRISMS,⁸² TEMSO,⁸⁵ TOWER,⁶⁴ DEFINE,⁶⁷ EVIDENCE,⁷⁰ OPERA I,⁷⁹ OPERA II,⁷⁹ OPERA I,⁶¹ CONFIRM,⁶⁴ DEFINE,⁶⁷ EVIDENCE,⁷⁰ OPERA I,⁷⁹ OPERA II,⁷⁹ OPERA I,⁶¹ CONFIRM,⁶⁴ DEFINE,⁶⁷ EVIDENCE,⁷⁰ OPERA I,⁷⁹ OPERA II,⁷⁹ OPERA I,⁶¹ CONFIRM,⁶⁴ DEFINE,⁶⁷ EVIDENCE,⁷⁰ OPERA I,⁷⁹ OPERA II,⁷⁹ OPERA I,⁷⁹ OPER

The ERG consider this to be an error in CS Table 16 (CS Document B) where TEMSO⁸⁵ is stated to have no data for CDP6M. However, this trial is included in the MTC displayed on CS Document B page 82, and it looks as though the " \checkmark c" for TOWER⁸⁸ for CDP3M and CDP6M should both be " \checkmark " in CS Table 16. The ERG noted additional discrepancies regarding the inclusion of excluded studies in CS Table 16, which were confirmed in clarification response A10.

4.3.1.4 Outcome selection reported in the MTC

The NICE final scope¹ listed the outcomes which should be considered (see Section 3): the ERG notes that ARR (n=23 studies CS Document B, pg.67; network on pg.78), CDP3M (n=12 studies; CS Document B, network on pg.80) and CDP6M outcomes (n=13 studies; CS Document B, network on pg.82) were combined in meta-analysis, but not relapse severity, NEDA, mortality or safety.

In CS Document B, Table 1 page 15, the company states that the CS addresses the outcomes as per the NICE final scope, but some outcomes (severity of relapse, symptoms, and freedom from disease activity) could not be assessed in an MTC due to lack of comparative data or heterogeneous definitions or scales.

The ERG consider most of the outcomes to be clearly defined, however "*freedom from disease activity*" (CS Document B, Table 1 pg.15) may be measured in many ways, for example changes in the number or volume of brain/CNS T1, T2, Gd+ lesions or black holes on MRI (CS Document B, pg.22). The CS also suggest the composite outcome "*NEDA*", defined as: "*disease stability that compromises no new relapses, no disability progression, and no new or enlarging MRI lesions. Clinical NEDA is defined as no evidence of relapses and onset of CDP, while MRI NEDA is defined as no evidence of Gd+ lesions and no new/newly enlarging T2 lesions*" (CS Document B, pg.22).

The ERG notes that clinical NEDA and MRI NEDA are not necessarily correlated, see CS Document B, Figure 24 page 86 for example. Clinical NEDA over 2 years in matched patients treated with pegIFN β -1a was 56.0% versus GA versus 55.1% (P=0.762) but the MRI NEDA in the two groups was 27.5% versus 16.4% (P=0.014).

4.3.1.5 MTC results for the primary outcome: Annualised Relapse Rate

ARR was analysed based on MTC of treatment differences using the RR as the effect estimate. The RR is an annualised measure; therefore, the company "*considered it reasonable to combine data across multiple time points for this outcome*" (CS Document B, pg.66).

For ARR (CS Document B, pg.79), the company states the following:

- "The RR for pegIFNβ-1a was numerically decreased compared with IM IFNβ-1a 30 mcg once weekly (QW) or teriflunomide; however, these differences were not statistically significant."
- "PegIFNβ-1a demonstrated a statistically significant increase in RR relative to alemtuzumab or ocrelizumab. The RR for pegIFNβ-1a was also numerically increased compared with DMF; however, these differences were not statistically significant."
- "There was no difference in the RR (RR, ≥ 0.9 and ≤ 1.1) for patients receiving pegIFN β -1a compared with IFN β -1a 44 mcg, IFN β -1b, GA 20 mg, or GA 40 mg."

The ERG note that as the credible intervals (CrL) for the majority of comparisons overlap, it would be more accurate to state the ARR was statistically significantly higher for pegIFN β -1a than alemtuzumab or ocrelizumab, and statistically significantly lower than placebo. And that there were no significant differences between the ARR for pegIFN β -1a and any of the other treatments (see

The Biogen Plegridy Full Report Appendices document (Appendix 7, Figure 1, pg.220) shows the ARR for each intervention versus placebo, which is helpful for comparison and therefore is reproduced in

The Biogen Plegridy Full Report Appendices document (pg.266) reports the sensitivity analysis to assess the impact of using a random effects model versus a fixed effects model on the MTC for ARR (which showed similar effects). The ERG note that in The Biogen Plegridy Full Report a high heterogeneity in the comparison of GA 20 mg qd versus placebo was observed ($I^2 = 86\%$). This was also noted in Melendez-Torres et al., 2017⁶. This related to one study, Bornstein 1987⁵⁶ which appears to be the outlier in this analysis, as the RR from this study does not overlap with the confidence intervals of the other two included studies (pg.260). The Biogen Full Report Appendices conducted a sensitivity analysis excluding the Bornstein 1987 study (Table 33, pg.274-275). The sensitivity analysis in the MTC for the ARR combined network excluding Bornstein 1987, **The Sensitivity** the between-trial standard deviation in the sensitivity analysis. The Biogen Full Report Appendix 11 (pg.260) stated that

A surface under the cumulative ranking curve (SUCRA) diagram was not presented in the CS to summarise the results of the ARR MTC. This was requested at clarification. Clarification response A10c (Table 10) provided a table of ranking for ARR, as reproduced below in ARR results for pegIFNβ-1a are in bold.

Treatment	Ran k1	Ran k2	Ran k3	Ran k4	Ran k5	Ran k6	Ran k7	Ran k8	Ran k9	Rank 10	Rank 11
Alemtuzumab 12 mg qd											
Ocrelizumab 600 mg q24w											
DMF 240 mg bid											
PEG IFN beta-1a 125 mcg q2w											
GA 40 mg tiw											
IFN beta-1b 250 mcg qad											
GA 20 mg qd											
IFN beta-1a 44 mcg tiw											
IFN beta-1a 30 mcg qw											
Teriflunomide 14 mg qd											
Placebo											

Presenting the results of a MTC in a way that can be understood requires the prestation of the sets of relative effects between all pairs of interventions. Ranking tables (such as **section**) are based on the ranking probabilities, which describe the probabilities for each treatment to be placed at a specific ranking position (rank 1, rank 2, rank 3 etc) in comparison with all other interventions.⁹⁵ The ERG consider the presentation of ranking tables alone to summarise intervention efficacy generated from MTC misleading, as ranking probabilities have a degree of uncertainty. Rankings based on SUCRAs account better for the uncertainty in estimated treatment effects.⁹⁵ SUCRAs are conditional on the set of treatments being compared which means SUCRAs and rankings will change if a subset of the treatment are compared. Ranking tables are not a substitute for relative treatment effects and they cannot be interpreted clinically.

Considering the above, the ERG note that the Biogen Plegridy Full Report Appendices document (Table 25, pg.267) presents the results for ARR for all pairwise comparisons (random effects). Table 25 displays the results of a sensitivity analysis which was carried out in the Biogen Plegridy Full Report Appendices to assess the impact of using a random effects model versus a fixed effects model in the MTC. However, the ERG have reproduced it in **Control** to allow for visual comparison of pegIFNβ-1a ARR to other interventions included in the MTC, ARR results for pegIFNβ-1a are in bold.

	IFN beta-1a 30 mcg qw	IFN beta-1a 44 mcg tiw	PEG IFN beta-1a 125 mcg q2w	IFN beta-1b 250 mcg qad	GA 20 mg qd	GA 40 mg tiw	Teriflunomide 14 mg qd	DMF 240 mg bid	Alemtuzumab 12 mg qd	Ocrelizumab 600 mg q24w
IFN beta-1a 30 mcg qw										
IFN beta-1a 44 mcg tiw										
PEG IFN beta-1a 125 mcg q2w										
IFN beta-1b 250 mcg qad										
GA 20 mg qd GA 40 mg tiw										
Teriflunomide 14 mg qd										
DMF 240 mg bid										
Alemtuzumab 12 mg qd										
Ocrelizumab 600 mg q24w										
Placebo										

4.3.1.6 MTC results for the secondary outcomes: CDP3M and CDP6M

In CS Document B (pg.66) the company states that "*CDP3M and CDP6M were typically* reported as an HR for the risk of experiencing disability progression. The analysis for this outcome was based on MTC of treatment differences using the HR as the effect estimate at 24 months follow-up. To achieve a comparison with pegIFNβ-1a ... 11 month data from ADVANCE and 18- and 24-month data for comparator treatments were pooled for CDP3M and CDP6M outcomes. This limited the accuracy of the comparison but without combining data from different time points, comparative effectiveness would not be possible." The ERG note a similar comment in Document A, page 26, which adds: "Thus, the results should be interpreted with caution." The ERG consider this pooling acceptable for the purposes of the analysis (see Section 4.4.1.3 for a critique of the MTC statistical methods).

Results of the MTC are reported for CDP3M in CS Document B, B.2.9.3.2. The CS reports results of pegIFNβ-1a compared with all other treatments in the network, and concludes that there

were no statistically significant differences. Results of the MTC are reported for CDP6M in CS Document B, B.2.9.3.3.

For CDP3M (CS Document B, pg.81), that company states the following:

- "The risk of CDP3M was numerically decreased in patients receiving pegIFNβ-1a compared with those receiving IM IFNβ-1a 30 mcg, IFNβ-1b, GA 20 mg, or placebo; however, these differences were not statistically significant."
- "The risk of CDP3M was numerically increased for pegIFNβ-1a compared with either alemtuzumab or ocrelizumab; however, these differences were not statistically significant."
- "There was no difference in the risk of CDP3M (HR ≥ 0.9 and ≤ 1.1) in patients receiving pegIFNβ-1a compared with IFNβ-1a 44 mcg, IFNβ-1a 22 mcg, teriflunomide, or DMF. Indirect (Bucher) and direct meta-analyses are presented in Appendix L."

As the 95% credible intervals for all comparisons overlap, the ERG consider it would be more accurate to present the initial conclusion as MTC analysis demonstrated that there were no statistically significant differences in the risk of disability progression confirmed after 3 months for patients treated with pegIFNβ-1a compared with all other treatments in the network.

For CDP6M (CS Document B, pg.81), that company states the following:

- "The risk of CDP6M was numerically decreased in patients receiving pegIFNβ-1a compared with those receiving IM IFNβ-1a 30 mcg, IFNβ-1a 44 mcg, GA 20 mg, DMF, teriflunomide, or placebo; however, this difference was only statistically significant against placebo."
- "The risk of disability progression was numerically increased for pegIFNβ-1a compared with alemtuzumab and ocrelizumab; however, these differences were not statistically significant. Indirect (Bucher) and direct meta-analyses are presented in Appendix L."

As the 95% credible intervals for all comparisons overlap, the ERG consider it would be more accurate to present the initial conclusion as there were no statistically significant differences in the risk of CDP6M for patients treated with pegIFN β -1a compared with all other treatments in the network.

The ERG note that the Biogen Plegridy Full Report Appendices document (Appendix 7, Figure 2, pg.221) shows the CDP3M for each intervention versus placebo, and Figure 3, pg.222 for CDP6M, which are helpful for comparison and therefore reproduced by the ERG below in

bid = twice daily; DMF = dimethyl fumarate; pegIFN β -1a = pegylated interferon β -1a; q24w = once every 24 weeks; qad = every other day; qd = once daily; qw = once weekly; tiw = three times weekly

bid = twice daily; DMF = dimethyl fumarate; pegIFN β -1a = pegylated interferon β -1a; q24w = once every 24 weeks; qad = every other day; qd = once daily; qw = once weekly; tiw = three times weekly

The Biogen Plegridy Full Report Appendices document (pg.284) reports the sensitivity analysis to assess the impact of using a random effects model versus a fixed effects model, and the choice of prior distribution, on the MTC for CDP3M, with similar results between the analyses. The ERG note that for CDP6M, the relative effects for all treatment comparisons were similar in the random effects and fixed effects models (The Biogen Plegridy Full Report, pg.304), and for alternative prior distributions (The Biogen Plegridy Full Report, pg.304).

The CS Document B, page 126 states that "For the base case, CDP6M was implemented as this is considered a more robust outcome (indicative of permanent disability progression) than CDP3M (which can be influenced by relapse activity)" (for further discussion of the company's economic analyses see Section 5.1.1.1). The results presented for CDP3M and CDP6M are numerically similar (as can be seen in **Example** and **Example**). Noticeable differences in HR estimates between CDP 3 and 6 months were in:

4.3.1.7 CS MTC comparison to MTCs in ID527

To enable external comparison, the ERG compared the MTCs presented in this CS with the MTC conducted by the assessment group for ID527⁴, which was undertaken as part of a Multiple Technology Appraisal (MTA), found in Melendez-Torres et al 2017⁶ (CS Document B, pg.81). The ERG thought this comparison to be useful since ID527,⁴ (which targeted all available beta-interferon, including pegIFN, and GA) was conducted recently.

The interventions included in the CS MTC for ARR (CS Document B, B.2.9.3.2 pg.80), CDP3M and CDP6M are displayed in Table 11. Differences in the trials included for the three outcomes were investigated by the ERG. Based on visual inspection of network plots for ARR, CDP3M, and CDP6M, the ERG have noted a number of differences within the IFN beta and GA comparisons. Noticeably, trials reporting IFN beta-1a 22ug SC tiw were not included in the CS MTC for ARR, or The Biogen Plegridy Full Report. However, they were included in the MTC in ID527.⁴

Intervention		MTC in ID52		MTC in CS	8					
	ARR	CDP3M	CDP6M	ARR	CDP3M	CDP6M				
Placebo	Y	Y	Y	Y	Y	Y				
GA 20mg qd	Y	Y	Y	Y	Y	Y				
pegIFNβ-1a	Y	Y	Y	Y	Y	Y				
125 mcg										
GA 40mg tiw	Y	Ν	Ν	Y	Ν	Ν				
IFN beta-1a	Y^	Y	Y	Y	Y	Y				
44mcg tiw										
IFN beta-1b 250	Y	Y	Y	Y	Y	Ν				
mcg qad										
IFN beta-1a	Y	Y	Ν	Ν	Y	Ν				
22ug SC tiw										
IFN beta-1a	Y	Y	Y	Y	Y	Y^+				
30mcg qw										
Alemtuzumab	*	*	*	Y	Y	Y				
Dimethyl	*	*	*	Y	Y	Y				
fumarate										
Teriflunomide	*	*	*	Y	Y	Y				
Ocrelizumab (only	*	*	*	Y	Y	Y				
if alemtuzumab is										
contraindicated or										
otherwise unsuitable)										
Grey shading = difference be										
*intervention not included in	*intervention not included in ID527 appraisal ⁴ , not appropriate for comparison.									

Table 11. Comparison of MTC in ID527 ⁴ reported in Melendez-Torres et al 2017 ⁶ and MTCs in th	ie
CS	

+One trial MSCGR 1996,⁷⁷ for IFNβ-1a 30 mcg QW was not included in CDP6M in the CS, but was included in ID527⁴ MTC for this outcome, through the estimation of HR from the reported RR [^]One trial PRISMS,⁸²published a post-hoc analysis in 2018 providing the HR for CDP6M in IFN beta-1a 44mcg tiw. This was not included in the MTC in the ID527⁴ which was performed in 2016.

The ERG note that PRISMS 1998⁸² reporting IFN beta-1a, reported mean relapses per patient over 2 years, and percentage relapse-free over 1 year and over 2 years. The MTC in ID527⁴ reported the proportions of patients who were free of relapse (pg.57) and calculated ARR from this (Melendez-Torres et al 2017⁶ Figure 5).

The IFN beta-1a 22mcg SC tiw data from PRISMS were included in the CDP3M network CS Document B page 80. The company included PRISMS⁸² for the IFN44 versus placebo comparison for CDP6 while the Melendez-Torres et al 2017⁶ did not. The ERG have checked that the source of evidence for CDP6M in PRISMS, and noted that a paper was published in 2018 reporting this outcome from a post-hoc analysis. Since ID527 accounted for evidence up to year 2016, PRISMS was not included for the CDP6M MTC which informed ID527⁴.

A second difference was the exclusion of IFN beta-1b 250 mcg qad from CDP6M presented in the CS Document B, C or the MTC presented in The Biogen Plegridy Full Report Appendices document, Appendix 7, Figure 3, p222. The ERG considered this difference potentially important due to CDP6M informing the base case in the cost-effectiveness model (see Section 5.1.1.1).

The ERG found that IFN beta-1b 250mcg qad was reported in Etemadifar 2006⁶⁹ (but this study did not report CDP6M), the IFNB MS study⁷³ (but this study did not report CDP6M) and INCOMIN 2002⁷⁴. Durelli et al., 2002 (INCOMIN)⁷⁴ included "*Progression in EDSS score of 1 point sustained for 6 months and confirmed at end of study*", which is a slightly different definition of outcome and not technically the same as only being confirmed at 6 months. However, during clarification, the ERG noted that "*INCOMIN 2002⁷⁴ reports the rate ratio for this outcome (CDP6M) for interferon beta-1b 250 mcg alternate days (information can be found in Melendez-Torres et al 2017⁶) and asked for clarification for the rationale for not calculating the hazard ratio from the reported rate ratio". The company response to this clarification question (A9a) stated that "there is no suggestion of assuming rate and hazard ratios are equivalent and can be included in the same analysis. Therefore, we did not include INCOMIN⁷⁴ in the CDP6M network". The ERG agree that RR and HR cannot be assumed to be equivalent. However, the Melendez-Torres et al 2017⁶ publication derived the HR from the RR using a*

method which is reported in the monograph. Since the MTA and the present STA have been undertaken by the same TAR team, the ERG was able to verify that the HR for CDP6M was not reported in INCOMIN 2002,⁷⁴ however, as part of the MTA, the ERG was able to calculate the HR based on the number of patients with progression and the total number of patients.

Nevertheless, in clarification response A9b, the company did provide an updated MTC which includes INCOMIN 2002.⁷⁴ However, the sensitivity analyses provided did not derive HR from RR as requested in clarification, and instead used the reported RR. Clarification response A9b, Figure 4 presented the results of a sensitivity analyses which allowed for inclusion of IFN beta-1a 250 mcg qad for the CDP6M outcome, via the inclusion of INCOMIN 2002⁷⁴ trial, reporting RR. This is reproduced in for completeness. The inclusion of IFN beta-1a 250 mcg qad in the CDP6M network numerically changed the HR estimates and credible intervals of other interventions compared to pegIFNβ-1a 125 mcg by a small amount, but did not generate any statistically significant changes. The ERG do not consider this informative due to the inclusion of RR not derived HR.

bid = twice daily; DMF = dimethyl fumarate; pegIFN β -1a = pegylated interferon β -1a; q24w = once every 24 weeks; qad = every other day; qd = once daily; qw = once weekly; tiw = three times weekly

A similar consideration can be made regarding publications reporting the MSCGR 1996 trial,⁷⁷ for IFN β -1a 30 mcg QW. The publication reports rates of people with CDP6M, not HR. The ERG consider it possible to include this study for CDP6M, and to derive an estimated HR from the RR (as with INCOMIN 2002). The ERG note that IFN β -1a 30 mcg QW could be compared to placebo using BRAVO (as reported in the CS Document B, Figure 18 pg.82) but also using MSCGR 1996, which was excluded for CDP6M, as stated in CS Document B, Table 16, page 69.

In the Biogen Plegridy Full Report section 6.3, page 124, the authors have compared its MTC with other recently published MTCs, which includes that undertaken as part of the MTA (ID527⁴). The analysis made by the company to explain the potential discrepancies across MTC is reasonable, this includes a comment on the analysis methods to derive HR based on the number of patients with progression and the total number of patients.

For completeness and to allow for external comparison with results that were used for decision making by NICE recently, the ERG have reported the main results from the MTC undertaken as part of the MTA (reported in Melendez-Torres et al 2017⁶) for ARR, CDP3, and CDP6 within beta-interferons and GA (see Table 12) (see Section 6.2.3)

Drug vs. placebo	A	ARR		DP3M	CDP6M		
	CS Doc B, Table 36 pg. 127 (CrL)	MTA ⁶ Table 8 pg.72 (95% CI)	CS Doc B, Table 34 pg. 126 (CrL)	MTA ⁶ Table 12 pg.81 (95% CI)	CS Doc B, Table 34 pg. 126 (CrL)	MTA ⁶ Table 13. pg.83 (95% CI)	
IFNbeta 1a 30		0.80 (0.72, 0.88)		0.73 (0.53, 1.00)		0.68 (0.49, 0.94)	
IFNbeta 1a 44		0.68 (0.60, 0.76)		0.63 (0.46, 0.86)		0.47 (0.24, 0.93)	
IFN beta 1b 250		0.69 (0.62, 0.76)		0.78 (0.59, 1.02)		0.34 (0.18, 0.63)	
GA 20mg		0.65 (0.59, 0.72)		0.76 (0.60, 0.97)		0.82 (0.53, 1.26)	
pegIFNβ-1a		0.64 (0.50, 0.83)		0.62 (0.40, 0.97)		0.46 (0.26, 0.81)	

Table 12. Primary and secondary outcome results comparison from CS MTC and MTC in Melendez-Torres et al 2017⁶

4.3.1.8 MTC and indirect comparison results for additional outcomes

The CS Document B (Table 18, pg.91) provides key efficacy and safety outcomes of pegIFNβ-1a relative to all other treatments, including mortality, any AE, any SAE and treatment discontinuation due to any cause. The Biogen Plegridy full report appendices reports metaanalyses for NEDA (pg.230), mortality (pg.231), any AE (pg.233), any SAE (pg.234), treatment discontinuation due to any cause (pg.237) and treatment discontinuation due to AE (pg.238). These are discussed below:

4.3.1.9 No Evidence of Disease Activity

direction of benefit between the two drugs.

The GALA⁷¹ study does not refer to NEDA, nor does the Biogen Report indicate what is being referred to as NEDA so the ERG is not able to identify whether the report or the appendices are correct. Results of a direct comparison of pegIFN β -1a 125 mcg Q2W versus placebo for the ADVANCE study² are presented (CS Document C, Table 112 pg.451), with an OR of 2.89 (95% CI 1.11,2.15). The ERG notes that clinical NEDA and MRI NEDA are not necessarily correlated (see Section 4.3.1.4). The ERG therefore questions how useful this composite outcome is.

4.3.1.10 Mortality

The MTC for mortality (n=3 studies) was described narratively (CS Document C, pg.452). There were 12 studies that could not be included in the network because they did not report mortality data. The ERG confirm that there were no usable 12-month mortality data in the 12 studies. The ERG note the MTC confidence intervals were very wide (see CS Document C, Figure 13), presumably due to few events (e.g., 0.2% [1/512] with pegIFNβ-1a 125 mcg Q2W died after 11 months of follow-up versus 0.4% [2/500] with placebo in ADVANCE). The CS Document C page 452 reports numerically changed differences between intervention and placebo which were not statistically significant. The Biogen Plegridy Full Report document (pg.122) states that

···

4.3.1.11 Adverse Events

The MTC for AE (n=4 studies) was described narratively (CS Document C, pg.455). The company state that "*heterogeneity in study design and AE reporting was too great to allow pooling of data in an MTC*" (CS Document B, pg.66). In CS Document C page 455 the company report "*no statistically significant differences in the odds of an AE for patients treated with pegIFNβ-1a 125 mcg Q2W compared with all other treatments in the network*".

The Biogen Plegridy Full Report document (pg.122) states that "

"The Biogen Plegridy Full Report Appendices document (pg.317) states that in sensitivity analyses, the relative effects of all treatments compared to placebo were similar in the random effects and fixed effects models. Odds ratios were similar using alternative prior distributions (pg.317).

Data are available from several other studies for AE (see Table 1A Appendix A), so it is unclear to the ERG why these were not included in the CS.

4.3.1.12 Serious Adverse Events

The MTC for SAE (n=3 studies) was described narratively (CS Document C, pg.457). Any SAE was analysed as a dichotomous outcome based on the proportion of patients who experienced at least one event after 24 months follow-up using odds ratios as the effect measure (CS Document B, pg.66). The company stated that they "*analysed SAE excluding MS relapses where data were available and performed sensitivity analyses of SAE, including MS relapses*"; (CS Document B, pg.66). However, the ERG found no further data on sensitivity analyses for clinical effectiveness were in Documents A, B or C. The CS Document C page 457 states that "*There were no statistically significant differences in the odds of an SAE for patients treated with pegIFNβ-1a 125 mcg Q2W compared with all other treatments in the network*".

The Biogen Plegridy Full Report Appendices document (Table 12, pg.236) provides the data for SAE with and without relapses included, but an OR graph was only presented for the data excluding relapses (Figure 21, pg.234). The Biogen Plegridy Full Report Appendices document (pg.322) states that in sensitivity analyses, the relative effects of all treatments compared to placebo were similar in the random effects and fixed effects models. Odds ratios were similar using alternative prior distributions (pg.322).

Data are available from several other studies for serious AE (see Table 1A Appendix A), so it is unclear to the ERG why these were not included.

4.3.1.13 Treatment discontinuation due to any cause

Treatment discontinuation due to any cause was analysed as a dichotomous outcome based on the proportion of patients who discontinued after 24 months follow-up using ORs as the effect measure (CS Document B, pg.66). The MTC for treatment discontinuation for any cause (n=3 studies) was described narratively (CS Document C, pg.460). In CS Document C, Table 118, the rates of discontinuation of GA (20 or 40mg) are different from placebo, whereas those for pegIFNβ-1a 125 mcg Q2W were significantly greater than placebo in CS Document C, Figure 23 page 461. Also, there are data for discontinuation for any cause from several other studies (e.g., all those included in the ARR MTC network) reported in Document C Table 122, pg.464-465, so it is unclear to the ERG why there are not more data available for the MTC for discontinuation for any cause (see Table 1A Appendix A).

The Biogen Plegridy Full Report document (pg.122) states that "

"The Biogen Plegridy Full Report

Appendices document (pg.327) shows sensitivity analysis results for the fixed and random effect models.

4.3.1.14 Treatment discontinuation due to adverse events

The MTC for treatment discontinuation due to AE (n=2 studies, ADVANCE, GALA) is reported narratively (CS Document C, pg.461). The company states that "*There was heterogeneity in the reporting of discontinuation between studies. One study reported study discontinuation due to AE (ADVANCE) while one study did not specify which definition was used (GALA). Given the heterogeneity between studies and the lack of appropriate data to assess the impact of heterogeneity, we did not consider it valid to perform a quantitative meta-analysis for discontinuation due to AEs."*

Heterogeneity between the studies is discussed (in Section 4.4.1). The ERG reviewed the Khan et al., 2017⁹⁶ paper reporting GALA, the authors report discontinuations due to AE at the end of the 1-year placebo-controlled period in Figure 2: 29/943 for GA 40 versus 6/461 for placebo.⁹⁶ The ERG assessed these figures using RevMan, and the results suggests that these proportions are not significantly different, whereas in CS Document C, Figure 25, page 462, discontinuations due to AE are significantly higher for pegIFNβ-1a 125 mcg Q2W than placebo, suggesting that, potentially, discontinuation due to AE might be higher for pegIFNβ-1a 125 mcg Q2W than GA 40, if they had been compared. However, comparing the data from The Biogen Plegridy Full Report document page 118, Table 43 in RevMan found no significant difference between the rates of discontinuations due to AE between pegIFNβ-1a 125 mcg Q2W and GA 40. The Biogen Plegridy Full Report document (pg.122) states that "

Similarly to the observation above for discontinuation for any cause, there are data for discontinuation for AE from several other studies (all those included in the ARR MTC network)

reported in CS Document C Table 123, pages 465-466, so it is unclear why there are not more data available for the MTC for discontinuation due to AE (see Table 1A Appendix A).

In addition, Melendez-Torres et al., $(2017)^6$ conducted pairwise and network meta-analyses of discontinuation because of AE at 24 months in RRMS (pg.87) and included 21 trials (BECOME 2009,⁹⁷ BEYOND 2009,⁵⁴ Bornstein 1987,⁵⁶ BRAVO 2014,⁵⁷ CONFIRM 2012,⁶⁴ Cop1 MSSG 1995,⁶⁵ IFNB MSSG 1995,⁷³ INCOMIN 2002,⁷⁴ MSCRG 1996,⁷⁷ PRISMS 1998⁸² and REGARD 2008⁸³). In the pairwise analysis, almost all individual study estimates and pooled estimates did not suggest that discontinuation was more likely in trial arms corresponding to one drug over another to a statistically significant level. The one exception was 125 µg of SC pegIFNβ-1a every 2 weeks compared with placebo, in which patients receiving the study drug were more likely to discontinue the study because of AE (risk ratio 3.49, 95% CI 1.52,7.99). The network meta-analyses did not offer statistical evidence that any one drug was more likely to result in discontinuation because of AE than any other drug. However, based on SUCRAs, 125 µg of SC pegIFNβ-1a every 2 weeks was ranked highest for risk of discontinuation because of AE (i.e. greatest risk of discontinuation), followed by 44 µg of SC IFN-β-1a three times weekly. Placebo was ranked last.⁶

4.3.1.15 Sensitivity analyses

The company state that "Sensitivity analyses were conducted using alternative prior distributions for the between-trials SD in networks with fewer than 10 studies" (CS Document C, pg.34). The CS states that further details of the MTC analysis are presented in Section B.2.10.2 of Document B, however the ERG note that this may be a typographical error as this section describes the safety profile of ADVANCE. The ERG could not find the sensitivity analyses reported in Documents A, B or C, for networks with <10 studies (NEDA, mortality, AE, SAE, discontinuations [all cause or for AE]). However, they are reported in the Biogen Plegridy Full Report Appendices document.

4.3.1.16 Summary of MTC results

The data presented in the CS documents, Biogen Plegridy Full Report and Biogen Plegridy Full Report Appendices document show few differences between pegIFNβ-1a 125 mcg Q2W and

comparators for the primary (ARR) and secondary (CDP3M and CDP6M) outcomes. Key issues for additional outcomes are:

- The lack of clarity about the direction of benefit for NEDA, and the interpretation of this outcome as it is a composite of clinical and MRI assessments which may not correlate with each other
- The lack of inclusion of many studies with data for AE, SAE, treatment discontinuation for any cause and treatment discontinuation for AE (studies with available data are shown in Table 9Error! Reference source not found.). This is potentially important considering the findings of Melendez-Torres et al., (2017)⁶ pairwise and network meta-analyses of discontinuation because of AE at 24 months in RRMS.

4.4 Critique of the indirect comparison and/or multiple treatment comparison

4.4.1 Appropriateness of the MTC

The ERG notes that there are two underlying assumptions to MTC: transitivity and consistency. Transitivity refers to there being no systematic differences between the comparisons being made other than the treatments that are being compared. Consistency is the statistical agreement between direct and indirect comparisons. The ERG conducted an appraisal of the methodological reporting of the MTC which is included in Table 3C of Appendix C.

4.4.1.1 Transitivity

The CS states that "*trials should be similar for moderators of relative treatment effect*" (CS Document B, pg.67), further defined as "*Clinical similarity refers to similarity in patients*" *characteristics, interventions, settings, length of follow-up, and outcomes measured*." (CS Document C, pg.33). The ERG note that CS Document C page 34 states that clinical similarity was addressed based on an assessment of the study design and patient characteristics including:

- Diagnostic criteria McDonald (any revision) versus Other (Poser, Schumacher)
- Mean/Median age of included patients
- Proportion of Male versus Female participants

- Mean/Median EDSS score
- Mean/Median duration of disease
- Mean/Median number of relapses prior to enrolment
- Proportion of previously treated patients

However, the ERG consider that there were differences between studies in the disease duration of the patient populations (CS Document B, p67. The ERG provide a full description of baseline characteristics (see Table 4D in Appendix D). The disease duration is reported in CS Document B, page 17; mean/medians ranged from 1-8.8 years between studies. The CS states "*There is no clear basis on which to set a threshold for the inclusion/exclusion of studies in the analysis based on disease duration. Any choice of threshold would be arbitrary, and alternative choices may substantially affect the results; therefore, we did not exclude any studies based on clinical heterogeneity*" (CS Document B, p67). It is unclear to the ERG what effect this heterogeneity would have, for example people who have had the disease for only one year might be very different from those who have had it for 8+ years, it is unclear whether differences could have been explored more in subgroup analyses.

Additional differences between studies highlighted in the Biogen Plegridy Full Report document but not stated in the submission Documents A, B and C include:

- study publication dates ranging from 1987 to post-2010 (pg.36);
- variation across the trials in terms of age inclusion criteria (pg.36);
- MS diagnostic criteria varied across the trials (pg.36);
- variation in EDSS cut-off for inclusion (pg.36);
- variation in the follow-up time between studies (pg.80);
- there was a lack of detail in many studies regarding previous relapses/treatments (pg.37).

The Biogen Plegridy Full Report document (pg.122) states that "

To investigate this further, during the clarification stage the ERG requested a summary of the key study characteristics (e.g. study design, population size, year, inclusion criteria, baseline population characteristics) of all studies in the MTC for any outcome. (CS Document B Table 17 (section B.2.9.3) provides only the baseline patient characteristics of included). The company provided the following data in response to clarification question A8. The study details, population sizes and interventions assessed, distribution of MS subtypes, previous treatments prior to enrolment and methodological quality of the trials. Upon review of this data, the ERG note the following:

In clarification response Table 5 (A8):

- While most trials included patients aged 18 to 50, 55 or 60 years, some only included patients in a narrower age band (20-35 years in Bornstein 1987) or did not report the age range (APEX,⁵¹⁻⁵³ Boiko 2017,⁵⁵ CAMMS223,⁵⁹ Crentsil 2012,⁶⁶ EVIDENCE,⁷⁰ Mokhber 2014,⁷⁵ Mokhber 2015,⁷⁶ PRISMS⁸²).
- EDSS was variable, mostly 0-5.0, 5.5 or 6.0, but in some studies it was 0-3.0 (CAMMS223,⁵⁹ CARE MS I),⁶⁰ 1-3.5 (INCOMIN,⁷⁴ MSCRG⁷⁷) or not reported (Crentsil 2012,⁶⁶ Mokhber 2014,⁷⁵ Mokhber 2015⁷⁶).
- Most studies specified 1 or 2 prior relapses in varying previous time intervals, but in some studies this was not reported (APEX,⁵¹⁻⁵³ Calabrese 2012,⁵⁸ Crentsil 2012,⁶⁶ Mokhber 2014,⁷⁵ Mokhber 2015,⁷⁶ TENERE⁸⁷).
- Some studies included only treatment-naïve patients (APEX,⁵¹⁻⁵³ BEYOND,⁵⁴ BRAVO,⁵⁷ CAMMS223,⁵⁹ CARE MS-I,⁶⁰ Mokhber 2014,⁷⁵ Mokhber 2015⁷⁶), most included a mixed population (ADVANCE,² CARE MS II,^{61, 62} CONFIRM,⁶⁴ DEFINE,⁶⁷ GALA,⁷¹ OPERA I,⁷⁹ OPERA II,⁷⁹ TEMSO,⁸⁵ TENERE,⁸⁷ TOWER⁸⁸) or prior treatment was not reported (Boiko 2017,⁵⁵ Bornstein 1987,⁵⁶ Calabrese 2012,⁵⁸ CombiRx,⁶³Copolymer I study,⁶⁵ Crentsil 2012,⁶⁶ Etemadifar 2006,⁶⁹ EVIDENCE,⁷⁰ GLOW,⁷² IFNB MS study,⁷³ INCOMIN,⁷⁴ MSCRG,⁷⁷ O'Connor 2006,⁷⁸ PRISMS,⁸² REGARD⁸³).

In clarification response Table 8 (A8):

where the previous treatments were reported, they differed between previous treatment with disease modifying treatment (ADVANCE,² BRAVO,⁵⁷ GALA,⁷¹ TEMSO,⁸⁵ TENERE,⁸⁷ TOWER⁸⁸); hormone therapy (Boiko 2017⁵⁵); approved and non-approved therapies (CONFIRM,⁶⁴ DEFINE⁶⁷); and steroids (REGARD⁸³).

The ERG note that with so many characteristics not reported, and the differences between the studies even when they were reported, it is difficult to assess heterogeneity of patient characteristics. The ERG agrees that the clinical similarity of study populations was often unclear.

The Biogen Plegridy Full Report Appendices document (pg.277) stated that the authors planned to conduct subgroup analysis on treatment naïve and previously treated patients. These were reported for ARR on page 277 and page 281, respectively.

For CDP3M, the authors of the Biogen Plegridy Full Report Appendices document (pg.299) stated: "

"For CDP6M, the authors of the Biogen Plegridy Full Report Appendices document stated that there were insufficient data for any of the subgroups to permit any analysis (pg.316). The ERG note that in the MTC of CDP3M and CDP6M the company explicitly states that "*These data are not directly comparable to studies that reported after 24 months of follow-up for patients who had remained on the same treatment for the full period. However, in order to link pegIFNβ-1a to the rest of the network, ADVANCE* (*12 months follow-up) was added to a network of studies with 24 months of follow-up. This limited the accuracy of the comparison...*" (CS Document B, pg.80).

Methodological similarity

Methodological similarity was defined in the CS as referring to "aspects of trials associated with the risk of bias" (CS Document C, pg.33). The CS state that "a narrative summary of all of the included studies is presented in Section B.2.10.3 in Document B or in the meta-analysis results section below. This includes a summary of the key study characteristics (e.g. study design, population size, year, inclusion criteria, baseline population characteristics) and methodological quality (according to the Cochrane Collaboration risk of bias tool) of the studies" (CS Document C, pg.32-33).

The ERG note that patient characteristics were reported in section B.2.9.3 in Document B (Table 17), so it is possible that the above B.2.10.3 is a typographical error for B.2.9.3. However, it is unclear to the ERG where the RoB of included studies was reported. A RoB assessment was located for the studies in the Biogen data extraction spreadsheet. A second RoB of included studies was provided to the ERG in response to clarification question A8.

The ERG repeated the RoB assessment using the same Cochrane Risk of Bias tool as was used in the CS for comparison purposes (see Table 2B in Appendix B). The ERG largely agreed with the CS assessments on most domains for most studies, although there were some differences.

Sensitivity analysis excluding studies at higher RoB was not provided in CS Documents A, B or C. Risk of bias was reported in the Biogen Plegridy Full Report document (pg.75), with only four trials rated as low risk of bias in all domains. Sensitivity analysis excluding studies at higher risk of bias was not found in the Biogen Plegridy Full Report document or The Biogen Plegridy Full Report Appendices document. Therefore, a sensitivity analysis excluding studies at higher risk of bias was requested during clarification (A14). The company response stated that "*16 studies from the networks*" were removed "*for having at least one domain rated as "High" RoB) as presented in response A8*, *Error! Reference source not found.* (Boiko 2017,⁵⁵ Bornstein 1987,⁵⁶ BRAVO,⁵⁷ Calabrese 2012,⁵⁸ CAMMS223,⁵⁹ CARE MS-I,⁶⁰ CARE MS-II,^{61, 62} EVIDENCE,⁷⁰ INCOMIN,⁷⁴ Mokhber 2015,⁷⁶ MSCRG,⁷⁷ REGARD,⁸³ TEMSO,⁸⁵ and TOWER⁸⁸)". The company provided sensitivity analysis for ARR, CDP3M and CDP6M in clarification response A14 Figures 11-16. The ERG note that the results of the sensitivity analyses were similar to those obtained using all the studies. As expected, the results had wider confidence intervals around the estimates, and there were no data for some of the potential comparators.

In CS Document B (pg.67) the company state that "Following the assessment of study similarity and clinical heterogeneity, there were 31 studies eligible for inclusion in the analysis of ARR and 30 studies eligible for inclusion in the analysis of other outcomes." It is unclear to the ERG whether one of the 32 studies had been completely excluded at this stage.

4.4.1.2 Consistency

In the CS, the ERG note that there is little information on which to examine consistency. The CS stated that "Inconsistency in the MTC networks was investigated using a combination of graphical and statistical methods. Inconsistency can only occur in loops of evidence where direct and indirect evidence come from different studies. Network diagrams for each outcome were assessed for the presence of loops where inconsistency may occur. For those networks with the potential for inconsistency, the node splitting method to check for evidence of inconsistency was used" (CS Document C, pg.34-35). The ERG found no further information on graphical methods or node splitting was presented in CS Documents A, B or C. Therefore during clarification the ERG requested "for networks with the potential for inconsistency" clarification on where this information has been reported (clarification question A13). This information was provided by the company at the clarification stage for 11 comparisons in ARR, 6 comparisons in CDP3M and CDP6M.

Primary outcome ARR

To measure consistency in ARR network, data were only available for 11 out of a possible 55 pairs of comparisons.

The ERG located information regarding consistency in the Biogen Plegridy Full Report Appendices document. The Biogen Plegridy Full Report Appendices document (pg. 276) reported that in the network for ARR: "

"The ERG consider the relative effects of pegIFNβ-1a 125 mcg Q2W for ARR from the indirect meta-analysis (CS Document C, Table 108, pg.439) were reported to be (and appeared) comparable to the estimates obtained from the MTC (CS Document B, Figure 15, pg.79).

Secondary outcome CPD3M

In the CS Document C (pg.443), the company stated that for CDP3M, no indirect meta-analysis were possible to compare with the MTC. However, the ERG note that in the Biogen Plegridy Full Report Appendices document (pg.299) there is a network for CDP3M, in which there were six treatment comparisons with the potential for inconsistency. The Biogen Plegridy Full Report Appendices stated that they "

".

To measure consistency in CDP3M network, results were presented in Figure 8, clarification response A13. The ERG note that there was no evidence of statistically significant inconsistency in any of the six comparisons tested.

Secondary outcome CDP6M

To measure consistency in CDP6M network, data were only available for 6 out of a 36 pairs of comparisons (results are presented for 3 of the 67 comparisons, Figure 10, clarification response A13). For CDP6M, indirect meta-analysis results (CS Document C Table 109, pg.448) were reported to be (and appeared) comparable to the MTC (CS Document B, Figure 19, pg.83).

The Biogen Plegridy Full Report Appendices document (pg.316) stated that in the network for CDP6M, there were six treatment comparisons with the potential for inconsistency. The authors

Other outcomes combined in MTC

The ERG note that in the CS Document C page 34-35 "Inconsistency in the MTC networks was investigated using a combination of graphical and statistical methods. Inconsistency can only occur in loops of evidence where direct and indirect evidence come from different studies. Network diagrams for each outcome were assessed for the presence of loops where inconsistency may occur. For those networks with the potential for inconsistency, the node splitting method to check for evidence of inconsistency was used". In The Biogen Plegridy Full Report Appendices document (pg.321) consistency for MTC of AE was assessed. The report states that "

." A similar statement was

made (pg.326 for SAE and pg.329) for discontinuations for any cause.

The ERG agrees that there is no potential inconsistency in a single study. However, to further assess inconsistency in the MTCs presented in the CS, the ERG requested the evidence of graphical and statistically significant inconsistency for those networks with the potential for inconsistency (clarification question A13). In response to question A13, the company provided evidence for ARR, CDP3M and CDP6M networks using the node splitting method. Figures 5-10 in clarification response A13 provided graphical and statistical evidence. The ERG note that tests for inconsistency were not possible for 44 of the 55 comparisons presented in the CS due to the structure of the networks.

4.4.1.3 Methods of statistical analysis in the MTC

Section B.2.9.2 on page 66 of CS explains the statistical methods used. "*Mixed-treatment* comparison was performed using a Bayesian approach" where "burn-in of 50,000 simulations was used, followed by an additional run of 50,000 simulations to obtain parameter estimates."

Burn-ins are used to enter the Markov Chain models into what is called a 'high probability region', after initial uncertainty and the ERG considers appropriate for this analysis.

The CS reports that "Where direct head-to-head meta-analysis was possible statistical heterogeneity was conducted using the *I*² statistic" (CS Document C, pg.34). The ERG note that as there was only one study in the direct comparison, this was not applicable. Statistical heterogeneity was not stated for the MTC comparisons in Documents A, B and C. In the Biogen Plegridy Full Report document, it was stated that "heterogeneity in the MTCs was addressed based on an assessment of the study design and patients characteristics of the eligible studies Only studies which were considered to be sufficiently clinically and methodologically similar were included in the final networks" (see Section 4.4.1.1 for ERG comment on transitivity).

ARR was analysed using rate ratios as the effect estimate, with MTC of treatment differences combining "*data across multiple time points*". As the ARR is an annualised measure, data was pooled for follow-up periods greater than 48 weeks. During clarification, the ERG requested further justification for including and combining time points other than 12 or 24 months. Response to clarification question A12 the company stated that "*in order to achieve a comparison with pegIFN beta-1a and inform the economic model, the treatment under appraisal, 11, 18, and 24 month follow-ups were pooled for the key outcomes of ARR, CDP3M and CDP6M outcomes*". The company provided a list of study endpoints time for each of the included trials. The ERG deems appropriate considering the data available for this appraisal.

Disability progression, CDP3M and CDP6M, were reported as HR where "11-month data from ADVANCE and 18- and 24-month data for comparator treatments were pooled for CDP3M and CDP6M outcomes" (CS Document B, pg.66). The CS acknowledges the fact that pooling the outcomes as such, "this limited the accuracy of the comparison but without combining data from different time points, comparative effectiveness would not be possible", the ERG considers this approach appropriate. All other outcomes were based on 12-month data alone.

The CS Document B page 66 reports "Several studies reported 1-year outcomes after 48 weeks (11 months) of follow-up. Therefore, any study where 1-year outcomes were reported at ≥ 11 months and ≤ 13 months was considered for potential inclusion in the analysis of 12-month outcomes. The actual follow-up period for 2-year outcomes ranged from 96 weeks (22.2 months) to 108 weeks (24.9 months). Therefore, any study where 2-year outcomes were reported at

 \geq 22 months and \leq 25 months was considered for potential inclusion in the analysis of 24-month outcomes." As there were variations in follow-up times between studies, the ERG find creating a window of acceptable follow-up periods acceptable.

Serious adverse events were "analysed as dichotomous outcome based on the proportion of patients who experienced at least one event after 24 months follow-up using odds ratios (ORs) as the effect measure", excluding MS relapses (CS Document B, pg.66). Sensitivity analysis was performed including the MS relapses. Adverse events were was not pooled due to high heterogeneity between studies, and reported as a narrative synthesis only.

Treatment discontinuation "was analysed as a dichotomous outcome based on the proportion of patients who discontinued after 24 months follow-up using ORs as the effect measure. However, only studies of 12 months follow-up were included in the network analysing treatment discontinuation." This was also reported as a narrative synthesis only. The ERG finds these approaches to SAE, AE and treatment discontinuation appropriate. The OR (for dichotomous outcomes), HR (for time-to-event outcomes), rate ratios (for rate outcomes) are reported with either 95% credible intervals (CrI, Bayesian methods) or 95% CI (frequentist methods) which the ERG deems appropriate.

4.5 Summary of critique of the MTC

The ERG note that there is little information on which to examine consistency of the MTCs presented in the CS. The results of the tests of potential inconsistency which were presented in the Biogen Plegridy Full Report Appendices and in clarification response A16 are appropriate tests of the statistical agreement between direct and indirect comparisons.

Transitivity of the MTCs included in the CS is unclear. The ERG note systematic differences between the comparisons being made other than the treatments that are being compared. For example, there were differences between studies in the disease duration of the patient populations, study publication dates, age inclusion criteria, MS diagnostic criteria, EDSS cut-off criteria, follow-up time between studies and lack of detail regarding previous relapses/treatments. It was difficult to assess heterogeneity of patient characteristics, and the clinical similarity of study populations was often unclear. The ERG consider the methods of statistical analysis for the MTCs presented in the CS appropriate.

There are several other concerns relating to the appropriateness of the MTCs:

- Multi-arm studies were sometimes included in the MTC (e.g. Calabrese 2012⁵⁸ in the ARR MTC) with a brief explanation of how correlations between the outcomes were accounted for in the models provided in CS Document C section D2.8
- There were few eligible studies. Some of the assessment of whether an MTC is appropriate is reliant upon multiple trials for each comparison. First, prior to conducting an MTC, pairwise meta-analyses of all interventions that have been directly compared should be carried to examine statistical heterogeneity. Confidence in the MTC will be low in the presence of high heterogeneity. In the CS, the MTC for ARR included only 2 direct comparisons with more than 1 study (2 studies comparing dimethyl fumarate 240 mg bid versus placebo, 2 studies comparing GA 20mg versus IFN beta 1-a 30 mcg) the MTC for CDP3M included only 1 direct comparison with more than 1 study (2 studies comparing dimethyl fumarate 240 mg bid versus placebo), and the MTC for CDP6M included only 1 direct comparisons could be assessed for heterogeneity.

Overall, there is little data on which to assess whether the assumptions of MTCs have been met, but some evidence to suggest that the assumption of transitivity has been violated. Therefore, the ERG cannot be confident of the appropriateness of the MTC or the validity of the results.

4.6 Additional work on clinical effectiveness undertaken by the ERG

Other than the comparison of the MTCs presented in this CS with the MTC conducted by the assessment group for ID527⁴ (found in Melendez-Torres et al 2017⁶) shown in Table 11 and Section 4.3.1.7, no additional work on clinical effectiveness was undertaken by the ERG.

4.7 Conclusions of the clinical effectiveness section

The ADVANCE trial² provides evidence that pegIFN β -1a is effective in significantly reducing relapse rates in RRMS patients compared with placebo. However the ERG has a number of concerns about the trial which was the sole source of randomised comparative evidence for the value of pegIFN β -1a

- It is unclear if the populations, or the care they receive, are representative of the care currently provided or likely to be received in the UK. ADVANCE included 14 patients (out of 1512) from the UK
- There was a differential drop-out between the placebo (n=44) and pegIFNβ-1a every 2 week group (n=74) by the end of year 1 of ADVANCE (14.5% from the every 2 week group, and 8.8% from the placebo arm, in year 1
- The rates of AE were generally similar between treatment and placebo, with the exception of treatment-related AE: 90% of the pegIFNβ-1a (2-week) group had at least 1 compared to only 53% of the placebo group
- The proportion of patients who discontinued study treatment or withdrew in the first 48 weeks due to AE was also lower in the placebo group compared with the intervention group. In the Q2W arm, n=25 discontinued due to an AE and n=25 withdrew due to an AE; in the placebo arm the figures were n=7 and n=6, respectively.

The ERG had the following additional issues with the CS of clinical effectiveness evidence:

- There are differences between the CS decision problem and NICE final scope, however the ERG consider them to be appropriate to the narrower patient definition of RRMS included in the CS decision problem
- The ERG identified discrepancies in the ratings of studies included in the SLR which are high RoB. However, there were no differences in the final number of studies included in the MTCs
- During clarification, the company provided an additional MTC for the secondary
 outcome CDP6M (included in the economic analysis base case). The updated MTC
 included additional trial/studies which the ERG consider should have been included in
 the MTC for this outcome. However, the inclusion of an additional study did not
 significantly change the overall results
- The ERG note that inconsistency could not be tested in the majority of the MTCs included in the CS as they did not contain closed loops

• There is some evidence to suggest that the assumption of transitivity has been violated in the CS MTCs. The ERG note systematic differences between the comparisons being made for example differences between studies in the disease duration of the patient populations, study publication dates and age inclusion criteria.

5 COST-EFFECTIVENESS

This section focuses on the economic analysis submitted by Biogen Idec, and additional information received from the company in response to the ERG's clarification questions. The ERG critically appraised the evidence submitted and examined the company's electronic model. The chapter starts with a summary of the company's economic analysis, then in detail the systematic review, methods, and results (base-case, sensitivity and scenario analyses) as reported in the CS. The ERG then compare the economic analysis to the NICE reference case, then provide a critique using frameworks on best practices for reporting economic evaluation and economic modelling to assess the overall reporting quality and validity of these analyses. In the subsequent chapter, where possible, the ERG have addressed their concerns in the form of additional analyses undertaken by the ERG.

The submission received by the ERG included:

- A systematic review of the economic evidence for the management of people living with RRMS
- Methods used to undertake the economic analysis, and the company's base-case and sensitivity analysis results
- Electronic version of the *de novo* Markov model built in Microsoft Excel
- Budget impact analysis, which the ERG does not provide a critique

5.1.1.1 Summary of the company's economic analysis

Biogen Idec undertook an economic analysis to assess the cost-effectiveness of pegINFβ-1a 125μg compared to other DMTs for treating people with RRMS. A Markov model was used to depict/simulate the natural history of people with RRMS. Information required on the natural history was based on a British Columbia dataset.⁹⁸ RRMS disease progression was simulated by means of 10 EDSS levels ranging from EDSS 0 to 9.5. The hypothetical population that entered

the model was distributed across EDSS levels 0 to 4.5, which reflected the EDSS distribution of the participants in the ADVANCE trial.² The mean age of the population was 36 years, with 71% females.

Based on the transition probabilities, in each yearly cycle people could remain in the same RRMS EDSS health state, progress to a more severe EDSS state, regress to a less severe state, progress to SPMS or die. On progression to SPMS, people discontinued DMTs; thus followed a natural history progression, which was based on transition probabilities derived from the London, Ontario dataset.⁹⁹ Additionally in each cycle, people may have experienced relapses, treatment-related AE or discontinued treatment, all of which are captured in separate health states.

Treatment effects were assumed to delay the progression of RRMS and reduce the frequency of relapses. Information about treatment effect compared to no treatment was based on the company's MTC. Information on utilities for RRMS and SPMS by EDSS level were based on information from Orme et al., (2007),⁹ which were derived from utility values from the UK MS survey. Caregivers utility decrements were based on information obtained from Gani et al., (2008).¹⁰ Utility values for AE associated with each DMT were included in the economic analysis and these were obtained from various sources. It was assumed that there is an increased risk of mortality for people with MS compared to the general population. Age- and gender-specific all-cause mortality rates for a UK general population were derived from the UK ONS data, and adjusted using the mortality rates obtained from Pokorski et al., (1997).¹¹ Due to the paucity of information, it was assumed that there was no difference between mortality for people with RRMS or SPMS.

Information about resource use and unit their costs were obtained from various sources (literature, British National Formulary, Personal Social Service Research Unit [PSSRU],¹⁰⁰ NHS reference costs).

The analysis was undertaken from the NHS and PSS perspective. The health outcome reported were EDSS changes, relapses, SPMS, reasons for discontinuation, LR and QALYs gained over a 50-year time horizon. Cost outcomes included disease management costs, drug acquisition, administration and monitoring, costs for treating relapses and costs associated with treating AE. The results were presented as an ICER and expressed as cost per QALYs gained. Both costs and effects were discounted at 3.5% per annum. The company undertook a number of sensitivity and

scenario analyses, and PSA to determine the robustness of the base-case results to making changes to model inputs/assumptions.

Base-case results showed that treatment with pegINF β -1a 125 μ g dominated all comparators except treatment with alemtuzumab 12mg. Alemtuzumab 12mg when compared to SC pegINF β -1a 125 μ g had a mean incremental cost of £1250 with corresponding 1.082 incremental QALYs, which resulted in an ICER of approximately £1200 per QALY gained. Base-case results were robust across all scenario analyses undertaken. Results from the one-way sensitivity analyses showed that the base-case results were robust to univariate changes made to key input parameters except the HR for the confirmed disability progression, which had the greatest impact. The probabilistic sensitivity analysis suggested that at a £20,000 willingness-to-pay threshold for a QALY, pegINF β -1a 125 μ g had a 0.17 probability of being cost-effective when compared to alemtuzumab. In comparison to all other comparators pegINF β -1a 125 μ g had probabilities >0.85 of being cost-effective.

5.2 ERG comment on company's review of cost-effectiveness evidence

The company undertook a systematic review to identify cost-effectiveness studies, with the purpose of developing an economic model that could be used to assess the cost-effectiveness of DMTs for the treatment of people with RRMS. Also the systematic review was undertaken to:

- Identify resource use and costs and utility information
- Identify economic models
- Critically appraise economic analyses and costing studies
- Summarise economic evidence reported in studies identified in the systematic review
- Extract relevant information about resource use and costs and utility that could be used in the economic analysis.

5.2.1 Search strategy

Searches were undertaken on 29 November 2018 in a range of relevant databases (MEDLINE (PubMed), Embase, The HTA Database, Database of abstracts of reviews of effectiveness, NHS's economic evaluation database (NHSEED) via the Cochrane Library, EconLIT. The methods used were similar to those used in a previous submission for the same condition. Searches were limited

to records published after 1 February 2016, in English. Additional searches of conference websites, international websites and reference lists of included economic analyses, systematic reviews and HTA reports were undertaken. The company justified the time period to search from, as previous searches were considered appropriate; thus only required updating.

The original systematic review was part of the NICE TA320 submission (2003-2014).¹⁰¹ This was updated from 2014-2016 for TA441.¹⁰² The current systematic review updated this previous search from February 2016-November 2018, with the aim of retrieving all economic evidence relevant to developing an economic model to evaluate MS treatments, including RRMS, SPMS and PRMS. A further Embase search was run in May 2019 but no additional papers were found. The searches were run by RTI-HS.

A single search was conducted to identify economic evaluation, HRQoL, and healthcare resource use and cost studies. Search terms for all treatments are included, including the treatments excluded from the MTC. A comprehensive range of databases were searched (Medline, Embase, Cochrane, EconLit) plus conferences and HTA websites. Individual search strategies were only provided for the database searches. These searches were limited to human only and specific publications types were excluded: comments, editorials, case reports, letters, case study, and phase 1 clinical trials. Section G.1.1.4. of the CS Document C states that the searches were limited to the English language but this is not evidenced in the reported search strategies. Appropriate economic filters were used. The search retrieved 1,132 references. The list of included and excluded studies was provided upon request.

The CS Econlit search strategy used the SU (index) search field throughout for key economic search terms and often found no results, for example, for cost-of-illness and socioeconomic factors. The reported search found one paper when combining the disease and intervention terms (Hawton et al, 2016).¹⁰³ The ERG re-ran the disease and intervention section of the search using Econlit with Full Text. This found eight records including the study by Hawton and Green.¹⁰³ The other seven records were excluded by the ERG.

5.2.2 Inclusion criteria

A summary of the inclusion and exclusion criteria used to identify potentially relevant studies is presented in Table 13.

Criterion Included Excluded Population: • Participants ≥ 18 years with a diagnosis of MS • Children (aged < 18 years) MS (classified using an accepted diagnostic Non-MS patients technique e.g., Poser or McDonald criteria) regardless of age, sex, degree of disability, and duration of the disease. Restricted to the following clinical phenotypes: Relapsing-remitting MS/secondary progressive MS Progressive-relapsing multiple sclerosis (PRMS) Interventions • Following interventions (irrespective of dose • Studies that do not have an (applied to [provided within the therapeutic range] or mode intervention of interest in at economic of administration): least 1 arm evaluations Interferon β-1b (IFNβ -1b) only) IFNβ -1a (Rebif, Avonex) Glatiramer acetate Natalizumab Fingolimod Teriflunomide Alemtuzumab Dimethyl fumarate Ocrelizumab Cladribine Plegridy Comparator Placebo or any active treatment Outcomes Direct costs Studies lacking relevant cost data • Direct healthcare costs per patient per year (interventions, concomitant medications, Studies lacking relevant utility treatment of adverse events/co-morbidities) data Method of valuation (e.g., per capita expenditures, national tariffs, market prices, and published studies) Indirect costs Productivity loss costs • Presenteeism: at work productivity level (also from patients' viewpoint) • Short-and long-term sick leave (absenteeism): prevalence, days/patient/year versus national average Withdrawal from labour force Method of valuation (Human capital or friction) cost approach or contingent valuation) Patient and family/caregiver costs Travel, co-payments Annual loss of income Formal and informal care

Table 13. Eligibility criteria for cost-effectiveness searches (obtained from CS Document C Appendix G, pg.160-161)

Criterion	Included	Excluded
	 Caregiver burden Range of ICERs as per sensitivity analyses Assumptions underpinning model structures Key costs drivers Sources of clinical, cost and quality of life inputs Discounting of costs and health outcomes Model summary and structure Utility values directly elicited using the following techniques: Time trade-off and standard gamble Utility values based on generic preference-based instruments for relevant health states (baseline utility, dis-utilities associated with AE) Mapping studies that would allow disease specific measures to be mapped onto preference-based utilities 	
Study type	 Cost-effectiveness, cost-utility, cost-benefit, and cost-minimisation analyses Clinical trials or real-world studies (original research articles) Systematic reviews of economic analyses, resource use, or cost studies 	 Narrative reviews, guidelines, commentary, letters to the editor Animal or in vitro studies Pharmacokinetic or pharmacodynamic studies
Language of publication	• English	 Non-English
Date of publication	No restriction	-

5.2.3 Included studies

The company identified 66 economic evaluation studies, of which 12 were undertaken in a UK setting. The company further stated that two of the 12 studies were undertaken in the England. Relevant information from these studies were extracted and summarised in Tables 38 and 39 in Appendix G of the CS Document C, and quality appraised.

5.2.4 Systematic review of studies reporting resource use and costs

The search for resource use and costs was incorporated in the broader cost-effectiveness search; hence a separate search was not undertaken.

From the broader search that identified economic evaluation studies, the company also identified studies that reported resource use and costs. The search identified three studies (Kobelt et al., 2017;⁷ Thompson et al., 2017⁸ and Hawton et al., 2016¹⁰⁴) that reported resource use and costs by EDSS health state based on UK participants. Additionally, the company included three studies (Karampampa et al., 2012;¹⁰⁵ Kobelt et al., 2006¹⁰⁶ and Tyas et al., 2007¹⁰⁷ that have been used in previous technology appraisals. In Document C, Appendix I, the company reported the studies' characteristics and their results, but little critique of these studies. The company further stated that EDSS health costs used in the base-case were obtained from TA320, as these values were preferred by the assessment group of ID527 following a critique. These we further inflated to current prices.

5.2.5 Systematic review of HRQoL studies

The search for utility values was incorporated in the wider cost-effectiveness search; hence a separate search was not undertaken for HRQoL studies.

5.2.6 Results

Based on the updated search, sixty-six full economic evaluation studies were identified, of which 12 were undertaken in a UK setting. One-hundred and fourteen studies were identified that reported resource use and cost information, of which five were undertaken in the UK. A total of 30 studies reported health–state utility values in people with MS.

5.2.7 Conclusions

The company's systematic review of the cost-effectiveness evidence that compared pegIFN β -1a versus other DMTs for treating people with RRMS identified those studies undertaken in a UK setting. The ERG is satisfied with the company's search and that all relevant studies have been identified. Additionally, the ERG are satisfied with the company's search to identify studies reporting HRQoL and resource use and cost. However, the ERG would have welcomed further critique/appraisal of the identified studies.

5.3 Summary and critique of company's submitted economic evaluation by the ERG

In this section, the ERG report an assessment of the company's economic analysis against the NICE reference case for technology assessment.¹⁰⁸ The ERG provide a summary of the company's illustrative model structure, as well as the clinical (treatment effect on confirmed disability progression, ARR, treatment discontinuation and mortality) and economic evidence (DMT acquisition costs, health state costs for RRMS and SPMS, and treatment of AE) used to parameterised the economic model. Along with the summary, the ERG provide a critique of methods and inputs used in the economic analysis in the following sections.

5.3.1 NICE reference case checklist

The ERG have undertaken an evaluation of the CS in relation to the NICE reference case. Findings are summarised in Table 14.

Attribute	Reference case and TA Methods guidance	Does the <i>de novo</i> economic evaluation match the reference case
Defining the decision problem	The scope developed by NICE	Decision problem clearly stated and is in line with the scope developed by NICE
Comparator(s)	Therapies routinely used in the NHS, including technologies regarded as current best practice for this population	Interferon β-1b (IFNβ -1b) IFNβ -1a (Rebif, Avonex) Glatiramer acetate Teriflunomide Alemtuzumab Dimethyl fumarate Ocrelizumab
Patient group	As per NICE final scope, the population refers to: People living with RRMS	As per NICE final scope
Perspective costs	NHS & Personal Social Services	Yes
Perspective benefits	All health effects on individuals	Yes
Form of economic evaluation	Cost-effectiveness analysis	Cost-effectiveness analysis
Time horizon	Sufficient to capture differences in costs and outcomes between the technologies being compared	50-year time horizon
Synthesis of evidence on outcomes	Systematic review	Systematic review was undertaken by the company

Table 14. NICE reference case chec	klist
------------------------------------	-------

Attribute	Reference case and TA Methods guidance	Does the <i>de novo</i> economic evaluation match the reference case			
Outcome measure	Quality adjusted life-years	Results reported in terms of quality adjusted life-years			
Health states for QALY	Described using a standardised and validated instrument	Yes			
Benefit valuation	Time-trade off or standard gamble	The standard UK EuroQol five dimensions [EQ-5D] tariff is used, which is based upon time-trade off			
Source of preference data for valuation of changes in HRQoL	Representative sample of the public	Yes			
Discount rate	An annual rate of 3.5% on both costs and health effects	Yes			
Equity	An additional QALY has the same weight regardless of the other characteristics of the individuals receiving the health benefit	Yes			
Probabilistic modelling	Probabilistic modelling	The company undertook PSA and reported these results			
Sensitivity analysis		The company undertook a range of sensitivity and scenario analyses.			
EQ-5D, EuroQol five dimensions; HRQoL; health-related quality of life; IFN, interferon; NHS; National Health Service; NICE; National Institute for Health and Care Excellence; PSA; probabilistic sensitivity analysis; QALY, quality-adjusted life years; RRMS, relapsing-remitting multiple sclerosis					

5.3.2 Model structure

The company used a cohort-based Markov model to depict the natural history of people with RRMS. The model simulated disability progression and regression between EDSS levels, and progression from RRMS to SPMS and the relapsing nature of the disease. People with RRMS or SPMS were allowed to occupy one health-state at any given time, which ranged from 0 to 9.5 in increments of 0.5 (see Figure 2).

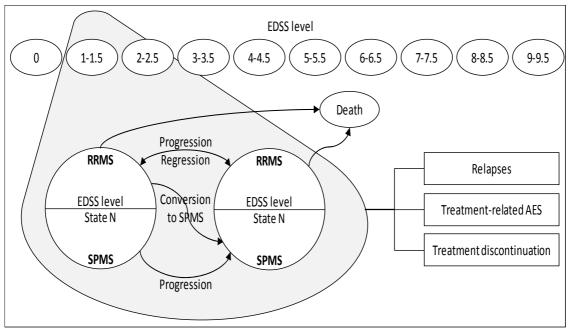


Figure 2. Illustrative survival model (obtained from CS Document B, Figure 33, pg.113)

The model started from a hypothetical cohort of people with RRMS, distributed across EDSS levels <6 (see Table 15) based on the distribution of participants in the ADVANCE trial.² The starting age of the population was 36 years, with 29% and 71%, males and females, respectively. Over time, people were at risk of progression to more severe EDSS levels, regress to less severe EDSS levels or death. Transitions between health states were bidirectional and occurred at the end of each one-year cycle, where people remained in the same health state, regressed or progressed. Each cycle, people incurred costs and accrued benefits (QALYs) depending on the EDSS health state occupied. A half-cycle correction was applied in the base-case and the model concluded at a 50-year time horizon.

Table 15. Baseline distribution of people by EDSS

EDSS	0	1-1.5	2-2.5	3-3.5	4-4.5	5-5.5	6-6.5	7-7.5	8-8.5	9-9.5
Percentage										
(%)										
EDSS, expanded disability status scale										

ERG summary

The Markov model appears to capture the key important features (movement between EDSS levels and progressing from RRMS to SPMS) of people living with RRMS. However, it should

be noted that the model does not capture subsequent DMT costs/benefits following discontinuation of pegIFN β -1a or its comparators. Instead, it is assumed that once treatment is discontinued people follow the British Columbia natural history cohort; thus not having any residual benefit from the DMT.

5.3.3 Population

The population included in the economic analysis is similar to the population included in the ADVANCE trial (71% and 29% females and males, with a mean age of 36 years).² The starting distribution of people in each EDSS levels is presented in Table 15.

5.3.4 Intervention and comparators

The cost-effectiveness analysis compared pegIFN β -1a with other DMTs which are available in the UK for treating people with RRMS. The company excluded DMTs that are recommended for treating people with highly active RRMS (fingolimod and cladribine) and RES-RRMS (natalizumab). Table 16 shows the DMTs and their dosing schedule that were included in the cost-effectiveness analysis.

Disease-modifying therapy	Dosing schedule			
Intervention				
PegIFNβ-1a	125µg every two weeks			
Comparators				
IM IFNβ-1a 30	30µg once weekly			
IFNβ-1a 22	22µg three times per week			
IFNβ-1a 44	44µg three times per week			
IFNβ-1b	250µg every other day			
GA 20mg	20mg once daily			
GA 40mg	40mg once daily			
Generic GA 20	20mg once daily			
Generic GA 40	40mg once daily			
Teriflunomide	14mg once daily			
Dimethyl fumarate	240mg twice daily			
Alemtuzumab	12mg once daily			
Ocrelizumab	600mg every six months			
IFN, interferon; IM, intramuscular; peg, PEGylated GA, glatiramer acetate				

Table 16. Intervention and comparators included in the cost-effectiveness analysis

The ERG considered that the DMTs included in the economic analysis are in line with the NICE scope.¹ The ERG also agree that it was appropriate to exclude DMTs that are used for treating people with highly active RRMS and RES-RRMS, as pegIFN β -1a is not used in clinical practice for these populations.

5.3.5 Perspective, time horizon and discounting

The perspective/viewpoint of the analysis is that of the NHS and PSS, which is in line with the NICE Guide to the Methods of Technology Appraisal.¹⁰⁸ The model assumes a 50-year time horizon, which is long enough to capture the long-term costs and benefits of treatment. In the base-case, the costs incurred and benefits accrued are discounted at a rate of 3.5% per annum. A number of sensitivity and scenario analyses were undertaken by the company. The company presented scenario analysis results based on changes made to the time horizon of the economic analysis, annual discount rates for costs and benefits.

5.3.6 Transitions

To show how people moved between the various EDSS levels in the model, information was required for the transitions between RRMS health states, progressing from RRMS to SPMS and transitions between SPMS health states, for the intervention as well as all the comparators. Transition probabilities were derived from the natural history cohort from the British Columbia dataset. Table 17 shows the transitions between the EDSS health states for people \geq 28 years. In Table 17, it can be seen that people can remain, progress to more severe EDSS states, or regress to less severe health states.

EDSS From/to							EDSS state	(to)				
		0	1-1.5	2-2.5	3-3.5	4-4.5	5-5.5	6-6.5	7-7.5	8-8.5	9-9.5	Total
	0	0.695	0.2029	0.0725	0.0217	0.0042	0.0014	0.0018	0.0001	0.0000	0.0000	1.000
	1-1.5	0.058	0.6950	0.1578	0.0609	0.0164	0.0046	0.0064	0.0005	0.0001	0.0000	1.000
	2-2.5	0.015	0.1213	0.6079	0.1680	0.0446	0.0185	0.0216	0.0017	0.0005	0.0000	1.000
	3-3.5	0.005	0.0496	0.1201	0.5442	0.0911	0.0585	0.1165	0.0103	0.0036	0.0003	1.000
EDSS state	4-4.5	0.001	0.0221	0.0666	0.1152	0.4894	0.1039	0.1681	0.0258	0.0067	0.0006	1.000
(from)	5-5.5	0.000	0.0053	0.0294	0.0587	0.0874	0.4870	0.2731	0.0388	0.0188	0.0010	1.000
	6-6.5	0.000	0.0013	0.0044	0.0250	0.0307	0.0408	0.7407	0.1090	0.0438	0.0042	1.000
	7-7.5	0.000	0.0002	0.0005	0.0025	0.0073	0.0039	0.1168	0.6927	0.1606	0.0156	1.000
	8-8.5	0.000	0.0000	0.0000	0.0003	0.0006	0.0005	0.0188	0.0557	0.9034	0.0207	1.000
	9-9.5	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0018	0.0057	0.1741	0.8183	1.000
EDSS, expanded	l disability sta	atus scale										

Table 17. Natural history matrix based on information from the British Columbia dataset for people ≥ 28 years

5.3.6.1 Transition probabilities from RRMS to SPMS

The company used information from the London Ontario natural history cohort to derive the transition probabilities for progressing from RRMS to SPMS in each cycle. On progression from RRMS to SPMS, it was assumed that people who progressed had a one-unit increase in EDSS score. For example, people with RRMS with an EDSS of 5-5.5 would progress to SPMS with an EDSS of 6-6.5. Transition probabilities for RRMS to SPMS were estimated from hazards reported in TA441.¹⁰² Table 18 reports these hazards and the probabilities of transitioning from RRMS to SPMS.

EDSS	Hazard	Probability				
0	0.004	0.004				
1-1.5	0.002	0.002				
2-2.5	0.030	0.029				
3-3.5	0.103	0.097				
4-4.5	0.199	0.181				
5-5.5	0.256	0.225				
6-6.5	0.184	0.168				
7-7.5	0.237	0.211				
8-8.5	0.066	0.064				
9-9.5	0.167	0.154				
EDSS increases by one-un	EDSS increases by one-unit from transitioning from RRMS to SPMS					

Table 18. Transition probabilities from RRMS to SPMS based on the London, Ontario cohort

EDSS, expanded disability status scale; RRMS, relapsing-remitting multiple sclerosis; SPMS, secondary progressive multiple sclerosis

5.3.6.2 Transition probabilities within SPMS

The model required transition probabilities for people who progressed to SPMS. These transition probabilities were derived from information obtained from the London, Ontario dataset. Table 19 shows the transition matrix for people who have SPMS. It can be seen that the transition probabilities are unidirectional; hence, people are not allowed to regress to less severe EDSS levels. In keeping with the assumption that people who progressed from RRMS to SPMS will have a one-unit increase in EDSS score, it can be seen that there is a zero probability of being in EDSS 0 and progressing to more severe EDSS health states.

EDSS							EDSS state	(to)				
Fron	n/to	0	1-1.5	2-2.5	3-3.5	4-4.5	5-5.5	6-6.5	7-7.5	8-8.5	9-9.5	Total
	0	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	N/A
	1-1.5	0.000	0.7692	0.1538	0.0769	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.000
	2-2.5	0.000	0.0000	0.6357	0.2713	0.0620	0.0233	0.0078	0.0000	0.0000	0.0000	1.000
	3-3.5	0.000	0.0000	0.0000	0.6291	0.2527	0.0769	0.0330	0.0027	0.0055	0.0000	1.000
EDSS state	4-4.5	0.000	0.0000	0.0000	0.0000	0.4854	0.3504	0.1387	0.0073	0.0182	0.0000	1.000
(from)	5-5.5	0.000	0.0000	0.0000	0.0000	0.0000	0.6325	0.3173	0.0221	0.0261	0.0020	1.000
	6-6.5	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.7631	0.1903	0.0446	0.0020	1.000
	7-7.5	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.8046	0.1891	0.0062	1.000
	8-8.5	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.9258	0.0742	1.000
	9-9.5	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.000
EDSS, expanded	l disability sta	atus scale; N/A	A, not applicat	ole								

Table 19. Transition probability matrix for transitioning within SPMS, based in London, Ontario cohort

The ERG agrees with the company's choice of datasets to reflect the natural history of people with RRMS and SPMS.

5.3.6.3 Annualised relapse rates

The economic model required information about relapses experience by people with RRMS or SPMS. Annualised relapse rates were derived based on information obtained from the UK MS survey and Patzold et al., (1982),¹⁰⁹ which are presented in Table 20. Briefly, the UK MS survey collected information on the total number of people who experienced a relapse by EDSS and the number of years since diagnosis. Patzold and colleagues undertook a regression analysis to investigate the relationship between ARRs and the number of years since diagnosis.¹⁰⁹ The natural history ARRs were applied to people who discontinued DMT, and a rate ratio relative to placebo were applied to these natural history ARRs, then applied to people who are on DMT. Further details of these rate ratios are reported in Section 5.3.9.2.

EDSS	Annualised relapse rates (ARRs)					
EDSS	RRMS	SPMS				
0	0.709	0.000				
1-1.5	0.729	0.000				
2-2.5	0.676	0.465				
3-3.5	0.720	0.875				
4-4.5	0.705	0.545				
5-5.5	0.591	0.524				
6-6.5	0.490	0.453				
7-7.5	0.508	0.340				
8-8.5	0.508	0.340				
9-9.5	0.508	0.340				
ARR, annualised relapse recondary progressive mu	rates; EDSS, expanded disability status scale; RRMS ltiple sclerosis	, relapse-remitting multiple sclerosis; SPMS,				

Table 20. Annualised relapse rates for people with RRMS and SPMS

5.3.6.4 Calculation of patient disposition

Each cycle of the model requires information about the patient disposition to affix costs incurred and benefits (LY and QALY) accrued over time for people occupying a specific EDSS health state. In the model the patient disposition is divided into two sub-cohorts:

- People on treatment
- People off treatment

The patient disposition for people on-treatment follows a series of logical steps:

- 1. People who have discontinued treatment are moved to the off-treatment sub-cohort
- 2. People who die move to a dead state
- 3. Relapses are calculated
- 4. Transition probability matrix is applied
- People who discontinued due to progressing to EDSS ≥7 are moved to the off-treatment subcohort
- People who discontinued due to progression to SPMS are moved to the off-treatment subcohort

Likewise, for people in the off-treatment sub-cohort the patient disposition is derived as follows:

- 1. People who have discontinued treatment are added to the off-treatment sub-group
- 2. People who die move to a dead state
- 3. Relapses are calculated
- 4. The natural history transition probability matrix is applied
- People who discontinued due to progressing to EDSS ≥7 are added to the off-treatment subcohort
- People who discontinued due to progression to SPMS are added to the off-treatment subcohort

5.3.6.5 Treatment discontinuation

Table 21 presents the annualised risk of all-cause discontinuation and discontinuation due to AE for each DMT. All-cause discontinuation includes discontinuation due to AE, lost to follow-up, and investigator decision or withdrew consent. The probability of treatment discontinuation was based on the all-cause discontinuation rates reported in the studies included in the network meta-analysis for ARR. A total of 18 out of the 23 trials included in the MTC for ARR reported all-cause discontinuation. The probabilities reported in each study were annualised, then weights based on the sample size of the trials were applied to derive the discontinuation risk.

Disease modifying therapy	Annual risk (Excel model) (all-cause discontinuation)	Annual risk (adverse drug reaction risk)
PegIFNβ-1a	15.56%	5.3.6.6 5.28%
IM IFNβ-1a 30	7.88%	5.3.6.7 3.07%
IFNβ-1a 22	6.00%	5.3.6.8 1.60%
IFNβ-1a 44	10.53%	5.3.6.9 3.81%
IFNβ-1b	6.87%	5.3.6.10 1.27%
GA 20mg	11.02%	5.3.6.11 2.48%
GA 40mg	8.91%	5.3.6.12 3.08%
Generic GA 20	11.02%	5.3.6.13 2.48%
Generic GA 40	8.91%	5.3.6.14 3.08%
Teriflunomide	18.57%	5.3.6.15 7.84%
Dimethyl fumerate	18.01%	5.3.6.16 7.95%
Alemtuzumab	2.59%	5.3.6.17 1.19%
Ocrelizumab	6.69%	5.3.6.18 1.92%

Table 21. Annualised risk of all-cause discontinuation and discontinuation due to adverse drug reaction

Additionally, the model allows for the cost-effectiveness to be undertaken by using the discontinuation based on adverse drug reactions only, and assuming that the all-cause discontinuation across all DMTs was 5% per annum. The ERG noticed that there were some inconsistencies in the reporting of annual all-cause discontinuation in the CS and that in the economic model. The company further clarified that the correct values reported in the model are correct.

At the clarification stage, the ERG queried the company's rationale for deriving weights for treatment discontinuation based on studies' sample sizes. The company provided updated annual discontinuation rates based on including an element of follow-up time. Table 22 provides the updated annualised risk of all-cause discontinuation.

	Annual all-caus			
Treatment	Weighted by	Weighted by	Simple average	Sources
11 catilicat	sample size	person time		Sources
	(base case)			
PegIFNβ-1a	15.56%	15.56%	15.56%	ADVANCE ²
				Calabrese (2012), ⁵⁸
				CombiRx, ⁶³
IM IFNβ-1a 30	7.88%	8.27%	8.09%	EVIDENCE, ⁷⁰
				BRAVO, ⁵⁷
				INCOMIN ⁷⁴
IFNβ-1a 22	6.00%	6.00%	6.00%	PRISMS ⁸²
				Calabrese (2012), ⁵⁸
				EVIDENCE, ⁷⁰
			10.73%	OPERA I ¹¹⁰
IFNβ-1a 44	10.53%	9.74%		& II, ⁷⁹ CARE
				MS I, ⁶⁰ CARE
				MS II, ^{61, 62}
				REGARD ⁸³
				IFNB MS Study, ⁷³
IFNβ-1b	6.87%	7.54%	6.87%	BEYOND, ⁵⁴
				INCOMIN ⁷⁴
				BEYOND, ⁵⁴
				CONFIRM, ⁶⁴
GA 20	11.02%	8.05%	8.54%	Copolymer 1
GA 20	11.0270	0.0570	0.5470	Study, ⁶⁵
				REGARD, ⁸³
				Bornstein 1987 ⁵⁶
GA 40	8.91%	8.91%	8.91%	GALA ⁷¹
genGA 20	11.02%	8.05%	8.54%	Assumed equivalent to
50107 20	11.02/0	0.0070	0.5770	GA 20
genGA 40	8.91%	8.91%	8.91%	Assumed equivalent to
501071 70	0.7170	0.7170	0.7170	GA 40
Teriflunomide	18.57%	18.50%	18.12%	TOWER, ⁸⁸
remunominue	10.5770	10.3070	10.12/0	TEMSO ⁸⁵
Dimethyl	18.01%	17.97%	18.01%	CONFIRM, ⁶⁴

Table 22. Updated annualised risk of all-cause discontinuation

	Annual all-caus				
Treatment	Weighted by sample size (base case)	Weighted by person timeSimple average		Sources	
Fumerate				DEFINE ⁶⁷	
Alemtuzumab	2.59%	2.55%	2.59%	CARE MS I, ⁶⁰ CARE MS II ^{61, 62}	
Ocrelizumab	6.69%	6.69%	6.69%	OPERA I ¹¹⁰ & II ⁷⁹	
GA, glatiramer acet	ate; genGA, generic glat	iramer acetate; IFN, inter	rferon; IM, intramuscular	1	

ERG summary

Deriving annual all-cause discontinuation risk weighted by person time may be more appropriate method than using the study sample size. Weighting by person time resulted in slight changes to the discontinuation risk for some DMTs. However, it must be borne in mind that this information was obtained from RCTs, and may not accurately reflect treatment discontinuation that would have been observed in a real-world setting over a longer time horizon.

5.3.7 Mortality

Mortality rates were required in the model to estimate the rate at which people died within in each model cycle over the time horizon. People with MS (both RRMS and SPMS) are at increased risk of death compared to general population mortality. Mortality is accounted for in the model by using age- and gender-specific all-cause mortality risks, and adjusted with different relative risks, independent of RRMS or SPMS. Additionally, it is assumed in the model that people with RRMS and SPMS have the same increased risk of mortality (see Table 36 for ERG discussion of model assumptions). Furthermore, it was assumed that there is no direct effect on mortality associated with treatment. However, there is some indirect treatment effect on mortality because DMTs delay progression; thus avoids the higher mortality multipliers.

Age- and gender-specific mortality from the general population were obtained from the UK ONS (2016),¹¹¹ with all–cause mortality risk adjusted by disease-specific risks obtained from Porkorski and colleagues (1997).,¹¹ as used in the base-case. The company justified their choice of relative risks used in the base-case and considered alternative sources in scenario analyses. Table 23 shows the relative risks applied to general population mortality.

EDSS	Relative risks obtained from Pokorski et al., (1997) ¹¹		
1-3.5	1.60		
4-6.5	1.84		
7+ EDSS, Expanded disability status scale	4.44		

Table 23. Relative risks for RRMS and SPMS mortality

In scenario analyses the company interpolated the relative mortality risks obtained from Pokorski et al., (1997)¹¹ (see Table 24). It can be seen that the relative risks increase as EDSS levels increase. In further scenario analysis, the company considered a single relative risk of mortality of 2.88 obtained from Kingwell and colleagues (2012),¹¹² applied to general population mortality.

EDSS	Relative risks derived from Pokorski et al., (1997) ¹¹
0	1.000
1-1.5	1.432
2-2.5	1.600
3-3.5	1.637
4-4.5	1.674
5-5.5	1.842
6-6.5	2.273
7-7.5	3.097
8-8.5	4.447
9-9.5	6.454

Table 24. Relative risks for RRMS and SPMS mortality (interpolated)

ERG summary

Given that EDSS 10 (dead) health state was not included in the natural history cohort transition probability matrix, the ERG considers it appropriate to capture mortality by applying mortality multipliers to general population values.

5.3.8 Stopping rules

People in the model stopped DMT upon progressing to $EDSS \ge 7$ and/or progressing to SPMS. After discontinuing treatment, disability progression in people with RRMS is based on the British Columbia natural history cohort. However, it is assumed that people who progressed to SPMS their disability progression was based on the London, Ontario natural history cohort. Subsequent DMT was not considered for people with RRMS or SPMS.

5.3.9 Treatment effects

DMTs are considered to have a direct impact on disability progression and relapse frequency. However, there is an indirect treatment effect on mortality, as DMTs delay progression; thus avoids increased mortality multipliers.

5.3.9.1 Disability progression

Treatment specific HRs were derived for each DMT compared with no treatment. These HRs were then applied to the forward transition probabilities for the natural history cohort to determine disease progression for each treatment-specific DMT. DMTs were assumed not to have any direct impact on the backward transition probabilities (i.e., no direct impact to people who regress to less severe EDSS states).

When people in the model discontinue treatment, the treatment benefit is stopped, then people follow disease progression for the natural history cohort. Here, it is assumed that there is no residual benefit from taking DMTs and people would progress at the same rate as people who had not been treated with a DMT. The HRs for each DMT compared to placebo are presented in Table 25.

Table 25. Hazard ratios for confirmed disability progression for all DMTs compared to placebo at 3
and 6 months

Disease modifying therapy	CDP3M (CrI)	CDP6M (CrI)
PegIFNβ-1a		
IM IFNβ-1a 30		
IFNβ-1a 22		
IFNβ-1a 44		
IFNβ-1b		
GA 20mg		
GA 40mg		

Disease modifying therapy	CDP3M (CrI)	CDP6M (CrI)			
Generic GA 20mg					
Generic GA 40mg					
Teriflunomide					
Dimethyl fumerate					
Alemtuzumab					
Ocrelizumab					
CDP (3 or 6M), confirmed disability progression (3 or 6M); CrI, credible intervals; IFN, interferon; IM, intramuscular; NA, not available, GA glatiramer acetate					

5.3.9.2 Relapse

The effect of DMTs on reducing the relapse rates required information about relapse rates in the absence of DMTs (i.e., relapse rates from a placebo or natural history cohort), and the treatment effect of each DMT compared to placebo. Annualised relapse rates (see Table 26) were derived using information from the UK MS Survey and Patzold et al., (1982).¹⁰⁹ The company have provided alternative values obtained from other sources. Little commentary on the methodology was provided in the CS about how these values were derived. It can be seen that using the UK MS survey and Patzold et al.,(1982)¹⁰⁹ the rates range from 0.4900 to 0.7290 across EDSS levels. Treatment specific rate ratios (see Table 27) were applied to the natural history ARR to derive the relapse rates by EDSS for people on DMTs. Rate ratios were derived from the studies included in the company's MTC for ARR.

 Table 26. Annualised relapse rates for a natural history cohort, using UK MS Survey and Patzold.,

 1982¹⁰⁹ and values from alternative sources

EDSS		ARR, using MS Survey and Patzold., (1982) ¹⁰⁹ (base-case)		ARR, using ID527 ⁴ Assessment		
	RRMS	SPMS	RRMS	SPMS		
0	0.7090	0.0000	0.8895	0.0000		
1-1.5	0.7290	0.0000	0.7885	0.0000		
2-2.5	0.6760	0.4650	0.6478	0.6049		
3-3.5	0.7200	0.8750	0.6155	0.5154		
4-4.5	0.7050	0.5450	0.5532	0.4867		
5-5.5	0.5910	0.5240	0.5249	0.4226		
6-6.5	0.4900	0.4530	0.5146	0.3595		
7-7.5	0.5080	0.3400	0.4482	0.3025		
8-8.5	0.5080	0.3400	0.3665	0.2510		
9-9.5	0.5080	0.3400	0.2964	0.2172		
ARR, annualised relapse rates; EDSS, expanded disability status scale; MS, multiple sclerosis; RRMS, relapsing-remitting						

multiple sclerosis; SPMS, secondary progressive multiple sclerosis

Disease modifying therapy	ARR (95%CrI)
PegIFNβ-1a	
IM IFNβ-1a 30	
IFNβ-1a 22	
IFNβ-1a 44	
IFNβ-1b	
GA 20mg	
GA 40mg	
Generic GA 20	
Generic GA 40	
Teriflunomide	
Dimethyl fumerate	
Alemtuzumab	
Ocrelizumab	
ARR, annualised relapse rates; CrI, credible in acetate	tervals; IFN, interferon; IM, intramuscular; NA, not available, GA, Glatiramer

Table 27. Rate ratio on annualised relapse rates for each DMT compared to placebo

5.3.10 Health-related quality of life

The company undertook a systematic review to identify studies reporting HRQoL information for people with RRMS. The CS report 29 studies which were included in the review, of which 11 studies reported utility values by EDSS. The company reported that two studies^{7, 8} were undertaken with a UK-specific population. For consistency, as used in previous technology appraisals the company used utility values obtained from Orme et al.,(2007).⁹ Table 28 shows the utility values used in the model. Utility values are required for each EDSS level by type of MS and if experiencing a relapse or not. For people experiencing a relapse, the company applied a disutility of 0.071 for each EDSS level. The value placed on a relapse is has the same weight regardless of the EDSS level and type of MS (RRMS and SPMS). Utility values for SPMS were derived based on a utility decrement of 0.045 applied to the mean EDSS for RRMS.

EDSS	No re	No relapse		apse
ED55	RRMS	SPMS	RRMS	SPMS
0	0.8700	0.8250	0.7990	0.7540
1-1.5	0.7990	0.7540	0.7280	0.6830
2-2.5	0.7050	0.6600	0.6340	0.5890
3-3.5	0.5740	0.5290	0.5030	0.4580
4-4.5	0.6100	0.5650	0.5390	0.4940
5-5.5	0.5180	0.4730	0.4470	0.4020
6-6.5	0.4600	0.4150	0.3890	0.3440
7-7.5	0.2970	0.2520	0.2260	0.1810
8-8.5	-0.0490	-0.0940	-0.1200	-0.1650
9-9.5	-0.1950	-0.2400	-0.2660	-0.3110

Table 28. Summary of utility values used in company's cost-effectiveness analysis based on information reported by Orme et al., (2007)⁹

Table 29 shows the utility values obtained from Thompson et al.⁸ The company stated that the participants in the Kobelt study are the same as those in the Thompson study, with both having the same mean EDSS health statue values. In general, majority of the RRMS utility values reported in Thompson et al. are similar to those reported in Orme et al.,(2007).⁹ Clear differences in the utility values can be seen for EDSS levels 7-7.5 and 8-8.5. For example, Thompson et al., $(2017)^8$ report a 0.1570 utility value for EDSS 8, while Orme et al., $(2002)^9$ report a value - 0.0490. Using the value from Thompson., $(2017)^8$, people who occupy this health state would accrue more QALYs compared to Orme et al., $(2007).^9$

EDSS	No re	elapse	Relapse		
	RRMS	SPMS	RRMS	SPMS	
0	0.8980	0.8530	0.8270	0.7820	
1-1.5	0.7870	0.7420	0.7160	0.6710	
2-2.5	0.6950	0.6500	0.6240	0.5790	
3-3.5	0.5730	0.5280	0.5020	0.4570	
4-4.5	0.6050	0.5600	0.5340	0.4890	
5-5.5	0.5690	0.5240	0.4980	0.4530	
6-6.5 ^a	0.4560	0.4110	0.3850	0.3400	
7-7.5	0.3730	0.3280	0.3020	0.2570	
8-8.5	0.1570	0.1120	0.0860	0.0410	
9-9.5	-0.1100	-0.1550	-0.1810	-0.2260	
	g the mid-point of EDSS 6 (0.48 ability status scale; RRMS, rela		elerosis; SPMS, secondary p	progressive multiple	

Table 29. Summary of utility values obtained from Thompson et al., 2017⁸

The model captures the disutility associated with providing care for people with MS. Caregiver's disutilities used in the base-case were obtained from Acaster et al., (2013)¹¹³ and alternative

disutilities obtained from Gani et al., (2008).¹⁰ Table 30 shows the caregivers' disutility by EDSS. It was assumed that the burden associated with caring for people with RRMS and SPMS to be the same.

EDSS	RRMS/SPMS obtained from Acaster et al., (2013) ¹¹³	RRMS/SPMS obtained from Gani et al., (2008) ¹⁰	
0	-0.0020	0.0000	
1-1.5	-0.0020	0.0000	
2-2.5	-0.0020	-0.0032	
3-3.5	-0.0020	-0.0091	
4-4.5	-0.0450	-0.0090	
5-5.5	-0.1420	-0.0199	
6-6.5	-0.1670	-0.0272	
7-7.5	-0.0630	-0.0534	
8-8.5	-0.0950	-0.1070	
9-9.5	-0.0950	-0.1400	
9-9.5		-0.1400	

Table 30. Caregivers' utility decrements by EDSS

The company's systematic review to identify the HRQoL information identified two recent studies, with both analysis based on the same participants. Briefly, the Thompson and colleagues conducted a cross-sectional retrospective study of people living with multiple sclerosis. The aim of the study was to collect resource use and cost, and health-related quality of life information. A total of 5928 individuals were contacted via email, of which 779 responded. Participants from the UK had a mean age of 57 (SD = 10.8 years), with 70% being female. Mean EDSS of the sample was 5.5 (SD=2.2). 18% of the participants had a mild form of MS, and 51% and 31%, with moderate and severe MS, respectively. 37% of the participants had RRMS, with 37% and 24% having SPMS and PPMS, respectively. HRQoL information was collected using the EQ-5D, collected at one time point. The authors stated that no methods were used to address missing data. The ERG considers that this study adds to the existing evidence as it is recent and undertaken in a UK-specific population. Additionally, it includes information collected from people receiving treatment with more recent DMTs. Though these utility values may be plausible, it should be noted that the participants were older than those in the Orme study and the sample size was smaller.

Based on the caregivers disutilities obtained from Acaster et al, $(2013)^{113}$ it can be seen that there is a higher disutility experienced by caring for people with EDSS 5-5.5 and 6-6.5, as opposed to

higher EDSS levels. Though there may be some explanation for this, the ERG consider it more appropriate to use the disutilities from Gani et al. as these are more in line with our expectation. The model also captures the quality of life impact on people who experienced AE. Disutilities associated with AE are presented in CS Document B, Table 38, pages 136-137 and are reproduced below in Table 31.

Adverse event	Disutility of non- serious event	Disutility of serious event	Source	Duration of non-serious event (days)	Duration of serious event (days)	Source
Arthralgia	-0.25	-0.25	Retrieved from NICE TA441, Table 91	10.50	24.50	Retrieved from NICE TA441, ¹⁰² Table 91
Back pain	-0.25	-0.50	Retrieved from NICE TA441 Table 91	10.50	24.50	Retrieved from NICE TA441 Table 91
Fatigue	0.00	0.00	Assumption	182.50	182.50	Assumption
Gastroenteritis	-0.07	-0.07	Retrieved from Swedish adaptation 2016	10.50	24.50	Retrieved from Swedish adaptation 2016
Headache	-0.14	-0.49	Retrieved from NICE TA533 Table 42	10.50	24.50	Retrieved from NICE TA533 ¹¹⁴ Table 42
Immune thrombocytopenic purpura	-0.09	-0.09	Retrieved from NICE TA312 Table B7.4.4	15.00	81.00	Retrieved from NICE TA312 ¹¹⁵ Table B7.4.4
Influenza-like illness	-0.08	-0.08	Retrieved from NICE TA441 Table 91	1.00	1.00	Retrieved from NICE TA441 Table 91
Injection-site reaction - erythema	0.00	0.00	Assumption	0.00	0.00	Assumption
Injection-site reaction - pain	0.00	0.00	Assumption	0.00	0.00	Assumption
Injection-site reaction - pruritus	0.00	0.00	Assumption	0.00	0.00	Assumption
Meningitis listeria	-0.02	-0.61	Bennett et al., (2000) ¹¹⁶	365.00	365.00	Assumption
Nasopharyngitis	0.00	0.00	Retrieved from Swedish	7.00	14.00	Retrieved from Swedish

 Table 31. Disutility and duration associated with serious adverse events and non-serious adverse events

Adverse event	Disutility of non- serious event	Disutility of serious event	Source	Duration of non-serious event (days)	Duration of serious event (days)	Source
			adaptation from 2016			adaptation from 2016
Progressive multifocal leukoencephalopathy	-0.30	-0.30	Retrieved from NICE TA533 Table 42	365.00	365.00	Retrieved from NICE TA533 Table 42
Pneumonia / upper respiratory tract infection	-0.20	-0.20	Retrieved from NICE TA533 Table 42	7.00	14.00	Retrieved from NICE TA533 Table 42
Pyrexia	-0.11	-0.11	Retrieved from NICE TA441 Table 91	7.00	14.00	Retrieved from NICE TA441 Table 91
NICE, National Institute for	Health and Car	e Excellence; T.	A, technology assess	sment;	•	•

The quality of life impact per AE was derived by multiplying the disutility per event by the event duration. It can be seen that disutilities were obtained/derived from different literature sources. The underlying assumption is that these disutilities can be applied to a UK RRMS population. The ERG considers it appropriate to use these disutilities.

5.3.11 Resource use and costs

Cost assessment was based on assigning resource use and costs for pegIFN β -1a and the comparators, health state management costs, monitoring costs and treatment of AE costs, all from the perspective of the NHS and PSS.

5.3.11.1 Intervention and comparators

Table 32 presents the annual treatment costs for each DMT. Annual costs presented are based on the list price for each DMT. Annual costs were derived from the annual dosage (per week and per year) of each DMT and the price per packet. These unit costs were cross-referenced against the eMC dm+d database and in general, the annual costs were thought to be derived appropriately.¹¹⁷

Drug	Dosage	Frequency per week	Strength	Pack size	Price per Pack	Unit cost	Annual cost	Reference
PegIFNβ-1a 125 mcg	Week 0: 63mcg		125mcg	6	£1,962.00	£327.00		British National Formulary.
PegIFNβ-1a 63 mcg & 94 mcg (Initiation pack)	Week 2: 94 mcg Week 4+: 125mcg	0.5	1 x 63mcg 1 x 94mcg	2	£654.00	£327.00	£8,502.00	www.mediinescomplete.com , accessed September 10, 2018
IM IFNβ-1a 30 mcg	30mcg weekly	1	30mcg	4	£654.00	£163.50	£8,502.00	British National Formulary. www.mediinescomplete.com , accessed September 10, 2018
SC IFNβ-1a initiation pack	Week 0-2: 8.8 mcg tiw		6x8.8mcg 6x22mcg	12	£552.19	£46.02	n/a	MIMS - June 2017
SC IFNβ-1a 22 mcg	Week 3-4: 22mcg tiw	3	22mcg	12	£613.52	£51.13	£7,975.76	British National Formulary. www.mediinescomplete.com , accessed September 10, 2018
SC IFNβ-1a 44 mcg	week 5+: 44mcg tiw		44mcg	12	£813.21	£67.77	£10,571.7 3	British National Formulary. www.mediinescomplete.com , accessed September 10, 2018

Table 32. Posology, unit costs for peginterferon beta-1a and the comparators (obtained from the company's response to the ERG's clarification questions)

Drug	Dosage	Frequency per week	Strength	Pack size	Price per Pack	Unit cost	Annual cost	Reference
SC IFNβ-1b 250 mcg	Day 1,3,5: 62.5mcg Days 7,9,11: 125mcg Days 13,15,17: 187.5mcg Days 19+: 250mcg	3.5	250mcg	15	£596.63	£39.78	£7,239.11	British National Formulary. www.mediinescomplete.com , accessed September 10, 2018
GA 20mg	20mg daily	7	20mg	28	£513.95	£18.36	£6,681.35	British National Formulary. <u>www.mediinescomplete.com</u> , accessed September 10, 2018
GA 40mg	40mg tiw	3	40mg	12	£513.95	£42.83	£6,681.35	British National Formulary. <u>www.mediinescomplete.com</u> , accessed September 10, 2018
genGA 20mcg	20mcg daily	7	20mcg	28	£462.56	£16.52	£6,013.28	British National Formulary. www.mediinescomplete.com , accessed September 10, 2018
genGA 40mcg	40mcg tiw	3	40mcg	12	£462.56	£38.80	£6,013.28	British National Formulary. <u>www.mediinescomplete.com</u> , accessed September 10, 2018

Drug	Dosage	Frequency per week	Strength	Pack size	Price per Pack	Unit cost	Annual cost	Reference
Teriflunomide	14mg Daily	7	14mg	28	£1,037.84	£37.07	£13,528.9 9	British National Formulary. www.mediinescomplete.com
								accessed September 10, 2018
	Week 1: 120mg		120mg	14	£343.00	£24.50		British National Formulary. www.mediinescomplete.com
Dimethyl fumerate	Week 2+: 240mg	14	240mg	56	£1,373.00	£24.52	£17,848.7 5	, accessed September 10, 2018
Alemtuzumab	Year 1: 12mg for 5 days Year 2: 12mg for 3 days Year 3+: 12mg for 3 days	Yearly	12mg	1	£7,045.00	£7,045.00	Year 1: 35,225 Year 2: 21,135	British National Formulary. www.mediinescomplete.com , accessed September 10, 2018
Ocrelizumab	Week 0: 300mg Week 2: 300mg Week 2+: 600mg every 6 months	every 6 mont hs	300mg	1	£4,790.00	£4,790.00	£19,160.0 0	British National Formulary. www.mediinescomplete.com , accessed September 10, 2018

5.3.11.2 Health state costs

Two types of disease management costs were considered in the economic model: costs of disease management by EDSS health states, and by disease phase (RRMS and SPMS) and costs of treating MS relapses. Disease management costs in the base-case were obtained from TA320 and inflated to current values using the hospital and community health service (HCHS) pay and price from PSSRU 2018. Values used in TA320 were obtained from TA127, where the resource use was based on a regression analysis of the information collected from the UK MS Survey 2005, which included 2,048 participants representing a 16% response rate from the people in the MS database. The regression analysis estimated/explored the impact of a range of covariates on the likelihood of resource use compare to a reference patient (patient of 0 years, female, RRMS, EDSS 0, no relapse and no DMT). Updated costs were applied to derive EDSS health state costs. Table 33 presents the disease management costs by EDSS health state and disease phase.

EDSS	RRMS health state costs (£)	SPMS health state costs (£)
0	965	1,301
1-1.5	1,004	1,340
2-2.5	735	1,071
3-3.5	4,025	4,360
4-4.5	1,950	2,285
5-5.5	3,307	3,644
6-6.5	4,415	4,750
7-7.5	11,621	11,956
8-8.5	28,304	28,640
9-9.5	22,648	22,985

Table 33. Disease management costs by EDSS level (2017/18 values)

5.3.11.3 Relapse costs

The cost of £2,168 for treating MS relapses is based on the relapse costs obtained from TA320 and subsequently inflated using the HCHS pay and price index from PSSRU 2018. Relapse treatment costs are the same for people with RRMS or SPMS on/off treatment. In the model these costs are calculated from the number of relapses in each cycle multiplied by the relapse treatment costs and summed across EDSS health states. Similar methods are used for people who are on/off treatment.

5.3.11.4 Monitoring

Resource use and costs associated with monitoring were clearly reported in CS Document C, Appendix M. Annual monitoring costs were reported for first year of DMT, and subsequent years are derived from the *"expected resource use per patient per year on treatment*" (CS Document C, Appendix M, pg.468). Resource use included visits to health care professionals (Neurology and nurse visits) and undergoing tests (e.g., full blood count, liver function test, renal function test and thyroid function test).

Table 34 reports the annual monitoring costs for the first year and subsequent years by DMT.

	Monit	oring costs
Disease modifying therapy	First year (£)	Subsequent years (£)
PegIFNβ-1a	238.07	207.45
IM IFNβ-1a 30	238.07	207.45
IFNβ-1a 22	271.94	207.45
IFNβ-1a 44	271.94	207.45
IFNβ-1b	238.07	207.45
GA 20mg	171.00	171.00
GA 40mg	171.00	171.00
Generic GA 20	171.00	171.00
Generic GA 40	171.00	171.00
Teriflunomide	618.08	345.78
Dimethyl fumerate	441.42	266.47
Alemtuzumab	653.08	580.80
Ocrelizumab	229.98	203.02
GA, glatiramer acetate; genGA, generic glatir		

Table 34. Annual monitoring costs by disease modifying therapy (2017/18 values)

The ERG notes the higher costs associated with monitoring people on teriflunomide and alemtuzumab. Though not explicitly stated by the company these may reflect the mandatory monitoring for people taking these DMTs.¹¹⁸ The ERG considers these resource use and costs to be appropriate.

5.3.11.5 Cost of treating adverse events

Resource use and costs associated with the treatment of AE were included in the analysis. Cost of treating AE were based on the annualised incidence of each AE, proportion of AE (non-serious and serious), and unit cost for treating each AE (non-serious and serious). Disutilities and duration of each AE are discussed in Section 5.3.10. The unit costs associated with treating people who experienced each AE are presented in Table 35. These costs were derived by taking the resource use combined with their unit costs. The most costly complications or adverse effects to treat were immune thrombocytopenic purpura, meningitis listeria and progressive multifocal leukoencephalopathy (PML), with treatment costs of £495.70, £15,067.80 and 10,857.00, respectively for both serious and non-serious forms, with the exception of immune thrombocytopenic purpura costing £6,782.80 for a SAE.

	Cost per event (£)			
Adverse events	Non-serious	Serious		
Arthralgia	£0.62	£358.00		
Back pain	£0.62	£872.00		
Fatigue	£0.00	£66.20		
Gastroenteritis	£38.00	£38.00		
Headache	£0.52	£212.00		
Immune thrombocytopenic purpura	£495.70	£6,782.80		
Influenza-like illness	£0.52	£54.54		
Injection-site reaction - erythema	£0.00	£536.74		
Injection-site reaction - pain	£0.00	£536.74		
Injection-site reaction - pruritus	£0.00	£536.74		
Meningitis listeria	£15,067.80	£15,067.80		
Nasopharyngitis	£0.00	£38.00		
Progressive multifocal leukoencephalopathy (PML)	£10,857.00	£10,857.00		
Pneumonia / urinary tract infection	£38.00	£38.00		
Pyrexia	£0.52	£38.00		

Table 35. Cost of managing adverse events (2018 values)

Adverse event annual unit costs were derived by weighting the cost for non-serious and serious AE by the proportion of serious events; then applying the incidence. The ERG accepts the methodology and the assumptions used to derive AE annual unit costs.

ERG summary

The ERG considers that the methods used to identify and inflate costs taken from the literature to be appropriate, and in keeping with the viewpoint of the analysis. However, the CS could further benefit with a critique of the resource use and cost studies, which could enhance the justification for selecting inputs for the base-case.

5.3.12 Overview of model assumptions and ERG critique

In Table 36, we present the company's modelling assumptions with comments from the ERG.

Parameter	Base-case assumption	Justification	ERG's comment
Disability progression	Disability progression and relapses were modelled independently, with independent treatment effects applied to each.	In line with previous NICE TAs (CS Document B, Table 26 pg.115). EDSS progression is a key driver of cost- effectiveness. A number of studies have shown a strong correlation between EDSS, resource consumption, and HRQOL. EDSS is the preferred tool for measuring disability in people with MS as recommended by the EMA. This approach avoids any potential double counting. In addition, it is a pragmatic approach, as modelling relapses as independent health states would significantly increase size and complexity of the model. However, this approach could have overestimated the effect of treatment on	The ERG considers this approach to modelling disability progression and relapses to be appropriate.
		the ARRs, as they depended on the EDSS level. However, as the natural history ARRs were lower at higher	

Table 36. Model assumptions with ERG's comments

Parameter	Base-case assumption	Justification	ERG's comment
		levels of EDSS during the RRMS phase and during SPMS, the possible overestimated effect of treatment in the ARRs for pegIFN β -1a could have been offset.	
	EDSS level within the RRMS phase of the disease". Transition probabilities within SPMS: This matrix is upper- triangular (i.e., with zero elements below the diagonal), reflecting the assumption that patients cannot improve to a lower EDSS level while in the SPMS phase. After treatment discontinuation,	Delaying progression to higher EDSS levels avoids higher mortality multipliers associated with risk of mortality from MS and avoids higher probabilities of progression to SPMS.	The ERG agrees with this assumption.
	RRMS: "The resulting natural history matrix has non-zero elements below its diagonal, reflecting the assumption that patients can improve to a lower EDSS level within the RRMS	As per the definition of RRMS, patients can regress (demonstrated in the BCMS data set), as per the definition of SPMS patients cannot regress – aligned with the London, Ontario, data set.	The ERG considers using the BCMS dataset to derive natural history transition probabilities for RRMS and using the London, Ontario dataset for transitions in SPMS to be appropriate.
	SPMS: This matrix is upper- triangular (i.e., with zero elements below the diagonal), reflecting the assumption that patients cannot improve to a lower EDSS level while in the		
		In line with previous NICE TAs (CS Document B, Table 26 pg.115). An escalation of treatment (such as to fingolimod/ ocrelizumab, and alemtuzumab) would be likely in clinical practice. This approach would make treatments with the highest discontinuation rates most cost-effective ones, as they transition to higher efficacy drugs.	As suggested by the company, it is likely that people who discontinue initial DMT are likely to receive a subsequent DMT.
Mortality	The same RRs were assumed for the RRMS and SPMS phases.	Due to lack of data (conservative assumption)	The ERG considers this to be a plausible assumption.
Treatment waning	The treatment effect assumed to wane over time, with the same decline applying to all DMTs.	In line with previous NICE TAs CS Document B, Table 26 pg.115.	For consistency the company provided this functionality in the economic model.

Parameter	Base-case assumption	Justification	ERG's comment		
	 Year 1-2: 100% of the treatment benefit Years 3-5: 75% of the full treatment effect Year 6 onwards: 50% of the full treatment effect 				
	<i>This assumption was applied equally to all comparators.</i>				
Time horizon	50 years	Lifetime equivalent consistent with NICE reference case.	ERG considers the 50- year time horizon to be appropriate to capture the costs and benefits of the treatments.		
HRQoL	Fatigue, injection-site reaction – erythema, injection-site reaction – pain, and injection-site reaction – pruritus assumed not be associated with a disutility.	Due to lack of data.			
	It was assumed that a patient who received treatment would incur the risk of disutility and costs associated with AEs for each year in the model. This may have overestimated the impact of AEs, as patients with severe/frequent AEs may have withdrawn from treatment during the first few years.	Due to lack of data.	These assumptions are al plausible.		
	Caregiver disutility values by EDSS and disease phase (i.e., RRMS vs. SPMS) were assumed to be the same for both disease phases.	Due to lack of data (conservative assumption)			
Costs	Non-serious type of fatigue, injection-site reaction – erythema, injection-site reaction – pain, injection-site reaction – pruritus, and nasopharyngitis are assumed to have no costs associated with them.	Injection-site reactions often do not lead to any resource use, particularly not ones relevant as part of a payer perspective.	This assumption is in-line with other technology appraisals.		

scale; HRQoL, health-related quality of life; NICE, National Institute for Health and Care Excellen multiple sclerosis; SPMS, secondary progressive multiple sclerosis; TA, technology assessment

5.4 Cost-effectiveness results

The following section presents the company's cost-effectiveness results reported in the CS (Document B). In the CS, results have been reported on the basis of:

List prices for pegIFNβ-1a and comparators (IM IFNβ-1a 30µg, IFNβ-1a 22µg, IFNβ-1a 44µg, GA 20mg, GA 40mg, generic GA 20mcg, generic GA 40mcg, teriflunomide, dimethyl fumerate, alemtuzumab, and ocrelizumab).

The results of each these analyses are appraised and critiqued in Section 5.4.1.

5.4.1 Cost-effectiveness results: pegIFNβ-1a versus comparators at list prices

The company reports deterministic and probabilistic results, as well as sensitivity and scenario analyses results for the comparison between pegIFN β -1a versus IM IFN β -1a 30 μ g, IFN β -1a 44 μ g, GA 20 mg, GA 40 mg, generic GA 20 mcg, generic GA 40 mcg, teriflunomide, dimethyl fumerate, alemtuzumab, and ocrelizumab only. Main outcomes are reported in terms of LY gained and QALY gained; results are reported in the form of an ICER expressed as cost per QALY gained.

5.4.1.1 Company's base-case results

The results in Table 37 show that alemtuzumab dominated all comparators except pegIFN β -1a. Compared with pegIFN β -1a, alemtuzumab was £1,250 more costly and expected to yield 1.082 more QALYs, which equates to an ICER of approximately £1,200 per QALY gained.

Treatment		Total		I	ncrementa	ıl	ICER
Treatment	Costs	LYs	QALYs	Costs	LYs	QALYs	(£/QALY)
PegIFNβ-1a	£273,641	19.275	4.393	-	-	-	-
Alemtuzumab	£274,892	19.281	5.475	£1,250	0.006	1.082	£1,155
Generic GA 20mcg	£282,343	19.194	3.646	£7,451	-0.087	-1.829	Dominated
Generic GA 40mcg	£284,674	19.195	3.658	£9,783	-0.086	-1.818	Dominated
GA 20mg	£285,064	19.194	3.646	£10,173	-0.087	-1.829	Dominated

Table 37. Company's deterministic base-case results

Turation		Total		I	ncrementa	ıl	ICER
Treatment	Costs	LYs	QALYs	Costs	LYs	QALYs	(£/QALY)
GA 40mg	£287,676	19.195	3.658	£12,784	-0.086	-1.818	Dominated
SC IFNβ-1a 44	£292,969	19.258	4.224	£18,077	-0.024	-1.251	Dominated
IM IFNβ-1a 30	£294,199	19.228	3.929	£19,307	-0.053	-1.547	Dominated
Teriflunomide	£297,437	19.211	3.796	£22,545	-0.070	-1.679	Dominated
Dimethylfuma rate	£308,506	19.224	3.949	£33,614	-0.057	-1.526	Dominated
Ocrelizumab	£339,668	19.201	4.894	£64,776	-0.080	-0.581	Dominated

5.4.1.2 Company's probabilistic sensitivity analysis results

Probabilistic sensitivity analysis (PAS) was undertaken for the outcome cost per QALY only. In PSA, each parameter is assigned a distribution to reflect the pattern of its variation and the ICER results are calculated based on randomly selecting variables from each distribution. Probability distributions were applied to key model input parameters, and these were considered appropriate. However, were there was missing information about the standard error or confidence interval, the company assumed it to be $\pm 25\%$ of the mean, which the ERG considered appropriate to represent the uncertainty about the input value. As presented in Table 38, the ERG notes that the results for the PSA show that alemtuzumab dominates all treatment options including pegIFN β -1a, which suggests that alemtuzumab is the least costly and the most effective treatment option. Compared with the deterministic results, the PSA results for the expected costs are underestimated and the expected benefits are overestimated.

		Total		Ι	ncrement	al	ICER
Treatment	Costs	LYs	QALYs	Costs	LYs	QALYs	(£/QALY)
Alemtuzumab	£255,439	19.298	6.378	-	-	-	
pegIFNβ-1a	£256,067	19.350	5.259	£628	0.052	-1.119	Dominated
Generic GA 20mcg	£263,692	19.267	4.575	£8,253	-0.031	-1.802	Dominated
Generic GA 40mcg	£266,683	19.264	4.571	£11,244	-0.034	-1.807	Dominated
GA 20mg	£266,761	19.253	4.560	£11,322	-0.045	-1.818	Dominated
GA 40mg	£269,683	19.267	4.581	£14,244	-0.031	-1.797	Dominated
IFNβ-1a 44	£276,057	19.335	5.125	£20,618	0.037	-1.252	Dominated

Table 38. Company's probabilistic sensitivity analysis results

Thursday		Total		Ι	ncrement	al	ICER
Treatment	Costs	LYs	QALYs	Costs	LYs	QALYs	(£/QALY)
IM IFNβ-1a 30µg	£277,288	19.305	4.851	£21,849	0.007	-1.527	Dominated
teriflunomide	£279,016	19.264	4.721	£23,576	-0.034	-1.657	Dominated
Dimethylfuma rate	£290,828	19.298	4.863	£35,389	0.000	-1.515	Dominated
Ocrelizumab	£329,231	19.292	5.780	£73,792	-0.006	-0.598	Dominated
IFN, interferon; IM,	intra-muscular; LY	, life-years; QA	LY, quality adj	usted life-years;			

Each simulation of the incremental costs and incremental QALYs for pegIFN β -1a versus each comparator were graphed/plotted on separate cost-effectiveness planes, along with their respective cost-effectiveness acceptability curves (CEAC). For 5,000 simulations, the scatterplot (see Figure 3. Scatterplot of pegIFN β -1a versus alemtuzumab on the cost-effectiveness plane, company base-case using list prices) shows that there is some correlation between incremental costs and benefits. Figure 4 shows the results of the PSA in the form of a CEAC for the comparison between pegIFN β -1a and alemtuzumab. The curves show the proportion of simulations in which treatments are cost-effective at different WTP thresholds for a QALY. Results show that at a WTP threshold of £20,000 per QALY pegIFN β -1a compared to alemtuzumab has a probability of 0.17 of being cost-effective. The PSA results for pegIFN β -1a versus other comparisons are reported in Table 39.

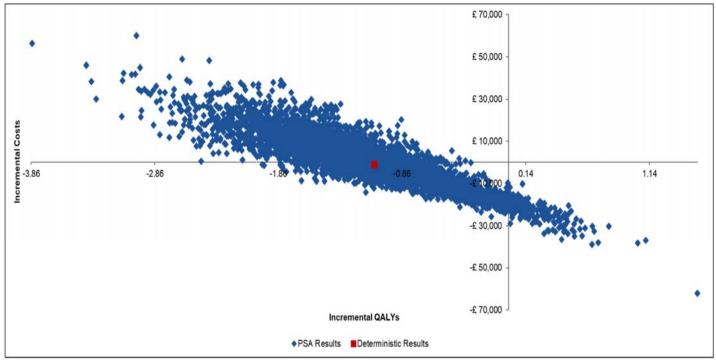


Figure 3. Scatterplot of pegIFNβ-1a versus alemtuzumab on the cost-effectiveness plane, company base-case using list prices

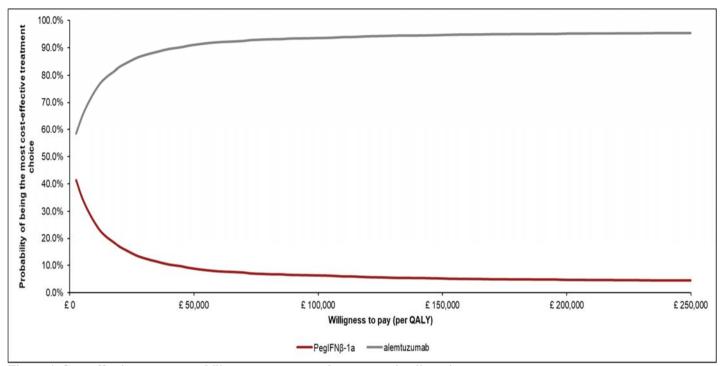


Figure 4. Cost-effectiveness acceptability curve, company base-case using list prices

Treatment	Probability of being cost-effective
Generic GA 20mcg	0.85
Generic GA 40mcg	0.87
GA 20mg	0.89
GA 40mg	0.90
ΙFNβ-1a 44μg	0.92
IM IFNβ-1a 30µg	0.95
Teriflunomide	0.98
Dimethyl fumarate	0.99
Ocrelizumab	1.00
IFN, interferon; IM, intramuscular; PSA, probabilistic sensitivi to-pay threshold, GA, Glatiramer acetate	ty analysis; QALY, quality-adjusted life years; WTP, willingness-

Table 39. PSA results for pegIFN β -1a compared to other comparators (WTP threshold of £20,000 per QALY)

In general, the ERG considers the distributions used around key input parameters, and applying a $\pm 25\%$ variation to the mean values where standard errors of confidence intervals are missing to be appropriate.

5.4.1.3 Company's deterministic sensitivity analysis results

A number of deterministic one-way sensitivity analyses were undertaken to explore the impact on the ICER to making changes to key model input parameters. Parameters were varied according to the lower and upper bound of their respective 95% CI or by assuming uncertainty of $\pm 20\%$ of the point estimate where the standard errors or confidence intervals were missing. The results are presented in the form of tornado diagrams. Figure 10 reports the results for the comparison between pegIFNβ-1a and alemtuzumab and shows that the HR for disability progression had the greatest impact to the ICER.

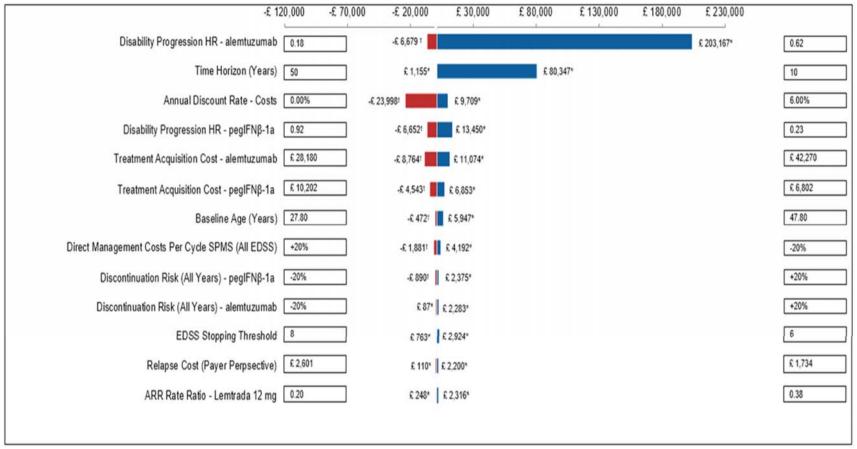


Figure 5. Tornado diagram for the comparison between pegIFNβ-1a and alemtuzumab, using the assumed PAS for comparators

5.4.1.4 Company's scenario analysis results

The company undertook a range of scenario analyses to assess the impact of each change to the base-case results. The following scenario analyses were undertaken (see Table 40):

Scenario	Base-case analysis	Scenario analysis
1	Time horizon: 50 years	Time horizon: 20 years
2	Discounting costs and effects 3.5%	Discounting costs 0%; effects 1.5%
3	Discounting costs and effects 3.5%	Discounting costs 1.5%; effects 0%
4	Patient characteristics from ADVANCE trial	Patient characteristics from TA527 ⁴ report; RSS
5		Natural history relapse rate from TA527 ⁴ report
6	Based on information obtained from the London, Ontario dataset	Natural History transition from RRMS to SPMS = 0
7	Relative efficacy using CDP6M	Relative efficacy using CDP3M
8	Discontinuations; Weighted randomised controlled trial all-cause discontinuation	Discontinuations; parity assumptions 5% for all DMTs; ID527 ⁴ report
9	Discontinuations; Weighted randomised controlled trial all-cause discontinuation	Discontinuations; Weighted randomised controlled trial ADRs only
10	Year 0-2: 100%; Year 2-5: 75%; Year 5+: 50%	Waning effect - none
11	AE- included in analysis	AE - exclude from analysis
12	Health state utility values obtained from Orme et al., $(2008)^9$	Health state utility - from TA527 ⁴ report
13	Caregiver disutility - from Acaster et al., (2013) ¹¹³	Caregiver disutility - from Gani et al., (2008) ¹⁰
14	Health state costs obtained from TA320	Health state costs – Tyas et al., (2007) ¹⁰⁷ - 25% non-medical costs
15	and inflated to current values using the HCHS pay and price index from PSSRU	Health state costs - Tyas et al., (2007) ¹⁰⁷ - 100% non-medical costs
16	2018 (Curtis and Burns., 2018 ¹⁰⁰)	Health states costs BOI - 100% community & adaptations
17	Mortality obtained from Pokorski et al., (1997) ¹¹	Mortality SMR 2.8 – Kingwell et al., (2012) ¹¹²
	drug reaction; BOI, burden of illness; CDP, confirmed d SMR, standardised mortality ratio; TA, technology appra	lisability progression; PSSRU, personal and social services
research unit,	sinc, sumantised mortancy ratio, 1A, comology apple	11501

Table 40. Description of the company's scenario analyses in comparison to the base-case

5.4.2 Model validation and face validity check

Face validity checks consisted of exploring the plausibility of the clinical outcome results from the economic model. Table 41 and Table 42 shows the disaggregated results of the base-case clinical model outcomes and the disaggregated results of the incremental cost-effectiveness analysis, respectively.

DMTs	PegIFN β-1a	GA20	GA40	genGA 20	genGA 40	IFNβ- 1b 22	IFNβ- 1b 44	IFNβ- 1b	IFNβ- 1a 30	Teriflu nomide	DMF	Ocreliz umab	Alemtu zumab
Health outcome	es												
Life years (undiscounte d)	34.64	34.42	34.42	34.41	34.42	NA	34.60	NA	34.51	34.46	34.50	34.41	34.67
EDSS													
Mean baseline	2.232	2.232	2.232	2.232	2.232	NA	2.232	NA	2.232	2.232	2.232	2.232	2.232
Mean change	5.945	6.072	6.067	6.072	6.067	NA	5.956	NA	6.001	6.050	6.030	5.592	5.046
Mean years spent EDSS <7 (undiscounte d)	15.203	13.814	13.837	13.814	13.837	NA	14.894	NA	14.387	14.112	14.342	15.997	17.184
Relapse													
Total number	15.850	15.062	15.035	15.062	15.035	NA	15.416	NA	15.649	15.807	15.316	14.004	12.836
Mean annualised rate	0.458	0.438	0.437	0.438	0.437	NA	0.446	NA	0.453	0.459	0.444	0.407	0.357
SPMS													
Years spent SPMS free (undiscounte d)	12.69	11.68	11.70	11.68	11.70	NA	12.45	NA	12.08	11.89	12.05	13.16	14.07
Progressions to SPMS (%)	91.87%	92.76%	92.74%	92.76%	92.74%	NA	92.05%	NA	92.37%	92.59%	92.45%	90.61%	88.93%

Table 41. Disaggregated clinical model outcome results of the base-case for Peg-IFNβ-1a versus the comparators

DMTs	PegIFN β-1a	GA20	GA40	genGA 20	genGA 40	IFNβ- 1b 22	IFNβ- 1b 44	IFNβ- 1b	IFNβ- 1a 30	Teriflu nomide	DMF	Ocreliz umab	Alemtu zumab
Annual rate of discontinuati on (mean)	0.027	0.027	0.027	0.027	0.027	NA	0.027	NA	0.027	0.027	0.027	0.026	0.026
Reasons for dise	continuatio	n											
Progressing to EDSS ≥7 (%)	6.61%	16.10%	18.94%	16.10%	18.94%	NA	12.61%	NA	18.50%	8.29%	7.83%	13.33%	21.49%
Progression to SPMS (%)	19.36%	24.86%	28.00%	24.86%	28.00%	NA	25.60%	NA	30.02%	17.18%	17.55%	32.85%	47.79%
Dropout (%)	74.03%	59.04%	53.06%	59.04%	53.06%	NA	61.79%	NA	51.48%	74.53%	74.62%	53.81%	30.73%
DMF, dimethyl fuma intramuscular; NA, n		2	0 10	· •	2	· · · · ·	., glatiramer ac	etate (Copaxo	ne); genGA, g	eneric glatiram	ner acetate (Bra	abio); IFN, inte	erferon;

Table 42. Disaggregated economic model outcome results of the base-case for Peg-IFNβ-1a versus the comparators

DMTs	PegIFN β-1a	GA20	GA40	genGA 20	genGA 40	IFNβ- 1b 22	IFNβ- 1b 44	IFNβ- 1b	IFNβ- 1a 30	teriflun omide	DMF	Ocreliz umab	Alemtu zumab
Health outcon	nes (undisc	ounted)											
Total QALYs	4.20	2.95	2.97	2.95	2.97	NA	3.93	NA	3.45	3.20	3.44	5.20	6.37
Patient	6.77	5.62	5.64	5.62	5.64	NA	6.53	NA	6.08	5.84	6.07	7.67	8.79
Caregiver	-2.570	-2.668	-2.667	-2.668	-2.667	NA	-2.593	NA	-2.630	-2.648	-2.631	-2.473	-2.387

DMTs	PegIFN β-1a	GA20	GA40	genGA 20	genGA 40	IFNβ- 1b 22	IFNβ- 1b 44	IFNβ- 1b	IFNβ- 1a 30	teriflun omide	DMF	Ocreliz umab	Alemtu zumab
Cost outcomes													
Direct costs (u	ndiscounte	ed)											
Disease manageme nt	£490,54 4	£516,40 3	£515,97 8	£516,40 3	£515,97 8	NA	£496,41 4	NA	£505,84 5	£510,81 3	£506,52 6	£466,76 1	£446,15 4
Drug	£35,915	£32,134	£36,009	£28,921	£ 32,408	NA	£56,086	NA	£50,569	£47,232	£64,609	£131,77 5	£56,824
Administra tion and monitoring	£1,046	£968	£1,068	£968	£ 1,068	NA	£1,305	NA	£1,410	£1,446	£1,119	£9,383	£5,784
Relapses	£34,359	£32,652	£32,594	£32,652	£32,594	NA	£33,420	NA	£33,925	£34,266	£33,202	£30,359	£26,850
AE manageme nt	£5	£0	£0	£0	£0	NA	£3	NA	£2	£0	£10	£0	£284
Total	£561,87 0	£582,15 7	£585,64 9	£578,94 4	£582,04 9	NA	£587,22 8	NA	£591,75 1	£593,75 8	£605,46 5	£638,27 8	£535,89 7
Cost-effectiver	iess												
Incremental QALYs		1.26	1.23	1.26	1.23	NA	0.27	NA	0.76	1.01	0.77	-1.00	-2.17
Incremental Cost (£)		- £20,288	- £23,780	- £17,075	- £20,179	NA	- £25,358	NA	- £29,882	- £31,888	- £43,596	- £76,408	£25,973
ICER (£)		PegIFN β-1a dominat es	PegIFN β-1a dominat es	PegIFN β-1a dominat es	PegIFN β-1a dominat es	NA	PegIFN β-1a dominat es	NA	PegIFN β-1a dominat es	PegIFN β-1a dominat es	PegIFN β-1a dominat es	PegIFN β-1a less costly, less effective	PegIFN β-1a dominat ed

5.5 Exploratory and sensitivity analyses undertaken by the ERG

The ERG's suggested amendments 5.5.1

Based on our critique of the company's economic model, the ERG made changes to the company's model to explore the impact of each change to the company's base-case results. The suggested changes, along with the justification are presented:

• Interpolated disease-specific relative risk obtained from Pokorski et al., (1997)¹¹(see Table 43)

EDSS	Values used in the company's base- case	ERG's preferred values	Justification			
0	1.600	1.000	The ERG agrees that there is an increased risk of			
1-1.5	1.600	1.432	mortality compared to the general population.			
2-2.5	1.600	1.600	Mortality multipliers applied to some EDSS			
3-3.5	1.600	1.637	levels might have been over- or underestimated.			
4-4.5	1.840	1.674	For example, people with EDSS 0, it is assumed			
5-5.5	1.840	1.842	that there is a 1.6 increased risk of mortality			
6-6.5	1.840	2.273	compared to the general population. Conversely,			
7-7.5	4.440	3.097	the interpolated value for EDSS 0 assumes that			
8-8.5	4.440	4.447	there is no increased risk of mortality compared			
9-9.5	4.440	6.454	to the general population. The ERG considers the interpolated values to better reflect the increased risk of mortality compared to the general population			

Table 43. Increased risk of mortality using the interpolated values from Pokorski et al.(1991)¹¹

• Caregivers utility decrements obtained from Gani et al., (2008)¹⁰(see Table 44)

Table 44. Caregivers utility decrements obtained from Ganie et al., (2008) ¹⁰
--

EDSS	Values used in the company's base- case from Acaster et al., (2013) ¹¹³	ERG's preferred values from Gani et al., (2008) ¹⁰	Justification
0	-0.0020	0.0000	In consultation with our clinical advisor, the
1-1.5	-0.0020	0.0000	caregivers utility decrements obtained from
2-2.5	-0.0020	-0.0032	Gani et al., $(2008)^{10}$ appear to be more
3-3.5	-0.0020	-0.0091	appropriate, we would expect the caregivers
4-4.5	-0.0405	-0.0090	utility decrements to increase as EDSS levels
5-5.5	-0.1420	-0.0199	rise. Caregivers utility decrements for EDSS 5-
6-6.5	-0.1670	-0.0272	5.5 and 6-6.5 appear to be higher compared to
7-7.5	-0.0630	-0.0534	the utility decrements for more severe EDSS
8-8.5	-0.0950	-0.1070	levels
9-9.5	-0.0950	-0.1400	

EDSS, expanded disability status scale; ERG, evidence review group

• All-cause discontinuation risk of 5% per annum (see Table 45)

Weighted by sample size (base case)	Based on evidence from the RSS	Justification			
15.56%		In consultation with our clinical advisor, using			
7.88%		RCTs may not be the best way to capture real-			
6.00%		life tolerability/discontinuations. First, RCTs can be considered artificial, with highly			
10.53%		selected/motivated participants. Second, there			
6.87%		may be various non-clinical reasons for			
11.02%		discontinuation (e.g. withdrawal of consent), and third, limited long-term follow-up.			
8.91%					
11.02%		Given the limitations, the ERG considers it			
8.91%		more appropriate to use estimates from post- marketing surveillance/real life clinical studies			
18.57%		(e.g. RSS), as these can provide better rates			
18.01%		for discontinuation.			
2.59%		A parity of 5% per annum was used in a			
6.69%	5% per annum	previous assessment, (Melendez-Torres et al., 2017 ⁶) which was based on evidence from the RSS. The ERG acknowledges that some of the DMTs (pegIFN β -1a, teriflunomide, alemtuzumab, dimethyl fumerate, and ocrelizumab) included in the economic analysis were not included in the RSS. The ERGs preference would be to use 5% per annum for the older DMTs and another estimate for newer DMTs. However, given the paucity of real-life studies following up people on newer DMTs, we assumed that the discontinuation rate is the same for the newer DMTs. Our clinical advisor suggested that there is not a good reason why the annual all-cause discontinuation for pegIFN β -1a is			
	discontinu Weighted by sample size (base case) 15.56% 7.88% 6.00% 10.53% 6.87% 11.02% 8.91% 18.57% 18.01% 2.59%	sample size (base case) evidence from the RSS 15.56% 7.88% 6.00% 10.53% 6.87% 11.02% 8.91% 11.02% 18.57% 18.01% 2.59% 5% per annum			

Table 45. Annualised risk of all-cause discontinuation

RRMS relapse frequency from the ID527⁴ assessment (see Table 46) (Melendez-Torres et al., 2017)⁶

EDSS	Values used in the company's base- case (UK MS Survey and Patzold., 1982) ¹⁰⁹	ERG's preferred values (based on ID527 ⁴ assessment)	Justification			
0	0.7090	0.8895	Values shown here are for the annual relapse			
1-1.5	0.7290	0.7885	frequency by EDSS for a natural history cohort			
2-2.5	0.6760	0.6478	(i.e. in the absence of DMTs). The values used			
3-3.5	0.7200	0.6155	by the company show that there is a steady			
4-4.5	0.7050	0.5532	decrease in the annual relapse rates. In			
5-5.5	0.5910	0.5249	consultation with our clinical advisors, they			
6-6.5	0.4900	0.5146	suggested that they would expect there to be a			
7-7.5	0.5080	0.4482	gradual decrease in the annual relapse			
8-8.5	0.5080	0.3665	frequency. Hence, we considered the values			
9-9.5	0.5080	0.2964	reported in ID527 ⁴ assessment, which is based on the British Columbia cohort to be more appropriate. These values show that annual relapse rates decreases as EDSS levels increas			

Table 46. RRMS relapse frequency from the ID527⁴

• SPMS relapse frequency from the ID527⁴ assessment (see Table 47) (Melendez-Torres et al., 2017)⁶

EDSS	Values used in the company's base- case (UK MS Survey and Patzold., 1982) ¹⁰⁹	ERG's preferred values (based on ID527 ⁴ assessment)	Justification
0	0.000	0.000	Annual relapse rates for people with SPMS were
1-1.5	0.000	0.000	derived from information obtained from the UK
2-2.5	0.465	0.605	MS and Patzold et al., (1982). ¹⁰⁹
3-3.5	0.875	0.515	
4-4.5	0.545	0.487	Given that people with SPMS is characterised
5-5.5	0.524	0.423	by increasing disability commonly without
6-6.5	0.453 0.340	0.360	relapses; though some people continue to
7-7.5		0.303	experience relapses, we considered that some of
8-8.5	0.340	0.251	these values to overestimate the annual relapse
9-9.5	0.340	0.217	rate. For example, the annual relapse rate for people with EDSS 3-3.5 (SPMS) is 0.875, which is higher than EDSS 2-2.5 (SPMS) with a value of 0.4650. This suggests that people in EDSS 3- 3.5 health state experience more relapses than people in EDSS 2-2.5. Furthermore, the annual relapse rate for people in EDSS 3-3.5 (SPMS) is more frequent than people in the corresponding health state but with RRMS (0.720). The ERG considered the ID527 ⁴ assessment values to be more appropriate because the

Table 47. SPMS relapse frequency from the ID527⁴

EDSS	Values used in the company's base- case (UK MS Survey and Patzold., 1982) ¹⁰⁹	ERG's preferred values (based on ID527 ⁴ assessment)	Justification
			relapse rates decrease as EDSS levels increase and the annual relapse rates in people with SPMS are less than the relapse rates for people with RRMS.
EDSS, expande progressive mul		evidence review group; RR	MS, relapsing-remitting multiple sclerosis; SPMS, secondary

5.5.2 Probabilistic sensitivity analysis

The ERG re-run the PSA to obtain results that reflect the values and assumptions forming the ERG suggested base-case. The revised PSA results, which shows the joint distribution of cost and QALY estimates were generated through 5000 iterations and are depicted incrementally in the form of a scatterplot plotted on a cost-effectiveness plane, and cost-effectiveness acceptability curves, presented in Figure 6 and Figure 7, respectively.

5.6 Conclusions of the cost-effectiveness section

The company's submission is based on an economic analysis of pegIFN β -1a compared to other DMTs for treating people with RRMS. The model captured the key features of the natural history of people RRMS: RRMS disease progression (and regression), progression to SPMS, progression within SPMS, relapses and AE associated with treatment. Using the current model structure and the company's assumptions, the base-case results are unlikely to be unbiased. However, it should be noted that these results are based on the list price for each DMT; hence the analysis does not incorporate any commercial agreements between the companies and the Department of Health.

6 IMPACT OF ADDITIONAL CLINICAL AND ECONOMIC ANALYSES UNDERTAKEN BY THE ERG

6.1 Impact of ERG changes on the company's base-case results

Here we present the results following the ERG's suggested changes to the company's model inputs and the impact of each change to the company's base-case results. Results are presented using the list prices for all comparators.

6.1.1 Impact of ERG's suggested changes on comparison between peginterferon beta-1a and its comparators

In Table 48, we present the results for each change and its impact to the company's base-case results, using the list prices for each comparator.

• Interpolated disease-specific relative risk obtained from Pokorski et al., (1997)¹¹

Tracetoreent	Total			Incremental			ICER
Treatment	Costs	LYs	QALYs	Costs	LYs	QALYs	(£/QALY)
PegIFNβ-1a	£266,720	19.00	4.52	-	-	-	-
Alemtuzumab	£268,897	19.05	5.60	£2,177	0.06	-1.08	£2,019
Generic GA 20mcg	£274,659	18.88	3.78	£7,939	0.116	0.739	Dominated
Generic GA 40mcg	£277,005	18.88	3.80	£10,286	0.114	0.727	Dominated
GA 20mg	£277,382	18.88	3.78	£10,662	0.116	0.739	Dominated
GA 40mg	£280,008	18.88	3.80	£13,289	0.114	0.727	Dominated
SC IFNβ-1a 44	£285,882	18.97	4.36	£19,163	0.026	0.167	Dominated
IM IFNβ-1a 30	£286,836	18.93	4.06	£20,116	0.068	0.459	Dominated
Teriflunomide	£289,924	18.90	3.93	£23,204	0.092	0.591	Dominated
Dimethylfumar ate	£301,126	18.92	4.08	£34,406	0.073	0.439	Dominated
Ocrelizumab	£333,334	18.95	5.02	£66,614	0.049	-0.499	Dominated

Table 48. Exploratory results, using interpolated relative risk obtained from Pokorski et al., (1997)¹¹

• Caregivers utility decrements obtained from Gani et al., (2008)¹⁰(see Table 49)

Tuestment	Total			Incremental			ICER
Treatment	Costs	LYs	QALYs	Costs	LYs	QALYs	(£/QALY)
PegIFNβ-1a	£273,641	19.28	4.66	-	-	-	-
Alemtuzumab	£274,892	19.28	5.74	£1,250	0.006	1.088	£1,149
Generic GA 20mcg	£282,343	19.19	3.90	£8,701	0.081	0.754	Dominated
Generic GA 40mcb	£284,674	19.20	3.91	£11,033	0.080	0.742	Dominated
GA 20 mg	£285,064	19.19	3.90	£11,423	0.081	0.754	Dominated
GA 40 mg	£287,676	19.20	3.91	£14,035	0.080	0.742	Dominated
SC IFNβ-1a 44	£292,969	19.26	4.49	£19,328	0.017	0.169	Dominated
IM IFNβ-1a 30	£294,199	19.23	4.19	£20,557	0.047	0.467	Dominated
Teriflunomide	£297,437	19.21	4.05	£23,796	0.064	0.602	Dominated
Dimethyl fumarate	£308,506	19.22	2.21	£34,865	0.051	0.448	Dominated
Ocrelizumab	£339,668	19.20	5.16	£66,027	0.074	-0.505	Dominated

Table 49. Exploratory analysis, using the caregivers' utility decrements obtained from Gani et al.,(2008)¹⁰

• All-cause discontinuation risk using a parity of 5% per annum (see Table 50)

Tuestan	Total			Incremental			ICER
Treatment	Costs	LYs	QALYs	Costs	LYs	QALYs	(£/QALY)
Alemtuzumab	£279,131	19.24	5.17	-	-	-	-
PegIFNβ-1a	£285,041	19.94	4.95	£5,910	0.70	-0.22	Dominated
Generic GA 20 mcg	£289,568	19.20	3.70	£10,437	-0.04	-1.47	Dominated
Generic GA 40 mcg	£289,853	19.20	3.69	£10,722	-0.04	-1.48	Dominated
GA 20 mg	£293,246	19.20	3.70	£14,115	-0.04	-1.47	Dominated
GA 40mg	£293,531	19.20	3.69	£14,400	-0.04	-1.48	Dominated
IM IFNβ-1a 30	£300,018	19.24	3.99	£20,887	0.00	-1.18	Dominated
SC IFNβ-1a 44	£304,937	19.29	4.44	£25,806	0.05	-0.73	Dominated
Teriflunomide	£328,915	19.24	4.03	£49,784	0.00	-1.14	Dominated
Dimethyl fumarate	£349,257	19.26	4.29	£70,126	0.02	-0.88	Dominated
Ocrelizumab	£350,209	19.22	5.05	£71,078	-0.02	-0.12	Dominated

Table 50. Exploratory analysis, using a parity of 5% per annum for all DMTs

• Relapse frequency from the ID527⁴ assessment for RRMS (see Table 51)

T	Total			Incremental			ICER
Treatment	Costs	LYs	QALYs	Costs	LYs	QALYs	(£/QALY)
PegIFNβ-1a	£273,422	19.28	4.40	-	-	-	-
Alemtuzumab	£274,807	19.28	5.48	£1,385	0.006	1.079	£1,284
Generic GA 20 mcg	£282,039	19.19	3.65	£8,617	0.081	0.745	Dominated
Generic GA 40 mcg	£284,371	19.20	3.66	£10,948	0.080	0.734	Dominated
GA 20 mg	£284,761	19.19	3.65	£11,338	0.081	0.745	Dominated
GA 40 mg	£287,372	19.20	3.66	£13,950	0.080	0.734	Dominated
SC IFNβ-1a 44	£292,732	19.26	4.23	£19,309	0.017	0.169	Dominated
IM IFNβ-1a 30	£293,917	19.23	3.94	£20,495	0.047	0.463	Dominated
Teriflunomide	£297,136	19.21	3.80	£23,713	0.064	0.596	Dominated
Dimethylfumar ate	£308,238	19.22	4.00	£34,816	0.051	0.443	Dominated
Ocrelizumab	£339,536	19.20	4.90	£66,114	0.074	-0.499	Dominated

Table 51. Exploratory analysis, using the relapse frequency from the ID527⁴ assessment

• Relapse frequency from the ID527⁴ assessment for SPMS (see Table 52)

	Total			Incremental			ICER
Treatment	Costs	LYs	QALYs	Costs	LYs	QALYs	(£/QALY)
PegIFNβ-1a	£271,591	19.28	4.44	-	-	-	-
Alemtuzumab	£272,991	19.28	5.52	£1,400	0.006	1.079	£1,297
Generic GA 20 mcg	£280,189	19.19	3.70	£8,598	0.081	0.744	Dominated
Generic GA 40 mcg	£282,522	19.20	3.71	£10,932	0.080	0.733	Dominated
GA 20 mg	£282,911	19.19	3.70	£11,320	0.081	0.744	Dominated
GA 40 mg	£285,524	19.20	3.71	£13,933	0.080	0.733	Dominated
SC IFNβ-1a 44	£290,892	19.26	4.27	£19,301	0.017	0.168	Dominated
IM IFNβ-1a 30	£292,084	19.23	3.98	£20,493	0.047	0.463	Dominated
Teriflunomide	£295,306	19.21	3.85	£23,715	0.064	0.595	Dominated
Dimethylfumar ate	£306,392	19.22	4.00	£34,801	0.051	0.442	Dominated
Ocrelizumab	£337,700	9.20	4.92	£66,110	0.074	-0.500	Dominated

Table 52. Exploratory analysis, using the relapse frequency from the ID527⁴ assessment

In the majority of the exploratory analyses, the base-case model results were robust to each individual change made to the model inputs. Treatment with pegIFN β -1a continued to dominate all comparators except alemtuzumab. However, the results showed that using a parity of 5% per annum for all-cause discontinuation across all DMTs, treatment with alemtuzumab dominated all other treatments.

6.2 Results of ERG base-case analysis

The ERG's base-case analysis compares pegIFN β -1a versus comparators (at list prices). In Table 53, we present a summary of the ERG's base-case with justifications to the changes made to the company's base-case.

The ERG's preferred base-case includes making the following changes simultaneously:

- Interpolated disease-specific relative risk obtained from Pokorski et al., (1997)¹¹
- Caregivers utility decrements obtained from Gani et al., (2008)¹⁰
- All-cause discontinuation risk using a parity of 5% per annum
- RRMS relapse frequency from the ID527⁴ assessment (Melendez-Torres et al., 2017)⁶
- SPMS relapse frequency from the ID527⁴ assessment (Melendez-Torres et al., 2017).⁶

Table 5E in Appendix E presents the details of the changes made in the spreadsheets used to amend the company's economic model.

Model inputs	Options for inputs	Company's base- case	ERG's base-case
	Kingwell et al., (2012) ¹¹²		
Montolity right	Pokorski et al., (1997) ¹¹	✓	
Mortality risk	Pokorski., (1997) ¹¹ interpolated		✓
Caregivers utility decrement	Acaster et al., (2013) ¹¹³	✓	
C j	Gani et al., (2008) ¹⁰		√
	User inputs		
All-cause discontinuation	Weighted RCTs Disc	✓	
risk	Parity assumption (ID527) ⁴		✓
	Weighted RCT ADRs only		
Annual relapse rates by	User inputs		
EDSS (RRMS)	ID527 ⁴ assessment		✓
	UK MS Survey and Patzold et al (1982) ¹⁰⁹	✓	
Annual relapse rates by	User inputs		
EDSS (SPMS)	ID527 ⁴ assessment		✓

Table 53. Changes made to the company's base-case with justifications

Model inputs	Options for inputs	Company's base-	ERG's base-case				
		case					
	UK MS Survey and Patzold., (1982) ¹⁰⁹	\checkmark					
EDSS, expanded disability status scale; MS, multiple sclerosis, RCT, randomised-controlled trial; RRMS, relapsing-remitting multiple sclerosis; SPMS, secondary progressive multiple sclerosis							

6.2.1 ERG's base-case deterministic results

The ERG's base-case results show that treatment with alemtuzumab dominated all other treatment options. Alemtuzumab was the least costly treatment option and yielded the most QALYs (see Table 54).

Treatment	Total			I	ICER		
	Costs	LYs	QALYs	Costs	LYs	QALYs	(£/QALY)
Alemtuzumab	£270,928	19.00	5.63	-	-	-	-
PegIFNβ-1a	£276,655	19.10	5.41	£5,727	0.10	-0.22	Dominated
Generic GA 20 mcg	£279,583	18.89	4.17	£8,655	-0.21	-1.46	Dominated
Generic GA 40 mcg	£279,864	18.89	4.17	£8,936	-0.21	-1.46	Dominated
GA 20 mg	£283,265	18.89	4.17	£12,337	-0.21	-1.46	Dominated
GA 40 mg	£283,545	18.89	4.16	£12,617	-0.21	-1.47	Dominated
IM IFNβ-1a 30	£290,440	18.94	4.46	£19,512	-0.16	-1.17	Dominated
SC IFNβ-1a 44	£295,916	19.01	4.91	£24,988	-0.09	-0.72	Dominated
Teriflunomide	£319,397	18.94	4.50	£48,469	-0.16	-1.13	Dominated
Dimethyl fumarate	£340,051	18.98	4.76	£69,123	-0.12	-0.87	Dominated
Ocrelizumab	£342,067	18.98	5.51	£71,139	-0.12	-0.12	Dominated

Table 54. ERG's deterministic base-case results (using list prices)

6.2.2 ERG's probabilistic sensitivity analysis results

The PSA results are presented in Table 55. These results show that alemtuzumab dominates all treatment options including pegIFN β -1a, which suggests that alemtuzumab is the least costly and the most effective treatment option. In comparison to the ERG's deterministic results, the PSA results show that the expected costs are underestimated and the expected benefits (QALYs) overestimated.

Treatment	Total			Incremental			ICER
	Costs	LYs	QALYs	Costs	LYs	QALYs	(£/QALY)
Alemtuzumab	£254,772	19.19	6.56	-	-	-	-
PegIFNβ-1a	£265,389	19.30	6.31	£10,617	0.11	-0.25	Dominated
Generic GA 20 mcg	£266,026	19.10	5.14	£11,254	-0.20	-1.42	Dominated
Generic GA 40 mcg	£266,426	19.10	5.13	£11,654	-0.21	-1.43	Dominated
GA 20 mg	£269,763	19.08	5.16	£14,992	-0.22	-1.41	Dominated
GA 40 mg	£270,525	19.10	5.12	£15,753	-0.20	-1.44	Dominated
IM IFNβ-1a 30	£278,129	19.15	5.44	£23,357	-0.15	-1.12	Dominated
SC IFNβ-1a 44	£284,937	19.22	5.87	£30,165	-0.08	-0.70	Dominated
Teriflunomide	£309,658	19.10	5.48	£54,886	-0.21	-1.08	Dominated
Dimethyl fumarate	£332,740	19.20	5.73	£77,968	-0.11	-0.83	Dominated
Ocrelizumab	£336,666	19.20	6.44	£81,894	-0.11	-0.12	Dominated

Table 55. ERG's probabilistic sensitivity analysis results (using list prices)

Each simulation was plotted incrementally on a cost-effectiveness plane as shown in Figure 6. These results show that there is some correlation between costs and benefits.

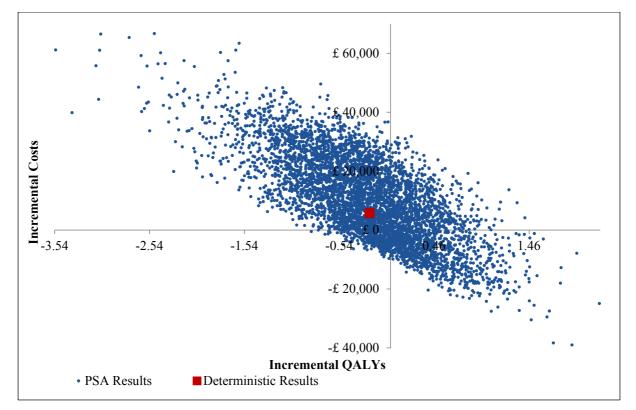


Figure 6. Scatterplot of pegIFNβ-1a versus alemtuzumab on the cost-effectiveness plane, ERG's base-case using list prices

Figure 7 shows the results of the PSA in the form of a CEAC for the comparison between pegIFN β -1a (Plegridy 125 μ g) and alemtuzumab (Lemtrada 12 mg). The curves show the proportion of simulations in which treatments are cost-effective at different WTP thresholds for a QALY. These results show that at a WTP threshold of £20,000 per QALY pegIFN β -1a when compared to alemtuzumab has a probability of 0.28 of being cost-effective.

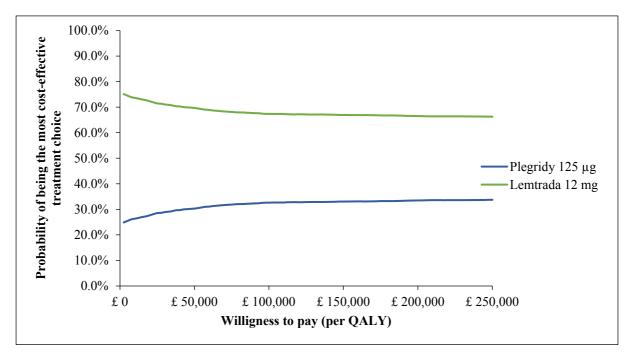


Figure 7. Cost-effectiveness acceptability curve, company base-case using list prices

6.2.3 ERG scenario analysis

The ERG undertook further analyses to assess the impact to the ERG's base-case ICER by individually making changes to our assumptions. The following changes were made in scenario analyses:

• All-cause discontinuation weighted by person-time (see Table 56)

T	Total			I	ICER		
Treatment	Costs	LYs	QALYs	Costs	LYs	QALYs	(£/QALY)
PegIFNβ-1a	264,531	19.00	4.85	-	-	-	-
Alemtuzumab	266,902	19.06	5.94	2,371	0.06	1.09	2,192
Generic GA 40 mcg	274,639	18.88	4.13	7,737	-0.18	-1.81	Dominated
Generic GA 20 mcg	275,396	18.88	4.13	8,494	-0.18	-1.81	Dominated
GA 40 mg	277,642	18.88	4.13	10,740	-0.18	-1.81	Dominated
GA 20 mg	278,529	18.88	4.14	11,627	-0.18	-1.80	Dominated
IM IFNβ-1a 30	283,843	18.93	4.39	16,941	-0.13	-1.55	Dominated
SC IFNβ-1a 44	285,008	18.98	4.71	18,106	-0.08	-1.23	Dominated
Teriflunomide	287,677	18.90	4.26	20,775	-0.16	-1.68	Dominated
Dimethyl fumarate	298,904	18.92	4.42	32,002	-0.14	-1.52	Dominated
Ocrelizumab	331,309	18.95	5.35	64,407	-0.11	-0.59	Dominated

Table 56. All-cause discontinuation weighted by person-time

Utility values by EDSS as reported in ID527⁴ assessment (Melendez-Torres et al., 2017)⁶ (see Table 57)

Treatment	Total			I	ICER		
	Costs	LYs	QALYs	Costs	LYs	QALYs	(£/QALY)
Alemtuzumab	270,928	19.00	5.45	-	-	-	-
PegIFNβ-1a	276,655	19.10	5.22	5,727	0.10	-0.23	Dominated
Generic GA 20 mcg	279,583	18.89	4.00	8,655	-0.21	-1.45	Dominated
Generic GA 40 mcg	279,864	18.89	4.00	8,936	-0.21	-1.45	Dominated
GA 20 mg	283,265	18.89	4.00	12,337	-0.21	-1.45	Dominated
GA 40 mg	283,545	18.89	4.00	12,617	-0.21	-1.45	Dominated
IM IFNβ-1a 30	290,440	18.94	4.29	19,512	-0.16	-1.16	Dominated
SC IFNβ-1a 44	295,916	19.01	4.73	24,988	-0.09	-0.73	Dominated
Teriflunomide	319,397	18.94	4.33	48,469	-0.16	-1.12	Dominated
Dimethyl fumarate	340,051	18.98	4.58	69,123	-0.12	-0.87	Dominated
Ocrelizumab	342,067	18.98	5.33	71,139	-0.12	-0.12	Dominated

Table 57. ERG scenario analysis, using utility values reported in ID527⁴ assessment

• No waning of the treatment effect (see Table 58)

Treatment	Total			I	ICER		
	Costs	LYs	QALYs	Costs	LYs	QALYs	(£/QALY)
Alemtuzumab	254,137	19.20	6.62	-	-	-	-
PegIFNβ-1a	268,315	19.25	6.13	14,178	0.05	-0.49	Dominated
Generic GA 20µg	278,689	18.90	4.23	24,552	-0.35	-2.39	Dominated
Generic GA 40µg	278,972	18.90	4.22	24,835	-0.35	-2.40	Dominated
GA 20µg	282,398	18.90	4.23	28,261	-0.35	-2.39	Dominated
GA 40µg	282,681	18.90	4.22	28,544	-0.38	-2.40	Dominated
IM IFNβ-1a 30	287,970	18.98	4.66	33,833	-0.27	-1.96	Dominated
SC IFNβ-1a 44	291,497	19.09	4.32	37,360	-0.16	-2.30	Dominated
Teriflunomide	317,520	18.98	4.71	63,383	-0.27	-1.91	Dominated
Dimethyl fumarate	338,130	19.04	5.07	83,993	-0.21	-1.55	Dominated
Ocrelizumab	338,738	19.16	6.42	84,646	-0.09	-0.20	Dominated

Table 58. ERG scenario analysis, assuming no treatment waning on CDP6M

• Using the utility values reported in Thompson et al., (2017)⁸ (see Table 59)

Turint	Total			Incremental			ICER
Treatment	Costs	LYs	QALYs	Costs	LYs	QALYs	(£/QALY)
Alemtuzumab	270,928	19.00	6.67	-	-	-	-
PegIFNβ-1a	276,655	19.10	6.47	5,727	0.10	-0.20	Dominated
Generic GA 20 mcg	279,583	18.89	5.38	8,655	-0.21	-1.29	Dominated
Generic GA 40 mcg	279,864	18.89	5.38	8,936	-0.21	-1.29	Dominated
GA 20 mg	283,265	18.89	5.38	12,337	-0.21	-1.29	Dominated
GA 40 mg	283,545	18.89	5.38	12,617	-0.21	-1.29	Dominated
IM IFNβ-1a 30	290,440	18.94	5.63	19,512	-0.16	-0.06	Dominated
SC IFNβ-1a 44	295,916	19.01	6.03	24,988	-0.09	-0.64	Dominated
Teriflunomide	319,397	18.94	5.67	48,469	-0.16	-1.00	Dominated
Dimethyl fumarate	340,051	18.98	5.90	69,123	-0.12	-0.77	Dominated
Ocrelizumab	342,067	18.98	6.57	71,139	-0.12	-0.10	Dominated

Table 59. ERG scenario analysis, assuming no treatment waning on CDP6M

• Applying estimates for CDP6M and ARR from the ID527⁴ assessment (see Table 60)

Treatment	Total			I	ICER		
Treatment	Costs	LYs	QALYs	Costs	LYs	QALYs	(£/QALY)
INFβ-1b	263,918	19.16	5.80	-	-	-	-
PegIFNβ-1a	276,608	19.10	5.41	12,690	-0.06	-0.39	Dominated
GA 20 mg	279,446	18.93	4.43	15,528	-0.23	-1.37	Dominated
IM IFNβ-1a 30	286,374	18.99	4.77	22,456	-0.17	-1.30	Dominated
SC IFNβ-1a 44	290,488	19.09	5.39	26,570	-0.07	-0.41	Dominated

Table 60. ERG scenario analysis, assuming no treatment waning on CDP6M

The ERG undertook a number of scenario analyses to assess the impact of these changes to our basecase results. In general, the results were robust to some changes made to the assumptions. Using the all-cause discontinuation weighted by person-time resulted alemtuzumab dominating all other treatment strategies except treatment with pegIFN β -1a. In comparison to pegIFN β -1a, alemtuzumab was approximately £2,400 more costly and was expected to yield 1.09 more QALYs, with an ICER of approximately £2,200 per QALY. Additionally, using the network-meta analysis treatment efficacy estimates obtained from ID527 assessment⁴, the results showed that IFN β -1b dominated all other treatment options.

7 END OF LIFE

The company have not discussed any end of life considerations in the submission, which the ERG agrees is appropriate.

8 OVERALL CONCLUSION

Discrepancies between the ERG and CS regarding the clinical effectiveness evidence did not significantly change the overall results of the SLR or MTCs. The ERG do not believe that any discrepancies in the information presented in the clinical effectiveness section will influence the size of the ICER.

The company's economic analysis was based on a Markov cohort model programmed in Microsoft Excel. The ERG considered the choice of the model and its structure to be appropriate to simulate the experience of people with RRMS, and to capture the long-term costs and benefits associated with treating RRMS with DMTs. The comparators included in the base-case analysis were appropriate, and in line with the NICE scope¹ for treatment of people with RRMS. All comparators were in keeping with their marketing authorisation and licensed dosing schedule.

Appropriate methods were used to identify information to populate the economic model, with the clinical information for pegIFN β -1a obtained from the ADVANCE trial and MTCs undertaken by the company. The resource use and costs were in keeping with the viewpoint of the economic analysis, with information obtained from published sources and using current prices. To have a workable model the company made some simplifying assumptions, which the ERG considered to be plausible. Under the company's assumptions and the economic model used, the base-case deterministic results showed that pegIFN β -1a dominated all treatment strategies except treatment with alemtuzumab. Treatment with alemtuzumab was more costly and effective, resulting in an ICER of approximately £1200 per QALY gained. Probabilistic sensitivity analysis results showed that pegIFN β -1a, when compared to alemtuzumab, had a 0.17 probability of being cost-effective at a WTP threshold of £20,000 per QALY. When compared to the other DMTs pegIFN β -1a had >0.85 probability of being cost-effective. The company's base-case results were robust to changes made to the model inputs.

The ERG made some amendments to the company's economic model inputs, which formed the basis for the ERG's base-case model. These changes resulted in differences between the company's base-case results and those reported by the ERG. The company's results were presented based on using the list prices for all DMTs, and this was the basis/approach to the ERG's analysis.

The ERG's amendments using alternative sources of information are provided:

- Interpolated disease-specific relative risk obtained from Pokorski et al., (1997)¹¹
- Caregivers utility decrements obtained from Gani et al., (2008)¹⁰
- All-cause discontinuation risk using a parity of 5% per annum
- RRMS relapse frequency from the ID527⁴ assessment (Melendez-Torres et al., 2017)⁶
- SPMS relapse frequency from the ID527⁴ assessment (Melendez-Torres et al., 2017).⁶

Based on the changes made simultaneously, the results now show that alemtuzumab dominates all other treatment strategies, by being least costly and most effective. PSA results demonstrated that at a WTP threshold of £20,000 per QALY pegIFN β -1a compared with alemtuzumab had a 0.28 probability of being cost-effective. However, it should be noted that these results are based on the list price for each DMT; hence the analysis does not incorporate any commercial agreements between the companies and the Department of Health.

9 **REFERENCES**

1. National Institute for Health and Care Excellence. *Peginterferon beta-1a for treating relapsing–remitting multiple sclerosis: Final scope*. 2019. URL: <u>https://www.nice.org.uk/guidance/gid-ta10471/documents/final-scope</u> (Accessed 31 July 2019).

2. Calabresi PA, Kieseier BC, Arnold DL, Balcer LJ, Boyko A, Pelletier J, *et al.* Pegylated interferon beta-1a for relapsing-remitting multiple sclerosis (ADVANCE): a randomised, phase 3, double-blind study. *Lancet Neurol* 2014;**13**(7):657-65. <u>http://dx.doi.org/10.1016/s1474-4422(14)70068-7</u>

3. Newsome SD, Scott TF, Arnold DL, Nelles G, Hung S, Cui Y, *et al.* Long-term outcomes of peginterferon beta-1a in multiple sclerosis: results from the ADVANCE extension study, ATTAIN. *Ther Adv Neurol Disord* 2018;**11**:1756286418791143. http://dx.doi.org/10.1177/1756286418791143

4. *TA527: Beta interferons and glatiramer acetate for treating multiple sclerosis.* National Institute for Health and Care Excellence; 2018. URL: https://www.nice.org.uk/guidance/ta527 (Accessed 31 July 2019).

Hernandez L, Guo S, Toro-Diaz H, Carroll S, Syed Farooq SF. Peginterferon beta-1a versus other self-injectable disease-modifying therapies in the treatment of relapsing-remitting multiple sclerosis in Scotland: a cost-effectiveness analysis. *J Med Econ* 2017;20(3):228-38.

6. Melendez-Torres G, Auguste P, Armoiry X, Maheswaran H, Madan J, Kan A, *et al.* Clinical effectiveness and cost-effectiveness of beta-interferon and glatiramer acetate for treating multiple sclerosis: systematic review and economic evaluation. *Health Technol Assess* 2017;**21**(52):1-352.

7. Kobelt G, Thompson A, Berg J, Gannedahl M, Eriksson J, MSCOI Study Group, *et al.* New insights into the burden and costs of multiple sclerosis in Europe. *Mult Scler* 2017;**23**(8):1123-36. <u>http://dx.doi.org/10.1177/1352458517694432</u>

8. Thompson A, Kobelt G, Berg J, Capsa D, Eriksson J, Miller D, *et al.* New insights into the burden and costs of multiple sclerosis in Europe: results for the United Kingdom. *Mult Scler J* 2017;**23**(2 suppl):204-16.

9. Orme M, Kerrigan J, Tyas D, Russell N, Nixon R. The effect of disease, functional status, and relapses on the utility of people with multiple sclerosis in the UK. *Value Health* 2007;**10**(1):54-60.

10. Gani R, Giovannoni G, Bates D, Kemball B, Hughes S, Kerrigan J. Cost-effectiveness analyses of natalizumab (Tysabri) compared with other disease-modifying therapies for people with highly active relapsing-remitting multiple sclerosis in the UK. *Pharmacoeconomics* 2008;**26**(7):617-27.

11. Pokorski RJ. Long-term survival experience of patients with multiple sclerosis. *J Insur Med* 1997;**29**(2):101-6.

12. Ascherio A, Munger K. Epidemiology of multiple sclerosis: from risk factors to prevention. *Seminars in Neurology* 2008;**28**(1):17-28. <u>http://dx.doi.org/10.1055/s-2007-1019126</u>

13. Ascherio A, Munger KL. Epidemiology of Multiple Sclerosis: From Risk Factors to Prevention - An Update. *Seminars in Neurology* 2016;**36**(2):103-14. http://dx.doi.org/10.1055/s-0036-1579693

14. World Health Organisation. *Atlas: Multiple sclerosis resources in the world*. 2008. URL:

https://www.who.int/mental_health/neurology/atlas_multiple_sclerosis_resources_2008/en/ (Accessed 31 July 2019). 15. Multiple Sclerosis International Federation. *Atlas of MS 2013: Mapping multiple sclerosis around the world.* 2013. URL: <u>http://www.msif.org/wp-</u>content/uploads/2014/09/Atlas-of-MS.pdf (Accessed 31 July 2019).

16. Mackenzie IS, Morant SV, Bloomfield GA, MacDonald TM, O'Riordan J. Incidence and prevalence of multiple sclerosis in the UK 1990-2010: a descriptive study in the General Practice Research Database. *Journal of Neurology, Neurosurgery & Psychiatry* 2014;**85**(1):76-84. http://dx.doi.org/10.1136/jnnp-2013-305450

17. Multiple Sclerosis Society. *MS in the UK*: Multiple Sclerosis Society; 2016.

18. Hemmer B, Kerschensteiner M, Korn T. Role of the innate and adaptive immune responses in the course of multiple sclerosis. *Lancet Neurology* 2015;**14**(4):406-19. http://dx.doi.org/10.1016/S1474-4422(14)70305-9

19. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, *et al.* Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. *Lancet Neurol* 2018;**17**(2):162-73. <u>http://dx.doi.org/10.1016/s1474-4422(17)30470-2</u>

20. Patti F, Vila C. Symptoms, prevalence and impact of multiple sclerosis in younger patients: a multinational survey. *Neuroepidemiology* 2014;**42**(4):211-8. <u>http://dx.doi.org/10.1159/000360423</u>

21. Bates D, Bartholome E. Treatment effect of natalizumab on relapse outcomes in multiple sclerosis patients despite ongoing MRI activity. *J Neurol Neurosurg Psychiatry* 2012;**83**(1):55-60. <u>http://dx.doi.org/10.1136/jnnp-2011-300279</u>

22. Bakshi R, Thompson AJ, Rocca MA, Pelletier D, Dousset V, Barkhof F, *et al.* MRI in multiple sclerosis: current status and future prospects. *Lancet Neurology* 2008;**7**(7):615-25. http://dx.doi.org/10.1016/S1474-4422(08)70137-6

23. Klineova S, Lublin FD. Clinical Course of Multiple Sclerosis. *Cold Spring Harb Perspect Med* 2018;**8**(9). <u>http://dx.doi.org/10.1101/cshperspect.a028928</u>

24. Multiple Sclerosis Outcome Measures Taskforce. *Compendium of Instructions for Outcome Measures: Neurology Section*. URL: <u>http://www.neuropt.org/docs/ms-edge-documents/ms-edge-compendium-of-instructions.pdf?sfvrsn=4</u> (Accessed 31 July 2019).

25. National Multiple Sclerosis Society. *Clinical Study Measures*. URL: https://www.nationalmssociety.org/For-Professionals/Researchers/Resources-for-

Researchers/Clinical-Study-Measures (Accessed 31 July 2019).

26. Multiple Sclerosis Trust. *Expanded Disability Status Scale (EDDS)*. Letchworth Garden City: Multiple Sclerosis Trust,; 2018. URL: <u>https://www.mstrust.org.uk/a-</u>z/expanded-disability-status-scale-edss (Accessed July 2019).

27. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an Expanded Disability Status Scale (EDSS). *Neurology* 1983;**33**(11):1444.

http://dx.doi.org/10.1212/wnl.33.11.1444

28. Leray E, Yaouanq J, Le Page E, Coustans M, Laplaud D, Oger J, *et al.* Evidence for a two-stage disability progression in multiple sclerosis. *Brain* 2010;**133**(7):1900-13.

29. Lublin FD, Baier M, Cutter G. Effect of relapses on development of residual deficit in multiple sclerosis. *Neurology* 2003;**61**(11):1528-32.

30. Hermann BP, Vickrey B, Hays RD, Cramer J, Devinsky O, Meador K, *et al.* A comparison of health-related quality of life in patients with epilepsy, diabetes and multiple sclerosis. *Epilepsy research* 1996;**25**(2):113-8.

31. Scolding N, Barnes D, Cader S, Chataway J, Chaudhuri A, Coles A, *et al.* Association of British Neurologists: revised (2015) guidelines for prescribing disease-modifying treatments in multiple sclerosis. *Pract Neurol* 2015;**15**(4):273-9.

32. NHS England. *Treatment Algorithm for Multiple Sclerosis Disease-Modifying Therapies*. 2018 [Updated 2019]. URL: <u>https://www.england.nhs.uk/commissioning/wp-</u>

content/uploads/sites/12/2019/03/Treatment-Algorithm-for-Multiple-Sclerosis-Disease-Modifying-Therapies-08-03-2019-1.pdf (Accessed 22 July 2019).

33. Svendsen B, Myhr KM, Nyland H, Aarseth JH. The cost of multiple sclerosis in Norway. *Eur J Health Econ* 2012;**13**(1):81-91. <u>http://dx.doi.org/10.1007/s10198-010-0286-7</u>

34. Tan H, Cai Q, Agarwal S, Stephenson J, Kamat S. Impact of adherence to diseasemodifying therapies on clinical and economic outcomes among patients with multiple sclerosis. *Adv Ther* 2011;**28**(1):51-61. <u>http://dx.doi.org/10.1007/s12325-010-0093-7</u>

35. Menzin J, Caon C, Nichols C, White LA, Friedman M, Pill MW. Narrative review of the literature on adherence to disease-modifying therapies among patients with multiple sclerosis. *J Manag Care Pharm* 2013;**19**(1 Suppl A):S24-40.

36. Devonshire V, Lapierre Y, Macdonell R, Ramo-Tello C, Patti F, Fontoura P, *et al.* The Global Adherence Project (GAP): a multicenter observational study on adherence to disease-modifying therapies in patients with relapsing-remitting multiple sclerosis. *Eur J Neurol* 2011;**18**(1):69-77. <u>http://dx.doi.org/10.1111/j.1468-1331.2010.03110.x</u>

37. Ivanova JI, Bergman RE, Birnbaum HG, Phillips AL, Stewart M, Meletiche DM. Impact of medication adherence to disease-modifying drugs on severe relapse, and direct and indirect costs among employees with multiple sclerosis in the US. *J Med Econ* 2012;**15**(3):601-9. http://dx.doi.org/10.3111/13696998.2012.667027

38. Cerghet M, Dobie E, Lafata J, Schultz L, Elias S, Pladevall M. Adherence to diseasemodifying agents and association with quality of life among patients with relapsing-remitting multiple sclerosis. *Int J MS Care* 2010;**12**(2):51-8.

39. Fox RJ, Salter AR, Tyry T, Sun J, You X, Laforet G, *et al.* Treatment discontinuation and disease progression with injectable disease-modifying therapies: findings from the North American Research Committee on Multiple Sclerosis Database. *Int J MS Care* 2013;**15**(4):194-201. <u>http://dx.doi.org/10.7224/1537-2073.2012-034</u>

40. Costello K, Kennedy P, Scanzillo J. Recognizing nonadherence in patients with multiple sclerosis and maintaining treatment adherence in the long term. *Medscape journal of medicine*;**10**(9):225.

41. Kieseier BC, Calabresi PA. Pegylation of interferon-β-1a. *CNS Drugs* 2012;**26**(3):205-14. <u>http://dx.doi.org/10.2165/11596970-000000000-00000</u>

42. Bailon P, Won CY. PEG-modified biopharmaceuticals. *Expert Opin Drug Deliv* 2009;**6**(1):1-16. <u>http://dx.doi.org/10.1517/17425240802650568</u>

43. Fazekas F, Bajenaru O, Berger T, Fabjan TH, Ledinek AH, Jakab G, *et al.* How does fingolimod (Gilenya®) fit in the treatment algorithm for highly active relapsing-remitting multiple sclerosis? *Front Neurol* 2013;4:10. <u>http://dx.doi.org/10.3389/fneur.2013.00010</u>

44. European Medicines Agency. *Plegridy EPAR - Summary of Product Characteristics*. 2014. URL: <u>https://www.ema.europa.eu/en/documents/product-information/plegridy-epar-product-information_en.pdf</u> (Accessed 30 July 2019).

45. Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen (IQWiG). *Allgemeine Methoden. Version 4.2 vom 22.04.2015*: Köln: Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen (IQWiG); 2015.

46. Arnold DL, You X, Castrillo-Viguera C. Peginterferon beta-1a reduces the evolution of MRI lesions to black holes in patients with RRMS: a post hoc analysis from the ADVANCE study. *J Neurol* 2017;**264**(8):1728-34. <u>http://dx.doi.org/10.1007/s00415-017-8544-6</u>

47. Kieseier BC, Arnold DL, Balcer LJ, Boyko AA, Pelletier J, Liu S, *et al.* Peginterferon beta-1a in multiple sclerosis: 2-year results from ADVANCE. *Mult Scler* 2015;**21**(8):1025-35. <u>http://dx.doi.org/10.1177/1352458514557986</u>

48. Naismith R, Hendin B, Wray S, You X, Sabatella G, Zambrano J, *et al.* ALLOW – a phase 3b trial characterising flu-like symptoms in patients switching to pegylated interferon

beta-1a: interim analysis of all patients. Paper presented at: 31st Congress of the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS); Barcelona, Spain, October.

49. Hu X, Shang S, Nestorov I, Hasan J, Seddighzadeh A, Dawson K, *et al.* COMPARE: pharmacokinetic profiles of subcutaneous peginterferon beta-1a and subcutaneous interferon beta-1a over 2 weeks in healthy subjects. *Br J Clin Pharmacol* 2016;**82**(2):380-8. http://dx.doi.org/10.1111/bcp.12968

50. Salvetti M, Wray S, Mokliatchouck O, Popescu C, Naylor M. Safety and effectiveness of peginterferon beta-1a for patients with newly diagnosed and non–newly diagnosed relapsing multiple sclerosis: second interim analysis of the Plegridy Observational Program (POP). Paper presented at: 34th Congress of the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS); Berlin, Germany, October.

51. Saida T, Yamamura T, Kondo T, Yun J, Yang M, Li J, *et al.* A randomized placebocontrolled trial of delayed-release dimethyl fumarate in patients with relapsing-remitting multiple sclerosis from East Asia and other countries. *BMC Neurology* 2019;**19**(1):5.

52. Mori M, Ohashi T, Onizuka Y, Hiramatsu K, Hase M, Yun J, *et al.* Efficacy and safety of delayed-release dimethyl fumarate in treatment-naïve Japanese patients with relapsing-remitting multiple sclerosis: A post-hoc subgroup analysis of the apex study. Paper presented at XXIII World Congress of Neurology; 16-21 Sep 2017; Kyoto: Japan. *Journal of the Neurological Sciences* 2017;**381**:795-6.

53. Ochi H, Niino M, Onizuka Y, Hiramatsu K, Hase M, Yun J, *et al.* 72-Week Safety and Tolerability of Dimethyl Fumarate in Japanese Patients with Relapsing-remitting Multiple Sclerosis: Analysis of the Randomised, Double Blind, Placebo-Controlled, Phase III APEX Study and its Open-Label Extension. *Adv Ther* 2018;**35**(10):1598-611. http://dx.doi.org/10.1007/s12325-018-0788-8

54. O'Connor P, Filippi M, Arnason B, Comi G, Cook S, Goodin D, *et al.* 250 microg or 500 microg interferon beta-1b versus 20 mg glatiramer acetate in relapsing-remitting multiple sclerosis: a prospective, randomised, multicentre study. *Lancet Neurol* 2009;**8**(10):889-97.

55. Boiko AN, Lashch NY, Sharanova SN, Zakharova MN, Trifonova OV, Simaniv TO, *et al.* A Comparative Placebo-Controlled Clinical Trial of the Efficacy and Safety of Glatiramer Acetate 20 mg in Patients with Remitting Multiple Sclerosis: First-Year Study Results. 2018;**48**(3):351-7. <u>http://dx.doi.org/10.1007/s11055-018-0570-z</u>

56. Bornstein MB, Miller A, Slagle S. A pilot trial of Cop 1 in exacerbating-remitting multiple sclerosis. *N Engl J Med* 1987;**317**(7):408-14.

57. Vollmer TL, Sorensen PS, Selmaj K, Zipp F, Havrdova E, Cohen JA, *et al.* A randomized placebo-controlled phase III trial of oral laquinimod for multiple sclerosis. *J Neurol* 2014;**261**(4):773-83. <u>http://dx.doi.org/10.1007/s00415-014-7264-4</u>

58. Calabrese M, Bernardi V, Atzori M, Mattisi I, Favaretto A, Rinaldi F, *et al.* Effect of disease-modifying drugs on cortical lesions and atrophy in relapsing–remitting multiple sclerosis. *Mult Scler J* 2012;**18**(4):418-24.

59. Coles AJ, Compston DA, Selmaj KW, Lake SL, Moran S, Margolin DH, *et al.* Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. *N Engl J Med* 2008;**359**(17):1786-801. <u>http://dx.doi.org/10.1056/NEJMoa0802670</u>

60. Cohen JA, Coles AJ, Arnold DL, Confavreux C, Fox EJ, Hartung HP, *et al.* Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsingremitting multiple sclerosis: a randomised controlled phase 3 trial. *Lancet* 2012;**380**(9856):1819-28. <u>http://dx.doi.org/10.1016/s0140-6736(12)61769-3</u>

61. Coles AJ, Twyman CL, Arnold DL, Cohen JA, Confavreux C, Fox EJ, *et al.* Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy:

a randomised controlled phase 3 trial. *Lancet* 2012;**380**(9856):1829-39. <u>http://dx.doi.org/10.1016/s0140-6736(12)61768-1</u>

62. Sanofi. *Comparison of Alemtuzumab and Rebif*® *Efficacy in Multiple Sclerosis, Study Two (CARE-MS II)*. ClinicalTrials.gov; 2017. URL:

https://clinicaltrials.gov/ct2/show/NCT00548405 (Accessed 31 July 2019).

63. Lublin FD, Cofield SS, Cutter GR, Conwit R, Narayana PA, Nelson F, *et al.* Randomized study combining interferon and glatiramer acetate in multiple sclerosis. *Ann Neurol* 2013;**73**(3):327-40. <u>http://dx.doi.org/10.1002/ana.23863</u>

64. Fox RJ, Miller DH, Phillips JT, Hutchinson M, Havrdova E, Kita M, *et al.* Placebocontrolled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. *N Engl J Med* 2012;**367**(12):1087-97. <u>http://dx.doi.org/doi:10.1056/NEJMoa1206328</u>

65. Johnson KP, Brooks BR, Cohen JA, Ford CC, Goldstein J, Lisak RP, *et al.* Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. *Neurology* 1995;**45**(7):1268-76.

66. Crentsil C, Scolding N, Wilkins A, Burrow J, Bennetto L, Ingles K. A comparison of the efficacy of interferon-beta and glatiramer acetate in relapse-rate reduction: a prospective randomisation study. Paper presented at: 28th Congress of the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS); Lyon: France, October.

67. Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K, *et al.* Placebocontrolled phase 3 study of oral BG-12 for relapsing multiple sclerosis. *N Engl J Med* 2012;**367**(12):1098-107. <u>http://dx.doi.org/doi:10.1056/NEJMoa1114287</u>

68. Biogen. *Efficacy and Safety of Oral BG00012 in Relapsing-Remitting Multiple Sclerosis (DEFINE)*. ClinicalTrials.gov; 2015. URL:

https://www.clinicaltrials.gov/ct2/show/NCT00420212 (Accessed 31 July 2019).

69. Etemadifar M, Janghorbani M, Shaygannejad V. Comparison of Betaferon, Avonex, and Rebif in treatment of relapsing-remitting multiple sclerosis. *Acta Neurologica Scandinavica* 2006;**113** (5):283-7. <u>http://dx.doi.org/10.1111/j.1600-0404.2006.00585.x</u>

70. Panitch H, Goodin DS, Francis G, Chang P, Coyle PK, O'Connor P, *et al.* Randomized, comparative study of interferon beta-1a treatment regimens in MS: The EVIDENCE Trial. *Neurology* 2002;**59**(10):1496-506.

http://dx.doi.org/10.1212/01.wnl.0000034080.43681.da

71. Khan O, Rieckmann P, Boyko A, Selmaj K, Zivadinov R. Three times weekly glatiramer acetate in relapsing-remitting multiple sclerosis. *Ann Neurol* 2013;**73**(6):705-13. http://dx.doi.org/10.1002/ana.23938

72. Teva Pharmaceutical Industries. An Efficacy, Safety and Tolerability Study of Glatiramer Acetate (GA) 20 mg/0.5 ml New Formulation Administered Daily by Subcutaneous (SC) Injection in Subjects With Relapsing-Remitting Multiple Sclerosis (RRMS) (GLOW). ClinicalTrials.gov; 2014. URL:

https://clinicaltrials.gov/ct2/show/NCT01578785 (Accessed 31 July 2019).

73. Paty DW, Li DK. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. UBC MS/MRI Study Group and the IFNB Multiple Sclerosis Study Group. *Neurology* 1993;**43**(4):662-7.

74. Durelli L, Verdun E, Barbero P, Bergui M, Versino E, Ghezzi A, *et al.* Every-otherday interferon beta-1b versus once-weekly interferon beta-1a for multiple sclerosis: results of a 2-year prospective randomised multicentre study (INCOMIN). *Lancet* 2002;**359**(9316):1453-60.

75. Mokhber N, Azarpazhooh A, Orouji E, Rao SM, Khorram B, Sahraian MA, *et al.* Cognitive dysfunction in patients with multiple sclerosis treated with different types of

interferon beta: a randomized clinical trial. *J Neurol Sci* 2014;**342**(1-2):16-20. http://dx.doi.org/10.1016/j.jns.2014.01.038

76. Mokhber N, Azarpazhooh A, Orouji E, Khorram B, Modares Gharavi M, Kakhi S, *et al.* Therapeutic effect of Avonex, Rebif and Betaferon on quality of life in multiple sclerosis. *Psychiatry Clin Neurosci* 2015;**69**(10):649-57. <u>http://dx.doi.org/10.1111/pcn.12308</u>

77. Jacobs LD, Cookfair DL, Rudick RA, Herndon RM, Richert JR, Salazar AM, *et al.* Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). *Ann Neurol* 1996;**39**(3):285-94. <u>http://dx.doi.org/10.1002/ana.410390304</u>

78. O'Connor P, Li D, Freedman M, Bar-Or A, Rice G, et al. A phase II study of the safety and efficacy of teriflunomide in multiple sclerosis with relapses. *Neurology* 2006;**66**(6):894-900.

79. Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, *et al.* Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. *N Engl J Med* 2017;**376**(3):221-34. <u>http://dx.doi.org/10.1056/NEJMoa1601277</u>

80. Hoffmann-La Roche. *A Study of Ocrelizumab in Comparison With Interferon Beta-1a (Rebif) in Participants With Relapsing Multiple Sclerosis [OPERA I]*. ClinicalTrials.gov; 2019. URL: https://www.clinicaltrials.gov/ct2/show/NCT01247324 (Accessed 31 July 2019).

 Hoffmann-La Roche. A Study of Ocrelizumab in Comparison With Interferon Beta-1a (Rebif) in Participants With Relapsing Multiple Sclerosis [OPERA II]. ClinicalTrials.gov;
 URL: https://clinicaltrials.gov/ct2/show/study/NCT01412333 (Accessed 31 July 2019).

82. PRISMS Study Group. Randomised double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis. (Prevention of Relapses and Disability by Interferon beta-1a Subcutaneously in Multiple Sclerosis). *Lancet* 1998;**352**(9139):1498-504. http://dx.doi.org/S0140673698033340 [pii]

83. Mikol DD, Barkhof F, Chang P, Coyle PK, Jeffery DR, Schwid SR, *et al.* Comparison of subcutaneous interferon beta-1a with glatiramer acetate in patients with relapsing multiple sclerosis (the Rebif vs Glatiramer Acetate in Relapsing MS Disease [REGARD] study): a multicentre, randomised, parallel, open-label trial. *Lancet Neurol* 2008;7(10):903-14. http://dx.doi.org/10.1016/S1474-4422%2808%2970200-X

84. EMD Serono. *Rebif*® *Versus Copaxone*® *in the Treatment of Relapsing Remitting Multiple Sclerosis*. ClinicalTrials.gov; 2018. URL:

https://clinicaltrials.gov/ct2/show/NCT00078338 (Accessed 31 July 2019).

85. O'Connor P, Wolinsky JS, Confavreux C, Comi G, Kappos L, Olsson TP, *et al.* Randomized trial of oral teriflunomide for relapsing multiple sclerosis. *N Engl J Med* 2011;**365**(14):1293-303. <u>http://dx.doi.org/doi:10.1056/NEJMoa1014656</u>

86. Sanofi. *Study of Teriflunomide in Reducing the Frequency of Relapses and Accumulation of Disability in Patients With Multiple Sclerosis (TEMSO)*. ClinicalTrials.gov; 2013. URL: <u>https://clinicaltrials.gov/ct2/show/NCT00134563</u> (Accessed 31 July 2019).

87. Vermersch P, Czlonkowska A, Grimaldi LM, Confavreux C, Comi G, Kappos L, *et al.* Teriflunomide versus subcutaneous interferon beta-1a in patients with relapsing multiple sclerosis: a randomised, controlled phase 3 trial. *Mult Scler* 2014;**20**(6):705-16. http://dx.doi.org/10.1177/1352458513507821

88. Confavreux C, O'Connor P, Comi G, Freedman MS, Miller AE, Olsson TP, *et al.* Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, doubleblind, placebo-controlled, phase 3 trial. *Lancet Neurol* 2014;**13**(3):247-56. http://dx.doi.org/10.1016/s1474-4422(13)70308-9

89. Biogen. An Efficacy and Safety Study of BG00012 (Dimethyl Fumarate) in Asian Subjects With Relapsing Remitting Multiple Sclerosis (RRMS). ClinicalTrials.gov; 2018. URL: <u>http://clinicaltrials.gov/show/NCT01838668</u> (Accessed 31 July 2019). 90. Bayer. An Efficacy and Safety Comparison Study of Two Marketed Drugs in Patients With Relapsing-remitting MS (ABOVE). ClinicalTrials.gov; 2014. URL: http://ClinicalTrials.gov/show/NCT00206648 (Accessed 31 July 2019).

91. The Cleveland Clinic. *Determining the Effectiveness of earLy Intensive Versus Escalation Approaches for RRMS (DELIVER-MS)*. ClinicalTrials.gov; 2019. URL: https://clinicaltrials.gov/ct2/show/NCT03535298 (Accessed 31 July 2019).

92. Khan O, Caon C, Zak I, Latif Z, Penmesta R, Bao F, *et al.* Randomized, prospective, rater-blinded, four-year, pilot study to compare the effect of daily versus every-other-day glatiramer acetate 20 mg subcutaneous injections in relapsing-remitting multiple sclerosis. Paper presented at 13th Annual Meeting of the Americas Committee for Treatment and Research in Multiple Sclerosis ACTRIMS - 24th Congress of the European Committee for Treatment and Research in Multiple Sclerosis ECTRIMS - 5th Congress of the Latin American Committee for Treatment and Research in Multiple Sclerosis LACTRIMS; 17-20 Sep 2008; Montreal: Canada. *Multiple Sclerosis* 2008;14(Suppl 1):S296.

93. Khan O, Perumal J, Caon C, Tselis A, Latif Z, Ching W, *et al.* Glatiramer acetate 20mg subcutaneous twice-weekly versus daily injections: results of a pilot, prospective, randomised, and rater-blinded clinical and MRI 2-year study in relapsing-remitting multiple sclerosis. Paper presented at 25th Congress of the European Committee for Treatment and Research in Multiple Sclerosis; 9-12 Sep 2009; Dusseldorf: Germany. *Multiple Sclerosis* 2009;**15**(9 Suppl S):S249-S50.

94. Biogen. Evaluate Safety/Tolerability in Portuguese Participants With RRMS Transitioning From Current Therapy (PLENO). ClinicalTrials.gov; 2018. URL: https://ClinicalTrials.gov/show/NCT03177083 (Accessed 31 July 2019).

95. Chaimani A, Salanti G, Leucht S, Geddes JR, Cipriani A. Common pitfalls and mistakes in the set-up, analysis and interpretation of results in network meta-analysis: what clinicians should look for in a published article. *Evid Based Ment Health* 2017;**20**(3):88-94. http://dx.doi.org/10.1136/eb-2017-102753

96. Khan O, Rieckmann P, Boyko A, Selmaj K, Ashtamker N, Davis MD, *et al.* Efficacy and safety of a three-times-weekly dosing regimen of glatiramer acetate in relapsing-remitting multiple sclerosis patients: 3-year results of the Glatiramer Acetate Low-Frequency Administration open-label extension study. *Mult Scler* 2017;**23**(6):818-29. http://dx.doi.org/10.1177/1352458516664033

97. Cadavid D, Wolansky LJ, Skurnick J, Lincoln J, Cheriyan J, Szczepanowski K, *et al.* Efficacy of treatment of MS with IFNbeta-1b or glatiramer acetate by monthly brain MRI in the BECOME study. *Neurology* 2009;**72**(23):1976-83.

http://dx.doi.org/10.1212/01.wnl.0000345970.73354.17

98. Palace J, Bregenzer T, Tremlett H, Oger J, Zhu F, Boggild M, *et al.* UK multiple sclerosis risk-sharing scheme: a new natural history dataset and an improved Markov model. *BMJ Open* 2014;**4**(1):e004073. <u>http://dx.doi.org/10.1136/bmjopen-2013-004073</u>

99. Weinshenker BG, Bass B, Rice GP, Noseworthy J, Carriere W, Baskerville J, *et al.* The natural history of multiple sclerosis: a geographically based study. 1. Clinical course and disability. *Brain* 1989;**112**(Pt 1):133-46.

100. Curtis L, Burns A. *Unit costs of health and social care*. Canterbury: Personal Social Services Research Unit, University of Kent; 2018.

101. *TA320: Dimethyl fumarate for treating relapsing-remitting multiple sclerosis:* National Institute for Health and Care Excellence; 2014.

102. National Institute for Health and Care Excellence. *Daclizumab for treating relapsing–remitting multiple sclerosis. Technology appraisal guidance [TA441] [withdrawn].* 2017. URL: <u>https://www.nice.org.uk/guidance/ta441</u> (Accessed 31 July 2019).

103. Hawton A, Green C. Health utilities for multiple sclerosis. *Value Health* 2016;**19**(4):460-8. <u>http://dx.doi.org/10.1016/j.jval.2016.01.002</u>

104. Hawton AJ, Green C. Multiple sclerosis: relapses, resource use, and costs. *Eur J Health Econ* 2016;**17**(7):875-84. <u>http://dx.doi.org/10.1007/s10198-015-0728-3</u>

105. Karampampa K, Gustavsson A, Miltenburger C, Eckert B. Treatment experience, burden and unmet needs (TRIBUNE) in MS study: results from five European countries. *Mult Scler J* 2012;**18**(2 suppl):7-15.

106. Kobelt G, Berg J, Lindgren P, Fredrikson S, Jönsson B. Costs and quality of life of patients with multiple sclerosis in Europe. *J Neurol Neurosurg Psychiatry* 2006;77(8):918-26.

107. Tyas D, Kerrigan J, Russell N, Nixon R. The distribution of the cost of multiple sclerosis in the UK: how do costs vary by illness severity? *Value Health* 2007;**10**(5):386-9. http://dx.doi.org/10.1111/j.1524-4733.2007.00192.x

108. *Guide to the methods of technology appraisal 2013 [PMG9]*. National Institute for Health and Care Excellence; 2013. URL:

https://www.nice.org.uk/process/pmg9/chapter/foreword (Accessed 31 July 2019).

109. Patzold U, Pocklington P. Course of multiple sclerosis. First results of a prospective study carried out of 102 MS patients from 1976-1980. *Acta Neurol Scand* 1982;**65**(4):248-66.

110. Ebers GC, Hommes O, Hughes RAC, Kappos L, Sberg Wollheim M, Palace J, *et al.* Randomised double blind placebo controlled study of interferon (beta)-1a in relapsing/remitting multiple sclerosis. *Lancet* 1998;**352**(9139):1498-504.

111. Office for National Statistics. *National life tables, England, 2014-16*. 2016. URL: <u>https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpect</u> <u>ancies/bulletins/nationallifetablesunitedkingdom/2014to2016</u> (Accessed 31 July 2019).

112. Kingwell E, van der Kop M, Zhao Y, Shirani A, Zhu F, Oger J, *et al.* Relative mortality and survival in multiple sclerosis: findings from British Columbia, Canada. *J Neurol Neurosurg Psychiatry* 2012;**83**(1):61-6. http://dx.doi.org/10.1136/jnnp-2011-300616

113. Acaster S, Perard R, Chauhan D, Lloyd AJ. A forgotten aspect of the NICE reference case: an observational study of the health related quality of life impact on caregivers of people with multiple sclerosis. *BMC Health Serv Res* 2013;**13**:346. http://dx.doi.org/10.1186/1472-6963-13-346

114. TA533: Ocrelizumab for treating relapsing-remitting multiple sclerosis National

Institute for Health and Care Excellence; 2018. URL:

https://www.nice.org.uk/guidance/ta533 (Accessed 31 July 2019).

115. *TA312: Alemtuzumab for treating relapsing-remitting multiple sclerosis*. National Institute for Health and Care Excellence; 2014. URL:

https://www.nice.org.uk/guidance/ta312 (Accessed 31 July 2019).

116. Bennett JE, Sumner W, 2nd, Downs SM, Jaffe DM. Parents' utilities for outcomes of occult bacteremia. *Arch Pediatr Adolesc Med* 2000;**154**(1):43-8.

117. *eMC dm+d browser*. Datapharm. URL: <u>http://dmd.medicines.org.uk/</u> (Accessed 31 July 2019).

118. Walter E, Berger T, Bajer-Kornek B, Deisenhammer F. Cost-utility analysis of alemtuzumab in comparison with interferon beta, fingolimod, and natalizumab treatment for relapsing-remitting multiple sclerosis in Austria. *J Med Econ* 2019;**22**(3):226-37. http://dx.doi.org/10.1080/13696998.2018.1556668

10 APPENDICES

Appendices Table of Content

- A. ERG comparison to CS list of included and excluded studies in the MTC
- B. ERG quality assessment of all trials included in the MTC
- C. ERG quality appraisal of the CS MTC
- D. Baseline characteristics of participants in the randomised controlled trials across randomised groups
- E. ERG's individual parameter changes to the Company's base-case analysis

Appendix A: ERG comparison to CS list of included and excluded studies in the MTC

Table 1A. ERG comparison to CS list of included and excluded studies in the MTC

Note: Grey shaded cells represent a mismatch between the CS SLR and the ERG assessment.

		CS Document B Ta	ble 16 p69		CS Docun	nent C	
Study ID	ARR	СДРЗМ	CDP6M	Any AE p453	SAE p455	Discontinuation (any cause) p458	Discontinuatio n due to AE p460
ADVANCE	✓ Y (Calabresi 2014)	✓ ^a Y (Calabresi 2014)	✓ ^a ? Biogen Data extraction spreadsheet and clarification letter reference Biogen Idec. 105MS301 Interim - TLGs. Year 1 trial results. 2013 (not in reference pack)	✓ Y (Calabresi 2014)	✓ Y (Calabresi 2014)	✓ Y (Calabresi 2014)	✓ Y (Calabresi 2014)
APEX	× ^b Y Only abstracts available at time of submission; later publications now available: Saida 2019 states that tertiary endpoints included ARR over 24 weeks	× ^b N	× ^b N	× Y (Saida 2019)	× Y (Saida 2019)	×N	× Y (Saida 2019)
BEYOND	✓ Y (O'Connor 2009)	✓ Y (O'Connor 2009)	× ^b N	×N	× Y (O'Connor 2009)	×N	×N
Boiko 2017	× ^b N	× ^b N	× ^b N	✓ Y	✓ Y	✓ Y	×N
Bornstein 1987	✓ Y (Bornstein 1987)	× ^b N	× ^b N	×N	×N	×N	×N

		CS Document B Tab	le 16 p69		CS Docum	ent C	
Study ID	ARR	СДРЗМ	CDP6M	Any AE p453	SAE p455	Discontinuation (any cause) p458	Discontinuatio n due to AE p460
BRAVO	✓ Y (Vollmer 2014)	✓ Y (Vollmer 2014)	✓ Y (Vollmer 2014)	× Y (Vollmer 2014)	× Y (Vollmer 2014 online Supplementary Table S-2 from <u>https://link.springer</u> .com/article/10.100 <u>7%2Fs00415-014-</u> <u>7264-4</u>)	× Y (Vollmer 2014)	× Y (Vollmer 2014)
Calabrese 2012	✓ Y (Calabrese 2012)	× ^b N	× ^b N	×N	×N	×N	×N
CAMMS223	✓ Y (CAMMS23)	✓ Y (CAMMS23)	✓ Y (CAMMS23)	× Y CAMMS23	× Y CAMMS23	× Y CAMMS23	× Y CAMMS23
CARE MS I	✓ Y (Cohen 2012)	× ^b N	✓ Y (Cohen 2012)	× Y (Cohen 2012)	× Y (Cohen 2012)	× Y (Cohen 2012)	× Y (Cohen 2012)
CARE MS II	✓ Y (Coles 2012)	× ^b N	✓ Y (Coles 2012)	× Y (Coles 2012)	× Y (Coles 2012)	× Y (Coles 2012)	× Y (Coles 2012)
CombiRx	✓ Y (Lublin 2013)	× ^b N	× ^b Y (Lublin 2012) Confirmed progression in a participant was defined as a 1.0 increase in the EDSS from baseline, when baseline ≤ 5.0 ; or an increase of 0.5 from baseline, when baseline \geq 5.5, sustained for 6 months	×N	× Y (Lublin 2012 supplementary tables from https://www.ncbi.nl m.nih.gov/pmc/arti cles/PMC3631288/)	× Y (Lublin 2012)	× Y (Lublin 2012)

		CS Document B Tab	le 16 p69		CS Docum	ent C	
Study ID	ARR	СДРЗМ	CDP6M	Any AE p453	SAE p455	Discontinuation (any cause) p458	Discontinuatio n due to AE p460
CONFIRM	✓ Y (Fox 2012)	✓ Y (Fox 2012)	✓ Y (Fox 2012)	× Y (Fox 2012)	× Y (Fox 2012)	× Y (Fox 2012 supplement from https://www.nejm.o rg/doi/suppl/10.105 6/NEJMoa1206328 /suppl_file/nejmoa1 206328_appendix.p df)	× Y (Fox 2012)
Copolymer I	✓ Y (Johnson 1995)	× ^b Y (Johnson 1995): progression to sustained disability defined as an increase of one or more EDSS steps maintained for > 90 days	× ^b N	×N	×N	× Y (Johnson 1995)	× Y (Johnson 1995)
DEFINE	✓ Y (Gold 2012)	✓ Y (Gold 2012)	✓ ? Stated in clarification letter to be from Biogen Idec Inc. Clinical study report. Full final. Study Number: 109MS301. A randomized, multicenter, double-blind, placebo- controlled, dose- comparison study to determine the efficacy and safety of BG00012 in subjects with relapsing- remitting multiple sclerosis. Cambridge, MA: Biogen Idec Inc, 2012 – not in reference pack	× Y (Gold 2012)	× Y (Gold 2012)	× Y (Gold 2012 supplement from https://www.nejm.o rg/doi/suppl/10.105 6/NEJMoa1114287 /suppl_file/nejmoa1 114287_appendix.p df)	× Y (Gold 2012)

		CS Document B Tab	le 16 p69		CS Docum	ent C	
Study ID	ARR	CDP3M	CDP6M	Any AE p453	SAE p455	Discontinuation (any cause) p458	Discontinuatio n due to AE p460
Etemadifar 2006	×°N	× ^b N	× ^b N	×N	×N	× N	×N
EVIDENCE	✓ Y (Panitch 2002)	✓ ^a Y (Panitch 2002)	✓ ^a Y (Panitch 2002)	×N	× Y (Panitch 2002)	× Y (Panitch 2002)	× Y (Panitch 2002)
GALA	✓ Y (Khan 2013)	× ^b N	× ^{b Y} Not in Khan 2013 but available in Khan 2017	✓ Y (Khan 2013)	✓ Y (Khan 2013)	✓ Y (Khan 2013)	✓ Y (Khan 2013)
GLOW	× N (<u>https://clinicalt</u> <u>rials.gov/ct2/sh</u> <u>ow/results/NC</u> <u>T01578785</u>)	×N	×N	✓ Y (<u>https://clinicaltrials.g</u> <u>ov/ct2/show/results/N</u> <u>CT01578785</u>)	× Y (https://clinicaltrials .gov/ct2/show/resul ts/NCT01578785)	× N (<u>https://clinicaltrials</u> . <u>gov/ct2/show/resul</u> <u>ts/NCT01578785;</u> study terminated)	× N (<u>https://clinicalt</u> <u>rials.gov/ct2/sh</u> <u>ow/results/NCT</u> <u>01578785</u> ; study terminated)
IFNB MS	✓ Y (IFNB MS 1993)	× ^b N	× ^b N	×N	×N	× Y (IFNB MS 1993)	× Y (IFNB MS 1993)
INCOMIN	✓ Y (Durelli 2002)	× ^b N	× ^b Y Durelli 2002 had "Progression in EDSS score of 1 point sustained for 6 months and confirmed at end of study"	×N	×N	× Y (Durelli 2002)	× Y (Durelli 2002)
MSCRG	✓ Y (Jacobs 1996)	× ^b N	× ^b Y (Jacobs 1996) "The proportion with progression of disability (CDP6M) by 104 weeks estimated for Kaplan- Meier curves was 34.9% in placebo recipients and 21.9% in interferon beta- la recipients"	×N	× N	× Y (Jacobs 1996)	× Y (Jacobs 1996)

		CS Document B Tab	ole 16 p69		CS Docum	ent C	
Study ID	ARR	СДРЗМ	CDP6M	Any AE p453	SAE p455	Discontinuation (any cause) p458	Discontinuatio n due to AE p460
OPERA I	✓ Y (Hauser 2017)	✓ Y (Hauser 2017)	✓ Y (Hauser 2017)	× Y (Hauser 2017)	× Y (Hauser 2017)	× Y (Hauser 2017 supplementary appendix from <u>https://www.neim.o</u> <u>rg/doi/suppl/10.105</u> <u>6/NEJMoa1601277</u> / <u>suppl_file/nejmoa1</u> <u>601277_appendix.p</u> <u>df</u>)	× Y (Hauser 2017)
OPERA II	✓ Y (Hauser 2017)	✓ Y (Hauser 2017)	✓ Y (Hauser 2017)	× Y (Hauser 2017)	× Y (Hauser 2017)	× Y (Hauser 2017 supplementary appendix from <u>https://www.nejm.o</u> <u>rg/doi/suppl/10.105</u> <u>6/NEJMoa1601277</u> / <u>suppl_file/nejmoa1</u> <u>601277_appendix.p</u> <u>df</u>)	× Y (Hauser 2017)
PRISMS	* ^b Y (PRISMS 1998 reported mean relapses per patient over 2 years, and % relapse-free over 1 year and over 2 years)	✓ Y (PRISMS 1998)	✓ Y (Wong 2018)	× N	×N	× Y (PRISMS 1998)	× Y (PRISMS 1998)

		CS Document B Tab	le 16 p69		CS Docum	ent C	
Study ID	ARR	CDP3M	CDP6M	Any AE p453	SAE p455	Discontinuation (any cause) p458	Discontinuatio n due to AE p460
REGARD	✓ Y (Mikol 2008)	× ^b N	× ^b Y Mikol 2008 states: The proportion of patients with 6-month confirmed EDSS progression was low and similar between the two groups (interferon beta-1a 11.7% [45 of 386] vs glatiramer acetate 8.7% [33 of 378]; P=0.117).	× N (Mikol 2008 reports numbers of events not numbers of patients with ≥1 event)	×N	× Y (Mikol 2008)	× Y (Mikol 2008)
TEMSO	✓ Y (O'Connor 2011)	✓ Y (O'Connor 2011)	× ^b N	× Y (O'Connor 2011)	× Y (O'Connor 2011)	× Y (O'Connor 2011)	× Y (O'Connor 2011)
TENERE	✓ Y (Vermersch 2014)	× ^b N	× ^b N	× Y (Vermersch 2014)	× Y (Vermersch 2014)	× Y (Vermersch 2014)	× Y (Vermersch 2014)
TOWER	✓ Y (Confavreux 2014)	✓ Y (Confavreux)	✓ Y (https://www.ema.europa. eu/en/documents/assessm ent-report/aubagio-epar- public-assessment- report_en.pdf Table 21 p63)	× Y (Confavreux 2014)	× Y (Confavreux 2014)	× Y (Confavreux 2014)	× Y (Confavreux 2014)

ARR = annualised relapse rate; CDP3M = confirmed disability progression sustained for 3 months; CDP6M = confirmed disability progression sustained for 6 months.^a Included with 11 or 18 months of follow-up. ^b This outcome was not reported by the indicated study.

^c Data were not reported in the appropriate patient population Comparison between CS and ERG analysis of data that should be included in the MTC \checkmark or \times = included or not included from CS

Y or N = should have been included or not included from ERG analysis

? unclear where data came from for inclusion in the CS

Grey shading = data not included in CS but present in the study publication (× Y) or data present in CS but unclear source (✓?)

Appendix B: ERG quality assessment of all trials included in the MTC

Table 2B. ERG quality assessment (RoB) of all trials included in the MTC

		R	andomisation		location ncealment		re participants inded?		re caregivers inded?	B	linding of assessors	Inc dat	complete outcome :a	Se	elective reporting	Ot	her biases	O v e r a 1 1
C S o r E R G	S t d y I D	R 0 B	Reason	R o B	Reason	R 0 B	Reason	R o B	Reason	R 0 B		R o B	Reason	R 0 B		R o B	Reason	R 0 B
CS	A D V A N C E	U n c l e a r	No information on how randomisatio n sequence was generated.	L o w	Randomisa tion was done by a centralised interactive voice response and web system, stratified by site	L o w	All study management and site personnel, investigators, and patients were masked to treatment assignment. Appropriate matched placebo medication was used.	L o w	All study management and site personnel, investigators, and patients were masked to treatment assignment	L o w	management and	L o w	The ITT population for year 1 included all randomised patients who received at least one dose of study drug, only 4 patients were excluded, Low risk. The analysis population for year 2 included only those patients who completed year 1 of the study, High risk.	L o w	outcomes were reported	L o w	No other apparent sources of bias	u n c l e a r
E R G	A D V A N C E	L o w	Centralised Interactive Voice/Web Response System stratified by site	L o w	Centralise d Interactive Voice/Web Response System	L o w	Masked; matched placebo used	L o w	Masked; matched placebo used	L o w	Central MRI reading centre by an assessor masked to treatment allocation	L o w f o r 1 y e	At baseline: 500 placebo patients; 512 pegIFN beta- 1a every 2 weeks and 500 pegIFN beta-1a every 4 weeks. 1332/1512 (88%) patients completed Year 1	L o w	outcomes were	H i g h	Differential drop-out between the placebo and Q2W groups by the end of year 1 (comparing	H i g h

· · · · · · · · · · · · · · · · · · ·	 		[]	
		a	of study and	456/500 vs.
		r	continued with	438/512 in
			active treatment	RevMan
			in Year 2 (patients	gives
			receiving placebo	p=0.005).
			in Year 1 re-	Placebo: 44
			randomized to	discontinue
			pegIFN beta-1a	d
			every 2 or 4 weeks	5 adverse
			at Week 48).	events
				3 lost to
			Completed Year	
			2: pegIFN beta-1a	follow-up
			every 2 weeks,	30
			391/438 (89%),	withdrew
			pegIFN beta-1a	consent
			every 4 weeks,	2 died
			411/438 (94%),	4 other.
			and delayed	Q2W: 74
			treatment 396/456	discontinue
			(87%); total	d
			completing year 2:	24 adverse
			1198 of the	events
			original 1512	(4
			(79%).	influenza-
			(1270).	like illness)
				2 lost to
				follow-up
				35
				withdrew
				consent
				4
				investigator
				decision
				1 died
				8 other
				Q4W: 62
				discontinue
				d
				24 adverse
				events
				(5
				influenza-
				like illness)
				4 lost to
				follow-up

C s	A P E X	U n c l e a r	No information on how randomisatio n was performed	U n c l e a r	No description of allocation concealmen t.	L o w	Double-blind (participant, investigator)	L o w	Double-blind (participant, investigator)	U n c l e a r		L o w	All pre-defined data analyses appear to be presented	L o w	selective reporting	L o w	30 withdrew consent 1 investigator decision 1 died 2 other No clear sources of other bias	L o w
E R G	A P E X a b s t r a c t	U n c l e a r	Abstract only; no information	U n c l e a r	Abstract only; no informatio n	L o w	Double-blind	L o w	Double-blind	U n c l e a r	Abstract only; no information	U n c l e a r	Abstract only; no information	L o w	data analyses	U n c l e a r	Abstract only; no information	U n c l e a r
E R G	A P E X f u l l P a P e r	L o w	A stratified block randomizatio n procedure was used for Part I, with 5 strata, 1 for each country (block size: 4; 50 blocks per country), using a centralized interactive voice/web response system;	L w	Centralized interactive voice/web response system	L o w	Double-blind (matching placebo). Patients, their families, and all study staff were blinded to patient treatment assignments.	L o W	Double-blind (matching placebo) Patients, their families, and all study staff were blinded to patient treatment assignments. Patients were instructed not to take a dose of study treatment within 4h before their scheduled appointment to prevent any	L o w	personnel were	L o w	224 patients were randomized and received ≥1 dose of study treatment, 113 in the placebo group and 111 in the DMF group; 2 patients (both in the placebo group) switched to an alternative MS medication during the study; 213 patients (95% of the ITT population) completed the study. All subjects who received at least one dose of	L o w		L o W	No clear sources of other bias	L o W

								drug-induced reactions necessitating unblinding of study personnel.				study treatment were included in the safety analysis.					
S 1	B I E c V v O N D	randomisatio	Low	Central randomisati on with SAS-based block randomisati on	L o w	To ensure masking between the two doses of interferon beta- 1b, medication was identical in appearance, packaging, and labelling. Physicians and patients were double-blind to comparisons between the two doses.	L o w	Physicians and patients were double-blind to comparisons between the two doses.	L o w	Masked evaluating physicians did all neurological assessments and ascertained functional system and EDSS scores	L o w	For the main clinical outcomes the analysis population appears to be the total number randomised although the authors do not clearly state this. Incomplete outcome data for secondary outcome: Only patients with assessable MRI data at the applicable analysis timepoints were included.	L o w		L o w	No other apparent sources of bias	l o w
R I G 1	B I E (V O N D	randomisati	L o w	Central randomisa tion	H i g h	To ensure masking between the two doses of interferon beta- 1b, medication was identical in appearance, packaging and labelling. Physicians and patients were double-blind to comparisons between the two doses. However, 500µg alternate days dose not eligible, only 250 µg dose vs. GA. Ibuprofen	H i gh	The treating physicians and the patients were therefore aware of treatment assignments (interferon beta- 1b vs. GA).	Low	physicians were	U n c l e a r	2244 patients randomised: 500 μg interferon beta-1b (n=899), 250 μg interferon beta-1b (n=897), or glatiramer acetate (n=448). 24 patients did not receive treatment (12 [1.3%], 9 [1.0%] and 3 [0.7%] patients, respectively). Of the 2220 who received treatment, 336 (15%) discontinued treatment prematurely (161 [18%], 104 [12%]	Low	outcomes were	L o w	No clear sources of other bias	H g h

or	and 71 [16%],
acetaminophen	respectively).
were given at the	Primary endpoint:
same time as	hazard ratio; n not
random	stated. Secondary
assignment to	outcome measures:
interferon beta-	Time to confirmed
1b, at least	Expanded
during the first 3	Disability Status
months, to	Score (EDSS)
reduce flu-like	progression; n not
symptoms. The	stated; and
treating	Magnetic
physicians and	Resonance Imaging
the patients were	(MRI): Change
therefore aware	from screening in
of treatment	volume of
assignments	hypointense lesion
(interferon beta-	on enhanced T1
1b vs. GA),	
	weighted images:
which is the	All patients had
comparison of	MRI at screening,
interest to the	but owing to
review.	technical reasons
	the MRI scans for
	18 patients could
	not be assessed.
	The number of
	patients available
	for analysis of at
	least one post-
	screening MRI
	measure decreased
	with time (2053
	[91.5%] at year 1,
	1930 [86.0%] at
	year 2, and 316
	[14.1%] at year 3).
	MRI scans from
	2096 [93.4%]
	patients were
	included in the last
	available scan
	analysis for at least
	one post-screening
	MRI
	iviixi IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

													measure.					
	B o i k o 2 0 1 8	U n c l e a r	No information on how randomisatio n was performed; ratio 2:2:1	U n c l e a r	description of allocation concealmen t.	L o W	Double-blind	L o w	Double-blind	L o W	Objective measures of efficacy were obtained by ensuring that the specialists reporting MRI scan data were not familiar with which drug patients received	H i g h	Five patients were excluded from efficacy analysis due to contravention of inclusion/ exclusion criteria (but received treatment in the framework of the study)	L o w	No evidence of selective reporting; all pre-defined analyses appear to be reported	L o w	No clear sources of other bias	L o w
R G	B o i k o 2 0 1 8	Unclear r	No information on how randomisati on was performed; ratio 2:2:1	U n c l e a r	descriptio n of allocation concealme nt.	Low	Double-blind	L o w	Double-blind		Objective measures of efficacy were obtained by ensuring that the specialists reporting MRI scan data were not familiar with which drug the patients received	H i g h	Of the 158 patients, 3 (1.9%) were not included in the main efficacy analysis as they did not receive any doses of study drug. Of the 155 patients who received treatment, 5 (3.2%) were excluded from the efficacy analysis (2 CopaxoneTeva and 3 placebo) due to contravention of inclusion/exclusio n criteria. Modified ITT population (mITT): all patients receiving at least one dose of study drug. Final analysis of efficacy included 150 (94.9%) patients (61 BCD- 063, 61 CopaxoneTeva, and 28 placebo). The MRI	L o W	No evidence of selective reporting; all pre- defined analyses appear to be reported	Low	No clear sources of other bias	H g h

												measures included 121 (76.6%) patients; some were lost to the study before repeat MRI. The primary endpoint was the number of MRI-confirmed exacerbations per patient per year.					
	U n c l e a r	Method of sequence generation not reported	U n c l e a r	Method of allocation concealmen t not reported: `treatment assignment s were made known to the clinical assistant`	U n c l e a r	Although reported as double-blinded, it is unclear whether the vials were identical	H i g h	The neurologist was unaware of patient's treatment group, but the clinical assistant was not blinded	U n c l e a r	The neurologist was unaware of patient's treatment group, but the clinical assistant was not blinded. Unclear what the final adjudication of the outcomes was based on	H i g h	Two patients in the placebo group were excluded from all analyses	L o w	All prespecified outcomes are presented in the results	L o W	No other apparent sources of bias	H i g h
۲ ٥	Unclear r	Quasi- randomised ; patients were matched into pairs (based on sex, number of exacerbatio ns per year and degree of disability); the random assignment of the first patient of the pair (method not stated) determined	H i g h	Quasi- randomised ; patients were matched into pairs (based on sex, number of exacerbatio ns per year and degree of disability); the random assignment of the first patient of the pair (method not stated) determined	Unclear r	Sterile single dose vials contained the active ingredient or only saline; not stated that the vials were identical; stated to be double- blind	Unclear r	Treatment assignments were made known to the clinical assistant responsible for the production, labelling and distribution of medication	Unclear r	A neurologist unaware of the patient's treatment group completed neurological and status assessment. Patients reported side effects and changes in neurological status to the non- blinded clinical assistant	L o w	7/50 (14%) patients did not complete the 2 years of the trial; 2 (in placebo group; 8%) had unusable data; the other 5 had partial data that was included. So data included: 22 matched pairs (n=44) in the matched analysis, and an unmatched analysis that additionally included 2 who had never been matched plus 2 who had been matched to the 2 with unusable data	L o w	All specified outcomes were reported	L o w	No clear sources of other bias	H i g h

		the assignment of both. 2 patients were not matched but randomly allocated 1 to each group,		the assignment of both.													
C B S R A V C		² Computer- generated randomizatio n scheme'	Un c l e a r	Method of allocation concealmen t not reported	H g h	treating neurologists were blinded to oral treatment assignment (laquinimod or placebo), but not to IFNb-1a IM assignment. The study was designed to: (1) assess the safety, efficacy, and tolerability of laquinimod compared with placebo in a double-blinded design; (2) assess the safety, efficacy, and tolerability of IFNb-1a IM compared with placebo in a rater-blinded design`	H g h	Patients and treating neurologists were blinded to oral treatment assignment (laquinimod or placebo), but not to IFNb-1a IM assignment.	Low	neurologist blinded to all treatments	L o w	Analysis of the main efficacy outcomes included all randomised patients.	L o w	reported in the results.	L w	No other apparent sources of bias	H g h
E B R R G A V C	w	The computer- generated randomizati on scheme prepared by the Teva	U n c l e a r	Method of allocation concealme nt not reported	H i g h	Patients and treating neurologists were blinded to oral treatment assignment (laquinimod or	H i g h	Patients and treating neurologists were blinded to oral treatment assignment (laquinimod or	L o w	neurologist was	L o w	1,331 were randomised to once-daily laquinimod 0.6 mg (n=434) or placebo (n=450), or IFNb-1a 30 μg	H i g h	reported SF-36 and the cumulative	L o w	No other apparent sources of bias	H i g h

			Global Biostatistics Unit employed a 1:1:1 treatment assignment ratio stratified by study center				placebo), but not to IFNb-1a IM assignment.		placebo), but not to IFNb-1a IM assignment.				once-weekly (n=447). 1,090 patients (82%) completed the 24- month treatment phase (353 [81.3%], 359 [79.8%] and 378 [84.6%], respectively. The safety-evaluable population comprised 433 (99.8%), 449 (99.8%) and 442 (98.9%), respectively; efficacy results appeared to include all patients.		(not reported in Vollmer 2014)			
C S	C a b r e s e 2 0 1 2	L o w	Random allocation sequence computer generated	U n c l e a r	Method of allocation concealmen t not reported	U n c l e a r	Blinding of participants not reported	U n c l e a r	Blinding of caregivers not reported	L o w	'All images were assessed by the consensus of two experienced observers who were blinded to the patients' identity and treatment'	H i g h	14.5% of patients were lost to follow- up and excluded from all analyses	U n c l e a r	Primary and secondary outcomes are not clearly listed and AE not reported	U n c l e a r	Unclear if selection biased as no clear flow chart provided, reasons for lost to f-up are not given, number discontinue d not provided	H i g h
E R C	a	L o w	The random allocation sequence was computer generated.	U n c l e a r	Method of allocation concealme nt not reported	H i g h	Interventions were subcutaneous (sc) interferon (IFN) beta-1a (44 mcg three times weekly), intramuscular (im) IFN beta-1a (30 mcg weekly)	H i g h	Interventions were subcutaneous (sc) interferon (IFN) beta-1a (44 mcg three times weekly), intramuscular (im) IFN beta-1a (30 mcg weekly)	L o w	All imaging was carried out at a single imaging centre, and all images were assessed by the consensus of two experienced observers who	L o w	165 were randomized (55 per group); 141 (85.5%) completed the 2-year follow- up (46 [83.6%] in the sc IFN beta-1a group, 47 [85.5%] in the im IFN beta- 1a group and 48 [87.3%] in the GA	U n c l e a r	Efficacy outcome were reported as listed: ARR, EDSS score, development of cortical lesions, cortical atrophy. Adverse events not reported	U n c l e a r	No chart of patients flow; no reasons stated for loss to follow up	H i g h

	2						or glatiramer acetate (GA; 20 mg daily). No mention of masking or use of placebos		or glatiramer acetate (GA; 20 mg daily). No mention of masking or use of placebos		were blinded to the patients' identity and treatment.		group); 24 (14.5%) randomized patients were lost to follow-up.					
	A M M S S 2 2 3	Low	"Eligible patients were randomly assigned in a 1:1:1 ratio to receive alemtuzuma b (12 mg per day or 24 mg per day) or interferon beta-1a with the use of the Pocock and Simon minimizatio n algorithm to balance the study groups with regard to age (<30 years or \geq 30 years), sex, and baseline EDSS score (<2.0 or \geq 2.0)."	U n c l e a r	description of allocation concealmen t.	H i gh	"Rater-blinded phase II study"	H i g h	"Rater-blinded phase II study"	H i g h	phase II study", but only EDSS and efficacy were reported to be judged blindly. Safety was evaluated by treating neurologist, who was aware of study-group assignment	L o w	All randomised patients were included in the analysis for efficacy and all those who received study drug were considered for safety	L o w	All outcomes described in the methods are reported in the results.	L o w	No other biases plausible.	h i g h
		L 0	Use of the Pocock and	U n		H i	Alemtuzumab was given by	H i	Alemtuzumab was given by	H i	EDSS scores were determined	L 0	One patient who received	L 0	NCT record states the outcome as:	H i	More patients	H i
-		w	Simon	c	n of	g	intravenous	g	intravenous	g	quarterly in a	w	alemtuzumab was	w	Sustained	g	discontinue	g
	M		minimizatio n algorithm	l e	allocation concealme	h	infusion on 5 consecutive	h	infusion on 5 consecutive	h	blinded fashion by a neurologist who		included in the safety analysis but		Accumulation of Disability (SAD);	h	d interferon beta-1a	h
2	2		– implies	a	nt.		days during the		days during the		also adjudicated		was excluded		ARR; Relapse		than	
2	2		computer	r			first month and		first month and		possible relapses.		from the efficacy		Free at 3 Years		alemtuzuma	
3	3		generated				on 3		on 3		Patients wore		analyses because		After Initial		b,	
			randomisati on				consecutive davs at months		consecutive days at months		clothing that covered injection		the initial diagnosis of		Treatment; Percent Change		principally because of	

							12 and 24 (the latter at the treating physicians' discretion if the CD4+ T-cell count was ≥100×106 cells per liter). Interferon beta- 1a (at a dose of 44 µg) was administered subcutaneously three times weekly after dose escalation. No mention of masking or use of placebos.		12 and 24 (the latter at the treating physicians' discretion if the CD4+ T-cell count was ≥100×106 cells per liter). Interferon beta- 1a (at a dose of 44 µg) was administered subcutaneously three times weekly after dose escalation. No mention of masking or use of placebos.		sites. The effectiveness of blinding was assessed at the end-of-study visit. Safety was assessed quarterly by the treating neurologist, who was aware of study-group assignment.		multiple sclerosis was incorrect. All other patients (333/334; 99.7%) were included in efficacy analyses. IFNB-1a 107/111 (96.4%); alemtuzumab 12mg 108/113 (95.6%) and 24mg 108/110 (98.2%) in safety analysis.		From Baseline in T1 Cerebral Volume; Percent Change From Baseline in MRI T2 Lesion Volume. All reported; also safety and adverse events.		a lack of efficacy and adverse events, so that only 59% of the original group of patients receiving interferon beta-1a completed the 36- month study, as compared with 83% of patients receiving alemtuzuma b	
	C C S A E - M S I	n c l e	Method of randomizatio n sequence generation not reported	L o w	Patients were allocated through an IVRS	H i g h	Participants were not blinded. "Because both study drugs have adverse effects that precluded masking of patients and treating clinicians to treatment assignment"	H i g h	Caregivers were not blinded. "Because both study drugs have adverse effects that precluded masking of patients and treating clinicians to treatment assignment"	L o w	Clinical and MRI rater masking. 5 (3%) of 563 patients had one or more assessments done by an unmasked rater	L o w	All randomised patients who received at least one dose of study drug were included in the analysis for efficacy and safety	L o w	All outcomes described in the methods are reported in the results.	L o w	No other biases plausible.	H i g h
]	E C R A G R - M S I	n c l e	Randomisat ion was stratified by site (no further details)	L o w	Interactive voice response system	H i g h	Authors stated that "both study drugs have adverse effects that precluded masking of patients and treating clinicians to treatment	H i g h	Authors stated that "both study drugs have adverse effects that precluded masking of patients and treating clinicians to treatment	L o w	The authors stated that they "secured clinical data integrity by stringent clinical and MRI rater masking, and adjudication of relapses by a committee comprising six	L o w	All randomised patients who received at least one dose of study drug were included in the analysis for efficacy and safety	L o w	NCT record states the outcome measures as: Sustained Accumulation of Disability; ARR; Relapse Free at Year 2; Change From Baseline in Expanded Disability Status	H i g h	Fewer patients in the alemtuzuma b group than in the interferon beta 1a group discontinue d treatment	H i g h

		Method of		Patients		assignment, and subcutaneous interferon beta 1a was available only in proprietary prefilled syringes that could not effectively be duplicated for placebo"		assignment, and subcutaneous interferon beta 1a was available only in proprietary prefilled syringes that could not effectively be duplicated for placebo"		independent and masked neurologists. Raters completed a questionnaire assessing quality of the masking at each EDSS assessment. In the absence of a masked rater, unmasked raters could submit EDSS assessments Masking was successful for 5172 (>99%) of 5193 EDSS assessments. Only 15 (3%) of 563 patients had one or more assessments done by an unmasked rater. Sensitivity analyses, including exclusion of unmasked assessments, supported the absence of effect of rater unmasking on study results"		All randomized		Scale (EDSS) Score; Change From Baseline in Multiple Sclerosis Functional Composite (MSFC) Score and Percent Change From Baseline in Magnetic Resonance Imaging Time Constant 2 (MRI- T2) Hyperintense Lesion Volume at Year 2. All reported		or study participatio n because of an adverse event: 5 (1%) vs. 11 (6%)	Н
C C S A R E - M S I I I	n c 1 e 1 a	Method of randomizatio n sequence generation not reported	L o W	Patients were allocated through an IVRS	H i g h	Participants were not blinded. "Because both study drugs have adverse effects that precluded masking of patients and treating	H i g h	Caregivers were not blinded. "Because both study drugs have adverse effects that precluded masking of patients and treating clinicians to	L o w	Clinical and MRI rater masking. Only 12 (2%) of 672 patients had one or more assessments done by an unmasked rater; although included in efficacy analyses,	L o w	All randomised patients who received at least one dose of study drug were included in the analysis for efficacy and safety	H i g h	presented for smaller 24mg arm	L o w	No other biases plausible.	H i g h

						clinicians to treatment assignment"		treatment assignment"	sensitivity studies showed these unmasked data had no effect on outcomes							
E C R A G F E - N S I I I I	n c l l l e 4 a	ion was stratified by site (no further details)	Low	Interactive voice response system	H i g h	Both study drugs had adverse effects that precluded double- blinding, and interferon beta 1a proprietary syringes could not effectively be duplicated for placebo	Нідь	Both study drugs had adverse effects that precluded double- blinding, and interferon beta 1a proprietary syringes could not effectively be duplicated for placebo	The authors stated that:	U n c l e a r	A protocol amendment in December, 2008, discontinued randomisation in the alemtuzumab 24 mg group to accelerate recruitment to the other two study groups. The decision to close recruitment into the alemtuzumab 24 mg arm was made by the Neurology Steering Committee and Genzyme management without review of safety or efficacy data from this study. However, data are included for safety assessments. Nine patients originally assigned alemtuzumab 24 mg actually received the 12 mg per day dose; the authors included these patients in the 24 mg per day group for efficacy but in the 12 mg per day for safety analyses.	Low	NCT record states outcomes as: Sustained Accumulation of Disability; Annualized Relapse Rate; Relapse Free at Year 2; Change From Baseline in Expanded Disability Status Scale (EDSS) Score; Change From Baseline in Multiple Sclerosis Functional Composite (MSFC) Score; Percent Change From Baseline in Magnetic Resonance Imaging Time Constant 2 (MRI-T2) Hyperintense Lesion Volume. All reported, plus adverse events.	H i gh	More patients randomly allocated interferon beta 1a than alemtuzuma b discontinue d the trial before treatment (29 [13%] of 231 patients for interferon beta 1a vs 13 [2%] of 609 patients for alemtuzuma b) and after starting treatment (27 [12%] of 202 vs 16 [3%] of 596).	H i g h

											12 (2%) of 672 patients had one or more assessments done by an unmasked rater; although included in efficacy analyses, sensitivity studies showed these unmasked data had no effect on outcomes"							
C S	o m b i R x	L o w	Distributed computerize d data entry system	L w	Distributed computeriz ed data entry system that masked treatment arm allocation	L w	Distributed computerized data entry system that masked drug dispensing to participantsfor the entire duration of the trial period	L o w	Distributed computerized data entry system that masked drug dispensing to all site personnel for the entire duration of the trial period	L w	Distributed computerized data entry system that masked drug dispensing toall site personnel for the entire duration of the trial period	U n c l e a r	Imbalance in early terminations; missing data not imputed (discontinued patients censored but unclear whether censoring can be assumed to be unbiased); and unclear that patients were analysed according to the group they were assigned; ITT cannot be assured	Un cl a r	assessments were measured (Lindsey) but not yet reported - unsure about impact on bias as there may be a follow-on publication with these results	L w	Not a placebo- controlled trial - borderline results in subjective evaluations may be viewed as successes; however, outcomes in this study appear sufficiently objective	u n c l e a r
E F C	0	L o w	Computeriz ed Data Entry System (DES); permuted block design within sites with block sizes of 6 and 12	L o w	DES masked treatment arm allocation and drug dispensing to participan ts and all site personnel for the entire duration	L o w	DES masked treatment arm allocation and drug dispensing to participants and all site personnel for the entire duration of the trial period. All participants administered the same number of injections.	L o w	DES masked treatment arm allocation and drug dispensing to participants and all site personnel for the entire duration of the trial period. All participants administered the same number of injections.	L o W	Participants returned to clinic every 12 weeks for neurological assessments by a treating clinician and an examining clinician, both blinded to treatment assignment.	H g h	ITT (all participants who were randomized) used for the primary analyses. The safety population was all who received ≥1 dose of study drug and had ≥1 post- baseline assessment of the safety parameter. Participants withdrawn for adverse reactions	L o W	NCT record states the outcomes as: Annualized relapse rate of protocol- defined exacerbations; Confirmed Progression on the Expanded Disability Status Scale; Change in the Multiple Sclerosis Functional Composite; Change in MRI Composite	L o W	No other apparent sources of bias	H i g h

of the trial period	Interferon-β1a (IFN, Avonex, Biogen-Idec) 30 µg was administered intramuscularly weekly and glatiramer acetate (GA, Copaxone, Teva Pharmaceutical s) 20 mg was administered subcutaneously daily, with matched placebo preparations	Interferon-β1a (IFN, Avonex, Biogen-Idec) 30 µg was administered intramuscularly weekly and glatiramer acetate (GA, Copaxone, Teva Pharmaceutical s) 20 mg was administered subcutaneously daily, with matched placebo preparations	and/or drop-out were considered failures in safety assessment. The modified ITT (mITT) population included all randomized participants that had taken ≥ 1 dose of study medication and had ≥ 1 valid post-baseline MRI. For the primary outcome and analysis, the Cox Model allows for use of time on study for all participants and thus no imputation was utilized. Those that terminated the study prior to relapse were censored; only their time on study contributed to time relapse free. Differential drop- out: In the IFN+GA group: 499 randomised; 499 (100%) analysed for primary endpoint; 397 (79.6%) analysed	Score. All reported; also post hoc Disease Activity Free Status and safety assessments	
			group: 499 randomised; 499 (100%) analysed for primary endpoint; 397		

													endpoint; 194 (77.6%) analysed for clinical endpoint at month 36; 187 (74.8%) for MRI endpoint at month 36. In the GA group: 259 randomised; 259 (100%) analysed for primary endpoint; 223 (86.1%) analysed for clinical endpoint at month 36; 215 (83.0%) for MRI endpoint at month 36.					
C S	C O N F I R M	L o w	"randomiz ation scheme and codes developed by the Sponsor. Randomizati on across all sites using a centralized Interactive Voice Response System (IVRS)."	L o w	Centralized Interactive Voice Response System (IVRS)"	L o W	Except for GA patients, patients were unaware of assignment to the BG-12 and placebo groups	L o w	All study management and site personnel, investigatorsw ere unaware of assignment to the BG-12 and placebo groups	L o w	Rater blinded	L o w	Proportion that did not complete study appears balanced between groups; sensitivity analysis conducted to include patients switched to alternative MS meds; missing data imputed for MRI end points	L o w	NR in biogen data extraction	L o w	No other biases detected	l o w
E R G	C O N F I R M	U n c l e a r	Not stated in Fox 2012	U n c l e a r	Not stated in Fox 2012	U n c l e a r	Patients receiving glatiramer acetate were aware of their treatment assignment. All study management and site personnel, investigators,	L o w	All study management and site personnel, investigators, and patients were unaware of assignment to the BG-12 and placebo groups.	L o w	Examining neurologists, technicians at the magnetic resonance imaging (MRI) reading center, and members of the independent neurologic evaluation committee	L o w	Primary and secondary end points were analysed in the intention-to-treat (ITT) population (all randomly assigned patients who received study treatment) and in the MRI cohort (patients in	L o w	NCT record reported outcomes as: Annualized Relapse Rate; Number of New or Newly Enlarging T2 Hyperintense Lesions; Number of New T1 Hypointense Lesions; Proportion of	H i g h	The rate of study drug discontinuat ion was higher in the placebo group than in the other groups (36% vs. 30% in the BG-12 bd	H i g h

	were unaware of assignment to the BG-12 and placebo groups.	all study-group assignments. Each site used separate examining and treating neurologists, thereby maintaining rater blinding for all study groups, including the group that received glatiramer acetate.	population for whom any post- baseline MRI data were available). All patients receiving ≥1 dose included in safety population. 1430 randomised: placebo 363; BG- 12 bd 362 (of whom 3 not dosed: 2 withdrew consent and 1 withdrawn by the investigator for an abnormal ECG reading); BG-12 tid 345; GA 360 (10 not dosed: 8 withdrew consent on learning that they had been randomized to open-label GA treatment and 2 withdrew consent for other unstated reasons). One patient randomised to the BG-12 tid group took GA throughout the study. This patient was counted in the thrice-daily BG-12 group of the ITT population and in the GA group of the safety population.	Relapsed; Progression of Disability Assessed Using the Expanded Disability Status Scale (EDSS). All reported in Fox 2012 plus safety outcomes.	in the BG- 12 tid group, and 25% in the GA group) as was the proportion of patients who switched to alternative multiple sclerosis medications (11% vs. 7%, 8%, and 6%, respectively).
--	---	--	---	---	---

C S	C o p o l y m e r I S t u d y	U n c l e a r	Method of randomizatio n not discussed	L o w	Centralized randomizat ion scheme	L o w	Double-blind	L o w	Double-blind. The nurse coordinator and both neurologists were blinded to study medication assignment throughout the trial.	L o w	coordinator and	L o w	84.8% and 86.5% completed study treatment respectively and the authors stated that ITT analysis involved all randomized patients; method of handling missing data was not described	L o w	All outcomes described in the methods are reported in the results.	L o w	No other biases detected	u n c l e a r
E R C	C 0	U n c l e a r	Method of randomizati on not discussed	L o w	Centralize d randomiza tion scheme	L o w	Double-blind; placebo used assumed identical to active drug	L o w	Double-blind. The nurse coordinator responsible for distributing the medication and both neurologists were blinded to study medication assignment throughout the trial.	L o w	The nurse coordinator and both neurologists were blinded to study medication assignment throughout the trial	L o w	84.8% and 86.5% completed study treatment respectively and the authors stated that ITT analysis involved all randomized patients; method of handling missing data was not described	L o w	Pre-specified outcomes of relapse rates and disease progression were reported, and also adverse events	L o w	No other biases detected	u n c l e a r
CS	2 C r e n t s i 1 2 0 1 2	U n c l e a r	No description of randomisatio n	U n c l e a r	No description of allocation concealmen t.	U n c l e a r	Conference abstract only. Insufficient detail on study design	U n c l e a r	Conference abstract only. Insufficient detail on study design	U n c l e a r	Conference abstract only. Insufficient detail on study design	U n c l e a r	Conference abstract only. Insufficient detail on study design	U n c l e a r	Conference abstract only. Insufficient detail on study design	U n c l e a r	Conference abstract only. Insufficient detail on study design	N R i b i o g e n d a t a e x

E R G	C r e n t s i 1 2 0 1 2	U n c l e a r	No description of randomisati on	U n c l e a r	descriptio n of allocation concealme nt.	U n c l e a r	Conference abstract only. Insufficient detail on study design	U n c l e a r	Conference abstract only. Insufficient detail on study design	U n c l e a r	Conference abstract only. Insufficient detail on study design	U n c l e a r	Conference abstract only. Insufficient detail on study design	U n c l e a r	Conference abstract only. Insufficient detail on study design	U n c l e a r	Conference abstract only. Insufficient detail on study design	t r a c t i o n U n c l e a r
C S	D E F I N E	U n c l e a r	Method of sequence generation not reported. "Randomizat ion was performed centrally"	L o w	Randomisa tion used a centralized interactive voice response system	L o w	The study used a matched placebo capsule designed to mimic DMF capsules	L o w	To maintain concealment of the study-group assignments, each study center used separate examining and treating neurologists (all of whom remained unaware of the assignments throughout the trial).	L o w	"All scans were evaluated in a blinded manner at a central reading facility (NeuroRx Research).""To maintain concealment of the study-group assignments, each study center used separate examining and treating neurologists (all of whom remained unaware of the assignments throughout the trial)." "All protocol-defined relapses were evaluated by an independent neurologic evaluation committee, whose	L o w	The authors used a modified ITT and included all pts who received at least one dose of study drug	L o w	All prespecified outcomes are presented in the results	L o w	No other apparent sources of bias	U n c l e a r

C E U Method of U No H No indication H The trial was L Analysis is L Analysis is L All outcomes L No other	E R G	E	-	Randomizat ion was performed centrally and was stratified according to site (no further details).	L o w	Randomiz ation was performed centrally	Low	Double-blind	L o w	Double-blind. The treating neurologists were responsible for all aspects of patient care, including the treatment of relapses and other disease symptoms. To ensure that the study-group assignments would not be revealed,	L o W	members reviewed a standardized set of blinded clinical records (which did not include MRI data) from the treating and examining neurologists" To maintain concealment of the study-group assignments, each study center used separate examining and treating neurologists (all of whom remained unaware of the assignments throughout the trial). The examining neurologists conducted	L o w f o r c li n i c a l o u t c	1237 randomised; 1234 received at least one dose of the study drug (intention-to-treat population); Placebo (n=408), Twice-Daily BG- 12 (n=410), Thrice-Daily BG- 12 (n=416). Clinical results are derived from the 1234 patients in the intention- to-treat population; MRI	L o W	NCT record specifies the following outcomes: Proportion of Subjects Relapsed; Number of New or Newly Enlarging T2 Hyperintense Lesions; Number of Gadolinium- enhancing T1- weighted Lesions; Number of Subjects With Gadolinium (Gd)-	L o w	No other apparent sources of bias	U n c l e a r
S t n randomisatio n description i that blinding was i interventions all o single-blinded in o described as ITT o described in the o apparent e c n was not c of g attempted. The g have different w that patients were w w methods are w sources of bias	CS	t	n	randomisatio	n	description of	i	that blinding was attempted. The	i	instructed to take the assigned study drug at least 4 hours before study visits, in case patients in the BG-12 groups had a side effect of flushing.	L o w	assessments, including assessment of the EDSS score. All scans were evaluated in a blinded manner at a central reading facility. "The trial was single-blinded in that patients were	m e s ; h i g h f o r M R I L o	from the 469 patients in the MRI cohort with post-baseline data (165 [40.4%] in the placebo group, 152 [37.1%] in the twice-daily BG-12 group, and 152 [36.5%] in the thrice-daily BG-12 group).	L w	Lesions; Annualized Relapse Rate; Proportion of Subjects Experiencing Progression of Disability Assessed Using the Expanded Disability Status Scale (EDSS). These were reported and also safety outcomes. All outcomes	L o w	apparent	H i g

a d i f a r 2 0 0 6	e a r		e a r	concealmen t.		have different dosing schedules so it likely that the study was unblinded		and patients were unblinded so it likely that the blinding would be broken		physicians who assessed the outcome were unaware of the treatment type that the patient had received."				reported in the results.			
EE	-	Method of randomisati on was not reported	Low	"Concealed treatment allocation" mentioned in the Discussion section	H i g h	"Because of the difference in the frequency of injections and side-effect profiles of IFN- β products administered intramuscularly or subcutaneously, it is impossible to keep patients blinded in a study of this nature."	H i gh	"The treating physicians dealing with clinical and laboratory adverse events can easily become unblinded."		"The trial was single-blinded in that patients were aware but physicians who assessed the outcome were unaware of the treatment type that the patient had received." "One physician who did not know which patients had received which treatment made clinical evaluation of all patients."	L o w	"Statistical analysis was based on an intention-to- treat principle." 90 patients randomised (30 per group) and all 90 patients who completed treatment were available for follow-up at 6, 12, and 24 months	Low	Methods reported outcomes of side effects, number of relapses, the proportion of relapse-free patients, the EDSS scores, and other medical events that occurred. All were reported although the side effects were only reported very briefly as: "IFN-β products were well tolerated and most of the adverse events reported were mild in severity"	U n c l e a r r	The lack of safety assessment in the trial is a limitation (given that it was mentioned in the Methods under patient evaluation) but the authors state that "the safety of IFN- β products in the treatment of RRMS had already been established for the three drugs in previous studies."	H i g h
-	o w	"Treatment assignments were determined using a computer-	L o w	0	H i g h	Separate treating and evaluating physicians were designated prior to randomization.	L o w	Separate treating and evaluating physicians were designated prior to randomization.	L o w	"Assessors blinded to treatment performed neurologic and MRI evaluations"	L o w	All randomized patients included in the efficacy analysis	L o w	All prespecified outcomes are presented in the results	L o w	No other apparent sources of bias	H i g h

CE		generated randomizatio n list, and were allocated through a centralized telephone randomizatio n system to unblinded site personnel."		generated randomizat ion list, and were allocated through a centralized telephone randomizat ion system to unblinded site personnel."		Patients were instructed not to disclose their treatment assignment or symptoms related to their treatment regimen, to the blinded evaluating physician: "Patients and a treating physician who was not involved in end point assessment were aware of treatment assignments"		Patients were instructed not to disclose their treatment assignment or symptoms related to their treatment regimen, to the blinded evaluating physician									
E E R V G I E N C C E	o w	Computer- generated randomizati on list	L o W	Allocated through a centralized telephone randomiza tion system. Randomiz ation was stratified by center, with an initial block size of six followed by block sizes of four in order to reduce the ability of sites to determine subsequen	H i g h	Because of the different injection frequency and side-effect profile of IFNβ- Ia administered IM or SC, it would have been impossible to keep patients blinded in a study of this nature	H i g h	The treating physicians dealing with clinical and laboratory adverse events can easily become unblinded.	Low	Separate treating and evaluating physicians were designated prior to randomization. Patients were instructed not to disclose their treatment assignment or symptoms related to their treatment regimen, to the blinded evaluating physician, and to cover injection sites before scheduled and relapse-related neurologic examinations. MRI evaluation was performed centrally (University of	L o w	677 randomised, 339 to 44µg tiw and 338 to 30µg qw. The primary analysis was conducted on the intent-to-treat cohort. For patients who withdrew from the study without follow-up, missing data for the primary outcome were imputed using random number allocation based on the overall proportion of patients not experiencing a relapse during the 24- and 48-week treatment periods for both groups	L o w	specified the	Low	No other apparent sources of bias	H i g h

				t treatment allocation based on prior allocation.						British Columbia MS/MRI Research Group, Vancouver, Canada) by blinded examiners who had no knowledge of a patient's treatment or outcome. Evaluating physicians guessed treatment allocation correctly in 52% of patients (47% correct in the 30 µg qw group and 57% in the 44 µg tiw group). Protocol violations wherein treating physicians served as evaluators occurred in 1% of patients in both groups.		combined. Sensitivity analyses were conducted to evaluate the impact of different missing data assumptions on the results for the primary endpoint.		number of relapses was fewer for the 44 µg tiw group than for the 30 µg qw group at each severity level, although the proportions of relapses in each group that were mild, moderate, or severe were not different."			
CS	L o w	Block randomizatio n scheme provided by Teva Pharmaceuti cal - therefore assumed sequence generation was appropriate	L o W	Randomiza tion scheme produced by the study sponsor (Teva Pharmaceut icals)	L o w	Double blind	L o w	The investigators, the sponsor, and any personnel involved in patients' assessments, monitoring, analysis, and data management were blinded to treatment assignment. Study drugs were packaged and labeled in a way that	L o w	The investigators, the sponsor, and	L o w	All randomized patients were analysed for the primary outcome	L o w	Outcomes reported in methods section were reported in the results	L o w	biases were	L o w

R A G I	Randomizat ion scheme produced	U n c	Not stated	L o w	Double-blind. Study drugs were packaged and labeled in a	L o w	maintained the masked nature of the study; the appearance, shape, color, and smell were identical. The investigators, the sponsor, and any	L o w	neurological	L o w	1,404 were randomized to study treatment (GA 40mg tiw,	L o w	Outcomes reported in methods section were reported in	L o w	No other biases were apparent	U n c l
	by the study sponsor (Teva Pharmaceut icals). The randomizati on scheme used constrained blocks stratified by center	r r			and labeled in a way that maintained the masked nature of the study; the appearance, shape, color, and smell were identical.		and any personnel involved in patients' assessments, monitoring, analysis, and data management were blinded to treatment assignment. Study drugs were packaged and labeled in a way that maintained the masked nature of the study; the appearance, shape, color, and smell were identical.		were performed by the blinded examining neurologist.		(6A 40mg tw, n=943; placebo, n=461) and received at least 1 dose of treatment. All were included in evaluation of adverse events and immediate post-injection reactions. From Figure 1, in the GA group, 84/943 (8.9%) discontinued; 859 (91.1%) completed 12 months and 816 (86.5%) were evaluable (completed study without major protocol violations). In the placebo group, 31/461 (6.7%) discontinued; 430 (93.3%) completed 12 months and 403 (87.4%) were evaluable. However, the authors state that "The principal analysis for the		were reported in the results			r r

primary endpoint
of total number of
confirmed
relapses during
relapses during
the 12-month PC
phase was
performed on the
intent-to-treat
(ITT) cohort,
defined as all
randomized
patients." They
used a baseline-
adjusted quasi-
likelihood (over-
dispersed)
negative binomial
negative binomiai
regression
analysis with an
offset based on the
log of the patient's
exposure to
treatment,
baseline EDSS
score, log of the
number of
relapses in the
previous 2 years,
volume of T2
lesions at baseline,
status of Gd-
enhancing T1
activity at
baseline, and
country or
geographical
region as
covariates.
Secondary
analyses were
similarly adjusted
to account for
missing scans.
Patients who
missed both 6-
and 12-month

C	G		"computeri	L	"randomi	H		H	U	H	Open label	L	scans were excluded from the analysis. Brain atrophy was analyzed using a baseline-adjusted analysis of covariance, with normalized brain volume at baseline, the number of Gd- enhancing lesions on T1-WI at baseline, and country or geographical region as covariates. Patients who missed brain volume measurements at 12 months were excluded from the analysis. From Table 3: Secondary MRI endpoints included GA n=884 (93.7%) and placebo n=441 (95.7%) except brain atrophy: GA 840 (89.1%), placebo 423 (91.8%) All randomized participants were	H			No other	N
s	L A C I E R	o w	zed	o w	zation was conducted centrally using the Interactive Response Technolog y system"	i g h	were not blinded	i g h	were not blinded or	i g h		o w	participants were analysed	i g h	injection site AEs) were measured but not reported	o w	apparent sources of bias	R i n b i o g e

		Pharmaceuti cals"														n d a t a e x t r a c t i o n
E G L R L G A C I E R	o w	ed	Randomiz ation was conducted centrally using the Interactive Response Technolog y system	H i g h	"participants were not blinded or masked to the open-label treatment assignment"	H i gh	" Investigators were not blinded or masked to the open-label treatment assignment"	H i g h	were not blinded or masked to the	L o w	209 were randomized to the study treatment (GA20, n=101; GA40, n=108). The safety analysis cohort consisted of all 209 patients, and the full analysis cohort consisted of 208 patients (GA20, n=100; GA40, n=108).	H i gh	outcomes measures as:	L o W	No other apparent sources of bias	H i g h

C S	G L O W	U n c l e a r	Method of generating random sequence was not reported	U n c l e a r	Method of concealing allocation was not reported	L o w	Double blind (Subject, Investigator)	L o w	Double-blind (Subject, Investigator)	U n c l e a r	NR in biogen data extraction	H i g h	Study was terminated early by sponsor, efficacy outcomes not investigated as planned.	U n c l e a r	Study was terminated early by sponsor	U n c l e a r	Study was terminated early by sponsor	h i g h
E R G	G L O W	U n c l e a r	Method of generating random sequence was not reported	U n c l e a r	Method of concealing allocation was not reported	L o w	Double (Participant, Investigator)	L o w	Double (Participant, Investigator)	U n c l e a r	Not stated	H i g h	Intent to treat population was planned for efficacy outcomes. However analysis was not performed due to early termination of the study. Adverse events were collected by non-systematic assessment	H i g h	performed due to early termination of	U n c l e a r	Study was terminated early by sponsor	H i g h
C S	I F N B M S s t u d v	U n c l e a r	Method of generating random sequence was not reported	U n c l e a r	Method of concealing allocation was not reported	L o w	Double blind	L o w	Double blind. All personnelwere blinded to treatment categories	L o W	All personnelwere blinded to treatment categories	U n c l e a r	Intent to treat analysis was cited but it was not clear how missing data were dealt with	L o W	Outcomes reported in methods section were reported in the results	L o w	No other biases were apparent	U n c l e a r
E R G	I	U n c l e a r	Method of generating random sequence was not reported	U n c l e a r	Method of concealing allocation was not reported	L o w	Double blind	L o w	All personnel at each study site were blinded to treatment categories	L o w	Two physicians at each site were designated: one neurologist who was not aware of drug side effects to do the periodic examinations, and another "treating" neurologist who knew about side effects and injection site reactions, reviewed	L o w	Randomised: Placebo (n=123), IFNB 1.6MIU (n=125), 8MIU (n=124). Three- year exacerbation data for the same number of patients. Disability at 3 years: 122 (99.2%), 125 (100%) and 122 (98.4%), respectively.	Uncl ear	Outcomes mentioned in the Methods section were: annual exacerbation rate and proportion of exacerbation-free patients; time to first exacerbation; exacerbation duration and severity; change in EDSS and NRS scores; quantitative disease burden as	L o w	No other biases were apparent	U n c l e a r

										laboratory findings for toxicity, and was responsible for overall care. All MRIs were interpreted by the Radiology Department of the University of British Columbia in a blinded fashion.				measured by annual MRI; and disease activity as measured by MRI in a frequent- scanning substudy. Duration of exacerbations not reported, nor disease activity in this paper, although further MRI results referenced to a companion paper (Paty DW, Li DKB, MS/MRI Study Group, IFNB MS Study Group. Interferon beta-lb is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 1993;43:662-667) which does show more MRI data.			
C S	Ν	L Randomisati o on was done w centrally by the coordinating centre. Randomisati on followed computer- generated random sequences of digits.	L o w	These codes were randomly assigned to treatments by an independen t team of statisticians unaware of the patient's clinical	H i g h	No blinding for participants	H i g h	No blinding for caregivers	H i g h	All clinical outcomes were assessed in an open-label manner: "Scans were analysed centrally by investigators at the University of Torino MRI Analysis Centre, who were unaware of treatment allocation and clinical	L o w	97% of patients had completed follow up at 2 years, clinical outcome analysis was modified ITT	L o w	All prespecified outcomes are	L o w	No other apparent sources of bias	H g h

			1	characterist						characteristics of							Т
				ics						patients"							
ΕI	L	Randomisat	L	Randomis	Н	Patients were	Н	No blinding for	Н	All clinical	U	Analysis was by	L	Outcomes stated	L	No other	Н
RN		ion followed	0	ation was	i	randomly	i	caregivers	i	outcomes were	n	intention to treat.	0	in the Methods	0	apparent	i
GC		computer-	w	done	g	assigned to self-	g	0	g	assessed in an	с	All data were	w	section were:	w	sources of	g
C		generated		centrally	ĥ	administer	g h		ĥ	open-label	1	included, using		proportion of		bias	ĥ
Ν	1	random		by the		either				manner.	e	complete 2-year		patients free from			
Ι		sequences		coordinati		interferon beta-				Personnel	a	data for the patients		relapses;			
N		of digits		ng centre.		1b (250 µg [8				unaware of	r	who completed as		annualised relapse			
		that were		8		MIU				treatment		well as for those		rate; annualised			
		different for				subcutaneously,				allocation and		who discontinued		treated relapse			
		each centre				every other				clinical		treatment. The data		rate (required			
		and for				day) or				characteristics of		of patients lost at		corticosteroids);			
		each sex, to				interferon beta-				patients assessed		follow up were		patients free from			
		achieve				1a (30 µg				all MRI outcomes.		retained in the		sustained and			
		centre and				[6 MIU]						analysis until the		confirmed			
		sex				intramuscularly						point they were		progression in			
1		stratificatio				, once a week).						lost; for subsequent		disability (an			
		n				Not blinded.						analyses, these		increase in EDSS			
												patients were		of ≥1point			
												considered as		sustained for ≥ 6			
												having a bad		months and			
												outcome.		confirmed at end			
												MRI scans were		of follow-up);			
												available from		EDSS score; time			
												149/188 (79.3%) of		to sustained and			
												patients. Four		confirmed			
												centres (which		progression in			
												included 35		disability;			
												patients) did not		patients free from			
												participate in the		new proton			
												MRI part of the		density/T2			
												study because their		hyperintense			
												MRI equipment		lesions; patients			
												was unable to meet		free from			
												the study		gadolinium-			
												requirements, in		enhancing lesions;			
												particular it was		patients free from			
												unable to produce		MRI activity (the			
												contiguous slices.		occurrence of new			
			1									Furthermore, four		proton density/T2			
												patients (three of		hyperintense or			
												the beta-1a, one of		enhancing lesions			
			1									the beta-1b group)		throughout the			
			1									refused to have		study); burden of			
	1		1		1 1							MRI scans. 39		disease; and			1

C M S o k h b e r 2 0 0 1 4	o w	The study neurologist enrolled the participants and allocated the subjects using a computer- generated list of random numbers.	U n c l e a r	No description of allocation concealmen t.	U n c l e a r	It is stated that the study is double blinded, but no details are provided to explain whether and how blinding was achieved	U n c l e a r	It is stated that the study is double blinded, but no details are provided to explain whether and how blinding was achieved	L o w	psychologist and neuropsychiatrist, both blinded to the treatment groups, evaluated the cognitive function before treatment, and 12 months after treatment	L o w	patients, therefore, participated only in the clinical portion of the study. Low % of incomplete outcome data.	U n c l e a r	safety. All were reported. Trial was done to measure cognition and EDSS, but other usual outcomes in MS trials are missing.	L o w	No other apparent sources of bias	U n c l e a r
E M R oo G k h b e r 2 0 1 1 4	0 W	Computer- generated list of random numbers	U n c l e a r r	No descriptio n of allocation concealme nt.	Unclear r	The authors stated that "participants and all those assessing outcomes were blinded to the treatment groups." But Avonex was administered 30 mcg once per week via intramuscular injection; Rebif was administered 44 mcg three times per week via subcutaneous injection; and Betaferon was administered 0.25 mg every other day via subcutaneous injection.	Unclear	The authors stated that "participants and all those assessing outcomes were blinded to the treatment groups." But Avonex was administered 30 mcg once per week via intramuscular injection; Rebif was administered 44 mcg three times per week via subcutaneous injection; and Betaferon was administered 0.25 mg every other day via subcutaneous injection.	L o W	psychologist	L o w	69 patients were randomly allocated into the 3 treatment groups of 23 patients. Three patients in the Avonex group and 1 in the Betaferon group did not attend the follow- up sessions. Therefore, the authors managed to evaluate and follow up 65 cases by the end of the trial.	L o w	Outcomes were cognitive function (using the Brief Repeatable Battery of Neuropsychologica I Tests) and EDSS; both reported.	L o w	No other apparent sources of bias	U n c l e a r r

CSS	M o k h b e r 2 0 1 5	Low	Patients were randomly assigned using a computer- generated list of random numbers	Unclear r	Methods to conceal treatment allocation were not described	H i g h	Method of treatment administration differed between study arms	Unclear r	Method of treatment administration differed between study arms	Low	5	L o w	Missing data was balanced across groups with similar reasons	L w	All outcomes described in the methods are reported in the results.	Low	No other apparent sources of bias	N R i n b i o g e n d a t a t r a c t i i n b i o g e n d a t i n d a t i n n d a i n n n d i n o n d i n o n o g e n n n o n o n o n o n o n o n o n o n
E R G	0	L o w	Patients were randomly assigned using a computer- generated list of random numbers	Unclear r	Methods to conceal treatment allocation were not described	H i g h	Avonex was administered 30 µg once per week via intramuscular injection. Rebif was administered 44 µg three times per week via subcutaneous injection. Betaferon was administered 0.25 mg every other day via subcutaneous injection.	Unclear r	Method of treatment administration differed between study arms		0	L o w	69 patients were randomly allocated into the 3 treatment groups of 23 patients; the study lost 3 patients in the Avonex group (1 refused to continue, 2 loss of contact), 2 in the Rebif group (both due to changing their place of residence), and 4 in the Betaferon group (3 loss of contact, 1 refused to continue), leaving 60 patients	L o W	Outcomes (quality of life, EDSS) specified in the Methods section were reported.	Un c l e a r	The numbers lost to follow up are not the same as those reported in Mokhber 2014 above	H i g h

												who completed					
C M S S C R G	o w	Efron's biased coin method	L o W	Only the DMSC had access to randomizat ion schedules containing treatment arm assignment s and listing subject names.	L o w	All personnel and patients were blinded to treatment status, labeled vials provided to the centers did not contain any information on treatment arm assignments; vials were identified only by ID and lot number.	L o W	All personnel and patients were blinded to treatment status	L o W	Examining physicians were prohibited from participating on the Advisory, Quality Control or Statistical Monitoring Committees or communicating with other study personnel in any matter that might compromise blinding.	L o w	the study Study was terminated early by sponsor. Efficacy outcomes are analysed by a combination of per protocol and data available for completers. Safety appears to be ITT.	H i g h	Full data were not reported for all specified outcomes	L o w	No other apparent sources of bias	H i g h
R S	o w	Efron's biased coin method	U n c l e a r	Not stated in Jacobs 1995	Low	All personnel and patients were blinded to treatment status.		All personnel and patients were blinded to treatment status.		Independent examining physicians determined the EDSS score. Patients did not discuss medical issues with rhe examining physician.	L o w	The study was designed on an intent-to-treat basis. 301 patients were randomised to placebo (n=143) or interferon beta- la (n=158). Adverse events data and primary analyses included all patients. Several analyses were repeated on the subset of patients who were accrued early enough to complete 104 weeks of follow-up by the end of the study, i.e. only 87 placebo (60.8%) and 85 interferon beta la (53.8%). MRI results were available for 123 (86.0%) and 134 (84.8%) patients,	L o w		u n c l e a r r	Potential confoundin g due to differential steroid use between the two treatment arms	U n c l e a r

CS	C O N N N N N N N N N N N N N N N N N N	U n c l e a r	Method of sequence generation not reported	U n c l e a r	Method of allocation concealmen t not reported	Low	Matching Placebo	L o w	Relapse and disability assessments were made by the treating (blinded) neurologist	L o w	disability	L o w	respectively at year 1 and 82 (57.3%) and 82 (51.9%) in year 2. All randomised patients were included in the analysis	L o w	All outcomes described in the methods are reported in the results.	L o w	No other apparent sources of bias	N R i n b i o g e n d a t a t a t r a c t i o n n d a t t n n n n d a
E R C	'	U n c l e a r	Method of sequence generation not reported	U n c l e a r	Method of allocation concealme nt not reported	L o w	Matching Placebo	L o w	Both relapse and disability assessments were made by the treating (blinded) neurologist.	L o w	disability	L o w	179 were randomized, and treated with placebo (n=61), teriflunomide 7 mg/day (n=61), or teriflunomide 14 mg/day (n=57); all these patients included in MRI evaluations and adverse events reporting. The primary analysis populations were the intent-to-treat (ITT) population	U n c l e a r	Methods stated outcomes were: number of CU active (new and persisting) lesions per MRI scan; number of T1 enhancing lesions, number of T2 active lesions, number of patients with CU active, T1 enhancing, and T2 active lesions, and percentage change from baseline to endpoint in the	U n c l e a r	Study only 36 weeks; may not be long enough to capture relevant changes in disability	U n c l e a r

CS	O P E R A I I	o c w p c v c i i i	Randomizati on was performed centrally with the use of an independent interactive	Un c l e a r	Method of allocation concealmen t not reported	L o w	Double blind (including patients), according to NCT page. Matching placebo	L o w	Double blind (including investigator and assessors), according to NCT page. Each trial center had separate treating	L o w	Double blind (including investigator and assessors), according to NCT page. Each trial center had separate treating and	L o w	(all randomized patients) and the safety-evaluable population (all randomized patients who received ≥1 doses of study medication). The secondary analysis population was the efficacy evaluable (all randomized patients for whom there was at least one on-treatment MRI assessment and including all data collected during the period from baseline to the last day of study medication + 14 days inclusively). All randomised patients were included in the analysis	L o w	burden of disease (T2 lesion volume); number of patients experiencing an MS relapse, annualized relapse rate, and number of relapsing patients requiring a course of steroids; changes in EDSS score; number of patients in whom disability increased; safety. The number of patients experiencing an MS relapse and change in EDSS scores were not reported, although the other specified outcomes were (including ARR and EDSS increase in disability). All outcomes described in the methods are reported in the results.	Low	No other apparent sources of bias	N R i b i o
		r	Web- response system.						and examining investigators, all of whom were unaware of the treatment assignments throughout the trial.		examining investigators, all of whom were unaware of the treatment assignments throughout the trial.							g e n d a t a e x t r

													c t i o n
E O R P G E R A I	0 W	Randomizat ion was performed centrally with the use of an independent interactive Web- response system	Randomiza tion was performed centrally with the use of an independen t interactive Web- response system	Triple blind (participant, investigator, outcomes assessor). Patients in each group received a matching subcutaneous or intravenous placebo, as appropriate	Low	Triple blind (participant, investigator, outcomes assessor)	Low	(participant,	Low	Efficacy analyses in the intention- to- treat population (all the patients who underwent randomization) or, for the end point of no evidence of disease activity, in a modified intention-to-treat population that excluded patients who were withdrawn from the trial for reasons other than efficacy failure or death and who had no evidence of clinical disease activity at the time of treatment discontinuation in the trial. Randomised: ocrelizumab 410, Interferon Beta-1a 411. All in efficacy outcomes. Safety (all patients who received any study treatment): ocrelizumab 408/410 (99.5%), Interferon Beta-1a 409/411 (99.5%)	NCT record states that the outcomes are: Annualized Relapse Rate; Time to Onset of Confirmed Disability Progression (CDP) for at Least 12 Weeks; Number of T1 Gadolinium (Gd)- Enhancing Lesions; Percentage of Participants With Confirmed Disability Improvement (CDI) for at Least 12 Weeks; Time to Onset of Confirmed Disability Progression (CDP) for at Least 12 Weeks; Time to Onset of Confirmed Disability Progression (CDP) for at Least 24 Weeks; Number of T1 Hypointense Lesions; Change From Baseline in Multiple Sclerosis Functional Composite (MSFC) Score; Percent Change in Brain Volume; Change From Baseline in Short Form Health Survey-36 (SF-36)	apparent	L o w

													Physical Component Summary (PCS) Score; Percentage of Participants Who Have No Evidence of Disease Activity (NEDA); Adverse Events; Exposure to Ocrelizumab (Area Under the Concentration - Time Curve, AUC); Number of Participants With Anti-Drug Antibodies (ADAs) to Ocrelizumab. All reported in Hauser 2017 except exposure to ocrelizumab (area under the concentration - time curve, AUC) not reported in Hauser 2017.			
C O S P E R A I I	o w	on was	U n c l e a r	Method of allocation concealmen t not reported	L o w	Double blind (including patients), according to NCT page. Matching placebo	Low	(including	Low	L o w	All randomised patients were included in the analysis	L o w	described in the	L o w	No other apparent sources of bias	N R i b i o g e n d a t a e x

E F F C	Р	L o W	Randomizat ion was performed centrally with the use of an independent interactive Web- response system	L o w	Randomiza tion was performed centrally with the use of an independen t interactive Web- response system	L o W	Triple blind (participant, investigator, outcomes assessor). Patients in each group received a matching subcutaneous or intravenous placebo, as appropriate	L o w	Triple blind (participant, investigator, outcomes assessor)	L o w	Triple blind (participant, investigator, outcomes assessor)	L o w	Efficacy analyses in the intention- to- treat population (all the patients who underwent randomization) or, for the end point of no evidence of disease activity, in a modified intention-to-treat population that excluded patients who were withdrawn from the trial for reasons other than	NCT record states that the outcomes are: Annualized Relapse Rate; Time to Onset of Confirmed Disability Progression (CDP) for at Least 12 Weeks; Number of T1 Gadolinium (Gd)- Enhancing Lesions; Number of New, and/or Enlarging T2 Hyperintense Lesions; Percentage of	L o w	No other apparent sources of bias	t r a c t i o n L o w
													efficacy failure or death and who had no evidence of clinical disease activity at the time of treatment discontinuation in the trial. Randomised: ocrelizumab 417, Interferon Beta-1a 418. All in efficacy outcomes. Safety (all patients who received any study treatment): ocrelizumab 417 (100%);	Participants With Confirmed Disability Improvement (CDI) for at Least 12 Weeks; Time to Onset of Confirmed Disability Progression (CDP) for at Least 24 Weeks; Number of T1 Hypointense Lesions; Change From Baseline in Multiple Sclerosis Functional Composite			

												Interferon Beta-1a 417/418 (99.8%)		(MSFC) Score; Percent Change in Brain Volume; Change From Baseline in Short Form Health Survey-36 (SF-36) Physical Component Summary (PCS) Score; Percentage of Participants Who Have No Evidence of Disease Activity (NEDA); Adverse Events; Exposure to Ocrelizumab (Area Under the Concentration - Time Curve,			
														Form Health Survey-36 (SF-36) Physical Component Summary (PCS) Score; Percentage of Participants Who Have No Evidence of Disease Activity (NEDA); Adverse Events; Exposure to Ocrelizumab (Area Under the			
														Time Curve, AUC); Number of Participants With Anti-Drug Antibodies (ADAs) to Ocrelizumab. All reported in Hauser 2017 except exposure to ocrelizumab (area under the concentration - time curve, AUC) not reported in Hauser 2017.			
C P S R I S M S	w	The randomisatio n list was computer generated	U n c l e a r	No description of allocation concealmen t.	L o w	All personnel involved in the study were unaware of treatment allocation	L o w	All personnel involved in the study were unaware of treatment allocation	L o w	All personnel involved in the study were unaware of treatment allocation	L o w	All randomised patients were analysed for efficacy and safety. A few patients did not have MRI scans at 2 years.	L o w	outcomes are presented in the results	L o w	No other apparent sources of bias	U n c l e a r
EP RR GI	L o w	The randomisati on list was	U n c	No descriptio n of	L o W	Double-blind. The study drug was packed	L o W	All personnel involved in the study were	L o W	Patients were assessed by two physicians. A	L 0 W	Analysis was by intention to treat. All outcome data	U n c		L o W	No other apparent	U n c

S M S	L Treatments	1 allocation e concealme a nt. r	According to the randomisation schedule and delivered to the centres to maintain blinding; all treatments given three times weekly by subcutaneous injection	H Neither the	 "treating" neurologist was responsible for overall medical management of the patient, including treatment of any side-effects, and an "assessing" neurologist was responsible for neurological assessments and follow-up of relapses. All injection sites were covered up at neurological examinations to ensure that masking was not compromised because of local reactions. L "The physicians 	 were included. The data from few patients wh withdrew from the study early were retained i the statistical analyses, if relevant, by use a censoring mechanism, an offset for the tii spent in the study or calculation of rate that was standardised for the time spent i the study. 560 patients randomised: 18 placebo; 189 interferon β-1a µg and 184 interferon β-1a µg; all included clinical efficacy and safety analyses. 	0 a r n e of dy, f a r n 7 22 44 in	relapse, proportion		sources of bias	I e a r r H
S E	o were w assigned by a computer-	n s were c assigned by	i patients nor the g treating	i patients nor the g treating h physicians were	o who assessed w patients at regular intervals or at the	o w		outcomes are v presented in the results	o w	apparent sources of bias	i g h

	R D		generated randomisatio n list	e a r	computer- generated randomisati on list": theoreticall y, a computer- generated list could be present in plain view, therefore not enough information		blinded to treatment.		blinded to treatment.		time of a potential relapse were blinded to treatment". "Patients were asked not to discuss their treatment with the assessing physician and they covered their injection sites so that the physician could not guess which treatment they had received." "MRI evaluations were done blinded"		The main success				Clausein	
F F C	RΕ	L o W	Computer- generated randomisati on list that was stratified by centre	U n c l e a r	Not stated	H i g h	Neither the patients nor the treating physicians were blinded to treatment (different regimens: 44 µg subcutaneous interferon beta- la three times per week or 20 mg subcutaneous glatiramer acetate once per day).	H i g h	Neither the patients nor the treating physicians were blinded to treatment (different regimens: 44 µg subcutaneous interferon beta- la three times per week or 20 mg subcutaneous glatiramer acetate once per day).	L o W	The physicians who assessed patients at regular intervals or at the time of a potential relapse were blinded to treatment. Patients were asked not to discuss their treatment with the assessing physician and they covered their injection sites so that the physician could not guess which treatment they had received. MRI evaluations were done blinded at the Image Analysis Center, VU Medical Center, Amsterdam, Netherlands.	Low	The primary analysis was done on the intention- to-treat population, which included all randomly assigned patients. Patients who completed 96 weeks of treatment and assessments without any major protocol deviations were included in the per-protocol population. All patients who had at least one injection and had safety follow-up data were included in the safety analyses.	L o W	The only outcome measure reported in the NCT record is Time to First Relapse (reported in the paper). The Methods section in the paper also states outcome measures of: Secondary endpoints included the mean number of T2 active lesions (defined as new or enlarging T2 lesions per patient per scan over 96 weeks), mean number of gadolinium- enhancing lesions per patient per scan, change in the volume of gadolinium- enhancing lesions, and changes in T2	U n c l e a r	Change in disability was defined in the protocol as a progression on the EDSS scale of one point that was confirmed after 3 months. Because progression data were collected at 6-month intervals, however, this pre- specified analysis could not be fulfilled. Instead, a	H i g h

															lesion volume. Tertiary endpoints included CUA lesions, new T1 hypointensities, T1 hypointense lesion volume, other relapse outcomes, and disability progression. These were all reported in the results section, plus adverse events.		post hoc analysis of the 6-month confirmed disability progression was done.	
C S	T E	U n	Method of sequence	U n	Method of allocation	U n	Reported as double blinded,	L o	Both treating and examining	L o	Both treating and examining	L 0	The authors used a modified ITT and	H i	MSFC and EQ5D measured but not	L o	No other apparent	h i
	M	c	generation	c	concealmen	c	but it is not	w	neurologists	w	neurologists were	w	included all pts	g	reported, as not	w	sources of	g
	S O	l e	not reported	l e	t not reported	1 e	specified whether placebo		were unaware of treatment		unaware of treatment		who received at least one dose of	h	significant findings!		bias	h
	0	a		a	reported	a	and study drug		assignments		assignments		study drug		mangs:			
		r		r		r	were of identical appearance		-		-							
Е	Т	U	Randomizat	U	Method of	L	O'Connor 2011	L	Both treating	L	Both treating and	L	All analyses were	L	Outcomes specified	L	No other	U
R	Е	n	ion was	n	allocation	0	states the study	0	and examining	0	examining	0	performed	0	in the NCT record	0	apparent	n
G	M	c	stratified	c	concealme	w	was double-	w	neurologists	w	neurologists were	w	according to a	w		w	sources of	с
	S	1	according	1	nt not		blind. NCT		were unaware		unaware of		modified		Relapse Rate; Time		bias	1
	0	e	to the baseline	e	reported		record states "Triple		of treatment		treatment		intention-to-treat		to 12-week Sustained			e
		a r	EDSS score	a r			(Participant,		assignments		assignments		principle, i.e. patients who		Disability			a r
			(≤3.5 or				Investigator,						underwent		Progression;			1
			>3.5) and				Outcomes						randomization		Change From			
			according				Assessor)" and						and were exposed		Baseline in Total			
			to trial site,				the placebo was						to study		Lesion Volume			
			with a block				film-coated like						medication for at		(Burden of			
			size of 6; no further				the active drug						least 1 day. 1088 randomised		Disease); Changes From Baseline in			
			turther details.										randomised (placebo n=363;		From Baseline in Fatigue Impact			
			uttans.										teriflunomide 7mg		Scale [FIS] Total			
													n=366;		Score; Number of			
													teriflunomide		Gd-enhancing T1-			
													14mg n=359);		lesions Per Scan;			
													1086 (99.8%)		Volume of Gd-			

												exposed to study medication. The safety population was all patients who underwent randomization and were exposed to study medication, regardless of the amount administered or the medication assigned at randomization. The safety analyses were conducted according to the treatment actually received: placebo n=360; teriflunomide 7mg n=358.		enhancing T1- lesions Per Scan. Outcomes reported in O'Connor 2011 were number of relapses, ARR, time to first relapse, number relapse-free; confirmed progression of disability sustained for at least 12 weeks, time to disability progression (shown graphically); change in FIS score; change from baseline in total lesion volume; number of Gd- enhancing T1- lesions per scan; volume of hypointense lesions on T1- or T2-weighted images; brain parenchymal fraction; and safety. No mention of MSFC or EQ5D in O'Connor 2011 or the NCT record			
C S	T E N E R E	Assignment to groups was done centrally using an Interactive Voice Response System (IVRS] in a 1:1:1 ratio	L o w	Assignmen t to groups was done centrally using an Interactive Voice Response System (IVRS] in a 1:1:1 ratio	H i g h	Patients were not blinded. Teriflunomide was given orally. IFN beta-1a was subcutaneous	H i g h	The treating neurologist was responsible for patient selection, medication administration, managing AEs, and relapse and safety assessments	H i g h	A blinded examining neurologist scored FS and EDSS. The unblinded treating neurologist was responsible for relapse and safety assessments	L o w	All randomised patients were included in the analysis	L o w	described in the	L o w	NR in biogen data extraction	H i g h

ET	T	after confirmation of the selection criteria.	I	after confirmatio n of the selection criteria.	и	Patiants ware	п	The treating	Ц	An avamining	T	Efficiency analysiss		NCT record states	I	No other	ц
E T R E G N E R E	n c l e	on stratified by country (Americas, Eastern Europe, Western Europe and Africa) and baseline EDSS score (\leq 3.5 or >3.5); no further details	Unclear r	Not stated	H g h	Patients were randomised 1:1:1 to teriflunomide 7 mg or 14 mg (double-blind) or IFNβ-1a (open-label)		The treating neurologist was responsible for patient selection, medication administration, managing AEs, and relapse and safety assessments		neurologist scored the Functional Systems (FS) and EDSS. The examining neurologist remained blinded to treatment and associated AEs. The unblinded treating neurologist conducted relapse and safety assessments	Low	Efficacy analyses were conducted on the intent-to- treat (ITT) population, which included all randomised patients (n=104 for IFN β -1a, 109 for teriflunomide 7 mg and 111 for teriflunomide 14 mg). The safety analysis included all randomised patients exposed to study medication (n=101 [3 patients in the IFN β -1a group were never treated, and were therefore excluded from the safety analysis], 110 and 110, respectively [1 patient in the teriflunomide 14 mg group received teriflunomide 7 mg for 3 months, and was therefore included in the teriflunomide 7 mg group for the safety analysis).		NCT record states outcome measures as: Failure (the first occurrence of confirmed relapse or permanent treatment discontinuation for any cause, whichever came first); Time to Failure; Annualized Relapse Rate; Change From Baseline in Fatigue Impact Scale (FIS) Total Score; Treatment Satisfaction Questionnaire for Medication [TSQM] Scores; Adverse Events. All reported in the paper.	L o w	No other apparent sources of bias	H i g h
C T S O			L o	Randomisa tion was	L o	Patients, individuals	L 0	Patients, individuals	L o		L o	The authors used a modified ITT and	L 0	All outcomes described in the	L o	NR in biogen data	1 0
W	w	centrally, via an	w	done centrally,	w	administering the	w	administering the	w	administering the interventions, and	w	included all pts who received at	w	methods are	w	extraction	w

ER	interactive voice recognition system that generated an allocation sequence using a permuted- block randomisatio n schedule with stratification according to study site and baseline EDSS		via an interactive voice recognition system that generated an allocation sequence using a permuted- block randomisati on schedule with stratificatio n according to study site and baseline EDSS		interventions, and those assessing the outcomes were masked to treatment assignment.		interventions, and those assessing the outcomes were masked to treatment assignment.		those assessing the outcomes were masked to treatment assignment.		least one dose of study drug. The number of patients not analysed was extremely small, 1- 2 per arm		reported in the results.		
E T R O G W E R	Randomisat ion was done centrally, via an interactive voice recognition system that generated an allocation sequence using a permuted- block randomisati on schedule with stratificatio n according to study site and baseline EDSS score	L o w	The interactive voice recognitio n system was run by an independe nt company	L o w	Patients, individuals administering the interventions, and those assessing the outcomes were masked to treatment assignment.	L o W	Patients, individuals administering the interventions, and those assessing the outcomes were masked to treatment assignment.	Low	individuals	Low	1169 randomised: placebo (n=389), teriflunomide 7 mg (n=408), teriflunomide 14 mg (n=372); 1165 (>99%) were exposed to study drug or placebo (modified intention-to-treat population); 1, 1 and 2 patients not exposed, respectively. Safety analyses included all patients who underwent randomisation and were exposed to study drug or placebo, classified according to the treatment that	Low	The NCT record states the following outcome measures: Annualized Relapse Rate; Time to Disability Progression; Time Without Relapse; Change From Baseline to Week 48 in EDSS Total Score; Change From Baseline to Week 48 in Fatigue Impact Scale (FIS) Total Score; Change From Baseline to Last Visit in Fatigue Impact Scale (FIS) Total Score; Change From Baseline to Last Change From Baseline to Week 48 in Short	U n c l e a r	 U n c l e a r

(≤3·5 or >3·5).	they received (some patients received a dose other than that assigned by randomisation) n=385, 409 and 371, respectivel	Visit in Short
		Health Survey - 36
		Summary Scores; Liver Function:
		Number of Participants With
		Potentially Clinically
		Significant Abnormalities (PCSA). These
		were reported.

Italic = new information (from Biogen data extraction), **BOLD** = agree with Biogen data extraction, Normal font – differ from Biogen data extraction NR = not reported in Biogen data extraction sheet

Appendix C. ERG quality appraisal of the CS MTC

Table 3C. Appraisal of methodological reporting of the MTC (based on the CS)

	ERG findings
Rationale and searches	
1. Are the rationale for the	Yes
MTC and the study	Overall objective of appraisal: "The objective of this appraisal is to
objectives clearly stated?	assess the clinical and cost-effectiveness of pegylated interferon β -1a
	(pegIFNβ-1a, Plegridy®) within its marketing authorisation for the
	treatment of adults with relapsing-remitting multiple sclerosis (RRMS)."
	(CS Document B, pg.12)
	Clinical evidence: "This systematic review aimed to evaluate available
	evidence in the literature on pegIFN β -1a relative to other approved
	DMTs for RRMS or placebo." (CS Document C, pg.5)
	Cost effectiveness: "The primary objective of this SLR was to identify all
	economic evidence relevant to the development of an economic model
	that will evaluate treatments for MS." (CS Document C, pg.149)
2. Are searches stated and	Yes
do they appear appropriate?	"Electronic databases and grey literature sources, including trial registries
	and conference abstracts, were originally searched up to October 2014,
	with seven subsequent update searches carried out up to December 2018
	to identify relevant studies on specified Biogen Idec products and all
	potentially relevant comparators for the treatment of MS" (CS Document
	C, pg.3)
	Databases and search terms listed (CS Document C, D.1.1)
3. Are inclusion/exclusion	Yes
criteria adequately reported?	Inclusion criteria stated in Table 22, CS Document C, page 30
4. Is the quality of the	Yes
included studies assessed?	Quality assessment of the ADVANCE study presented in CS Document
	C, page 31, Table 24
	Quality assessment of the other studies in the MTC in the Biogen Data
	Extraction excel spreadsheet dated August 2018
Model methods	
1. Is the statistical model	Yes
described?	"Mixed-treatment comparison was performed using a Bayesian approach
	using the gemtc packageThe gemtc package implements the models

	manual at her the NICE Desiries Construction to the A
	recommended by the NICE Decision Support Unit using Just Another
	Gibbs Sampler (JAGS) to provide the underlying Markov Chain Monte
	Carlo simulations. A burn-in of 50,000 simulations was used, followed
	by an additional run of 50,000 simulations to obtain parameter estimates.
	Model convergence was assessed using the Brooks-Gelman-Rubin
	statistic, and if there were any doubts about convergence of the estimates,
	additional simulations were run. Model fit was assessed using residual
	deviance and the Deviance Information Criterion" (CS Document B,
	pg.66)
2. Is there a justification for	Yes
the choice of outcome	"Data were extracted for all outcomes identified in Appendix D;
measure provided?	however, MTC and supporting analyses focus on the following key
	outcomes: ARR, CDP3M, CDP6M, relapses requiring
	hospitalisation, relapses requiring IV corticosteroids, mortality, NEDA,
	symptoms of MS [cognition, fatigue, and visual impairment], QOL, any
	adverse event [AE], any serious adverse event [SAE], treatment
	discontinuation due to any cause, or treatment discontinuation due to
	AE" (CS Document B, pg.66)
	This list does not include "CDP sustained for 12 months" which was also
	listed as an outcome in CS Document C, Table 22.
3. Has a structure of the	Yes
networks been provided?	Document CS B page 78 for ARR, page 80 for CDP3M, and page 82 for
	CDP6M
4. Has the choice of fixed or	Yes
random effects model been	"The primary analysis used random-effects models. A sensitivity analysis
justified?	using fixed effect models was also performed." (CS Document B, pg. 66)
	" in a standard meta-analysis of randomised trials it is assumed that
	different trials are sufficiently (not necessarily completely) homogeneous
	and that they estimate the same single treatment effect (fixed effect
	model) or different treatment effects distributed around a typical value
	(random effects model)." (Cs Document C, pg.33)
5. Is any of the	Yes
programming code used in	The run analysis code used in R for estimating ARR in base case is in CS
the statistical programme	Document C, pages 434-438.
provided?	

6. Is a sensitivity analysis	Yes
presented, is this	"A sensitivity analysis using fixed effect models was also performed."
appropriate?	(CS Document B, pg.66)
	"Sensitivity analyses were conducted using alternative prior distributions
	for the between-trials SD in networks with fewer than 10 studies." (CS
	Document C, pg.34)
	The Biogen Plegridy Full Report Appendices document (pg.266) reports
	the sensitivity analysis to assess the impact of using a random effects
	model versus a fixed effects model on the MTC for ARR (which showed
	similar effects). The authors reported that they "observed high
	heterogeneity in the comparison of GA 20 mg qd versus placebo (I2 =
	86%) The Bornstein 1987 study appears to be the outlier in this
	analysis as the rate ratio from this study does not overlap with the
	confidence intervals of the other two included studies" (pg.260). They
	conducted a sensitivity analysis excluding this study (pg.274).
	The Biogen Plegridy Full Report Appendices document (pg.284) reports
	the sensitivity analysis to assess the impact of using a random effects
	model versus a fixed effects model, and the choice of prior distribution,
	on the MTC for CDP3M, with similar results between the analyses. Also,
	for CDP6M, the relative effects for all treatment comparisons were
	similar in the random effects and fixed effects models (pg.304), and for
	alternative prior distributions (pg.304).
	For adverse events, the Biogen Plegridy Full Report Appendices
	document (pg.317) states that in sensitivity analyses, the relative effects
	of all treatments compared to placebo were similar in the random effects
	and fixed effects models. Odds ratios were similar using alternative prior
	distributions (pg.317).
	For serious adverse events, CS Document B page 66 stated that the
	authors "analysed SAE excluding MS relapses where data were available
	and performed sensitivity analyses of SAE, including MS relapses";
	however, the Biogen Plegridy Full Report Appendices document (Table
	12, pg.236) shows the data for SAE with and without relapses included,
	but an odds ratio graph was only shown for the data excluding relapses
	(Figure 21, pg.234)
	The Biogen Plegridy Full Report Appendices document (pg.322) states
	that in sensitivity analyses of serious adverse events, the relative effects
	of all treatments compared to placebo were similar in the random effects

	and fixed effects models. Odds ratios were similar using alternative prior
	distributions (pg.322).
	For treatment discontinuation due to any cause, the Biogen Plegridy Full
	Report Appendices document (pg.327) shows sensitivity analysis results
	for the fixed and random effect models.
Results	
1. Are the results of the	Yes
MTC presented?	CS Document B, page 67-92
2. Does the study describe	Yes
an assessment of the model	CS Document B, page 66 states "Model fit was assessed using residual
fit?	deviance and the Deviance Information Criterion."
	The Biogen Plegridy Full Report main document page 123 states: "The
	model fit statistics indicated that there was little difference between the
	alternative models except for the change in the between trials standard
	deviation."
	Model fit statistics were shown in the Biogen Plegridy Full Report
	Appendices for ARR page 270, CDP3M page 290, CDP6M page 309,
	adverse events page 318, SAE page 323, treatment discontinuation due to
	any cause page 328
3. Is the evidence combined	Yes
and the results presented?	CS Document B, page 67-92
4. Has there been any	Yes
discussion around the model	The Biogen Plegridy Full Report stated that "There was substantial
uncertainty?	uncertainty associated with all of the estimated treatment effects" for
	CDP3M page 88, CDP6M page 89, any AE page 114, any SAE page 114
	and treatment discontinuation due to any cause page 119, although this
	was not found in CS Documents B or C.
5. Are the point estimates of	Yes
the relative treatment effects	The OR (for dichotomous outcomes), HR (for time-to-event outcomes),
accompanied by some	rate ratios (for rate outcomes) are reported with either 95% credible
measure of variance?	intervals (CrI, Bayesian methods) or 95% CI (frequentist methods) (CS
	Document B, pg.67).
	1

Appendix D: Baseline characteristics of participants in the randomised controlled trials across randomised groups

		Total	No. males (%)	Mean age in	Mean EDSS score	Mean duration of	Mean no. relapses in
Study ID	Treatment	Ν	No. females (%)	years (SD)	(SD)	disease in years (SD)	previous year (SD)
ADVANCE	pegIFNβ-1a 125 mcg	512	151 (29)	36.9 (9.8)	2.47 (1.26)	6.9 (6.6)	1.6 (0.67)
	Q2W		361 (71)			(first MS symptoms)	
	pegIFNβ-1a 125 mcg	500	148 (30)	36.4 (9.9)	2.48 (1.24)	6.5 (6.1)	1.5 (0.62)
	Q4W		352 (70)			(first MS symptoms)	
	Placebo	500	142 (29)	36.3 (9.7)	2.44 (1.18)	6.3 (6.3)	1.6 (0.67)
			358 (71)			(first MS symptoms)	
APEX	Dimethyl fumarate 240 mg BID	56	NR	NR	NR	NR	NR
	Placebo	58	NR	NR	NR	NR	NR
BEYOND	GA 20 mg QD	448	142 (32)	35.2 (NR)	2.28 (NR) Median	5.1 (NR)	1.6 (NR)
			306 (68)	Median (IQR) =	(IQR) = 2(1.5-3)	Median (IQR) = $3(1-7)$	Median $(IQR) = 1 (1-2)$
				35 (27-43)		(MS diagnosis)	
	IFNβ-1b 250 mcg	897	270 (30)	35.8 (NR)	2.35 (NR) Median	5.3 (NR)	1.6 (NR)
	QAD		627 (70)	Median (IQR) =	(IQR = 2 (1.5-3))	Median (IQR) = $3(1-7)$	Median $(IQR) = 1 (1-2)$
				35 (28-43)		(MS diagnosis)	
	IFNβ-1b 500 mcg	899	270 (30)	35.9 (NR)	2.33 (NR)	5.4 (NR)	1.6 (NR)
	QAD		629 (70)	Median (IQR) =	Median (IQR = 2	Median (IQR) = $3(1-8)$	Median $(IQR) = 1 (1-2)$
				36 (28-43)	(1.5-3)	(MS diagnosis)	
Boiko 2017	GA 20 mg QD	61	NR	NR	NR	Median = 3.0 (range:	1.28 (95% CI, 1.12-1.44)
	(Copaxone, Teva) ^a					1.0-21.0)	
						(MS symptoms)	
	GA 20 mg QD	61	NR	NR	NR	Median = 5.0 (range:	1.28 (95% CI, 1.15-1.40)
	(Timexon, Biocad) ^a					0.0-37.0)	
						(MS symptoms)	

Table 4D. Baseline characteristics of participants in the randomised controlled trials across randomised groups

		Total	No. males (%)	Mean age in	Mean EDSS score	Mean duration of	Mean no. relapses in
Study ID	Treatment	Ν	No. females (%)	years (SD)	(SD)	disease in years (SD)	previous year (SD)
	Placebo	28	NR	NR	NR	Median = 4.0 (range: 2.0-18.0) (MS symptoms)	1.21 (95% CI, 1.05-1.38)
Bornstein 1987	GA 20 mg QD	25	11 (44) 14 (56)	30 (NR)	NR	4.9 (NR) (unclear)	2 years: 3.8 (unclear average)
	Placebo	25	10 (40) 15 (60)	31 (NR)	NR	6.1 (NR) (unclear)	2 years: 3.9 (unclear average)
BRAVO	IFNβ-1a 30 mcg QW	447	140 (31.3) 307 (68.7)	Median (IQR) = 38.5 (30.3-45.9)	Median (IQR) = 2.5 (1.5-3.5)	Median (IQR) = 1.4 (0.3- 4.7) (MS diagnosis)	Median (IQR) = 1 (1-2)
	Laquinimod 0.6 mg QD	434	152 (35) 282 (65)	Median (IQR) = 36.7 (29.6-44)	Median (IQR) = 2.5 (1.5-3.5)	Median (IQR) = 1.2 (0.3- 3.8) (MS diagnosis)	Median (IQR) = 1 (1-2)
	Placebo	450	129 (28.7) 321 (71.3)	Median (IQR) = 37.5 (30.3-45.4)	Median (IQR) = 2.5 (1.5-3.5)	Median (IQR) = 1.2 (0.3- 4) (MS diagnosis)	Median (IQR) = 1 (1-2)
Calabrese 2012	GA 20 mg QD	48	13 (27.1) 35 (72.9)	38.9 (10.2)	Mean (range) = 2.1 (1-5)	Mean (range) = $5.5 (0-9)$ (unclear)	NR
	IFNβ-1a 30 mcg QW	47	15 (32) 32 (68)	34.8 (9.6)	Mean (range) = 1.9 (1-5)	Mean (range) = 5.3 (0-8) (unclear)	NR
	IFNβ-1a 44 mcg TIW	46	14 (30.5) 32 (69.5)	35.9 (9.1)	Mean (range) = 1.9 (1-5)	Mean (range) = 5.7 (0-9)(unclear)	NR
CAMMS223	Alemtuzumab 12 mg QD	112	39 (35.5) 71 (64.5)	31.9 (8) Median (range) = 31 (18-49)	2 (0.73) median (range) = 2 (0-3)	NR	NR
	Alemtuzumab 24 mg QD	110	40 (35.7) 72 (64.3)	32.2 (8.8) Median (range) = 31 (18-54)	2 (0.73) Median (range) = 2 (0-3.5)	NR	NR

		Total	No. males (%)	Mean age in	Mean EDSS score	Mean duration of	Mean no. relapses in
Study ID	Treatment	Ν	No. females (%)	years (SD)	(SD)	disease in years (SD)	previous year (SD)
	IFNβ-1a 44 mcg TIW	111	40 (36)	32.8 (8.8)	1.9 (0.81) Median	NR	NR
			71 (64)	Median (range)	(range) = 2 (0-3.5)		
				= 31 (18-60)			
CARE MS I	Alemtuzumab 12 mg	376	132 (35)	33 (8)	2 (0.8)	2.1 (1.4)	1.8 (0.8)
	QD		243 (65)		Median (range) = 2	Median (range) = 1.7	Median (range) = $2(0-5)$
					(0-4)	(0.1-5.2)	
						(first MS symptoms)	
	IFNβ-1a 44 mcg TIW	187	65 (35)	33.2 (8.5)	2 (0.8)	2 (1.3)	1.8 (0.8)
			122 (65)		Median (range) = 2	Median (range) = 1.5	Median (range) = $2(0-5)$
					(0-3.5)	(0.2-5)	2 years: Mean $(SD) = 2.4$
						(first MS symptoms)	(0.85)
CARE MS II	Alemtuzumab 12 mg	426	145 (34)	34.8 (8.36)	2.7 (1.26)	4.5 (2.68)	1.7 (0.86)
	QD		281 (66)		Median (range) = 2.5	Median (range) = 3.8	Median (range) = $1 (0-5)$
					(0-6.5)	(0.2-14.4)	
						(first MS symptoms)	
	Alemtuzumab 24 mg	170	49 (29)	35.1 (8.4)	2.7 (1.17)	4.3 (2.77)	1.6 (0.86)
	QD		120 (71)		Median (range) = 2.5	Median (range) = 3.7	Median (range) = $1 (0-6)$
					(0-6)	(0.2-16.9)	
						(first MS symptoms)	
	IFNβ-1a 44 mcg TIW	202	71 (35)	35.8 (8.77)	2.7 (1.21)	4.7 (2.86)	1.5 (0.75)
			131 (65)		Median (range) = 2.5	Median (range) = 4.1	Median (range) = $1 (0-4)$
					(0-6)	(0.4-10.1)	
						(first MS symptoms)	
CombiRx	IFNβ-1a 30 mcg QW	250	77 (30.8)	37.6 (10.2)	2.0 (1.2)	1.4 (4.0)	1.7 (0.9)
			173 (69.2)			(first MS symptoms)	
	GA 20 mg QD	259	74 (28.6)	39 (9.5)	1.9 (1.2)	1 (2.9)	1.6 (0.7)
			185 (71.4)			(first MS symptoms)	
CONFIRM	DMF 240 mg BID	359	114 (32)	37.8 (9.4)	2.56 (1.2)	4.9 (5.1)	1.3 (0.6)
			245 (68)			(MS diagnosis)	

Study ID	Treatment	Total N	No. males (%) No. females (%)	Mean age in years (SD)	Mean EDSS score (SD)	Mean duration of disease in years (SD)	Mean no. relapses in previous year (SD)
-	DMF 240 mg TID	345	95 (28) 250 (72)	37.8 (9.4)	2.52 (1.19)	4.6 (5.2) (MS diagnosis)	1.4 (0.7)
	GA 20 mg QD	350	103 (29) 247 (71)	36.7 (9.1)	2.57 (1.22)	4.4 (4.7) (MS diagnosis)	1.4 (0.6)
	Placebo	363	112 (31) 251 (69)	36.9 (9.2)	2.59 (1.17)	4.8 (5) (MS diagnosis)	1.4 (0.8)
Copolymer I Study	GA 20 mg QD	125	37 (29.6) 88 (70.4)	34.6 (6)	2.8 (1.2)	7.3 (4.9) (unclear)	2 years: mean (SD) = 2.9 (1.3)
	Placebo	126	30 (23.8) 96 (76.2)	34.3 (6.5)	2.4 (1.3)	6.6 (5.1) (unclear)	2 years: mean (SD) = 2.9 (1.1)
DEFINE	DMF 240 mg BID	410	114 (28) 296 (72)	38.1 (9.1)	2.4 (1.29)	5.6 (5.4) (MS diagnosis)	1.3 (0.7)
	DMF 240 mg TID	416	110 (26) 306 (74)	38.8 (8.8)	2.36 (1.19)	5.1 (5.3) (MS diagnosis)	1.3 (0.6)
	Placebo	408	102 (25) 306 (75)	38.5 (9.1)	2.48 (1.24)	5.8 (5.8) (MS diagnosis)	1.3 (0.7)
Etemadifar 2006	IFNβ-1a 30 mcg QW	30	6 (20) 24 (80)	28.1 (1.2)	1.9 (1.1)	2.9 (2.3) (unclear)	2 (0.8)
	IFNβ-1a 44 mcg TIW	30	7 (23) 23 (77)	27.4 (1.2)	2.1 (1)	3 (2.2) (unclear)	2.4 (1)
	IFNβ-1b 250 mcg QAD	30	9 (30) 21 (70)	29.9 (1.4)	1.9 (0.7)	3.7 (2.3) (unclear)	2.2 (0.7)
EVIDENCE	IFNβ-1a 30 mcg QW	338	86 (25.4) 252 (74.6)	Mean (range) = 37.4 (18-55)	2.3 (NR) Median (range) = 2 (NR)	6.7 (NR) Median (range) = 4.1 (NR) (unclear)	2 years: mean (SD) = 2.6 (NR) 2 years: Median (range) = 2 (NR)
	IFNβ-1a 44 mcg TIW	339	85 (25.1) 254 (74.9)	Mean (range) = 38.3 (18-55)	2.3 (NR) Median (range) = 2 (NR-NR)	6.5 (NR) Median (range) = 4 (NR- NR) (unclear)	2 years: mean (SD) = 2.6 (NR) 2 years: median (range) = 2 (NR)

		Total	No. males (%)	Mean age in	Mean EDSS score	Mean duration of	Mean no. relapses in
Study ID	Treatment	Ν	No. females (%)	years (SD)	(SD)	disease in years (SD)	previous year (SD)
GALA	GA 40 mg	943	302 (32)	37.4 (9.4)	2.8 (1.2)	7.7 (6.7)	1.3 (0.6)
			641 (68)			(1st MS symptoms)	
	Placebo	461	148 (32.1)	38.1 (9.2)	2.7 (1.2)	7.6 (6.4)	1.3 (0.6)
			313 (67.9)			(first MS symptoms)	
IFNB MS	IFNβ-1b 50 mcg QAD	125	40 (32)	Mean (SE) =	Mean (SE) = 2.9	Mean (SE) = $4.7 (0.4)$	2 years: mean (SE) = 3.3
study			85 (68)	35.3 (0.7)	(0.1)	(MS diagnosis)	(0.1)
	IFNβ-1b 250 mcg	124	38 (30.6)	Mean (SE) =	Mean (SE) = $3(0.1)$	Mean (SE) = $4.7 (0.4)$	2 years: mean (SE) = 3.4
	QAD		86 (69.4)	35.2 (0.6)		(MS diagnosis)	(0.2)
	Placebo	123	35 (28.5)	Mean (SE) = 36	Mean (SE) = 2.8	Mean (SE) = $3.9(0.3)$	2 years: mean (SE) = 3.6
			88 (71.5)	(0.6)	(0.1)	(MS diagnosis)	(0.1)
INCOMIN	IFNβ-1a 30 mcg QW	92	35 (38)	34.9 (7.9)	1.96 (0.7)	6.7 (5.4)	NR
			57 (62)			(unclear)	
	IFNβ-1b 250 mcg	96	30 (31)	38.8 (7.1)	1.97 (0.7)	5.9 (4.2)	NR
	QAD		66 (69)			(unclear)	
MSCRG	IFNβ-1a 30 mcg QW	158	40 (25)	36.7 (7.16)	2.4 (0.75)	6.6 (NR)	1.2 (0.63)
			118 (75)			(MS diagnosis)	
	Placebo	143	40 (28)	36.9 (7.65)	2.3 (0.84)	6.4 (NR)	1.2 (0.6)
			103 (72)			(MS diagnosis)	
OPERA I	Ocrelizumab, 600 mg,	410	140 (34.1)	37.1 (9.3)	2.86 (1.24)	6.74 (6.37)	1.31 (0.65)
	Q24W		270 (65.9)			(first MS symptoms)	
	IFNβ-1a, 44 mcg, TIW	411	139 (33.8)	36.9 (9.3)	2.75 (1.29)	6.25 (5.98)	1.33 (0.64)
			272 (66.2)			(first MS symptoms)	
OPERA II	Ocrelizumab, 600 mg,	417	146 (35.0)	37.2 (9.1)	2.78 (1.30)	6.72 (6.10)	1.32 (0.69)
	Q24W		271 (65.0)			(first MS symptoms)	
	IFNβ-1a, 44 mcg, TIW	418	138 (33.0)	37.4 (9.0)	2.84 (1.38)	6.68 (6.13)	1.34 (0.73)
			280 (67.0)			(first S symptoms)	
PRISMS	IFNβ-1a 22 mcg TIW	189	62 (33)	Median (IQR) =	2.5 (1.2)	Median (IQR) = 5.4	2 years: mean $(SD) = 3$
			127 (67)	34.8 (29.3-39.8)		(3-11.2)	(1.1)
						(unclear)	

		Total	No. males (%)	Mean age in	Mean EDSS score	Mean duration of	Mean no. relapses in
Study ID	Treatment	Ν	No. females (%)	years (SD)	(SD)	disease in years (SD)	previous year (SD)
	IFNβ-1a 44 mcg TIW	184	63 (34) 121 (66)	Median (IQR) = 35.6 (28.4-41)	2.5 (1.3)	Median (IQR) = 6.4 (2.9-10.3) (unclear)	2 years: mean (SD) = 3 (1.1)
	Placebo	187	47 (25) 140 (75)	Median (IQR) = 34.6 (28.8-40.4)	2.4 (1.2)	Median (IQR) = 4.3 (2.4-8.4) (unclear)	2 years: mean (SD) = 3 (1.3)
REGARD	GA 20 mg QD	378	106 (28) 272 (72)	36.8 (9.5)	2.33 (1.31) Median (range) = 2 (NR)	NR	NR
	IFNβ-1a 44 mcg TIW	386	119 (31) 267 (69)	36.7 (9.8)	2.35 (1.28) Median (range) = 2 (NR)	NR	NR
TEMSO	Teriflunomide 14 mg QD	359	104 (29) 255 (71)	37.8 (8.2)	2.67 (1.24)	8.7 (6.7) Median (range) = 7.2 (NR) (first MS symptoms)	1.3 (0.7) 2 years: median (range) = 2 (NR)
	Teriflunomide 7 mg QD	366	111 (30.3) 255 (69.7)	37.4 (9)	2.68 (1.34)	8.8 (6.8) Median (range) = 7 (NR) (first MS symptoms)	1.4 (0.7) 2 years: median (range) = 2 (NR)
	Placebo	363	88 (24.2) 275 (75.8)	38.4 (9)	2.68 (1.34)	8.6 (7.1) Median (range) = 6.3 (NR) (first MS symptoms)	1.4 (0.7) 2 years: median (range) = 2 (NR)
TENERE	Teriflunomide 14 mg QD	111	33 (29.7) 78 (70.3)	36.8 (10.3)	2.3 (1.4)	6.6 (7.6) (first MS symptoms)	1.4 (0.8)
	Teriflunomide 7 mg QD	109	39 (35.8) 70 (64.2)	35.2 (9.2)	2 (1.2)	7 (6.9) (first MS symptoms)	1.3 (0.8)
	IFNβ-1a 44 mcg TIW	104	33 (31.7) 71 (68.3)	37 (10.6)	2 (1.2)	7.7 (7.6) (first MS symptoms)	1.2 (1.0)

		Total	No. males (%)	Mean age in	Mean EDSS score	Mean duration of	Mean no. relapses in
Study ID	Treatment	Ν	No. females (%)	years (SD)	(SD)	disease in years (SD)	previous year (SD)
TOWER	Teriflunomide 14 mg	372	114 (31)	38.2 (9.4)	2.71 (1.35)	8.18 (6.73)	1.4 (0.7)
	QD		258 (69)			(first MS symptoms)	
	Teriflunomide 7 mg	408	108 (26)	37.4 (9.4)	2.71 (1.39)	8.18 (6.75) (1st MS	1.4 (0.7)
	QD		300 (74)			symptoms)	
	Placebo	389	116 (30)	38.1 (9.1)	2.69 (1.36)	7.64 (6.7)	1.4 (0.8)
			273 (70)			(first MS symptoms)	

Appendix E. ERG's individual parameter changes to the Company's base-case analysis.

Table E5. Summary of ERG changes made in the economic model in order to implement the ERG preferred base case

Description of ERG change to economic	Implementation of the change in the model				
model					
Base-case model					
Mortality risk	Mortality worksheet, EDSS relative risk, Pokorski, 1997 interpolated				
Caregivers utility decrement	Utilities worksheet, utility decrement for caregivers, Gani 2008				
All-cause discontinuation risk	Treatment worksheet, Annual discontinuation risk select 'Parity Assumption (ID527) ⁴ ' from the dropdown box				
Annual relapse rates by EDSS (RRMS)	Natural History worksheet, Annual relapse rates by EDSS score, IDS527 Assessment				
Annual relapse rates by EDSS (SPMS)	Natural History worksheet, Annual relapse rates by EDSS score, IDS527 Assessment				
ERG's scenario analysi	S				
All-cause discontinuation	Treatment worksheet, Annual discontinuation risk select 'user inputs' from the dropdown box and insert in cells G18 to S18 the values weighted by person-time, then drag to cell G27 to S27				
EDSS health state	Utilities worksheet, Utility by EDSS score, select 'ID527 ⁴ Assessment' from				
utility values	the dropdown box				
Treatment waning	Treatment worksheet, Waning effect, select 'Assumption 100%' from the dropdown box				
EDSS, expanded disability status scale; ERG, evidence review group; RRMS, relapsing-remitting multiple sclerosis; SPMS, secondary progressive multiple sclerosis					

National Institute for Health and Care Excellence Centre for Health Technology Evaluation

ERG report – factual accuracy check

Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis [ID1521]

You are asked to check the ERG report to ensure there are no factual inaccuracies contained within it.

If you do identify any factual inaccuracies you must inform NICE by **5pm on 23 August 2019** using the below comments table. All factual errors will be highlighted in a report and presented to the Appraisal Committee and will subsequently be published on the NICE website with the committee papers.

The factual accuracy check form should act as a method of detailing any inaccuracies found and how and why they should be corrected.

Issue 1 Transcription error

Description of problem	Description of proposed amendment	Justification for amendment	ERG response
P15, first bullet point "Patients treated with pegIFNβ-1a every 2 weeks had fewer new or newly enlarging hyperintense lesions on T2-weighted images at 48 weeks than patients in the placebo group (0.256 [95% CI, 0.206, 0.318] versus 0.397 [95% CI, 0.328, 0.48] P=0.0007). The CS reported the adjusted lesion mean ratio as 0.33 (95% CI, 0.27,0.40; P < 0.0001) for pegIFNβ-1a every 2 weeks versus placebo. Lesions were significantly smaller for those patients taking pegIFNβ-1a compared to placebo (P < 0.0001)"	"Patients treated with pegIFNβ-1a every 2 weeks had fewer new or newly enlarging hyperintense lesions on T2-weighted images at 48 weeks than patients in the placebo group (3.6 95% CI, 3.1, 4.2] versus 10.9 [95% CI, 9.6, 12. 5]). The CS reported the adjusted lesion mean ratio as 0.33 (95% CI, 0.27,0.40; P < 0.0001) for pegIFNβ-1a every 2 weeks versus placebo. Lesions were significantly smaller for those patients taking pegIFNβ-1a compared to placebo (P <0.0001)"	Transcription error for newly or enlarging T2 lesions at 48 weeks, data cited were for ARR at 48 weeks	The ERG agree this is a transcription error. We have amended the following text on page 15 "(3.6 95% CI, 3.1, 4.2] versus 10.9 [95% CI, 9.6, 12. 5])."

Issue 2 Transcription error

Description of problem	Description of proposed amendment	Justification for amendment	ERG response
P18, second paragraph "Caregivers utility decrements were based on information obtained from Gani et al., (2008). ¹⁰ "	"Caregivers utility decrements were based on information obtained from Acaster et al., (2013). ¹¹³ "	Transcription error, Biogen used disutilities from Acaster in the base case; Gani et al 2008 was used in scenario analyses only. Note: reference to Acaster is currently number 113 – this may change when the error is corrected	The ERG agree this is a transcription error. We have amended the following text on page 18 <i>"Caregivers utility decrements were based on information obtained from Acaster et al., (2013).</i> ¹¹³ "

Issue 3 Wording revision

Description of problem	Description of proposed amendment	Justification for amendment	ERG response
P23 section 2.1.1.2 Epidemiology "In Document B, B.1.3.1.2, the CS references a significant amount of data from a website that does not cite any peer reviewed publications"	In Document B, B.1.3.1.2, the CS references a significant amount of data from the MS Trust website that does not cite any peer reviewed publications	Reference to "a website" is ambiguous, this website is for the MS Trust, a useful website widely used by patients suffering with MS.	The ERG consider this to be an appropriate amendment to the wording.
		Later in the paragraph the MS Society is referenced so it is unclear why the MS Trust has not been named	We have changed the sentence on page 23 to <i>"from the MS Trust website"</i>

Issue 4 Wording Revision

Description of problem	Description of proposed amendment	Justification for amendment	ERG response
P25 section 2.1.1.5 Diagnostic criteria "The CS states the use of the McDonald criteria for diagnosis of RRMS and acknowledges the 2017 update. ¹⁹ However, the ERG note that the criteria provided in CS Document B, page 20 are for the 2005 McDonald criteria."	"The CS states the use of the McDonald criteria for diagnosis of RRMS and acknowledges the 2017 update which is provided in CS Document B, appendix L. ¹⁹ However, the ERG note that the criteria provided in CS Document B, page 20 are for the 2005 McDonald criteria, as these criteria were used for the pivotal trial for PegIFN β -1a."	As stated in CS Document B, page 20 the 2005 criteria were provided as these reflect the criteria used in the pivotal trial for PegIFN β -1a, the current wording is therefore ambiguous. The 2017 criteria were also provided in appendix L p 430.	The ERG do not consider this to be a factual error. No change has been made.

Issue 5 Confidential mark-up

Description of problem	Description of proposed amendment	Justification for amendment	ERG response
P44 section 4.2.1. Figure 1 is currently marked AIC	Remove confidential mark-up	PRISMA flow diagram available in Kieseier et al 2015 publication (CS Document C ref number 115)	The ERG note that this confidential marking was used in the CS Document C Figure 2.
			However, the ERG consider it reasonable to remove the marking on page 44 as it has been published in Kieseier et al., 2015.

Issue 6 Factual inaccuracy

Description of problem	Description of proposed amendment	Justification for amendment	ERG response
P 51 table 6	Suggest this wording is revised as numeric data	Data incorrectly stated as not	The ERG agree with these
For:	were provided in addition to the text (see justification for location).	provided were available in Document C, p432 Appendix L,	changes. Page 49 has been amended to
- Disability progression: Multiple Sclerosis Functional Composite	Text preceding table 6 (e.g. "The CS does not provide data for three outcomes:	table 106	"The CS provides data for
- Visual function: Visual Function Test	 progression of disability as measured by MSFC 		progression of disability as measured by MSFC, visual function measured by the VFT
- Cognitive changes (Symbol Digit Modalities Test, SDMT)	visual function measured by the VFT		and cognitive changes measured by the SDMT in
- Paced Audio Serial Addition Test 3 (PASAT 3)	cognitive changes measured by the SDMT.		Document C Table 106 page 430."
"Additional.	All of which did not show a positive effect at 1 year compared to placebo. These three outcome measures are not mentioned in the CS		Table 6 on page 51 has been amended as suggested.
The CS does not report results for this outcome. It is mentioned in a single sentence in Appendix L, with no associated numeric	document B, and are referred to in a single sentence in Appendix L, without associated numeric data. These outcomes are reported in the CSR (pg.77,80,82)."		
results data."	Should be removed/ revised accordingly.		
	Further the text proceeding table 6 (e.g. "but it is unclear why they have not reported data for all outcomes included in the CSR ", and references to PASAT from the CSR) should be removed/ revised accordingly		

Description of problem	Description of proposed amendment	Justification for amendment	ERG response
P 62 section 4.2.11 It is unclear to the ERG as to how reliable the estimates presented in ATTAIN are, for example the ARR by the end of year 5 in ATTAIN is based on only pegIFNβ-1a Q2W, which represents 185 subjects from the original 547 starting ATTAIN (33.8%) (and pegIFNβ-1a Q4W 170 subjects of the original 529 starting ATTAIN [32.1%]) (CS Document C, pg.425).	"ATTAIN was considered complete when the last person completed 96 weeks, meaning that all patients had the opportunity to complete Year 4 (ADVANCE/ATTAIN combined), but only those patients who had enrolled in ATTAIN earlier on had the opportunity to complete Year 5 or longer. It is unclear to the ERG as to how reliable the estimates presented in ATTAIN are, for example the ARR by the end of year 5 in ATTAIN is based on only pegIFNβ-1a Q2W, which represents 185 subjects from the original 547 starting ATTAIN (33.8%) (and pegIFNβ-1a Q4W 170 subjects of the original 529 starting ATTAIN [32.1%]) (CS Document C, pg.425), however it should be noted these results appear consistent with year 4 for which represent 337 subjects from the starting 547 (61.6%)."	Biogen believe this statement is ambiguous. Patients were only required to complete Year 4 (ADVANCE/ATTAIN) to be considered 'completers', A total of 61.6% (n = 337; Figure 3 Doc B, P50) of patients completed year 4. The ARR at Year 5 was only based on 33.8% of patients (n = 185 patients), however this does not mean the remaining 66.2% had stopped treatment due to lack of an adverse event or lack of efficacy. The year 5 estimates demonstrated a statistically significant reduction in ARR vs. pegIFNβ-1a Q4W, aligned with the year 4 results.	The ERG do not consider this to be a factual error. No change made. Note: From Newsome 2018: p2, right hand column, top paragraph: "The study was considered complete when the last patient completed 96 weeks in the ATTAIN study." i.e. 2 years in ATTAIN, end of Year 4 altogether. From Newsome 2018: p3: Results; 1 st para: "Of the 1332 patients who completed ADVANCE, 1076 (81%) were dosed in ATTAIN, and 842 patients (78% of those dosed in ATTAIN; 56% of the original ADVANCE study population) completed the ATTAIN study." So even of those completing the 96 weeks of the ATTAIN study (Year 4 compared with those starting Year 3) have still lost >20% of the sample and representing only just over half the original

	ADVANCE population.
	So although the year 5 results appear consistent with year 4, year 4 have lost lots of participants compared with year 3 and year 1

Issue 8 Transcription error

Description of problem	Description of proposed amendment	Justification for amendment	ERG response
P 66 table 10 For Discontinuations of treatment due to AE in the PegIFNß-1a Q2W group (ADVANCE year 2) is 41 (16%)	Figure within table should be amended to: For Discontinuations of treatment due to AE in the PegIFNß-1a Q2W group (ADVANCE year 2) is 41 (<u>6%</u>)	Transcription error – see Table 19, Doc B	The ERG agree with this transcription error. The text on page 66 has been amended to "6%"

Issue 9 Typographical error

Description of problem	Description of proposed amendment	Justification for amendment	ERG response
P77 section 4.3.1.7 last paragraph "Based on visual inspection of network plots for ARR, CDP3, and CDP6, the ERG"	Based on visual inspection of network plots for ARR, CDP <u>3M</u> , and CDP <u>6M</u> , the ERG	Typographical error Confirmed disability progression at 3 months abbreviated to CDP3M throughout document Confirmed disability progression at 6 months abbreviated to CDP6M throughout document	The ERG agree with this transcription error. The text has been amended on page 77 <i>"CDP<u>3M</u>, and CDP<u>6M"</u></i>

Issue 10 Clarification

Description of problem	Description of proposed amendment	Justification for amendment	ERG response
P 80, "For completeness and to allow for external comparison with results that were used for decision making by NICE recently, the ERG have reported the main results from the MTC undertaken as part of the MTA (reported in Melendez-Torres et al 20176) for ARR, CDP3, and CDP6 within beta-interferons and GA (see Table 14) (see Section 6.2.3) "	"For completeness and to allow for external comparison with results that were used for decision making by NICE recently, the ERG have reported the main results from the MTC undertaken as part of the MTA (reported in Melendez-Torres et al 20176) for ARR, CDP3, and CDP6 within beta-interferons and GA (see Table 14) (see Section 6.2.3). It should be noted these results are not directly comparable as the comparators in the decision problem are different which leads to a differential number of studies informing the networks and comparative effectiveness e.g. for IFNbeta 1a 44, the CS includes additional studies including OPERA I & II, CARE MS-I & II."	Although Biogen agree that the comparison of the two MTC's seems reasonable, additional context is required. The MTC conducted by Biogen has additional comparators and additional studies, resulting in bigger network, e.g. studies such as OPERA I and OPERA II, CARE MS I and CARE MS-II.	The ERG do not consider this to be a factual error. No change made.

Issue 11 Transcription error

Description of problem	Description of proposed amendment	Justification for amendment	ERG response
P 81, Table 14:	CDP3M and CDP6M	CDP3M and CDP6M headings – abbreviations inline with rest of	The ERG agree that table 10 headings should be changed to
CDP3 and CDP6 headings		document.	"CDP3M and CDP6M" and the
CDP6 for IFN beta-1a 30, CS Doc B is		CDP6 for IFN beta-1a 30, CS Doc B should be	IFN beta-1a 30 should be changed to
ARR for GA 20mg, MTA Table 8 is 0.65 (0.59 – 0.72)		ARR for GA 20mg, MTA Table 8 should be 0.66 (0.54 – 0.80) as per	The ERG have not changed ARR for GA 20mg, MTA Table

Issue 12 Wording revision

Description of problem	Description of proposed amendment	Justification for amendment	ERG response
P 82 section 4.3.1.9 NEDA The CS Document C (pg.451) states that "pegIFN beta-1a increased NEDA compared to GA 40 mg tiw, and this difference was statistically significant." Later, in Table 113 (CS Document C) a HR for pegIFN beta-1a 125 mcg q2w of 1.703 (95% CI 1.100,2.635) versus GA 40 mg tiw is reported. This suggests that treatment favours pegIFN beta-1a.	The CS Document C (pg.451) states that "pegIFN beta-1a increased NEDA compared to GA 40 mg tiw, and this difference was statistically significant." Later, in Table 113 (CS Document C) a HR for pegIFN beta-1a 125 mcg q2w of 1.703 (95% CI 1.100,2.635) versus GA 40 mg tiw is reported. This suggests that treatment favours pegIFN beta-1a.	Biogen would like to clarify the results are in favour of pegIFN beta- 1a	The ERG do not consider this to be a factual error. No change made. The information provided in the Biogen Plegridy Full Report document (pg.121) has been checked and is correct.
However, the Biogen Plegridy Full Report document (pg.121) states that "For NEDA, an indirect comparison of pegIFN beta-1a and GA 40 mg tiw (via placebo) showed a statistically significant difference between these treatments (in favour of GA 40 mg tiw)." It is therefore unclear the direction of benefit between the two drugs			

Issue 13 Wording revision / Clarification

Description of problem	Description of proposed amendment	Justification for amendment	ERG response
P 82 section 4.3.1.9 NEDA	Biogen propose this statement is removed.	Reference no. 71 (Rieckmann et al 2013 poster) indicates what is being	The ERG do not consider this to be a factual error. No

The GALA study does not refer to NEDA, nor does the Biogen Report indicate what is being referred to as NEDA so the ERG is not able to identify whether the report or the appendices are correct	referred to as NEDA. Although the term "NEDA" is not mentioned within Rieckmann et al 2013. (Reference number 71), the poster summarises definitions of NEDA: - disease free (no relapses, no EDSS progression, no gadolinium	change made.
	or T2 lesions at months 6 or 12) - clinical disease free (no relapses, no EDSS progression), MRI disease free (no gadolinium, no T2 lesions at months 6 and 12), and - disease activity free (no relapses,	
	 disease activity free (no relapses, no Gadolinium or T2 lesions at months 6 or 12) 	

Issue 14 Clarification

Description of problem	Description of proposed amendment	Justification for amendment	ERG response
P 89 The ERG note that with so many characteristics not reported, and the differences between the studies even when they were reported, it is difficult to assess heterogeneity of patient characteristics. The ERG agrees that the clinical similarity of study populations was often unclear.	The ERG note that many trials did not report characteristics (however these were often limited to the smaller studies, reported only in abstract publications) and the differences between the studies even when they were reported, it is difficult to assess heterogeneity of patient characteristics. The ERG agrees that the clinical similarity of study populations was often unclear."	Whilst we agree – the studies referred to are smaller and often only report in abstract – therefore we expect these to have a low relative contribution to any analysis	The ERG do not consider this to be a factual error. No change made.

Issue 15 Clarification

Description of problem	Description of proposed amendment	Justification for amendment	ERG response
P 95 "Transitivity of the MTCs included in the CS is unclear. The ERG note systematic differences between the comparisons being made other than the treatments that are being compared."	"Transitivity of the MTCs included in the CS is unclear. The ERG note systematic differences between the comparisons being made other than the treatments that are being compared. However, it should be noted that transitivity has not been cited in any prior NICE appraisal, many of which include the same studies and networks (e.g. TA312, TA5527, TA533)"	Biogen searched for the term "Transitivity" in all prior NICE MS appraisals and found no hits, many of these appraisals compare the same studies in similar networks. Where possible statistical heterogeneity was explored through the presentation of direct meta- analyses (the I ² was either 0 or low [38%]).	The ERG do not consider this to be a factual error. No change made.

Issue 16 Factual inaccuracy

Description of problem	Description of proposed amendment	Justification for amendment	ERG response
P 95 last bullet point There was a lack of rationale for why some study arms were included in the MTC but not others. For example, the BEYOND54 trial includes 3 arms: GA 20 mg QD, IFNβ-1b 250 mcg QAD, and IFNβ-1b 500 mcg QAD . Only GA 20 mg QD and IFNβ-1b 250 mcg QAD were included in the MTC of ARR. There might have been good explanations for this, but it was not made explicit in the CS	Suggest this bullet point is deleted	Document C, appendix D2.3 p34 states "Only treatments using the included interventions at EU licensed doses were included in the final networks." Hence why IFNβ-1b 500 mcg QAD is not included in the networks. A table of licensed doses were provided in appendix D1.2, table 23 Biogen acknowledge this could have been more explicit in Document B, however in	The ERG have made the suggested amendment to page 95. The ERG note that this sentence <i>"Biogen acknowledge</i> <i>this could have been more</i> <i>explicit in Document B,</i> <i>however in"</i> is not complete so not action was taken.

Issue 17 Clarification

Description of problem	Description of proposed amendment	Justification for amendment	ERG response
P 96 first bullet point Multi-arm studies were sometimes included in the MTC (e.g. Calabrese 201258 in the ARR MTC) with no explanation of how (or if) correlations between the outcomes were accounted for in the models	Multi-arm studies were sometimes included in the MTC (e.g. Calabrese 201258 in the ARR MTC) with only brief explanation correlation between the outcomes, however the ERG note the MTC code provide evidence that correlation was indeed accounted for.	Correlation is briefly described in Document C section D2.8. For clarify, correlation was accounted for using standard methods in NICE TSD 2, We acknowledge this should have been described in more detail. Additionally, the MTC code provided was based on the example code given in the appendix of NICE TSD 2	The ERG has made the following amendment to the text on page 96 "Multi-arm studies were sometimes included in the MTC (e.g. Calabrese 201258 in the ARR MTC) with a brief explanation of how correlations between the outcomes were accounted for in the models provided in CS Document C section D2.8"

Issue 18 Clarification

Description of problem	Description of proposed amendment	Justification for amendment	ERG response
P 96 second bullet point There were few eligible studies. Some of the assessment of whether an MTC is appropriate is reliant upon multiple trials for each comparison. First, prior to conducting an MTC, pairwise meta-analyses of all interventions that have been directly compared should be carried to examine statistical heterogeneity. Confidence in the MTC will be low in the presence of high	There were few eligible studies. Some of the assessment of whether an MTC is appropriate is reliant upon multiple trials for each comparison in order to assess statistical heterogeneity. First, prior to conducting an MTC, pairwise meta-analyses of all interventions that have been directly compared should be carried to examine statistical heterogeneity. Confidence in the MTC will be low in the presence of high heterogeneity.	Having 2 or more studies for each treatment comparison is not a prerequisite for conducting a network meta-analysis, they can still be conducted if there are only single studies for each comparison, but this removes the possibility of assessing statistical heterogeneity. There is more than 1 direct comparison in the ARR network – see Document B figure 14 (p78) Pairwise meta-analyses are	The ERG have amended the text on page 96 to add the following text "2 direct comparisons with more than 1 study (2 studies comparing dimethyl fumarate 240 mg bid versus placebo, 2 studies comparing GA 20mg versus IFN beta 1-a 30 mcg),"

heterogeneity. In the CS, the MTC for ARR included only 1 direct comparison with more than 1 study (2 studies comparing dimethyl fumarate 240 mg bid versus placebo), the MTC for CDP3M included only 1 direct comparison with more than 1 study (2 studies comparing dimethyl fumarate 240 mg bid versus placebo), and the MTC for CDP6M included only 1 direct comparison with more than 1 study (2 studies comparing dimethyl fumarate 240 mg bid versus placebo). No other comparisons could be assessed for heterogeneity.	In the CS, the MTC for ARR included 2 direct comparisons with more than 1 study (2 studies comparing dimethyl fumarate 240 mg bid versus placebo, 2 studies comparing GA 20mg versus IFN beta 1-a 30 mcg), the MTC for CDP3M included only 1 direct comparison with more than 1 study (2 studies comparing dimethyl fumarate 240 mg bid versus placebo), and the MTC for CDP6M included only 1 direct comparison with more than 1 study (2 studies comparing dimethyl fumarate 240 mg bid versus placebo). No other comparisons could be assessed for heterogeneity.	available in the Biogen Plegridy Full Report Appendices document for dimethyl fumarate 240 mg bid versus placebo ARR (Figure 26 in Appendix) – $l^2=0\%$ ARR (Figure 28 in Appendix) – $l^2=0\%$ ARR (Figure 30 in Appendix) – $l^2=0\%$ Furthermore, IFN beta-1a 30 mcg qw versus GA and placebo, respectively: ARR (Figure 32 in Appendix) – $l^2=38\%$ ARR (Figure 33 in Appendix) – $l^2=0\%$ These l^2 statistics would suggest no or low evidence of heterogeneity.	
--	--	---	--

Issue 19 Typographical error

Description of problem	Description of proposed amendment	Justification for amendment	ERG response
P 99 section 5.1.1.1 The health outcome reported were EDSS changes, relapses, SPMS, reasons for discontinuation, YR and QALYs	The health outcome reported were EDSS changes, relapses, SPMS, reasons for discontinuation, LY and QALYs	Typographical error for life years	The ERG agree with this typographical error. "YR" has been amended to "LY" on page 99

Issue 20 Factual inaccuracy

Description of problem	Description of proposed amendment	Justification for amendment	ERG response
 100 & 101 section 5.2.1, section 5.2.1 Searches were limited to records published after 1 February 2018, in English The current systematic review updated this previous search from February 2018-November 2018 	Should be: Searches were limited to records published after 1 February 2016, in English The current systematic review updated this previous search from February 2016 - November 2018	Factual inaccuracy in the dates for the searches	The ERG agree this is incorrect. We have amended page 100 and 101 as requested. <i>"1</i> <i>February 2016"</i> and <i>"February</i> <i>2016 - November 2018"</i>

Issue 21 Wording revision / clarification

Description of problem	Description of proposed amendment	Justification for amendment	ERG response
101 section 5.2.1 After clarification, it was confirmed that Econlit was used in preference to EconLit with Full Text as the company claims that the latter is restricted to full text only, which is not the case	Biogen suggest this sentence is removed.	The EconLit website states: "EconLit with Full Text is the full-text counterpart to EconLit, the American Economic Association's authoritative index for economic literature. In addition to all of the indexing available in EconLit, this database provides full text for key economic journals and books." Our understanding of the definition on their website is that EconLit and EconLit with Full Text both provide the same sources/indexing; however, EconLit with Full Text provides not only the indexing but	The ERG agree with the second paragraph in the justification column but note that this is not what the stated in response to clarification question B1. Therefore, the ERG's original statement is correct. However, we consider this to be a genuine misunderstanding therefore, we will remove this sentence as requested on page 101

		also the full text of the sources indexed.	
--	--	--	--

Issue 22 Wording revision / factual inaccuracy

Description of problem	Description of proposed amendment	Justification for amendment	ERG response
P 108 section 5.3.4 The ERG also agree that it was appropriate to exclude DMTs that are used for treating people with highly active RRMS and RES- RRMS, as pegIFNβ-1a does not have marketing authorisation for these populations	"The ERG also agree that it was appropriate to exclude DMTs that are used for treating people with highly active RRMS and RES-RRMS, as pegIFN β -1a is not used in clinical practice for these populations, in-line with the NHSE DMT algorithm."	The marketing authorisation supports the use in these population, however it is not used in clinical practice.	The ERG agree and have changed the text on page 108 to "The ERG also agree that it was appropriate to exclude DMTs that are used for treating people with highly active RRMS and RES-RRMS, as pegIFNβ-1a is not used in clinical practice for these populations."

Issue 23 Typographical error

Description of problem	Description of proposed amendment	Justification for amendment	ERG response
P 108 Table 18	Dimethyl fumarate	Typographical error	The ERG note the typographical error. We have
P 140 Table 41 P 147 Table 47			corrected the spelling of dimethyl fumarate in these
			tables.
Dimethyl fumerate			

Issue 24 Suggestion

Description of problem	Description of proposed amendment	Justification for amendment	ERG response
P 110 – Table 19	Reduce font size or adjustment of columns	The values in the first column are rounded to 3 decimal places (EDSS 5-5.5 = 0.000) whereas it should be 0.0005	The ERG agree, thank you. We have adjusted the column width in Table 19 so that the hidden values can be seen.

Issue 25 Clarification

Description of problem	Description of proposed amendment	Justification for amendment	ERG response
P 123 – last paragraph & P 146 – Table 46 Though there may be some explanation for this, the ERG consider it more appropriate to use the disutilities from Gani et al.	"Though this could be partially explained as care requirements and intensity for when patients become wheelchair or bed bound (EDSS 7 and 9, respectively) the ERG consider it more appropriate to use the disutilities from Gani et al."	Carer disutility from Acaster et al. 2013 has been used in the base case for the last three appraisals; NICE TA 493 (cladribine), NICE TA 527 (Beta interferons), and NICE TA 533 (ocrelizumab). Biogen would request clarification as to why Gani et al. would be more appropriate. Carer requirements and intensity are vastly different at EDSS 5-6.5 when patients are increasingly disabled, whereas they could lower at higher EDSS scores when patients are wheelchair or bedbound. Thus, it would be possible to have a higher carer disutility in patients with an EDSS 5- 6.5 compared to an EDSS 8.0.	The ERG does not consider this an inaccuracy. Here, the company elaborates/explains why the disutilities in less severe health states may be higher than those in more severe health states. No change required.

Issue 26 Transcription error

Description of problem	Description of proposed amendment	Justification for amendment	ERG response
P 146 Table 46 Table 46: Caregivers utility decrements obtained from Ganie et al., (2008) EDSS 4-4.5 – Acaster value: - 0.4050 EDSS 6-6.5 – Acaster value: - 0.1620	P 146 Table 46: Caregivers utility decrements obtained from Gani et al., (2008) EDSS 4-4.5 – Acaster value: -0.0405 EDSS 6-6.5 – Acaster value: -0.1670	Typographical error in table title Transcription error in utility decrement values	The ERG agree these are transcription errors. We have amended the title to 'Caregivers utility decrements obtained from Gani et al., (2008)' and disutility decrements EDSS 4-4.5 – Acaster value: -0.0405 and EDSS 6-6.5 – Acaster value: - 0.1670.

Technical engagement response form

Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis [ID1521]

As a stakeholder you have been invited to comment on the technical report for this appraisal. The technical report and stakeholders responses are used by the appraisal committee to help it make decisions at the appraisal committee meeting. Usually, only unresolved or uncertain key issues will be discussed at the meeting.

We need your comments and feedback on the questions below. You do not have to answer every question. The text boxes will expand as you type. Please read the notes about completing this form. We cannot accept forms that are not filled in correctly. Your comments will be summarised and used by the technical team to amend or update the scientific judgement and rationale in the technical report.

Deadline for comments - end of 24 October 2019

Thank you for your time.

Please log in to your NICE Docs account to upload your completed form, as a Word document (not a PDF).

Notes on completing this form

- Please see the technical report which summarises the background and submitted evidence. This will provide context and describe the questions below in greater detail.
- Please do not embed documents (such as PDFs or tables) because this may lead to the information being mislaid or make the response unreadable. Please type information directly into the form.
- Do not include medical information about yourself or another person that could identify you or the other person.
- Do not use abbreviations.
- Do not include attachments such as journal articles, letters or leaflets. For copyright reasons, we will have to return forms that have attachments without reading them. You can resubmit your form without attachments, but it must be sent by the deadline.
- If you provide journal articles to support your comments, you must have copyright clearance for these articles.

Technical engagement response form

- Combine all comments from your organisation (if applicable) into 1 response. We cannot accept more than 1 set of comments from each organisation.
- Please underline all confidential information, and separately highlight information that is submitted under <u>'commercial in confidence' in turquoise</u>, all information submitted under <u>'academic in confidence' in yellow</u>, and all information submitted under <u>'depersonalised data' in pink</u>. If confidential information is submitted, please also send a second version of your comments with that information replaced with the following text: 'academic/commercial in confidence information removed'. See the <u>Guide to the processes of technology appraisal</u> (sections 3.1.23 to 3.1.29) for more information.

We reserve the right to summarise and edit comments received during engagement, or not to publish them at all, if we consider the comments are too long, or publication would be unlawful or otherwise inappropriate.

Comments received during engagement are published in the interests of openness and transparency, and to promote understanding of how recommendations are developed. The comments are published as a record of the comments we received, and are not endorsed by NICE, its officers or advisory committees.

About you

Your name	
Organisation name – stakeholder or respondent (if you are responding as an individual rather than a registered stakeholder please leave blank)	Biogen Idec
Disclosure Please disclose any past or current, direct or indirect links to, or funding from, the tobacco industry.	None

Questions for engagement

Issue 1: Use of peginterferon beta-1a in clinical practice							
Several options are available for treating relapsing- remitting multiple sclerosis (not highly active or rapidly evolving severe subgroups) at first line including interferon beta-1a, interferon beta-1b, dimethyl fumarate, glatiramer acetate, teriflunomide, alemtuzumab and ocrelizumab. Are the patients who are likely to be treated with peginterferon beta-1a in the NHS the same as those who would have all these treatments, including the recently approved options, alemtuzumab and ocrelizumab?	As discussed at the NICE Technical engagement call, Biogen agree with the recommendations made by the clinical expert that patients should have the option to choose their disease modifying therapy (DMT) based on factors such as risk-benefit profile of the DMT, patient lifestyle (including pregnancy considerations), route and frequency of administration.						
	Patients with relapsing remitting multiple sclerosis (not highly active or rapidly evolving severe subgroups) could present with either mild or more severe disease activity. Thus, treatment options would vary from patient to patient based on the factors mentioned above (risk-benefit profile, route & frequency of administration and patient lifestyle). The clinical expert on the technical engagement call mentioned that even though his recommendation for patients with more severe disease would be to consider escalation to higher efficacy DMTs, patients may still opt for a treatment option with a more tolerable and well-established safety profile such as an interferon.						
	Biogen agree with the recommendations made by the clinical expert that that all treatments should be available as an option; the choice of treatment should be tailored to each patient's need after shared conversations between clinician and patient.						
If peginterferon beta-1a is not a cost-effective first-	 Biogen believe peginterferon beta-1a should be considered in the same position as currently recommended within the NHS England DMT algorithm (1): first-line treatment option for RRMS, and 						
line treatment, has enough evidence been presented to consider it as an alternative first-line treatment for patients who are intolerant to their initial disease-	 alternative first-line treatment option for patients who are intolerant to their initial DMT. 						
modifying therapy or later in the treatment pathway?	Biogen would like to highlight that there are >1,400 patients currently being treated with peginterferon beta-1a in-line with the NHS England DMT algorithm (2).						

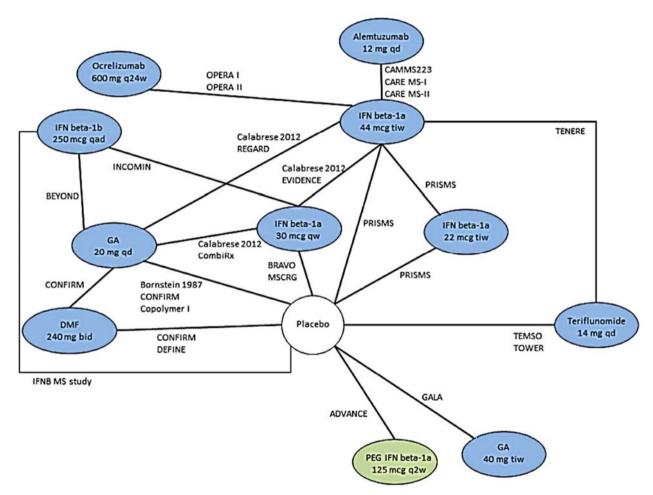
Technical engagement response form

	We do not foresee any reason why the data from ADVANCE trial can't be extrapolated to first-line treatment for patients who are intolerant to their initial DMT.					
	The technical engagement clinical expert recommended that peginterferon beta-1a would be considered for efficacy switch (e.g. from glatiramer acetate to interferon) as some patients prefer switching therapy between the lower efficacy DMTs, considering their established safety profile, before potentially initiating on a higher efficacy treatment.					
	Biogen has a marketing authorisation for patients with RRMS (3), and thus would support its use in efficacy switch patients as described by the clinical expert.					
	Alemtuzumab is currently being reviewed by the EMA safety committee (PRAC) following safety concerns and is currently restricted in adults with RRMS that is highly active despite treatment with at least two DMTs or where other DMTs cannot be used (4).					
Is alemtuzumab an appropriate comparator?	Biogen has agreed to include alemtuzumab within the appraisal as a comparator (in-line with the scope) in the interim whilst a decision by the EMA is pending. In the event that alemtuzumab is no longer recommended as a first-line DMT, Biogen would suggest alemtuzumab is removed as a comparator.					
	Biogen has already provided comparisons against all other comparators, including ocrelizumab, and thus no new analyses should be required in the event that alemtuzumab is removed as a comparator.					
Issue 2: Minimum clinically significant reduction in ou	tcome measures					
In clinical practice, what is considered a minimum clinically significant reduction for the following outcomes: a) annualised relapsed rate	Biogen were not able to identify any published literature that measures the minimum clinically significant reduction (MCID) of annualised relapse rate (ARR) or confirmed disability progression (CDP) in patients with multiple sclerosis. This must therefore be deferred to clinical expert opinion.					
b) confirmed disability progression?	It should also be acknowledged that Biogen is not aware that this question regarding the MCID of ARR or CDP has been raised in previous NICE multiple sclerosis appraisals.					

Issue 3: Generalisability of ADVANCE population							
Are the patients in the ADVANCE trial likely to reflect people who would be eligible for peginterferon beta- 1a in NHS practice? For example, are patients in Eastern Europe likely to be comparable to the UK in characteristics and the care and treatment they receive?	Biogen believe the patients in the ADVANCE trial do reflect the people who would be eligible for peginterferon beta-1a in NHS practice. Peginterferon beta-1a is currently being used in NHS practice and has been available since August 2015 (5).						
	Unfortunately, Biogen could not provide a comparison of the geographical locations or ethnicity of patients included in the pivotal studies as this information is either not published or categorised differently within the comparator pivotal studies (e.g. rest of world).						
	Based on the above, Biogen would argue that the baseline characteristics from the ADVANCE trial are reflective of the UK MS population and thus should be used in the economic model.						
If not, should the economic model use the baseline characteristics of the population from the UK MS Risk Sharing Scheme?	Biogen demonstrated within our original submission that using the baseline characteristics from the UK MS Risk Sharing Scheme (RSS) in the economic model do not alter the cost-effectiveness results.						
	Peginterferon beta-1a remains a cost-effective option for the treatment of patients with RRMS irrespective of whether the baseline characteristics from ADVANCE or the RSS are used in the economic model.						
Issue 4: Clinical outcomes used in the economic n	nodel						
	Biogen believe all the relevant data to model the clinical effectiveness has been included within the network meta-analysis in our submission.						
Has the company used all available data to model clinical effectiveness?	The ERG noted some inconsistencies in our submission with regards to the choice of studies used to derive the effectiveness for the comparators in the economic model. Biogen has provided a rationale for the inconsistency described below:						
clinical electiveness?	 For interferon beta-1a, Biogen's submission excluded the PRISMS (1998) trial for the network for ARR. 						
	This was because the PRISMS study does not report the ARR within the publication (mean relapses per patient and proportion of relapse free reported).						

	Biogen do not believe calculating the ARR based on the mean number of relapses per patient (as done so by Melendez-Torres et al - ID 527) is a justified assumption. As a result, this study was excluded from the ARR network.
	Nevertheless, we have conducted a further scenario analysis to include PRISMS into the NMA (Figure 1) showing minimal differences in the results (Table 1).
	Peginterferon beta-1a remains a cost-effective option for the treatment of patients with RRMS regardless of whether PRISMS study is included within the ARR network or not using Biogen's base case (Table 3) as well as the ERG's preferred assumptions (Table 4)
•	For interferon beta-1a, Biogen's submission excluded the MSCGR (1996) trial from the network for CDP-6M.
	This was because the hazard ratio needed to include in this network was not reported in the publication or the CSR. The NICE MTA included this trial within the network as they included a hazard ratio using the method described in Tierney et al. (2007). Biogen avoided estimating the hazard ratio from the reported risk ratio as it would increase uncertainty and thus decided to exclude this study from the network.
	Nevertheless, we have conducted a further scenario analysis to include MSCGR into the NMA (Figure 2) showing minimal differences in the results (Table 2).
	Peginterferon beta-1a remains a cost-effective option for the treatment of patients with RRMS regardless of whether MSCGR study is included within the ARR network or not using Biogen's base case (Table 3) as well as the ERG's preferred assumptions (Table 4)
•	A discrepancy between the number of studies used for the analyses of stopping treatment because of any reasons for the clinical section (3 trials), and in the economic models (18 trials)
	For the clinical section, the NMA restricted stopping treatment because of any reason to a 12-months follow-up which resulted in the reduction in number of trials within the network (3 trials). Most trials used a 22 to 24 months follow-up, however as we wanted to include the ADVANCE trial (pivotal trial for peginterferon beta-1a)

Technical engagement response form


	into our analysis we focused on trials with a 12-month follow up. There was also significant variation in the definitions of stopping criteria between trials which would have increased uncertainty.				
	The inputs used in the economic model were derived from the individual DMT's pivotal trials, and hence resulted in a larger number of studies (18 trials). This is consistent with the previous appraisals, and thus Biogen would not consider this issue as an inconsistency.				
	Biogen presented a suite of scenario analyses varying discontinuation rates within our original manufacturer submission demonstrating that peginterferon beta-1a remained a cost-effective options for the treatment of patients with RRMS.				
Issue 5: Treatment waning					
	There is a dearth of available literature in regard to treatment waning for DMTs, and current waning assumptions applied to the economic model are arbitrary. However for consistency with prior technology appraisals, we have applied the same step-change in hazard ratio for disability progression across all comparators.				
Are the waning effects modelled by the company clinically plausible? That is, from years 3 to 5, effect	The development of neutralising antibodies (NAbs) against beta-interferons can reduce the efficacy of treatment, and has been a theory postulated in prior NICE appraisals to be directly linked to treatment waning.				
decreases to 75% of full treatment effect and from year 6 onwards, the effect decreases further to 50% of full treatment effect.	The incidence of NAbs with peginterferon beta-1a is <1%, considerably lower compared to its comparators such as interferon-beta 1a 30mcg (5-8%) (6), interferon beta-1a 44mcg (13-24%)(7), and interferon beta 1-b (23-41%)(8). Glatiramer acetate is not associated with Nabs (9). Thus, having the same waning effect for peginterferon beta-1a as the other interferons could be underestimating effect size.				
	Nevertheless, Biogen would like to iterate that peginterferon beta-1a remains to be a cost-effective treatment option when the same waning effects are used for peginterferon beta-1a and its comparators.				
Is it clinically plausible that the waning effects are the same for all treatments?	Different mechanisms of actions of the MS therapies would likely pertain to alternative waning effects – e.g. immune reconstitution therapies vs maintenance therapies.				

However, as Biogen believe that current evidence in this area is limited, Biogen would suggest that this questions is most appropriately answered by the clinical experts.				
There are significant differences between the DMTs with regards to safety and adverse event profile. As a result, Biogen's preference is to use discontinuation rates obtained from the pivotal trials of each DMT, as opposed to the same probability for each DMT. This has been reflected within our base case analysis.				
However, Biogen has also conducted a scenario analysis where the same probability has been applied to all DMTs (5% discontinuation rate), maintaining consistency with previous appreciable.				
appraisals. Peginterferon beta-1a remains a cost-effective option for the treatment of patients with RRMS even when the same probability of stopping treatment is applied to the economic model.				
Biogen has already submitted three scenarios where the different stopping criteria is used in the economic model.				
 Discontinuation rates obtained from the pivotal trials of each DMT, weighted by sample size 				
Discontinuation rates obtained from the pivotal trials of each DMT, weighted by person time				
3. Same probability of stopping rates for all DMTs (5% applied to all DMTs)				
Across all analyses peginterferon beta-1a was demonstrated to be a cost-effective option for the treatment of patients with RRMS regardless of which stopping criteria is used.				

	Biogen has used utility data derived from Orme et al. (2007) in the economic model for its base case. This is consistent with the previous appraisals.
	Biogen has already submitted a scenario analysis using utility data using Thompson et al. (2017).
Which utility value data set, Orme et al. (2007) or Thompson et al. (2017), is more plausible for patients likely to have peginterferon beta-1a?	Biogen would like to iterate that the Thompson et al. (2017) study used the same data as the Orme et al. (2007) study (obtained from the MS Survey in 2006). However, the Orme paper has a much larger sample size (n=2,048) across all MS types (RRMS, PPMS, SPMS) (10), whereas the Thompson paper is restricted to a much smaller sample size (n=779) (11). Therefore, Biogen believe utility data obtained from the Orme paper would be more plausible, and also maintains consistency with the previous appraisals.
	Regardless of whether utility data is obtained using the Orme et al (2007) study or the Thompson et al. (2017) study, peg-interferon beta-1a remains a cost-effective option for patients with RRMS.

ARR = annualised relapse rate; CDP = confirmed disability progression; CDP 6M = confirmed disability progression at 6-months; DMT = disease modifying therapy; EMA = European Medicines Agency; ERG = Evidence Review Group; MCID = minimum clinically significant decrease; MS = multiple sclerosis; RES = rapidly evolving severe MS; RRMS = relapsing remitting multiple sclerosis; RSS = risk sharing scheme; Nabs = neutralising antibodies.

Figure 1: Network for annualised relapse rate including PRISMS trial

DMF = dimethyl fumarate; GA = glatiramer acetate; IFN = interferon; PEG IFN = pegylated interferon; q24w = every 24 weeks; qad = every other day; qd = once daily; qw = once weekly; tiw = three times weekly.

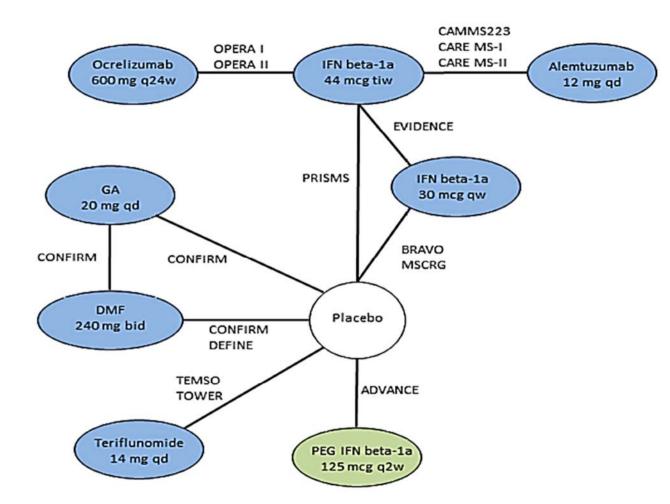

Technical engagement response form

Table 1: Rate ratio on ARR versus placebo including PRISMS study in the network

Treatment	Rate ratio for ARR from original submission	95% CI	Rate ratio for ARR including PRISMS	95% CI
PegIFNβ-1a				
IM IFNβ-1a 30				
IFNβ-1a 22				
IFNβ-1a 44				
IFNβ-1b				
GA 20				
GA 40				
GenGA 20				
GenGA 40				
Teriflunomide				
DMF				
Alemtuzumab				
Ocrelizumab				

DMF = dimethyl fumarate; PEG IFN = pegylated interferon; GA = glatiramer acetate; genGA = generic glatiramer acetate; IFN = interferon

Figure 2: Network for confirmed disability progression at 6-months including MSCRG trial

bid = twice daily; DMF = dimethyl fumarate; PEG IFN = pegylated interferon; qad = every other day; q24w = once every 24 weeks; qd = once daily; tiw = 3 times a week.

Technical engagement response form

Table 2: Hazard ratio on CDP at 6 months versus placebo including MSCRG study

Treatment	Hazard ratio for CDP-6M from original submission	95% CI	Hazard ration for CDP- 6M including MSCRG	95% CI
PegIFNβ-1a				
IM IFNβ-1a 30				
IFNβ-1a 22				
IFNβ-1a 44				
IFNβ-1b				
GA 20				
GA 40				
GenGA 20				
GenGA 40				
Teriflunomide				
DMF				
Alemtuzumab				
Ocrelizumab				

DMF = dimethyl fumarate; PEG IFN = pegylated interferon; GA = glatiramer acetate; genGA = generic glatiramer acetate; IFN = interferon

Table 3: Cost-effectiveness results using Biogen's base case of two additional scenario analyses using list prices.

Scenario	pegIFNβ- 1a	GA20	GA40	genGA 20	genGA 40	IFNβ-1b 44	IFNβ-1b	IFNβ-1a 30	teriflunomi de	DMF	ocrelizuma b	alemtuzum ab
Base case -	discounted											
QALY	4.39	0.75	0.74	0.75	0.74	0.17	NA	0.46	0.60	0.44	-0.50	-1.08
Costs	£273,641	-£11,423	-£14,035	-£8,701	-£11,033	-£19,328	NA	-£20,557	-£23,796	-£34,865	-£66,027	-£1,250
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a LCLE
Scenario: In	cluding PRISM	S study for AF	RR			11			I			
QALY	4.394	0.75	0.74	0.75	0.74	0.17	N/A	0.47	0.60	0.45	-0.50	-1.08
Costs	£273,621	-£11,449	-£14,068	-£8,727	-£11,066	-£19,380	N/A	-£20,592	-£23,837	-£34,903	-£66,064	-£1,294
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a LCLE
Scenario: In	cluding MSCR	G study for CD	P-6M			1						
QALY	4.39	0.74	0.73	0.74	0.73	0.12	#N/A	0.26	0.59	0.44	-0.55	-1.13
Costs	£273,641	-£11,259	-£13,860	-£8,534	-£10,855	-£18,601	#N/A	-£17,369	-£23,747	-£34,771	-£65,629	-£424
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a LCLE
Scenario: In	cluding PRISM	S study for AF	RR & MSCRG s	tudy for CDP-	6M	I		1		1	1	1
QALY	4.39	0.74	0.73	0.74	0.73	0.12	#N/A	0.26	0.60	0.44	-0.55	-1.13
Costs	£273,621	-£11,285	-£13,893	-£8,561	-£10,888	-£18,654	#N/A	-£17,404	-£23,788	-£34,809	-£65,667	-£468
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a LCLE

CDP-6M= confirmed disability progression at 6-months; DMF = dimethyl fumarate; DMT = disease-modifying therapy; GA = glatiramer acetate; genGA = generic glatiramer acetate; ICER = , incremental cost-effectiveness ratio; IFN = interferon; IM = intramuscular; LCLE = less costly, less effective; MS = multiple sclerosis; QALY = quality-adjusted life-year; RRMS = relapsing-remitting multiple sclerosis; SC = subcutaneous

Technical engagement response form

Table 4: Cost-effectiveness results using ERG preferred assumptions of two additional scenario analyses using list prices.

Scenario	pegIFNβ- 1a	GA20	GA40	genGA 20	genGA 40	IFNβ-1b 44	IFNβ-1b	IFNβ-1a 30	teriflunomi de	DMF	ocrelizuma b	alemtuzum ab
ERG Base o	ase - discounte	ed										
QALY	5.41	1.24	1.25	1.24	1.25	0.50	N/A	0.95	0.91	0.65	-0.10	-0.22
Costs	£276,655	-£6,609	-£6,890	-£2,928	-£3,209	-£19,260	N/A	-£13,784	-£42,742	-£63,395	-£65,412	£5,727
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a dominated
Scenario: E	RG base case i	including PRIS	MS study for A	ARR								
QALY	5.41	1.24	1.25	1.24	1.25	0.50	#N/A	0.95	0.91	0.65	-0.10	-0.22
Costs	£276,618	-£6,655	-£6,944	-£2,974	-£3,263	-£19,342	#N/A	-£13,839	-£42,821	-£63,468	-£65,469	£5,670
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a dominated
Scenario: E	RG base case i	including MSC	RG study for C	DP-6M								
QALY	5.41	1.23	1.23	1.23	1.23	0.44	#N/A	0.71	0.90	0.64	-0.16	-0.26
Costs	£276,655	-£6,428	-£6,710	-£2,742	-£3,023	-£18,524	#N/A	-£10,663	-£42,690	-£63,315	-£65,123	£6,385
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a dominated
Scenario: E	RG base case i	including PRIS	MS study for A	ARR & MSCRG	study for CDI	P-6M		_	1		1	
QALY	5.41	1.23	1.24	1.23	1.24	0.44	#N/A	0.72	0.91	0.64	-0.16	-0.26
Costs	£276,618	-£6,474	-£6,763	-£2,788	-£3,077	-£18,606	#N/A	-£10,718	-£42,769	-£63,387	-£65,180	£6,328
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a dominated

CDP-6M= confirmed disability progression at 6-months; DMF = dimethyl fumarate; DMT = disease-modifying therapy; ERG = Evidence review group; GA = glatiramer acetate; genGA = generic glatiramer acetate; ICER = , incremental cost-effectiveness ratio; IFN = interferon; IM = intramuscular; LCLE = less costly, less effective; MS = multiple sclerosis; QALY = quality-adjusted life-year; RRMS = relapsing-remitting multiple sclerosis; SC = subcutaneous

Technical engagement response form

References

1. NHSEngland. Treatment Algorithm for Multiple Sclerosis Disease-Modifying Therapies. 2019 4 September 2018. Contract No.: Gateway reference 07603.

2. Biogen Idec Ltd. Data on File.

3. European Medicines A. Summary of Product Characteristics for Plegridy. <u>https://www.ema.europa.eu/en/documents/product-information/plegridy-epar-product-information/plegridy-epar-product-information_en.pdf</u>.

4. European Medicines A. European Medicines Agency: Use of multiple sclerosis medicine Lemtrada restricted while EMA review is ongoing. <u>https://wwwemaeuropaeu/en/documents/referral/lemtrada-article-20-referral-use-multiple-sclerosis-medicine-lemtrada-restricted-while-ema-review_enpdf</u>. 2019.

5. NHSEngland. Specialised Services Circular: Multiple Sclerosis: First line disease modifying agents. 10 August 2015.

6. European Medicines A. Summary of Products Characteristics for Avonex; <u>https://www.ema.europa.eu/en/documents/product-information/avonex-epar-product-information_en.pdf</u>.

7. European Medicines A. Summary of Product Characteristics for Rebif; <u>https://www.ema.europa.eu/en/documents/product-information/rebif-epar-product-information en.pdf</u>.

8. European Medicines A. Summary of Product Characteristics for Betaferon; <u>https://www.ema.europa.eu/en/documents/product-information/betaferon-epar-product-information_en.pdf</u>.

9. Teva. Summary of Product Characteristics for Copaxone; <u>https://www.medicines.org.uk/emc/product/183/smpc</u>.

10. Orme M, Kerrigan J, Tyas D, Russell N, Nixon R. The effect of disease, functional status, and relapses on the utility of people with multiple sclerosis in the UK. Value Health. 2007;10(1):54-60.

11. Thompson A, Kobelt G, Berg J, Capsa D, Eriksson J, Miller D, et al. New insights into the burden and costs of multiple sclerosis in Europe: Results for the United Kingdom. Multiple sclerosis. 2017;23(2_suppl):204-16.

Technical engagement response form

Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis [ID1521]

As a stakeholder you have been invited to comment on the technical report for this appraisal. The technical report and stakeholders responses are used by the appraisal committee to help it make decisions at the appraisal committee meeting. Usually, only unresolved or uncertain key issues will be discussed at the meeting.

We need your comments and feedback on the questions below. You do not have to answer every question. The text boxes will expand as you type. Please read the notes about completing this form. We cannot accept forms that are not filled in correctly. Your comments will be summarised and used by the technical team to amend or update the scientific judgement and rationale in the technical report.

Deadline for comments – end of **24 October 2019**

Thank you for your time.

Please log in to your NICE Docs account to upload your completed form, as a Word document (not a PDF).

Notes on completing this form

- Please see the technical report which summarises the background and submitted evidence. This will provide context and describe the questions below in greater detail.
- Please do not embed documents (such as PDFs or tables) because this may lead to the information being mislaid or make the response unreadable. Please type information directly into the form.
- Do not include medical information about yourself or another person that could identify you or the other person.
- Do not use abbreviations.
- Do not include attachments such as journal articles, letters or leaflets. For copyright reasons, we will have to return forms that have attachments without reading them. You can resubmit your form without attachments, but it must be sent by the deadline.
- If you provide journal articles to support your comments, you must have copyright clearance for these articles.
- Combine all comments from your organisation (if applicable) into 1 response. We cannot accept more than 1 set of comments from each organisation.
- Please underline all confidential information, and separately highlight information that is submitted under <u>'commercial in confidence' in turquoise</u>, all information submitted under <u>'academic in confidence' in yellow</u>, and all information submitted under <u>'depersonalised data' in pink</u>. If confidential

information is submitted, please also send a second version of your comments with that information replaced with the following text: 'academic/commercial in confidence information removed'. See the <u>Guide to the processes of technology appraisal</u> (sections 3.1.23 to 3.1.29) for more information.

We reserve the right to summarise and edit comments received during engagement, or not to publish them at all, if we consider the comments are too long, or publication would be unlawful or otherwise inappropriate.

Comments received during engagement are published in the interests of openness and transparency, and to promote understanding of how recommendations are developed. The comments are published as a record of the comments we received, and are not endorsed by NICE, its officers or advisory committees.

About you

Your name	Declan Chard
Organisation name – stakeholder or respondent (if you are responding as an individual rather than a registered stakeholder please leave blank)	Clinical expert, nominated by the MS Trust, employed by UCL and UCLH. Please note that my opinions are not necessarily those of the MS Trust, UCL or UCLH.
Disclosure Please disclose any past or current, direct or indirect links to, or funding from, the tobacco industry.	None related to tobacco. Please note my previous declaration of anticipated future contracts with Biogen and Hoffmann-La Roche.

Questions for engagement

Issue 1: Use of peginterferon beta-1a in clinical practice		
Several options are available for treating relapsing- remitting multiple sclerosis (not highly active or rapidly evolving severe subgroups) at first line including interferon beta-1a, interferon beta-1b, dimethyl fumarate, glatiramer acetate, teriflunomide, alemtuzumab and ocrelizumab. Are the patients who are likely to be treated with peginterferon beta-1a in the NHS the same as those who would have all these treatments, including the recently approved options, alemtuzumab and ocrelizumab?	Yes, I would consider the indications of this agent to be the same as for other first line agents. With regard to exclusion of patients with highly active (HA) or rapidly evolving severe (RES) multiple sclerosis (MS), for economic modelling this seems reasonable given that by far the majority of people with HA or RES MS are likely to opt for one of the treatments approved for this indication. However, I am concerned that this implies that people with HA or RES MS must not be prescribed such a first line treatment, and this will be codified in NHS guidance. While I would much prefer that someone with HA or RES MS chose one of the agents approved for this indication, some patients are very anxious about side effects, and in such a situation it makes clinical sense that they are at least allowed to start a first line treatment (which I would expect to have the same potential therapeutic effect in all people with relapsing remitting MS) than no treatment at all.	
If peginterferon beta-1a is not a cost-effective first- line treatment, has enough evidence been presented to consider it as an alternative first-line treatment for patients who are intolerant to their initial disease- modifying therapy or later in the treatment pathway?	I think the evidence of efficacy presented does support its use as an alternative first-line agent in those who are intolerant (due to side effects or mode of administration) of another first-line treatment. With regard to its use after treatment failure (where further relapses have occurred) with another first-line agent, for patients who do not wish to escalate to a more potent treatment due to concerns about side effects, then in clinical practice I think it would be reasonable to consider this in people who are not switching from another interferon.	
Is alemtuzumab an appropriate comparator?	In terms of efficacy, I think alemtuzumab has been the benchmark for sustained treatment efficacy, but it has a substantially different side effect profile to interferons and, as already noted in the draft technical report, its use is limited while it undergoes a safety review. This leaves ocrelizumab (and natalizumab, albeit this would be prescribed in people with rapidly evolving severe multiple sclerosis). However, while I think it is a reasonable for economic models to compare efficacy relative to more potent treatments, the costs of monitoring and significant side effects also need to be realistically considered. As such, it would also make sense, for a clinical	

	practice perspective, to compare peginterferon beta-1a with other interferons, as it is likely that these other treatment costs will be more comparable.		
Issue 2: Minimum clinically significant reduction in outcome measures			
In clinical practice, what is considered a minimum clinically significant reduction for the following outcomes: a) annualised relapsed rate b) confirmed disability progression?	 a) With regard to annualised relapse rate, while a reasonable measure at a group level, in clinical practice I think this makes no real sense as an outcome. Firstly, relapses are essentially random, may substantially vary in frequency over years, and we cannot accurately predict them in a person with multiple sclerosis (MS). Given this, at an individual level we have no comparator against which to demonstrate efficacy. Secondly, annualised relapse rate does not take account of the severity of a relapse and the degree of recovery, and again these are unpredictable. I would consider any relapse that caused impaired function significant, and particularly so if a patient does not make a functionally full recovery. In practice treatment success is judged in retrospect by the absence of relapses. If a relapse occurs, then I would consider with the patient whether or not the current treatment is sufficient. b) Again, I think there is a difference between group level measures used in economic modelling and the individual consequences of any irreversible and functionally significant neurological impairment for a person with MS. As with relapses, at an individual level, there is a lot of variability in disability progression between MS patients, and we cannot predict with accuracy the likely future course against which to judge treatment efficacy. Further, confirmed disability progression as measured using the expanded disability status scale (EDSS) has different clinical implications at different points on the scale, for example progression from unimpaired walking to being limited to 500 m has different consequences when compared with progression from being able to walk 5 m with aids to essentially relying on a wheelchair for mobility. I would consider any persistent disability sucrual, rather than disability progression per se, that underlies disease modifying treatment decisions in relapsing-remitting MS. 		

Issue 3: Generalisability of ADVANCE population

Are the patients in the ADVANCE trial likely to reflect people who would be eligible for peginterferon beta- 1a in NHS practice? For example, are patients in Eastern Europe likely to be comparable to the UK in characteristics and the care and treatment they receive?	The trial inclusion criteria do not appear to entirely match current NHS England criteria for other injectable treatments, in particular they do not include people with EDSS scores up to 6.5, and the study has been enriched on the basis of participants having had a relapse within the past year. With regard to regional differences in patients across Europe, there is some evidence that disease progression differs (Bovis et al. 2018 [https://onlinelibrary.wiley.com/doi/abs/10.1002/ana.25323]). However, in terms of efficacy (relative reduction in risk of relapses), I am not aware of studies showing that Eastern and Western European populations would respond differently to treatment. With regard to care and treatment, there is also evidence that this differs across Europe (Berger et al. 2018 [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5826096/]).
If not, should the economic model use the baseline characteristics of the population from the UK MS Risk Sharing Scheme?	Please see my response to the previous question. If not already, I think the ADVANCE and UK MS Risk Sharing Scheme cohorts should be statistically compared, before assuming that the ADVANCE data can be directly extrapolated to people with MS in the UK.
Issue 4: Clinical outcomes used in the economic model	

Has the company used all available data to model clinical effectiveness?	 "Transition probabilities within SPMS": I think it is reasonable to assume that patients with secondary progressive (SP) multiple sclerosis (MS) are less likely to show improved expanded disability status scale (EDSS) scores, but not that they cannot improve. In all clinical subtypes of MS neurological impairments may vary significantly day to day, intercurrent illnesses (for example an infection) can cause a transient worsening of symptoms and neurological impairments, and people with SPMS may still, albeit less often that people with relapsing-remitting (RR) MS, have relapses. Further, EDSS scores are partly rater dependent. "Mortality: Same rate ratios for RRMS and SPMS phases": In practice, I would expect the mortality rate ratio to be higher in people with SP compared with RR MS. "Fatigue, injection-site reactions not associated with a disability": I can see why this has been omitted for lack of data, but in clinical practice both are significant and fatigue in particular can be associated with markedly impaired function.
--	--

Issue 5: Treatment waning	
Are the waning effects modelled by the company clinically plausible? That is, from years 3 to 5, effect decreases to 75% of full treatment effect and from year 6 onwards, the effect decreases further to 50% of full treatment effect.	While it may make sense to economically model a diminishing potential for treatment efficacy, in clinical practice we do not make treatment decisions on this basis as, at an individual level, we can only judge efficacy through failure (further relapses) rather than success (the prevention of relapses). We reconsider treatment options when there is clear clinical evidence that relapses are still occurring on the current agent. We would also reconsider treatment in a person with multiple sclerosis (MS) who has entered a secondary progressive (SP) phase, although they may still have relapses that have functionally significant consequences. Indeed, in people who already have neurological impairments, even minor relapses may have marked functional effects. With regard to the timescales for diminishing potential treatment effects, in clinical practice I think the clearest indicator of this is the average time it takes a person with MS to develop SP disease, and it would be unusual for this to occur within a decade of the clinical onset of MS.
Is it clinically plausible that the waning effects are the same for all treatments?	In the absence of a specific reason (for example treatment neutralising antibodies), at a group level I think it is reasonable to assume that underlying relapse rate declines with disease duration and age (and so the potential for treatment efficacy wanes) in the same way for all treatments. However, as noted above, potentially waning treatment efficacy is not usually considered in clinical practice, rather treatments are reconsidered on the basis of clinical events, and more specifically if relapses occur, or a person with multiple sclerosis has clearly (and on clinical grounds it can take many years to be clear) entered a secondary progressive phase.
Issue 6: Stopping treatment	
 Is it clinically plausible to apply the same probability of stopping treatment for any reason to: a) all disease-modifying therapies? b) all years, that is at the start of treatment and after many years on treatment? 	 a) In the absence of specific evidence to the contrary, I do not think it is plausible apply the same probability of stopping treatment to all therapies, as side effects differ substantially and some may be time-dependent (for example, as has been shown with natalizumab and the risk of developing progressive multifocal leukoencephalopathy). b) Initially I think the probability of stopping treatment will be relatively high as many side-effects declare themselves early on, and then will decrease for a while. However, recalling the natural history of multiple sclerosis (MS), and that over time increasing numbers of

	people with relapsing-remitting MS are likely to develop secondary progressive MS (leading to treatment being reconsidered), I think it likely that the probability of stopping treatment will, after several years, increase again.
Are the annual probabilities of stopping treatment for any reason for the different disease modifying therapies in the table above clinically plausible? If so, which values are most plausible – the company's base case weighted by sample size or the alternative values weighted by person time?	Please see my response to the previous question.
Issue 7: Utility values	
Which utility value data set, Orme et al. (2007) or Thompson et al. (2017), is more plausible for patients likely to have peginterferon beta-1a?	In both the cohorts studied by Orme et al. and Thompson et al. just over a third had relapsing- remitting (RR) multiple sclerosis (MS) and the rest progressive MS, and I think this is reflected in their expanded disability status scale (EDSS) score distributions. As such, neither is necessarily representative of patients likely to start interferons, although a subset (those with RRMS and lower EDSS scores) will be more so. Given that the transition from RRMS to secondary progressive (SP) MS is not necessarily clear, and can take years to become so, it seems reasonable to include data from people with SPMS. Both Orme et al. and Thompson et al. include data from people with primary progressive (PP) MS (about a quarter in both cohorts), who would not be prescribed interferons through the NHS. In the draft technical report it is noted that the Orme et al. study is a decade older than the Thompson et al. one. From a clinical perspective, there have been substantial changes in referral patterns and increasing treatment options, both of which may affect care cost estimates, and so it seems logical to use more recently acquired data.

Technical engagement response form

Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis [ID1521]

As a stakeholder you have been invited to comment on the technical report for this appraisal. The technical report and stakeholders responses are used by the appraisal committee to help it make decisions at the appraisal committee meeting. Usually, only unresolved or uncertain key issues will be discussed at the meeting.

We need your comments and feedback on the questions below. You do not have to answer every question. The text boxes will expand as you type. Please read the notes about completing this form. We cannot accept forms that are not filled in correctly. Your comments will be summarised and used by the technical team to amend or update the scientific judgement and rationale in the technical report.

Deadline for comments – end of **24 October 2019**

Thank you for your time.

Please log in to your NICE Docs account to upload your completed form, as a Word document (not a PDF).

Notes on completing this form

- Please see the technical report which summarises the background and submitted evidence. This will provide context and describe the questions below in greater detail.
- Please do not embed documents (such as PDFs or tables) because this may lead to the information being mislaid or make the response unreadable. Please type information directly into the form.
- Do not include medical information about yourself or another person that could identify you or the other person.
- Do not use abbreviations.
- Do not include attachments such as journal articles, letters or leaflets. For copyright reasons, we will have to return forms that have attachments without reading them. You can resubmit your form without attachments, but it must be sent by the deadline.
- If you provide journal articles to support your comments, you must have copyright clearance for these articles.
- Combine all comments from your organisation (if applicable) into 1 response. We cannot accept more than 1 set of comments from each organisation.
- Please underline all confidential information, and separately highlight information that is submitted under <u>'commercial in confidence' in turquoise</u>, all information submitted under <u>'academic in confidence' in yellow</u>, and all information submitted under <u>'depersonalised data' in pink</u>. If confidential

information is submitted, please also send a second version of your comments with that information replaced with the following text: 'academic/commercial in confidence information removed'. See the <u>Guide to the processes of technology appraisal</u> (sections 3.1.23 to 3.1.29) for more information.

We reserve the right to summarise and edit comments received during engagement, or not to publish them at all, if we consider the comments are too long, or publication would be unlawful or otherwise inappropriate.

Comments received during engagement are published in the interests of openness and transparency, and to promote understanding of how recommendations are developed. The comments are published as a record of the comments we received, and are not endorsed by NICE, its officers or advisory committees.

About you

Your name	
Organisation name – stakeholder or respondent (if you are responding as an individual rather than a registered stakeholder please leave blank)	
Disclosure Please disclose any past or current, direct or indirect links to, or funding from, the tobacco industry.	None to disclose

Questions for engagement

Issue 1: Use of peginterferon beta-1a in clinical practice	
	Patients who are treated with peginterferon beta-1a would also be eligible for the drugs listed, as set out in the NHS England Treatment Algorithm for Multiple Sclerosis <u>https://www.england.nhs.uk/commissioning/spec-services/npc-crg/group-d/d04/</u> .
Several options are available for treating relapsing-remitting multiple sclerosis (not highly active or rapidly evolving severe subgroups) at first line including interferon beta-1a, interferon beta-1b, dimethyl fumarate, glatiramer acetate, teriflunomide, alemtuzumab and ocrelizumab. Are the patients who are likely to be treated with peginterferon beta-1a in the NHS the same as those who would have all these treatments, including the recently approved options,	They are as likely to be treated with alemtuzumab and ocrelizumab as other highly efficacious treatments. Switching treatments should be a shared decision between clinicians and patient. Decisions on which DMT to take are determined by a variety of factors including the eligibility, efficacy, related side effects, the method and frequency of taking, and lifestyle factors. Each DMT carries with it different levels of efficacy and risk. Choosing which option to take requires access to evidence-based information, and support and advice from specialist health professionals.
	In 2014, the MS Society found that there is a lack of understanding and communication about what treatment options are currently available, with one in five people not having heard of any DMTs, or only heard of just one. ¹ While MS nurses and neurologists are reported to be the most useful sources of evidence in aiding people to make a DMT decision, our research from last year showed that, of the people who are taking or are eligible for taking a DMTs, 13% had not met with a neurologist despite needing to and 14% had not met with an MS nurse despite needing to. ²
alemtuzumab and ocrelizumab?	Of the 13 disease modifying therapies (DMTs) currently routinely available and reimbursed by NHS England, alemtuzumab and natalizumab are classified as 'high efficacy' by the Association of British Neurologists (ABN). Beta interferons, glatiramer acetate, teriflunomide, dimethyl fumarate and fingolimod, are regarded as having 'moderate' efficacy. With the latter two drugs considered the more effective within this category. Cladribine and fingolimod, approved by NICE offer other options for good efficacy for people with highly active relapsing MS.

¹ Right treatment, right time? How people with MS make decisions about disease modifying drugs, MS Society, 2014

² Redfern-Tofts, D., Wallace, L. and McDougal, A. (2016) My MS, My Needs 2: technical report

	The MS Society have produced a DMT booklet which outlines the impact each DMT has on MS (see page 33 and 34 for notes on efficacy). Link: <u>https://www.mssociety.org.uk/about-ms/treatments-and-therapies/disease-modifying-therapies</u>
If peginterferon beta-1a is not a cost- effective first-line treatment, has enough evidence been presented to consider it as an alternative first-line treatment for patients who are intolerant to their initial disease-modifying therapy or later in the treatment pathway?	Those that do not response treatment are routinely referred to other treatment options, as per the NHS England Treatment Algorithm for Multiple Sclerosis Link: <u>https://www.england.nhs.uk/commissioning/spec-services/npc-crg/group-d/d04/</u>
Is alemtuzumab an appropriate comparator?	We agree with the MS Trust that although alemtuzumab is approved as a first-line treatment for relapsing remitting MS, we do not believe that it is an appropriate comparator for peginterferon.
Issue 2: Minimum clinically significant red	uction in outcome measures
In clinical practice, what is considered a minimum clinically significant reduction for the following outcomes: a) annualised relapsed rate b) confirmed disability progression?	Any reduction in relapses and disability progression is significant for the patient, and can for people with relapsing-remitting MS compared to no treatment.
	The nature and impact of relapses are also highly individualised. A relapse is defined as an episode of neurological symptoms, lasting for at least 24 hours, that happens at least 30 days after any previous episode began.
	In relapses, symptoms usually come on over a short period of time and often remain for a number of weeks, but sometimes months. Relapses can vary from mild to severe. At their worst, acute relapses may need hospital treatment, but many relapses are managed at home, with the support of a GP, MS specialist nurse, and other care professionals. Due to the varied and unpredictable nature of MS, determining an "average" relapse rate is not straight forward; considering the number of people currently on disease modifying drugs it is likely that a significant proportion of people with relapsing remitting MS experience one or more relapses per year.
	However, the goal of any disease modifying treatment should be no evidence of disease activity (no relapses, no disability progression, and no new or active lesions on MRI scans).

	Alongside the reduction in relapses and disability progression both reduction on brain atrophy and improvement in quality of life compared to alternative treatments should be considered clinically meaningful.
Issue 3: Generalisability of ADVANCE po	pulation
Are the patients in the ADVANCE trial likely to reflect people who would be eligible for peginterferon beta-1a in NHS practice? For example, are patients in Eastern Europe likely to be comparable to the UK in characteristics and the care and treatment they receive?	The ADVANCE trial applied inclusion and exclusion criteria which correspond to drug eligibility criteria in the UK. As such, we would expect the patients in ADVANCE recruited in Eastern Europe to be comparable to UK patients.
If not, should the economic model use the baseline characteristics of the population from the UK MS Risk Sharing Scheme?	We believe the risk sharing scheme data does not reflect the current population of people with RRMS who would be considered for peginterferon beta-1a. The drugs covered by the Scheme were Avonex (interferon beta-1a); Betaferon (interferon beta-1b); Copaxone (glatiramer acetate) and Rebif (interferon beta-1a).
Issue 4: Clinical outcomes used in the	economic model
Has the company used all available data to model clinical effectiveness?	
Issue 5: Treatment waning	
Are the waning effects modelled by the company clinically plausible? That is, from years 3 to 5, effect decreases to 75% of full treatment effect and from year 6 onwards, the effect decreases further to 50% of full treatment effect.	

No, disease modifying treatments belong to different classes of drugs with different chemical structures and have
different mechanisms of action, so we believe think it is highly unlikely that waning effects would be the same for
all treatments.
No, because disease modifying treatment belong to different classes of drugs and are administered differently
and at difference times, responding to highly individualised circumstances.
It is also important to note that treatment rates have increased sharply in recent years means that many people
currently taking DMTs are relatively near the start of their treatment journey, notwithstanding the significant
minority that will have been using peginterferon-beta 1a for a significant period.
Link: https://www.mssociety.org.uk/about-ms/treatments-and-therapies/disease-modifying-therapies/early-
treatment
Stopping treatment can be an incredibly distressing experience for people with MS as for many this will signal a
progression of a person's disease from relapsing-remitting MS to secondary progressive MS.
progression of a person's disease non-relapsing-remitting we to secondary progressive we.

Issue 7: Utility values	
Which utility value data set, Orme et al.	
(2007) or Thompson et al. (2017), is	
more plausible for patients likely to have	
peginterferon beta-1a?	

Technical engagement response form

Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis [ID1521]

As a stakeholder you have been invited to comment on the technical report for this appraisal. The technical report and stakeholders responses are used by the appraisal committee to help it make decisions at the appraisal committee meeting. Usually, only unresolved or uncertain key issues will be discussed at the meeting.

We need your comments and feedback on the questions below. You do not have to answer every question. The text boxes will expand as you type. Please read the notes about completing this form. We cannot accept forms that are not filled in correctly. Your comments will be summarised and used by the technical team to amend or update the scientific judgement and rationale in the technical report.

Deadline for comments – end of **24 October 2019**

Thank you for your time.

Please log in to your NICE Docs account to upload your completed form, as a Word document (not a PDF).

Notes on completing this form

- Please see the technical report which summarises the background and submitted evidence. This will provide context and describe the questions below in greater detail.
- Please do not embed documents (such as PDFs or tables) because this may lead to the information being mislaid or make the response unreadable. Please type information directly into the form.
- Do not include medical information about yourself or another person that could identify you or the other person.
- Do not use abbreviations.
- Do not include attachments such as journal articles, letters or leaflets. For copyright reasons, we will have to return forms that have attachments without reading them. You can resubmit your form without attachments, but it must be sent by the deadline.
- If you provide journal articles to support your comments, you must have copyright clearance for these articles.
- Combine all comments from your organisation (if applicable) into 1 response. We cannot accept more than 1 set of comments from each organisation.
- Please underline all confidential information, and separately highlight information that is submitted under <u>'commercial in confidence' in turquoise</u>, all information submitted under <u>'academic in confidence' in yellow</u>, and all information submitted under <u>'depersonalised data' in pink</u>. If confidential

information is submitted, please also send a second version of your comments with that information replaced with the following text: 'academic/commercial in confidence information removed'. See the <u>Guide to the processes of technology appraisal</u> (sections 3.1.23 to 3.1.29) for more information.

We reserve the right to summarise and edit comments received during engagement, or not to publish them at all, if we consider the comments are too long, or publication would be unlawful or otherwise inappropriate.

Comments received during engagement are published in the interests of openness and transparency, and to promote understanding of how recommendations are developed. The comments are published as a record of the comments we received, and are not endorsed by NICE, its officers or advisory committees.

About you

Your name	
Organisation name – stakeholder or respondent (if you are responding as an individual rather than a registered stakeholder please leave blank)	Multiple Sclerosis Trust
Disclosure Please disclose any past or current, direct or indirect links to, or funding from, the tobacco industry.	None

Questions for engagement

Issue 1: Use of peginterferon beta-1a in clinical practice	
Several options are available for treating relapsing- remitting multiple sclerosis (not highly active or rapidly evolving severe subgroups) at first line including interferon beta-1a, interferon beta-1b, dimethyl fumarate, glatiramer acetate, teriflunomide, alemtuzumab and ocrelizumab. Are the patients who are likely to be treated with peginterferon beta-1a in the NHS the same as those who would have all these treatments, including the recently approved options, alemtuzumab and ocrelizumab?	In principle, the patients who are likely to be treated with peginterferon beta-1a would also be eligible for the drugs listed, as set out in the NHS England Treatment Algorithm for Multiple Sclerosis <u>https://www.england.nhs.uk/commissioning/spec-services/npc-crg/group-d/d04/</u> . Ocrelizumab is a relatively new treatment so there is limited experience of long term use. On paper, it would appear to have a low risk of serious side effects; over time, as more experience is gained we would expect it to be offered more widely. Alemtuzumab has been used for a longer time and the side effect profile is well known and subject to monthly monitoring. In practice, some neurologists would view alemtuzumab and ocrelizumab as higher risk for first- line treatment and be more likely to offer interferon beta-1a or 1-b, glatiramer acetate, teriflunomide or dimethyl fumarate as first-line treatment. Some patients would also take this view.
If peginterferon beta-1a is not a cost-effective first- line treatment, has enough evidence been presented to consider it as an alternative first-line treatment for patients who are intolerant to their initial disease- modifying therapy or later in the treatment pathway?	For patients who are intolerant to their initial disease-modifying treatment, it is routine clinical practice to switch them to an alternative first-line treatment as set out in the NHS England Treatment Algorithm for Multiple Sclerosis <u>https://www.england.nhs.uk/commissioning/spec-services/npc-crg/group-d/d04/</u> . We cannot anticipate any reason why the same clinical practice should not apply to peginterferon as an alternative first-line treatment.
Is alemtuzumab an appropriate comparator?	No, although alemtuzumab is approved as a first-line treatment for relapsing remitting MS, we do not believe that it is an appropriate comparator for peginterferon. In clinical practice we would not expect peginterferon and alemtuzumab to be considered as equivalent, alternative treatment options either by clinicians or people with MS. People receiving alemtuzumab first-line tend to have more active disease and a less favourable baseline prognostic

	profile. For this group, the burden of side effects and monthly monitoring is balanced by the higher efficacy of alemtuzumab.
	This is reflected in the NHS England DMT treatment algorithm https://www.england.nhs.uk/commissioning/spec-services/npc-crg/group-d/d04/:
	For RRMS (that is not RES), alemtuzumab is an option that may be considered, but we note it is considerably more high-risk than the other options. It should be used only when the patient and MS specialists accept the significant risks and burden of monitoring.
	Because of concerns about side effect risks, alemtuzumab is currently reserved for third line use pending the outcome of an ongoing EMA review.
Issue 2: Minimum clinically significant reduction in out	come measures
In clinical practice, what is considered a minimum clinically significant reduction for the following outcomes: a) annualised relapsed rate b) confirmed disability progression?	From the patient perspective, any reduction is clinically meaningful. Both relapses and disability progression have a significant impact on all aspects of life.
	Treatment goal is NEDA – no evidence of disease activity. As a minimum, this entails no relapses, no increase in disability, and no new or active lesions on MRI scans. Failing any one of these targets at an annual review should trigger a review of treatment and discussion with the patient. A growing number of neurologists with a specialist interest in MS are encouraging this early, proactive approach to managing RRMS.
Issue 3: Generalisability of ADVANCE population	
Are the patients in the ADVANCE trial likely to reflect people who would be eligible for peginterferon beta- 1a in NHS practice? For example, are patients in Eastern Europe likely to be comparable to the UK in	It is well-established that there are differences in health services for people with MS across Europe ¹ . However, given that the ADVANCE trial applied inclusion and exclusion criteria which correspond to drug eligibility criteria in the UK, we would expect the patients in ADVANCE recruited in Eastern Europe to be comparable to UK patients.
characteristics and the care and treatment they receive?	Baseline EDSS distribution (table 24, p114 of Technical engagement papers) confirms that the ADVANCE population covers people with RRMS with lower disease activity, comparable to the current use of disease modifying drugs in the UK.

¹ Kobelt G, Thompson A, Berg J, et al. New insights into the burden and costs of multiple sclerosis in Europe. Mult. Scler. 2017;23(8), 1123-1136. www.ncbi.nlm.nih.gov/pubmed/28273775.

If not, should the economic model use the baseline characteristics of the population from the UK MS Risk Sharing Scheme?	No, we do not agree that the economic model should use baseline characteristics from the RSS. RSS data does not reflect the current population of people with RRMS who would be considered for peginterferon treatment.
Issue 4: Clinical outcomes used in the economic n	nodel
Has the company used all available data to model clinical effectiveness?	Yes, we believe the company has used all available data to model clinical effectiveness.
Issue 5: Treatment waning	
Are the waning effects modelled by the company clinically plausible? That is, from years 3 to 5, effect decreases to 75% of full treatment effect and from year 6 onwards, the effect decreases further to 50% of full treatment effect.	 We would question whether there is clinical evidence to support any waning effect. As noted in the MS Trust submission to this appraisal, one of the people we interviewed chose peginterferon over the other beta interferons because the incidence of neutralising antibodies is lower, making it less likely to lose efficacy over time². This individual had identified this difference through their own in-depth research, highlighting the care taken and importance people place when making decisions about choosing a DMD. However, the approach taken by the company is consistent with waning effects applied in previous submissions.
Is it clinically plausible that the waning effects are the same for all treatments?	No, treatments belong to different classes of drugs with different chemical structures and have different mechanisms of action, so we would think it is highly unlikely that waning effects would be the same for all treatments. We have made this point in responses to previous ACDs, most recently in our response to the ocrelizumab RRMS ACD ID937: The use of treatment waning in multiple sclerosis technology appraisals has become de facto, in the absence of clinical evidence or biological plausibility, the only purpose being to force an

² White JT, Newsome SD, Kieseier BC, et al. Incidence, characterization, and clinical impact analysis of peginterferon beta1a immunogenicity in patients with multiple sclerosis in the ADVANCE trial. Ther Adv Neurol Dis 2016; 9(4): 239-249. www.ncbi.nlm.nih.gov/pubmed/27366230

	increase in the ICER. Unless this is a routine assumption for all drug technology appraisals, we consider this to be inequitable treatment for MS drugs and completely unjustified.
Issue 6: Stopping treatment	
Is it clinically plausible to apply the same probability of stopping treatment for any reason to: a) all disease-modifying therapies? b) all years, that is at the start of treatment and after many years on treatment?	No we would say it is not clinically plausible. Route of administration and dosing regimen have a major impact on stopping treatment. There are likely to be big differences in stopping between treatments which are self-injected, taken orally or administered by iv infusion. Side effects will also be a major cause of stopping treatment, but for alemtuzumab which is taken as two treatment courses, 12 months apart, the potential for stopping treatment as a result of side effects is limited. We would also argue that there are significant differences in motivation and compliance between people who choose treatment with alemtuzumab over beta interferon. The more risk-adverse patients who choose beta interferons may also be less tolerant of mild side effects. We would also expect to see a higher rate of stopping at the start of treatment, followed by a plateau of continued treatment, and then a further higher rate of stopping due to treatment burden or lack of perceived effect.
Are the annual probabilities of stopping treatment for any reason for the different disease modifying therapies in the table above clinically plausible? If so, which values are most plausible – the company's base case weighted by sample size or the alternative values weighted by person time?	Table above is not referenced, so we are have not been able to respond to this question.
Issue 7: Utility values	
Which utility value data set, Orme et al. (2007) or Thompson et al. (2017), is more plausible for patients likely to have peginterferon beta-1a?	Although Thompson et al (2017) is a more recent study, it is a smaller data set (n=779 vs n=2048) and has a higher mean age (56.7 years vs 51.4 years). Thompson et al acknowledge the older average age and note that this is associated with:

more patients with severe disease, lower DMT usage, fewer patients of working age and actually working.
Orme et al (2007) has been the standard for previous TAs so it would be more consistent to follow previous practice.

Technical engagement response form

Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis [ID1521]

As a stakeholder you have been invited to comment on the technical report for this appraisal. The technical report and stakeholders responses are used by the appraisal committee to help it make decisions at the appraisal committee meeting. Usually, only unresolved or uncertain key issues will be discussed at the meeting.

We need your comments and feedback on the questions below. You do not have to answer every question. The text boxes will expand as you type. Please read the notes about completing this form. We cannot accept forms that are not filled in correctly. Your comments will be summarised and used by the technical team to amend or update the scientific judgement and rationale in the technical report.

Deadline for comments – end of **24 October 2019**

Thank you for your time.

Please log in to your NICE Docs account to upload your completed form, as a Word document (not a PDF).

Notes on completing this form

- Please see the technical report which summarises the background and submitted evidence. This will provide context and describe the questions below in greater detail.
- Please do not embed documents (such as PDFs or tables) because this may lead to the information being mislaid or make the response unreadable. Please type information directly into the form.
- Do not include medical information about yourself or another person that could identify you or the other person.
- Do not use abbreviations.
- Do not include attachments such as journal articles, letters or leaflets. For copyright reasons, we will have to return forms that have attachments without reading them. You can resubmit your form without attachments, but it must be sent by the deadline.
- If you provide journal articles to support your comments, you must have copyright clearance for these articles.
- Combine all comments from your organisation (if applicable) into 1 response. We cannot accept more than 1 set of comments from each organisation.
- Please underline all confidential information, and separately highlight information that is submitted under <u>'commercial in confidence' in turquoise</u>, all information submitted under <u>'academic in confidence' in yellow</u>, and all information submitted under <u>'depersonalised data' in pink</u>. If confidential

information is submitted, please also send a second version of your comments with that information replaced with the following text: 'academic/commercial in confidence information removed'. See the <u>Guide to the processes of technology appraisal</u> (sections 3.1.23 to 3.1.29) for more information.

We reserve the right to summarise and edit comments received during engagement, or not to publish them at all, if we consider the comments are too long, or publication would be unlawful or otherwise inappropriate.

Comments received during engagement are published in the interests of openness and transparency, and to promote understanding of how recommendations are developed. The comments are published as a record of the comments we received, and are not endorsed by NICE, its officers or advisory committees.

About you

Your name	
Organisation name – stakeholder or respondent (if you are responding as an individual rather than a registered stakeholder please leave blank)	Association of British Neurologists
Disclosure Please disclose any past or current, direct or indirect links to, or funding from, the tobacco industry.	Nil

Questions for engagement

Issue 1: Use of peginterferon beta-1a in clinical practice	
Several options are available for treating relapsing- remitting multiple sclerosis (not highly active or rapidly evolving severe subgroups) at first line including interferon beta-1a, interferon beta-1b, dimethyl fumarate, glatiramer acetate, teriflunomide, alemtuzumab and ocrelizumab. Are the patients who are likely to be treated with peginterferon beta-1a in the NHS the same as those who would have all these treatments, including the recently approved options, alemtuzumab and ocrelizumab?	Broadly yes but peginterferon beta-1a will mainly be considered in people with relatively low inflammatory activity (usually one relapse in last 12 months with minimal MRI change), whilst ocrelizumab and alemtuzumab as more active therapies with potentially greater risk may be considered more in people with greater inflammatory activity
If peginterferon beta-1a is not a cost-effective first- line treatment, has enough evidence been presented to consider it as an alternative first-line treatment for patients who are intolerant to their initial disease- modifying therapy or later in the treatment pathway?	Yes this therapy has a role in people who have relative needle phobia given the infrequency of injections and who are intolerant to other first line oral therapies
Is alemtuzumab an appropriate comparator?	No, alemtuzumab would be considered a much more active therapy with significantly greater risk
Issue 2: Minimum clinically significant reduction in outcome measures	
In clinical practice, what is considered a minimum clinically significant reduction for the following outcomes: a) annualised relapsed rate b) confirmed disability progression?	 a) Minimum is a 30% reduction in ARR b) No set consistent figure

Issue 3: Generalisability of ADVANCE population		
Are the patients in the ADVANCE trial likely to reflect people who would be eligible for peginterferon beta- 1a in NHS practice? For example, are patients in Eastern Europe likely to be comparable to the UK in characteristics and the care and treatment they receive?	The trial population is almost exclusively Caucasian and hence may not be representative of MS populations in certain parts of the UK. The skewing of recruitment to Eastern Europe is commonplace for trials in MS in the last 10 years	
If not, should the economic model use the baseline characteristics of the population from the UK MS Risk Sharing Scheme?	On balance this is unnecessary	
Issue 4: Clinical outcomes used in the economic model		
Has the company used all available data to model clinical effectiveness?	yes	
Issue 5: Treatment waning		
Are the waning effects modelled by the company clinically plausible? That is, from years 3 to 5, effect decreases to 75% of full treatment effect and from year 6 onwards, the effect decreases further to 50% of full treatment effect.	On balance yes although it is somewhat optimistic on the company's behalf as the therapy's efficacy is likely to be below the levels quoted. However, the therapy is usually well tolerated and has a less than 1% level of antibody formation.	
Is it clinically plausible that the waning effects are the same for all treatments?	Partially dependent on antibody formation in the interferon beta group – beta 1-b and subcut beta 1-a approx. 20-30% antibody formation; peginterferon approximately 1%	
Issue 6: Stopping treatment		
Is it clinically plausible to apply the same probability of stopping treatment for any reason to: a) all disease-modifying therapies?	No, therapies have different efficacies and tolerance. Additionally, two therapies: alemtuzumab and oral cladribine are time limited (18-24 months)	

 b) all years, that is at the start of treatment and after many years on treatment? Are the annual probabilities of stopping treatment for any reason for the different disease modifying therapies in the table above clinically plausible? If so, which values are most plausible – the company's base case weighted by sample size or the alternative 	This is an area of uncertainty and additional data is needed. The probabilities quoted are plausible
values weighted by person time? Issue 7: Utility values Which utility value data set, Orme et al. (2007) or Thompson et al. (2017), is more plausible for patients likely to have peginterferon beta-1a?	Thompson et al 2017 on balance

Technical engagement response form

Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis [ID1521]

As a stakeholder you have been invited to comment on the technical report for this appraisal. The technical report and stakeholders responses are used by the appraisal committee to help it make decisions at the appraisal committee meeting. Usually, only unresolved or uncertain key issues will be discussed at the meeting.

We need your comments and feedback on the questions below. You do not have to answer every question. The text boxes will expand as you type. Please read the notes about completing this form. We cannot accept forms that are not filled in correctly. Your comments will be summarised and used by the technical team to amend or update the scientific judgement and rationale in the technical report.

Deadline for comments – end of **24 October 2019**

Thank you for your time.

Please log in to your NICE Docs account to upload your completed form, as a Word document (not a PDF).

Notes on completing this form

- Please see the technical report which summarises the background and submitted evidence. This will provide context and describe the questions below in greater detail.
- Please do not embed documents (such as PDFs or tables) because this may lead to the information being mislaid or make the response unreadable. Please type information directly into the form.
- Do not include medical information about yourself or another person that could identify you or the other person.
- Do not use abbreviations.
- Do not include attachments such as journal articles, letters or leaflets. For copyright reasons, we will have to return forms that have attachments without reading them. You can resubmit your form without attachments, but it must be sent by the deadline.
- If you provide journal articles to support your comments, you must have copyright clearance for these articles.
- Combine all comments from your organisation (if applicable) into 1 response. We cannot accept more than 1 set of comments from each organisation.
- Please underline all confidential information, and separately highlight information that is submitted under <u>'commercial in confidence' in turquoise</u>, all information submitted under <u>'academic in confidence' in yellow</u>, and all information submitted under <u>'depersonalised data' in pink</u>. If confidential

information is submitted, please also send a second version of your comments with that information replaced with the following text: 'academic/commercial in confidence information removed'. See the <u>Guide to the processes of technology appraisal</u> (sections 3.1.23 to 3.1.29) for more information.

We reserve the right to summarise and edit comments received during engagement, or not to publish them at all, if we consider the comments are too long, or publication would be unlawful or otherwise inappropriate.

Comments received during engagement are published in the interests of openness and transparency, and to promote understanding of how recommendations are developed. The comments are published as a record of the comments we received, and are not endorsed by NICE, its officers or advisory committees.

About you

Your name	
Organisation name – stakeholder or respondent (if you are responding as an individual rather than a registered stakeholder please leave blank)	Novartis Pharmaceuticals UK Ltd
Disclosure Please disclose any past or current, direct or indirect links to, or funding from, the tobacco industry.	None

Questions for engagement

Issue 1: Use of peginterferon beta-1a in clinical practice	
Several options are available for treating relapsing- remitting multiple sclerosis (not highly active or rapidly evolving severe subgroups) at first line including interferon beta-1a, interferon beta-1b, dimethyl fumarate, glatiramer acetate, teriflunomide, alemtuzumab and ocrelizumab. Are the patients who are likely to be treated with peginterferon beta-1a in the NHS the same as those who would have all these treatments, including the recently approved options, alemtuzumab and ocrelizumab?	Novartis expects that patients considering peginterferon would be the same as those who might also consider one of the recently approved treatment options.
	However, alemtuzumab should not be considered 'recently approved' in the context of the other treatments listed. Novartis also suggests that alemtuzumab should not be listed as a comparator at first line, given the ongoing European Medicines Agency (EMA) review and advice that alemtuzumab should only be started in adults with relapsing-remitting multiple sclerosis (RRMS) that is highly active despite treatment with at least two disease-modifying therapies (DMTs) or where other DMTs cannot be used; see response below to separate question (<u>https://www.ema.europa.eu/en/medicines/human/referrals/lemtrada</u>).
If peginterferon beta-1a is not a cost-effective first- line treatment, has enough evidence been presented to consider it as an alternative first-line treatment for patients who are intolerant to their initial disease- modifying therapy or later in the treatment pathway?	NICE has not previously required separate evidence to be presented for the position of "alternative first-line treatment" in RRMS and Novartis would query whether it is <i>a priori</i> expected that relative efficacy would differ due to intolerance to first-line therapy. As such, Novartis does not consider it to be reasonable to require separate evidence for this position.
Is alemtuzumab an appropriate comparator?	No; both because of the current EMA safety restriction on alemtuzumab, but also as patients who would be considered for alemtuzumab are expected to be systematically different to those considering a first-line injectable, given the very different risk–benefit profiles of these two products.

Issue 2: Minimum clinically significant reduction in outcome measures	
In clinical practice, what is considered a minimum clinically significant reduction for the following outcomes: a) annualised relapsed rate b) confirmed disability progression?	Novartis disagrees that the concept of a minimum clinically significant reduction is applicable to the direct clinical outcomes of annualised relapsed rate (ARR) and confirmed disability progression (CDP). These are major objective clinical events for patients and therefore any difference in relative treatment effect is important. Relapses have a direct impact on patients who may require sick leave and/or become hospitalised for a time; avoiding them is always meaningfully beneficial. This is even more evident with progression events, such as progression to being wheelchair-bound (Expanded Disability Status Scale, EDSS 7) or bed-ridden (EDSS 8), for which determining a minimum clinically significant reduction is impossible to determine objectively, complicated by the EDSS being a, non-continuous, ordinal scale.
	On the specific point noted by the Technical Team regarding variation in absolute ARR in placebo arms over time, Novartis would ask whether there is any evidence of relative relapse efficacy (that being what is modelled) varying over time in DMTs for which evidence for multiple trials may be available?
Issue 3: Generalisability of ADVANCE population	
Are the patients in the ADVANCE trial likely to reflect people who would be eligible for peginterferon beta- 1a in NHS practice? For example, are patients in Eastern Europe likely to be comparable to the UK in characteristics and the care and treatment they receive?	
If not, should the economic model use the baseline characteristics of the population from the UK MS Risk Sharing Scheme?	In general, it is preferable to model interventions undergoing appraisal in the population in which their trial was undertaken. Analysis using Risk Sharing Scheme baseline characteristics may be an informative scenario analysis. As the Technical Report notes that the impact is not material to the incremental cost-effectiveness ratio (ICER), this issue does not seem pertinent.

Issue 4: Clinical outcomes used in the economic model	
	Novartis disagrees with the Technical Team suggestion that joint modelling of 3-month CDP and 6 month CDP should be undertaken: the reason why 6-month CDP has been preferred in previous NICE MS appraisals and regulatory authorities is that it is less likely to be subject to random bias than 3-month CDP which may be influenced by the residual effect of relapses. Given this rationale for preferring 6-month CDP, it is not expected that a consistent relationship between 3-month CDP and 6-month CDP exists between trials and therefore the effect of joint modelling will be to introduce the random bias of 3-month CDP into the 6-month CDP network, reducing its usefulness to guide decision making.
Has the company used all available data to model clinical effectiveness?	Novartis would additionally note that RRMS trials may differ in their definition of 3-/6-month CDP and this should be explicitly addressed in considering whether the trials are sufficiently comparable to allow inclusion within an NMA. Notably, in NICE TA533 it is stated: "The committee noted that pegylated interferon beta-1a appeared to be an outlier in the updated mixed treatment comparisons because it appeared to be more effective than other beta interferons and high- efficacy treatments such as natalizumab. The committee heard that this was contrary to clinical experience, so it disregarded the comparison with pegylated interferon for this appraisal."
	Novartis agrees with the Evidence Review Group (ERG) that all relevant trials should be included and that the influence of excluding trials for any specified reason may be tested in scenario analyses; given that it is noted that this issue does not materially affect the ICER, this may not be pertinent to the appraisal.
Issue 5: Treatment waning	
Are the waning effects modelled by the company clinically plausible? That is, from years 3 to 5, effect decreases to 75% of full treatment effect and from year 6 onwards, the effect decreases further to 50% of full treatment effect.	Novartis notes that the Technical Report states that waning is line with TA527 – this is incorrect. In TA527 waning was assumed from 10 years only (at 50%). Instead, Novartis notes that the

	proposed waning assumptions are based on outdated appraisal assumptions made in 2014 for TA320 which were themselves based on assumption and not evidence.
	In contrast, in the more recent TA533, the Committee agreed that a separate waning effect should not be modelled – the Committee recognised that in clinical practice patients will not continue to be prescribed an ineffective therapy and will rather discontinue and switch to an alternative DMT. As such, the Committee agreed that all-cause discontinuation is a proxy for any waning of treatment effect.
	Therefore, to be consistent with the Committee in TA533 and in absence of evidence, Novartis does not consider it plausible that waning is applied in the model as arbitrary waning assumptions would introduce double-counting with all-cause discontinuation, including discontinuation due to lack of efficacy. A patient who is experiencing lack of efficacy will not remain on treatment (and the NHS should not incur costs of the treatment if efficacy would be waning). As such the appraisal should focus on the effect of discontinuation without introducing arbitrary waning assumptions that are not evidence-based.
Is it clinically plausible that the waning effects are the	All waning assumptions are inherently arbitrary and do not reflect the clinical reality of switching treatments due to lack of efficacy. The issue of long-term differences in effectiveness between treatments ought to be captured through evidence-based modelling of time-dependent treatment discontinuation which does vary by DMT (see Issue 6).
same for all treatments?	Importantly, Novartis notes that the practical effect of assuming differential waning for DMTs will be to bias appraisals against new products which will inevitably have shorter long-term follow-up data than the more established comparators. Novartis would caution that the potential ramifications of this issue are considered carefully in any situation where waning is modelled.
Issue 6: Stopping treatment	
Is it clinically plausible to apply the same probability of stopping treatment for any reason to: a) all disease-modifying therapies?	(a) It is implausible to model discontinuation being the same over time for all DMTs. Furthermore, if it remains in the appraisal, Novartis notes that alemtuzumab as an induction therapy cannot be meaningfully discontinued after year 2 as it is no longer taken,

b) all years, that is at the start of treatment and after many years on treatment?	but likewise is not expected to continue to be efficacious indefinitely as it is not curative. Further work would be needed to explore this issue for induction therapy such as alemtuzumab, if alemtuzumab remains a comparator in the appraisal.
	(b) Discontinuation is unlikely to be constant over time with early discontinuations being driven by intolerance, and later discontinuations reflecting lack of efficacy (see the response to Issue 5 above). In TA441 (now withdrawn) the Committee preferred a model with separate rates for Years 1, 2 and 3+.
Are the annual probabilities of stopping treatment for any reason for the different disease modifying therapies in the table above clinically plausible? If so, which values are most plausible – the company's base case weighted by sample size or the alternative values weighted by person time?	As noted above, Novartis considers fixed proportional discontinuation to be inherently implausible as it mixes early discontinuation due to intolerance with later discontinuation arising from objective lack of efficacy (including any theoretical waning of effectiveness).
Issue 7: Utility values	
	The utility data from Orme et al. are based on over a two-and-a-half times larger number of survey responses (2,048) than Thompson et al. (779) and have been used in many previous MS appraisals, allowing consistency of decision making.
Which utility value data set, Orme et al. (2007) or Thompson et al. (2017), is more plausible for patients likely to have peginterferon beta-1a?	Novartis would particularly highlight with respect to the plausibility of Thompson et al. that EDSS 7 represents people who have become wheelchair-bound and EDSS 8 those who have become bed-ridden for life: the higher values for these states reported by Thompson do not therefore seem to have face validity. In these most severe stages, Orme et al. is based on a 1.6x greater sample (391 vs 240). Orme et al. also provide utilities for SPMS and relapse whereas Thompson et al. do not and application of Thompson data by the ERG in fact continues to apply parts of the Orme et al. regression analysis directly to the Thompson data, which may not be valid.

Technical engagement response form

Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis [ID1521]

As a stakeholder you have been invited to comment on the technical report for this appraisal. The technical report and stakeholders responses are used by the appraisal committee to help it make decisions at the appraisal committee meeting. Usually, only unresolved or uncertain key issues will be discussed at the meeting.

We need your comments and feedback on the questions below. You do not have to answer every question. The text boxes will expand as you type. Please read the notes about completing this form. We cannot accept forms that are not filled in correctly. Your comments will be summarised and used by the technical team to amend or update the scientific judgement and rationale in the technical report.

Deadline for comments - end of 24 October 2019

Thank you for your time.

Please log in to your NICE Docs account to upload your completed form, as a Word document (not a PDF).

Notes on completing this form

- Please see the technical report which summarises the background and submitted evidence. This will provide context and describe the questions below in greater detail.
- Please do not embed documents (such as PDFs or tables) because this may lead to the information being mislaid or make the response unreadable. Please type information directly into the form.
- Do not include medical information about yourself or another person that could identify you or the other person.
- Do not use abbreviations.
- Do not include attachments such as journal articles, letters or leaflets. For copyright reasons, we will have to return forms that have attachments without reading them. You can resubmit your form without attachments, but it must be sent by the deadline.
- If you provide journal articles to support your comments, you must have copyright clearance for these articles.

Technical engagement response form

Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis [ID1521]

- Combine all comments from your organisation (if applicable) into 1 response. We cannot accept more than 1 set of comments from each organisation.
- Please underline all confidential information, and separately highlight information that is submitted under <u>'commercial in confidence' in turquoise</u>, all information submitted under <u>'academic in confidence' in yellow</u>, and all information submitted under <u>'depersonalised data' in pink</u>. If confidential information is submitted, please also send a second version of your comments with that information replaced with the following text: 'academic/commercial in confidence information removed'. See the <u>Guide to the processes of technology appraisal</u> (sections 3.1.23 to 3.1.29) for more information.

We reserve the right to summarise and edit comments received during engagement, or not to publish them at all, if we consider the comments are too long, or publication would be unlawful or otherwise inappropriate.

Comments received during engagement are published in the interests of openness and transparency, and to promote understanding of how recommendations are developed. The comments are published as a record of the comments we received, and are not endorsed by NICE, its officers or advisory committees.

About you

Your name	
Organisation name – stakeholder or respondent (if you are responding as an individual rather than a registered stakeholder please leave blank)	Biogen Idec
Disclosure Please disclose any past or current, direct or indirect links to, or funding from, the tobacco industry.	None

Technical engagement response form

Questions for engagement

Issue 1: Use of peginterferon beta-1a in clinical practice	
Several options are available for treating relapsing- remitting multiple sclerosis (not highly active or rapidly evolving severe subgroups) at first line including interferon beta-1a, interferon beta-1b, dimethyl fumarate, glatiramer acetate, teriflunomide, alemtuzumab and ocrelizumab. Are the patients who are likely to be treated with peginterferon beta-1a in the NHS the same as those who would have all these treatments, including the recently approved options, alemtuzumab and ocrelizumab?	As discussed at the NICE Technical engagement call, Biogen agree with the recommendations made by the clinical expert that patients should have the option to choose their disease modifying therapy (DMT) based on factors such as risk-benefit profile of the DMT, patient lifestyle (including pregnancy considerations), route and frequency of administration. Patients with relapsing remitting multiple sclerosis (not highly active or rapidly evolving severe subgroups) could present with either mild or more severe disease activity. Thus, treatment options would vary from patient to patient based on the factors mentioned above (risk-benefit profile, route & frequency of administration and patient lifestyle). The clinical expert on the technical engagement call mentioned that even though his recommendation for patients may still opt for a treatment option with a more tolerable and well-
	established safety profile such as an interferon. Biogen agree with the recommendations made by the clinical expert that that all treatments should be available as an option; the choice of treatment should be tailored to each patient's need after shared conversations between clinician and patient.
ERG comment	Nothing to add to this comment. The ERG clinical advisor's opinion aligns to this view.
If peginterferon beta-1a is not a cost-effective first- line treatment, has enough evidence been presented to consider it as an alternative first-line treatment for patients who are intolerant to their initial disease- modifying therapy or later in the treatment pathway?	 Biogen believe peginterferon beta-1a should be considered in the same position as currently recommended within the NHS England DMT algorithm (1): first-line treatment option for RRMS, and alternative first-line treatment option for patients who are intolerant to their initial DMT.

Technical engagement response form

ERG comment	No further comment. The ERG understand the current situation, and were asked by NICE to include it as a comparator as per the NICE final scope for this appraisal.
Is alemtuzumab an appropriate comparator?	Biogen has already provided comparisons against all other comparators, including ocrelizumab, and thus no new analyses should be required in the event that alemtuzumab is removed as a comparator.
	Biogen has agreed to include alemtuzumab within the appraisal as a comparator (in-line with the scope) in the interim whilst a decision by the EMA is pending. In the event that alemtuzumab is no longer recommended as a first-line DMT, Biogen would suggest alemtuzumab is removed as a comparator.
	Alemtuzumab is currently being reviewed by the EMA safety committee (PRAC) following safety concerns and is currently restricted in adults with RRMS that is highly active despite treatment with at least two DMTs or where other DMTs cannot be used (4).
ERG comment	No further comment to make. The ERG did not appraise evidence for the use of peginterferon beta-1a outside of its position in NHS England DMT algorithm contained in the CS (as described above).
	Biogen has a marketing authorisation for patients with RRMS (3), and thus would support its use in efficacy switch patients as described by the clinical expert.
	The technical engagement clinical expert recommended that peginterferon beta-1a would be considered for efficacy switch (e.g. from glatiramer acetate to interferon) as some patients prefer switching therapy between the lower efficacy DMTs, considering their established safety profile, before potentially initiating on a higher efficacy treatment.
	We do not foresee any reason why the data from ADVANCE trial can't be extrapolated to first-line treatment for patients who are intolerant to their initial DMT.
	Biogen would like to highlight that there are >1,400 patients currently being treated with peginterferon beta-1a in-line with the NHS England DMT algorithm (2).

_

Issue 2: Minimum clinically significant reduction in outcome measures	
In clinical practice, what is considered a minimum clinically significant reduction for the following outcomes:	Biogen were not able to identify any published literature that measures the minimum clinically significant reduction (MCID) of annualised relapse rate (ARR) or confirmed disability progression (CDP) in patients with multiple sclerosis. This must therefore be deferred to clinical expert opinion.
a) annualised relapsed rateb) confirmed disability progression?	It should also be acknowledged that Biogen is not aware that this question regarding the MCID of ARR or CDP has been raised in previous NICE multiple sclerosis appraisals.
ERG comment	The ERG did not identify any published literature which measures the minimum clinically significant reduction of ARR or CDP in the SLR conducted for this appraisal. However, we have not conducted a full SLR to answer this particular question.
Issue 3: Generalisability of ADVANCE population	
Are the patients in the ADVANCE trial likely to reflect people who would be eligible for peginterferon beta- 1a in NHS practice? For example, are patients in Eastern Europe likely to be comparable to the UK in characteristics and the care and treatment they receive?	Biogen believe the patients in the ADVANCE trial do reflect the people who would be eligible for peginterferon beta-1a in NHS practice. Peginterferon beta-1a is currently being used in NHS practice and has been available since August 2015 (5).
	Unfortunately, Biogen could not provide a comparison of the geographical locations or ethnicity of patients included in the pivotal studies as this information is either not published or categorised differently within the comparator pivotal studies (e.g. rest of world).
ERG comment	The ERG refer to the statement made in the ERG report: page 21 "only 14 patients were enrolled from the UK, therefore the generalisability to a UK population is unclear" and page 60 "The ERG suggests that there is potential variation geographically in outcomes and potentially in accompanying clinical practice, treatment physiotherapy and standards of care regimes."
If not, should the economic model use the baseline characteristics of the population from the UK MS Risk Sharing Scheme?	Based on the above, Biogen would argue that the baseline characteristics from the ADVANCE trial are reflective of the UK MS population and thus should be used in the economic model.

Technical engagement response form

Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis [ID1521]

	Biogen demonstrated within our original submission that using the baseline characteristics from the UK MS Risk Sharing Scheme (RSS) in the economic model do not alter the cost-effectiveness results.
	Peginterferon beta-1a remains a cost-effective option for the treatment of patients with RRMS irrespective of whether the baseline characteristics from ADVANCE or the RSS are used in the economic model.
ERG comment	The company demonstrated that the results remain unchanged irrespective of the choice of baseline characteristics from ADVANCE or the Risk Sharing Scheme.
Issue 4: Clinical outcomes used in the economic model	
Has the company used all available data to model clinical effectiveness?	Biogen believe all the relevant data to model the clinical effectiveness has been included within the network meta-analysis in our submission.
	The ERG noted some inconsistencies in our submission with regards to the choice of studies used to derive the effectiveness for the comparators in the economic model. Biogen has provided a rationale for the inconsistency described below:
	 For interferon beta-1a, Biogen's submission excluded the PRISMS (1998) trial for the network for ARR.
	This was because the PRISMS study does not report the ARR within the publication (mean relapses per patient and proportion of relapse free reported). Biogen do not believe calculating the ARR based on the mean number of relapses per patient (as done so by Melendez-Torres et al - ID 527) is a justified assumption. As a result, this study was excluded from the ARR network.
	Nevertheless, we have conducted a further scenario analysis to include PRISMS into the NMA (Figure 1) showing minimal differences in the results (Table 1).
	Peginterferon beta-1a remains a cost-effective option for the treatment of patients with RRMS regardless of whether PRISMS study is included within the ARR network or not using Biogen's base case (Table 3) as well as the ERG's preferred assumptions (Table 4)

 For interferon beta-1a, Biogen's submission excluded the MSCGR (1996) trial from the network for CDP-6M.
This was because the hazard ratio needed to include in this network was not reported in the publication or the CSR. The NICE MTA included this trial within the network as they included a hazard ratio using the method described in Tierney et al. (2007). Biogen avoided estimating the hazard ratio from the reported risk ratio as it would increase uncertainty and thus decided to exclude this study from the network.
Nevertheless, we have conducted a further scenario analysis to include MSCGR into the NMA (Figure 2) showing minimal differences in the results (Table 2).
Peginterferon beta-1a remains a cost-effective option for the treatment of patients with RRMS regardless of whether MSCGR study is included within the ARR network or not using Biogen's base case (Table 3) as well as the ERG's preferred assumptions (Table 4)
 A discrepancy between the number of studies used for the analyses of stopping treatment because of any reasons for the clinical section (3 trials), and in the economic models (18 trials)
For the clinical section, the NMA restricted stopping treatment because of any reason to a 12-months follow-up which resulted in the reduction in number of trials within the network (3 trials). Most trials used a 22 to 24 months follow-up, however as we wanted to include the ADVANCE trial (pivotal trial for peginterferon beta-1a) into our analysis we focused on trials with a 12-month follow up. There was also significant variation in the definitions of stopping criteria between trials which would have increased uncertainty.
The inputs used in the economic model were derived from the individual DMT's pivotal trials, and hence resulted in a larger number of studies (18 trials). This is consistent with the previous appraisals, and thus Biogen would not consider this issue as an inconsistency.
Biogen presented a suite of scenario analyses varying discontinuation rates within our original manufacturer submission demonstrating that

Technical engagement response form

Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis [ID1521]

	peginterferon beta-1a remained a cost-effective options for the treatment of patients with RRMS.
	• The ERG described the preferred NMA study inclusions in Error! Reference source not found. and Section Error! Reference source not found. of the ERG report. Biogen provided their rationale for the difference during clarification, and provided scenarios described above, and Fig 1 and 2 in this document. Despite preferring our own NMA, we consider the companies scenarios to be adequate.
ERG comment	• To our knowledge, the company used all available evidence to model discontinuation rates. These approaches to modelling discontinuation all appear to be plausible. However, given the limitations outlined in issue 6, we preferred to use the 5% discontinuation rates that were observed in the Risk Sharing Scheme.
	 We thank the company for undertaking these additional analyses by considering the information from PRISMS and MSCGR for ARR and confirmed disability progression measured at six months. We have verified these results and they are in-line with the ERG's.
Issue 5: Treatment waning	
Are the waning effects modelled by the company clinically plausible? That is, from years 3 to 5, effect decreases to 75% of full treatment effect and from year 6 onwards, the effect decreases further to 50% of full treatment effect.	There is a dearth of available literature in regard to treatment waning for DMTs, and current waning assumptions applied to the economic model are arbitrary. However for consistency with prior technology appraisals, we have applied the same step-change in hazard ratio for disability progression across all comparators.
	The development of neutralising antibodies (NAbs) against beta-interferons can reduce the efficacy of treatment, and has been a theory postulated in prior NICE appraisals to be directly linked to treatment waning.

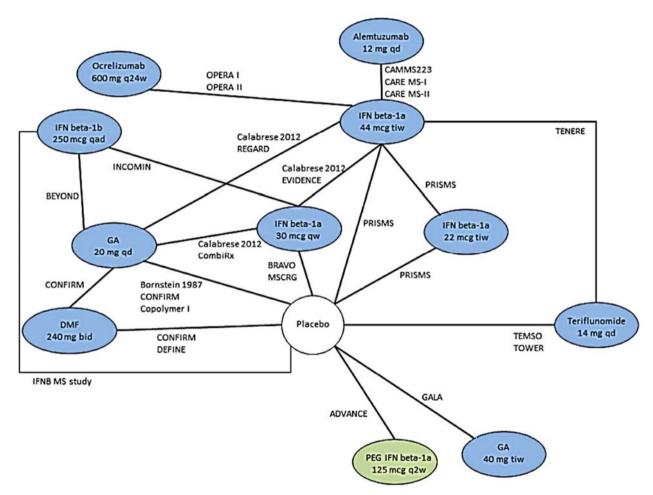
Technical engagement response form

	The incidence of NAbs with peginterferon beta-1a is <1%, considerably lower compared to its comparators such as interferon-beta 1a 30mcg (5-8%) (6), interferon beta-1a 44mcg (13-24%)(7), and interferon beta 1-b (23-41%)(8). Glatiramer acetate is not associated with Nabs (9). Thus, having the same waning effect for peginterferon beta-1a as the other interferons could be underestimating effect size.
	Nevertheless, Biogen would like to iterate that peginterferon beta-1a remains to be a cost-effective treatment option when the same waning effects are used for peginterferon beta-1a and its comparators.
ERG comment	The waning of treatment effects modelled by the company is plausible.
Is it clinically plausible that the waning effects are the	Different mechanisms of actions of the MS therapies would likely pertain to alternative waning effects – e.g. immune reconstitution therapies vs maintenance therapies.
same for all treatments?	However, as Biogen believe that current evidence in this area is limited, Biogen would suggest that this questions is most appropriately answered by the clinical experts.
Issue 6: Stopping treatment	
Is it clinically plausible to apply the same probability of stopping treatment for any reason to:	There are significant differences between the DMTs with regards to safety and adverse event profile. As a result, Biogen's preference is to use discontinuation rates obtained from the pivotal trials of each DMT, as opposed to the same probability for each DMT. This has been reflected within our base case analysis.
a) all disease-modifying therapies?	However, Biogen has also conducted a scenario analysis where the same probability has been applied to all DMTs (5% discontinuation rate), maintaining consistency with previous
b) all years, that is at the start of treatment and	appraisals.
after many years on treatment?	Peginterferon beta-1a remains a cost-effective option for the treatment of patients with RRMS even when the same probability of stopping treatment is applied to the economic model.
ERG comment	In Table 47 page 147 of the ERG's report, we provide justification for our use of the 5% discontinuation rate, which was applied in the recent health technology assessment monograph (Melendez-Torres et al, 2017). In summary, RCT's can be considered artificial, with highly selected/motivated participants, there may be

Technical engagement response form

Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis [ID1521]

	various non-clinical reasons for discontinuation (e.g. withdrawal of consent), and limited long-term follow-up.
Are the annual probabilities of stopping treatment for any reason for the different disease modifying therapies in the table above clinically plausible? If so, which values are most plausible – the company's	Biogen has already submitted three scenarios where the different stopping criteria is used in the economic model.
	 Discontinuation rates obtained from the pivotal trials of each DMT, weighted by sample size
	Discontinuation rates obtained from the pivotal trials of each DMT, weighted by person time
base case weighted by sample size or the alternative	3. Same probability of stopping rates for all DMTs (5% applied to all DMTs)
values weighted by person time?	Across all analyses peginterferon beta-1a was demonstrated to be a cost-effective option for the treatment of patients with RRMS regardless of which stopping criteria is used.
ERG comment	The ERG preference is 3, to use 'same probability of stopping rates for all DMTs (5% applied to all DMTs)'
Issue 7: Utility values	
Which utility value data set, Orme et al. (2007) or Thompson et al. (2017), is more plausible for patients likely to have peginterferon beta-1a?	Biogen has used utility data derived from Orme et al. (2007) in the economic model for its base case. This is consistent with the previous appraisals.
	Biogen has already submitted a scenario analysis using utility data using Thompson et al. (2017).
	Biogen would like to iterate that the Thompson et al. (2017) study used the same data as the Orme et al. (2007) study (obtained from the MS Survey in 2006). However, the Orme paper has a much larger sample size (n=2,048) across all MS types (RRMS, PPMS, SPMS) (10), whereas the Thompson paper is restricted to a much smaller sample size (n=779) (11). Therefore, Biogen believe utility data obtained from the Orme paper would be more plausible, and also maintains consistency with the previous appraisals.


Technical engagement response form

	Regardless of whether utility data is obtained using the Orme et al (2007) study or the Thompson et al. (2017) study, peg-interferon beta-1a remains a cost-effective option for patients with RRMS.
ERG comment	We are in agreement with the company that the health state utility values obtained from Orme et al., 2007 should be used in the base-case.

ARR = annualised relapse rate; CDP = confirmed disability progression; CDP 6M = confirmed disability progression at 6-months; DMT = disease modifying therapy; EMA = European Medicines Agency; ERG = Evidence Review Group; MCID = minimum clinically significant decrease; MS = multiple sclerosis; RES = rapidly evolving severe MS; RRMS = relapsing remitting multiple sclerosis; RSS = risk sharing scheme; Nabs = neutralising antibodies.

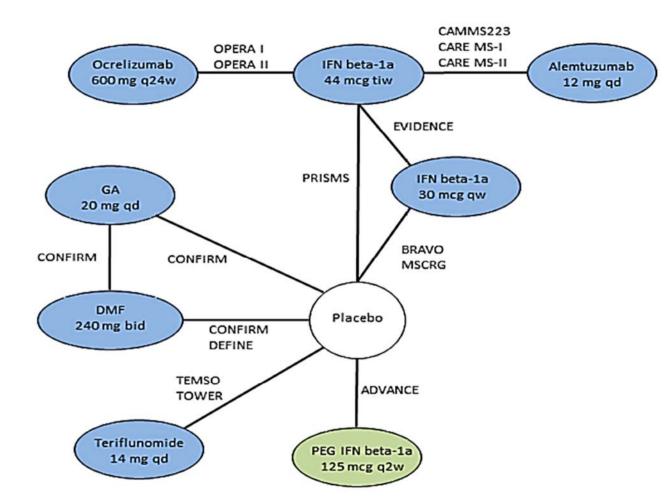
Technical engagement response form

Figure 1: Network for annualised relapse rate including PRISMS trial

DMF = dimethyl fumarate; GA = glatiramer acetate; IFN = interferon; PEG IFN = pegylated interferon; q24w = every 24 weeks; qad = every other day; qd = once daily; qw = once weekly; tiw = three times weekly.

Technical engagement response form

Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis [ID1521]


Table 1: Rate ratio on ARR versus placebo including PRISMS study in the network

Treatment	Rate ratio for ARR from original submission	95% CI	Rate ratio for ARR including PRISMS	95% CI
PegIFNβ-1a				
IM IFNβ-1a 30				
IFNβ-1a 22				
IFNβ-1a 44				
IFNβ-1b				
GA 20				
GA 40				
GenGA 20				
GenGA 40				
Teriflunomide				
DMF				
Alemtuzumab				
Ocrelizumab				

DMF = dimethyl fumarate; PEG IFN = pegylated interferon; GA = glatiramer acetate; genGA = generic glatiramer acetate; IFN = interferon

Technical engagement response form

Figure 2: Network for confirmed disability progression at 6-months including MSCRG trial

bid = twice daily; DMF = dimethyl fumarate; PEG IFN = pegylated interferon; qad = every other day; q24w = once every 24 weeks; qd = once daily; tiw = 3 times a week.

Technical engagement response form

Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis [ID1521]

Table 2: Hazard ratio on CDP at 6 months versus placebo including MSCRG study

Treatment	Hazard ratio for CDP-6M from original submission	95% CI	Hazard ration for CDP- 6M including MSCRG	95% CI
PegIFNβ-1a				
IM IFNβ-1a 30				
IFNβ-1a 22				
IFNβ-1a 44				
IFNβ-1b				
GA 20				
GA 40				
GenGA 20				
GenGA 40				
Teriflunomide				
DMF				
Alemtuzumab				
Ocrelizumab				

DMF = dimethyl fumarate; PEG IFN = pegylated interferon; GA = glatiramer acetate; genGA = generic glatiramer acetate; IFN = interferon

Technical engagement response form

Table 3: Cost-effectiveness results using Biogen's base case of two additional scenario analyses using list prices.

Scenario	pegIFNβ- 1a	GA20	GA40	genGA 20	genGA 40	IFNβ-1b 44	IFNβ-1b	IFNβ-1a 30	teriflunomi de	DMF	ocrelizuma b	alemtuzum ab
Base case -	discounted											
QALY	4.39	0.75	0.74	0.75	0.74	0.17	NA	0.46	0.60	0.44	-0.50	-1.08
Costs	£273,641	-£11,423	-£14,035	-£8,701	-£11,033	-£19,328	NA	-£20,557	-£23,796	-£34,865	-£66,027	-£1,250
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a LCLE
Scenario: In	cluding PRISM	S study for AF	RR			11			I			
QALY	4.394	0.75	0.74	0.75	0.74	0.17	N/A	0.47	0.60	0.45	-0.50	-1.08
Costs	£273,621	-£11,449	-£14,068	-£8,727	-£11,066	-£19,380	N/A	-£20,592	-£23,837	-£34,903	-£66,064	-£1,294
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a LCLE
Scenario: In	cluding MSCR	G study for CD	P-6M			1						
QALY	4.39	0.74	0.73	0.74	0.73	0.12	#N/A	0.26	0.59	0.44	-0.55	-1.13
Costs	£273,641	-£11,259	-£13,860	-£8,534	-£10,855	-£18,601	#N/A	-£17,369	-£23,747	-£34,771	-£65,629	-£424
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a LCLE
Scenario: In	cluding PRISM	S study for AF	RR & MSCRG s	tudy for CDP-	6M	I		1		1	1	1
QALY	4.39	0.74	0.73	0.74	0.73	0.12	#N/A	0.26	0.60	0.44	-0.55	-1.13
Costs	£273,621	-£11,285	-£13,893	-£8,561	-£10,888	-£18,654	#N/A	-£17,404	-£23,788	-£34,809	-£65,667	-£468
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a LCLE

CDP-6M= confirmed disability progression at 6-months; DMF = dimethyl fumarate; DMT = disease-modifying therapy; GA = glatiramer acetate; genGA = generic glatiramer acetate; ICER = , incremental cost-effectiveness ratio; IFN = interferon; IM = intramuscular; LCLE = less costly, less effective; MS = multiple sclerosis; QALY = quality-adjusted life-year; RRMS = relapsing-remitting multiple sclerosis; SC = subcutaneous

Technical engagement response form

Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis [ID1521]

Table 4: Cost-effectiveness results using ERG preferred assumptions of two additional scenario analyses using list prices.

Scenario	pegIFNβ- 1a	GA20	GA40	genGA 20	genGA 40	IFNβ-1b 44	IFNβ-1b	IFNβ-1a 30	teriflunomi de	DMF	ocrelizuma b	alemtuzum ab
ERG Base c	ase - discounte	əd										
QALY	5.41	1.24	1.25	1.24	1.25	0.50	N/A	0.95	0.91	0.65	-0.10	-0.22
Costs	£276,655	-£6,609	-£6,890	-£2,928	-£3,209	-£19,260	N/A	-£13,784	-£42,742	-£63,395	-£65,412	£5,727
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a dominated
Scenario: E	RG base case i	ncluding PRIS	MS study for A	ARR								
QALY	5.41	1.24	1.25	1.24	1.25	0.50	#N/A	0.95	0.91	0.65	-0.10	-0.22
Costs	£276,618	-£6,655	-£6,944	-£2,974	-£3,263	-£19,342	#N/A	-£13,839	-£42,821	-£63,468	-£65,469	£5,670
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a dominated
Scenario: E	RG base case i	ncluding MSC	RG study for C	DP-6M								
QALY	5.41	1.23	1.23	1.23	1.23	0.44	#N/A	0.71	0.90	0.64	-0.16	-0.26
Costs	£276,655	-£6,428	-£6,710	-£2,742	-£3,023	-£18,524	#N/A	-£10,663	-£42,690	-£63,315	-£65,123	£6,385
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a dominated
Scenario: E	RG base case i	ncluding PRIS	MS study for A	ARR & MSCRG	study for CDI	P-6M		1	1	1	1	
QALY	5.41	1.23	1.24	1.23	1.24	0.44	#N/A	0.72	0.91	0.64	-0.16	-0.26
Costs	£276,618	-£6,474	-£6,763	-£2,788	-£3,077	-£18,606	#N/A	-£10,718	-£42,769	-£63,387	-£65,180	£6,328
ICER	-	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	NA	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a dominates	pegIFNβ- 1a LCLE	pegIFNβ- 1a dominated

CDP-6M= confirmed disability progression at 6-months; DMF = dimethyl fumarate; DMT = disease-modifying therapy; ERG = Evidence review group; GA = glatiramer acetate; genGA = generic glatiramer acetate; ICER = , incremental cost-effectiveness ratio; IFN = interferon; IM = intramuscular; LCLE = less costly, less effective; MS = multiple sclerosis; QALY = quality-adjusted life-year; RRMS = relapsing-remitting multiple sclerosis; SC = subcutaneous

Technical engagement response form

Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis [ID1521]

References

1. NHSEngland. Treatment Algorithm for Multiple Sclerosis Disease-Modifying Therapies. 2019 4 September 2018. Contract No.: Gateway reference 07603.

2. Biogen Idec Ltd. Data on File.

3. European Medicines A. Summary of Product Characteristics for Plegridy. <u>https://www.ema.europa.eu/en/documents/product-information/plegridy-epar-product-information/plegridy-epar-product-information_en.pdf</u>.

4. European Medicines A. European Medicines Agency: Use of multiple sclerosis medicine Lemtrada restricted while EMA review is ongoing. https://wwwemaeuropaeu/en/documents/referral/lemtrada-article-20-referral-use-multiple-sclerosis-medicine-lemtrada-restricted-while-ema-review_enpdf. 2019.

5. NHSEngland. Specialised Services Circular: Multiple Sclerosis: First line disease modifying agents. 10 August 2015.

6. European Medicines A. Summary of Products Characteristics for Avonex; <u>https://www.ema.europa.eu/en/documents/product-information/avonex-epar-product-information_en.pdf</u>.

7. European Medicines A. Summary of Product Characteristics for Rebif; <u>https://www.ema.europa.eu/en/documents/product-information/rebif-epar-product-information en.pdf</u>.

8. European Medicines A. Summary of Product Characteristics for Betaferon; <u>https://www.ema.europa.eu/en/documents/product-information/betaferon-epar-product-information_en.pdf</u>.

9. Teva. Summary of Product Characteristics for Copaxone; <u>https://www.medicines.org.uk/emc/product/183/smpc</u>.

10. Orme M, Kerrigan J, Tyas D, Russell N, Nixon R. The effect of disease, functional status, and relapses on the utility of people with multiple sclerosis in the UK. Value Health. 2007;10(1):54-60.

11. Thompson A, Kobelt G, Berg J, Capsa D, Eriksson J, Miller D, et al. New insights into the burden and costs of multiple sclerosis in Europe: Results for the United Kingdom. Multiple sclerosis. 2017;23(2_suppl):204-16.

Technical engagement response form

NATIONAL INSTITUTE FOR HEALTH AND CARE EXCELLENCE

Technical report

Peginterferon beta-1a for treating relapsingremitting multiple sclerosis

This document is the technical report for this appraisal. It has been prepared by the technical team with input from the lead team and chair of the appraisal committee.

The technical report and stakeholder's responses to it are used by the appraisal committee to help it make decisions at the appraisal committee meeting. Usually, only unresolved or uncertain key issues will be discussed at the appraisal committee meeting.

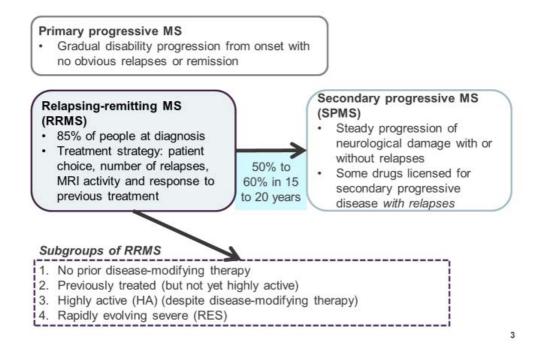
The technical report includes:

- a commentary on the evidence received and written statements
- technical judgements of the evidence by the technical team
- reflections on NICE's structured decision-making framework.

This report is based on:

- the key evidence and views submitted by the company, consultees and their nominated clinical experts and patient experts and
- the evidence review group (ERG) report.

The technical report should be read with the full supporting documents for this appraisal.


Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis Page 1 of 38 Issue date: November 2019 © NICE 2019. All rights reserved. Subject to <u>Notice of rights</u>.

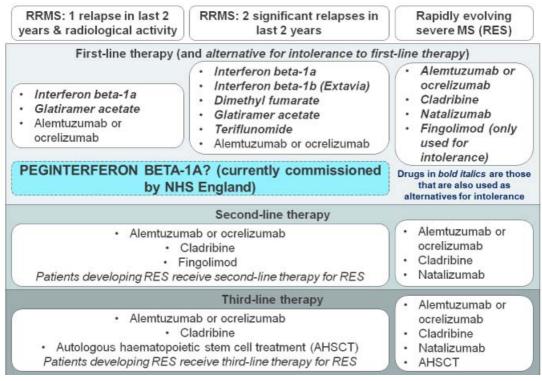
1. Topic background

1.1 Disease background: multiple sclerosis

- Chronic, lifelong, neurological disease with no cure. Results in progressive, irreversible disability. Affects central nervous system:
 - Immune system mistakenly attacks myelin sheath (layer that surrounds and protects nerves), disrupting signals travelling along the nerves
- 85% of MS is relapsing-remitting (RRMS): episodes of relapses (neurological worsening) separated by remission (periods of stability)
- Associated with pain, disturbance to muscle tone, chronic fatigue, unsteady gait, speech problems, incontinence, visual disturbance and cognitive impairment
- Approximately 110,000 people in the UK have MS, and about 5,000 people are newly diagnosed each year
- Onset typically between 25 and 35 years of age
- Treatment (disease-modifying therapies): decrease frequency and severity of relapses, reduce accumulation of lesions, slow accumulation of physical and mental disability, maintain or improve patient quality of life

Types of multiple sclerosis

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis Page 2 of 38

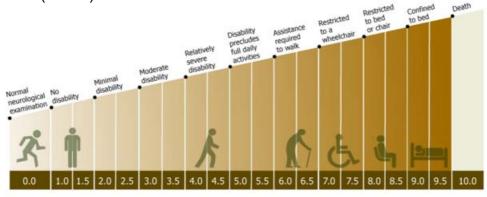

Issue date: November 2019

Peginterferon beta-1a (Plegridy)

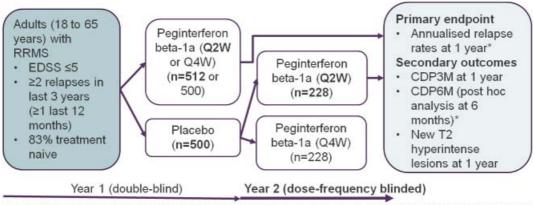
- **Marketing authorisation**: "adult patients for the treatment of relapsing remitting multiple sclerosis" (obtained July 2014)
- Mechanism of action: a man-made version of naturally produced beta interferons, which help to reduce inflammation in the nerves. Reduces disease activity similar to non-peginterferon beta-1a. Pegylation increases circulation time of interferon (less frequent dosing) and decreases immunogenicity (reduced neutralising antibodies linked to treatment waning)
- Administration and dose: prefilled syringe/autoinjector administered subcutaneously every 2 weeks. 63µg dose 1, 94µg dose 2, 125µg dose 3+
- **Cost**: standard pack 2 injections £654. Annual cost: £8,502. No patient access scheme
- Currently commissioned by NHS England for RRMS first-line, not highly active (disease activity despite previous therapy) or rapidly evolving severe MS
- Originally included in the multiple technology assessment (<u>TA527</u>) on beta interferons and glatiramer acetate for MS. No recommendation because primary source of evidence preferred by committee in MTA was the UK MS Risk Sharing Scheme

1.2 **Treatment pathway**

NHS England treatment algorithm and company positioning



Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis Page 3 of 38


Issue date: November 2019

Aim of disease-modifying therapies

- Reduce frequency of relapse and slow disability
 - Relapse: new or recurrent neurological symptoms lasting ≥24 hours without fever or infection; separate events are at least 30 days apart
 - Disability: assessed using Expanded Disability Status Scale (EDSS)

1.3 Clinical evidence: ADVANCE trial

*used in economic model; all outcomes also assessed at Year 2

CDP3M or CDP6M, confirmed disability progression at 3 or 6 months; EDSS, Expanded Disability Status Scale; Q2W or Q4W, every 2 or 4 weeks

ATTAIN: 2 year extension dose-frequency blinded extension study of ADVANCE. All clinical effectiveness data from ATTAIN **not** used in economic model. Peginterferon beta-1a Q2W (n=376) or Q4W (n=354)

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis Page 4 of 38

Issue date: November 2019

ADVANCE: baseline characteristics

Characteristic		Peginterferon beta- 1a every 2 weeks (Q2W; n = 512)	Placebo (n = 500)
Age, mean ± SE)	36.9 ± 9.8	36.6 ± 9.8
Female, n (%)		361 (71)	358 (72)
Race, n (%)	White	416 (81)	412 (82)
Region, n (%)	India	58 (11)	56 (11)
	North America	19 (4)	17 (3)
	Western Europe	41 (8)	38 (8)
	Eastern Europe	355 (69)	354 (71)
	Rest of world	39 (8)	35 (7)
Body mass inde mean ± SD	ex (kg/m ^²),	24.6 ± 5.1	24.6 ± 4.9
EDSS score	Mean ± SD	2.5 ± 1.3	2.4 ± 1.2
Relapses in pre mean ± SD	evious year,	1.6 ± 0.7	1.6 ± 0.7
Relapses in pre mean ± SD	evious 3 years,	2.6 ± 1.0	2.6 ± 1.0
Time since MS years ± SD	diagnosis,	4.0 ± 5.1	3.5 ± 4.63
Previous treatment, n	Glatiramer acetate	27 (5)	24 (5)
(%)	Interferon beta-1b	8 (2)	6 (1)
	Interferon beta-1a	4 (< 1)	5 (1)
	Other	58 (11)	58 (12)
Number of	T2	48.7 ± 36.8	50.6 ± 35.7
lesions, mean ± SD	Gd+	1.2 ± 3.4	1.6 ± 3.8

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis Page 5 of 38

Issue date: November 2019

1.4 Key clinical effectiveness results

ADVANCE: key results at 1 year

Outcome	Peginterferon beta- 1a every 2 weeks (Q2W; n = 512)	Placebo (n = 500)	Peginterferon beta-1a Q2W vs placebo
Annualised relapse rate (95% CI)	0.256 (0.21 to 0.32)	0.397 (0.33 to 0.48)	Rate ratio: 0.644 (0.50 to 0.83); p=0.0007
CDP3M (estimated proportion)	0.068	0.105	Hazard ratio: 0.62 (0.40 to 0.97); p=0.04
CDP6M	-	-	Hazard ratio: 0.46 (0.26 to 0.81); p=0.007
New T2 lesions (adjusted mean)	3.6	10.9	Lesion mean ratio: 0.33 (0.27 to 0.40); p<0.001

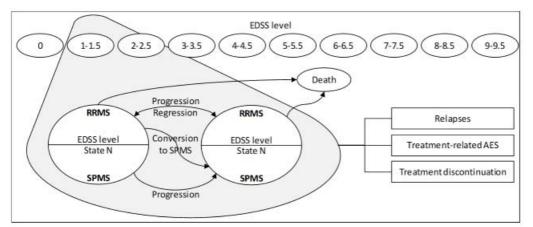
Subgroup analysis of annualised relapse rate showed efficacy of peginterferon beta-1a was similar in all patients regardless of sex, age, body weight or disease status

CDP3M or CDP6M, confirmed disability progression at 3 or 6 months; CI, confidence interval; Q2W or Q4W, every 2 or 4 weeks

Network meta-analysis: key results reported by company

- Annualised relapse rates (Company submission, Document B, Figure 15)
 - Statistically significantly higher vs alemtuzumab and ocrelizumab
 - Statistically significantly lower vs placebo
 - No statistically significant differences vs any other treatments
- Confirmed disability progression at 3 months (CDP3M; Company submission, Document B, Figure 17)
 - No statistically significant differences vs placebo or any active treatment
- Confirmed disability progression at 6 months (CDP6M; Company submission, Document B, Figure 19)

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis Page 6 of 38


Issue date: November 2019

• Statistically significantly lower vs placebo

• No statistically significant differences vs any active treatment Statistically significant p<0.05

Note: The clinical significance of the results will be considered in more detailed by committee

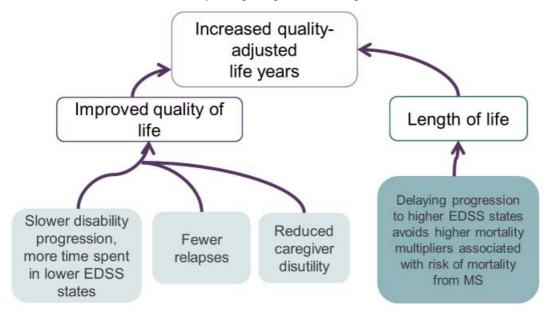
1.5 **Company's model structure**

- Markov cohort model
- 20 EDSS health states (RRMS, SPMS)
- Annual cycle, 50-year time horizon
- Starting age 36 years; 29% men
- NHS/PSS perspective, 3.5% discount
- On-treatment effects (annualised relapse rates, disability progression, adverse events) taken from network meta-analyses
- Patients stop treatment after progression to EDSS ≥ 7 or on conversion to SPMS. Overall stopping risk applied for all treatments over lifetime horizon
- After stopping treatment, patients follow natural disease progression course based on British Columbia MS data set (n=898)

1.6 Key model assumptions

Parameter	Base-case assumption	Justification
Disability progression	Disability progression and relapses modelled independently, with independent treatment effects applied to each.	In line with previous appraisals. EDSS progression is a key driver of cost-effectiveness. This approach avoids potential double counting.
	Treatments had an indirect effect on the risk of progression to SPMS and mortality.	Delaying progression to higher EDSS levels avoids higher mortality multipliers associated with risk of mortality from MS and

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis Page 7 of 38


Issue date: November 2019

		avoids higher probabilities of progression to SPMS.
	•	As per the definition of RRMS, patients can regress (demonstrated in the British Columbia MS data set). As per the definition of SPMS, patients cannot regress (aligned with the London, Ontario data set).
	After stopping treatment, patients follow the natural disease progression course.	In line with previous appraisals. This approach underestimates cost-effectiveness estimates for treatments with the highest stopping rates as they are likely to transition to higher efficacy drugs.
Mortality	Same rate ratios for RRMS and SPMS phases.	Due to lack of data (conservative assumption)
Treatment waning	 Treatment effect wanes over time; same decline for all disease-modifying therapies. Years 1-2: no waning Years 3-5: 75% of full treatment effect Year 6 onwards: 50% of full treatment effect 	In line with previous appraisals.
Health related quality of life	Fatigue, injection-site reaction (erythema, pain, pruritus) not associated with a disutility.	Due to lack of data.
	Patient who received treatment would incur the risk of disutility and costs associated with adverse effects for each year over.	Due to lack of data. This approach may overestimate impact of adverse effects, because patients with severe/frequent events likely to stop treatment early on.
Costs	Non-serious type of fatigue, injection-site reaction (erythema, pain, pruritus) and nasopharyngitis have no costs associated with them.	Injection-site reactions often do not lead to any resource use, particularly from NHS/PSS perspective.

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis Page 8 of 38

Issue date: November 2019

1.7 **Overview of how quality-adjusted life years accrue in the model**

2. Summary of the technical report

After technical engagement, the technical team has collated the comments received and, if relevant, updated the judgement made by the technical team and rationale. Judgements that have been updated after engagement are highlighted in bold below.

2.1 In summary, the technical team considered the following:

Issue 1 A. Population. Peginterferon beta-1a is likely to be used in line with current NHS practice in accordance with NHS England's treatment algorithm for multiple sclerosis disease-modifying therapies, that is, as first-line treatment for relapsing-remitting multiple sclerosis, and as an alternative first-line treatment for people who are intolerant of their initial disease-modifying therapy.

B. Comparators. It is unclear whether alemtuzumab should be a comparator, however, if the European Medicines Agency (EMA) restrictions remain in place, this would limit its relevance as a first-line treatment. Ocrelizumab should be

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis Page 9 of 38 Issue date: November 2019 © NICE 2019. All rights reserved. Subject to <u>Notice of rights</u>. **included as a comparator, given that it** is recommended if alemtuzumab is contraindicated or otherwise unsuitable.

- Issue 2 Minimum clinically significant reduction in outcome measures. The overarching view from most stakeholders appears to be that any relative reduction in annualised relapse rates and confirmed disability progression is clinically meaningful.
- Issue 3 Generalisability of ADVANCE trial population. Although the baseline characteristics of patients from the ADVANCE trial are likely to be subject to some bias, they are broadly generalisable to the UK setting and should be used in the economic model.
- Issue 4 Source of data. The company has adequately justified the inconsistencies in study choice included in their analyses in the clinical effectiveness section, which have little impact on the cost-effectiveness estimates.
- Issue 5 Treatment waning. It is likely that the waning effects of peginterferon beta-1a may be different to newer disease-modifying therapies such as alemtuzumab and ocrelizumab. However, in the absence of supporting evidence, the same waning effects should be applied to all disease-modifying therapies.
- Issue 6 Stopping treatment for any reason (for example, lack of effect, adverse effects). It is clinically more plausible that individual disease-modifying therapies would have specific stopping rates, which will likely vary over time.
- Issue 7 Utility values. The utility values used in Orme et al. (2007) and Thompson et al. (2017) are broadly similar. Using Orme et al. is consistent with previous appraisals.

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis Page 10 of 38 Issue date: November 2019 © NICE 2019. All rights reserved. Subject to Notice of rights.

- 2.2 The technical team recognised that the following uncertainties would remain in the analyses and could not be resolved:
 - The unknown impact of treatment sequencing from second line onwards on the cost-effectiveness estimates.
 - The possibility of informative censoring. More patients in the peginterferon beta-1a arm (15%) stopped participating in the ADVANCE trial than in the placebo arm (9%) at 1 year. It is unclear whether patients who completed the trial were different in terms of baseline characteristics and outcomes than those who had stopped the study early.
- 2.3 Taking these aspects into account, the technical team's preferred assumptions result in alemtuzumab dominating peginterferon beta-1a (see table 1). These results do not take into account the commercial arrangements for interferon beta-1a (Avonex, Rebif), interferon beta-1b (Extavia), glatiramer acetate (Copaxone), dimethyl fumarate (Tecfidera), teriflunomide and ocrelizumab, because these are confidential and cannot be reported here.
- 2.4 The technology is unlikely to be considered innovative (see Table 3).
- 2.5 No equality issues were identified.

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis Page 11 of 38 Issue date: November 2019 © NICE 2019. All rights reserved. Subject to <u>Notice of rights</u>.

3. Key issues for consideration

Issue 1 – Use of peginterferon beta-1a in clinical practice

Background/description of issue	The company positions peginterferon beta-1a as first-line therapy, excluding the 'rapidly evolving' and 'highly active' subgroups presented in the scope (because it is "unlikely to be used in this population in clinical practice", and because of "limited data", respectively). Peginterferon beta-1a is currently commissioned by NHS England as a first-line treatment. As such, the company has only presented clinical and cost-effectiveness analyses compared with all available first-line treatments.
	However, the scope and the licence do not restrict the use of peginterferon beta-1a to first-line treatment only. In addition, cost can affect the place in the treatment pathway (NICE technology appraisal, <u>TA533</u> states ocrelizumab should only be used if alemtuzumab is contraindicated or otherwise unsuitable, "because it is more costly than alemtuzumab"). If committee's preferred model assumptions lead to cost-effectiveness results suggesting peginterferon beta-1a is not a cost-effective initial first-line treatment, can the evidence in the company submission be used to consider peginterferon beta-1a's use as an alternative first-line option in the event of intolerance or from second line onwards?
	 The main clinical evidence (from the ADVANCE trial) includes patients who were mostly treatment naïve (83%).
	 The company has focused the clinical and cost-effectiveness results on a first-line population, so they have omitted some scope comparators which would be used later in the pathway.
	Please note that in April 2019, the European Medicines Agency's pharmacovigilance risk assessment committee started a <u>review of alemtuzumab</u> . It advises that during the ongoing review, alemtuzumab should only be started in adults with relapsing-remitting multiple sclerosis that is highly active despite treatment with at least 2 disease-modifying therapies, or when other disease-modifying therapies cannot be used. Alemtuzumab is frequently the most cost-effective treatment option, however given this restriction, it is unclear if it is an appropriate comparator.

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis Page 12 of 38

Issue date: November 2019

Questions for engagement	 Several options are available for treating relapsing-remitting multiple sclerosis (not highly active or rapidly evolving severe subgroups) at first line including interferon beta-1a, interferon beta-1b, dimethyl fumarate, glatiramer acetate, teriflunomide, alemtuzumab and ocrelizumab. Are the patients who are likely to be treated with peginterferon beta-1a in the NHS the same as those who would have all these treatments, including the recently approved options, alemtuzumab and ocrelizumab? If peginterferon beta-1a is not a cost-effective first-line treatment, has enough evidence been presented to consider it as an alternative first-line treatment for patients who are intolerant to their initial disease-modifying therapy or later in the treatment pathway?
	3. Is alemtuzumab an appropriate comparator?
Why this issue is important	The company have focused their analyses on the first-line population, however committee may recommend it later in the pathway. Whether alemtuzumab is an appropriate treatment option is important – this frequently dominates all other treatments, but it is undergoing a safety review, which limits its use to later in the pathway.
Technical team preliminary judgement and rationale	Given peginterferon beta-1a is already used at first line in NHS practice, this is the most likely place in the pathway. If committee choose to recommend it second line onwards, for example, because of cost, there is nothing in the licence to prevent this, although it should be noted that the ADVANCE trial included a population that was primarily treatment naïve (83%).
	It is unclear at this stage whether alemtuzumab should be a comparator, however if the EMA restrictions remain in place, this would limit its relevance as a first-line treatment. Ocrelizumab should be included as a comparator, given that it is recommended if alemtuzumab is contraindicated or otherwise unsuitable.
Summary of comments	Comments received from company:
	 Different factors affect the choice of disease-modifying therapies including patient preference, disease activity, risk-benefit profile of treatments, route and frequency of administration and patient lifestyle. All treatments should be available as options.
	 Peginterferon beta-1a should be considered in the same position as currently recommended in the NHS England disease modifying therapies algorithm: first-line treatment option for RRMS and an alternative first-line treatment option for patients who are intolerant of their

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis Page 13 of 38

Issue date: November 2019

initial disease modifying therapy. Data from ADVANCE trial can be extrapolated to first-line treatment for patients who are intolerant of their initial disease modifying therapy.
 Peginterferon beta-1a could also be considered for efficacy switch among lower efficacy disease-modifying therapies with established safety profile, before starting higher efficacy treatments.
 Alemtuzumab is a relevant comparator pending the decision of the EMA safety committee on its use.
Comments received from clinical expert:
 Peginterferon beta-1a would be considered at the same point in the treatment pathway as other first line agents.
 Patients with highly active or rapidly evolving severe MS should be allowed to have these first line treatments as options.
 The company's efficacy evidence does support peginterferon beta-1a's use as an alternative first-line agent in those who are intolerant (due to side effects or mode of administration) of another first-line treatment.
 For patients not switching from another interferon, peginterferon beta-1a should be considered for patients whose first-line treatment is not effective (further relapses have occurred) but do not wish to escalate to a more potent treatment because of concerns about side effects.
 Comparison of peginterferon beta-1a to other more potent treatments such as ocrelizumab should consider costs for monitoring and side effects. Because of comparable treatment costs, other interferons may be appropriate comparators.
Comments received from clinical organisation:
 Peginterferon beta-1a will mainly be considered in people with relatively low inflammatory activity (usually 1 relapse in last 2 months with minimal MRI changes), while ocrelizumab and alemtuzumab may be considered in people with greater inflammatory activity because of potentially greater risk.

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis Page 14 of 38

Issue date: November 2019

	 Peginterferon beta-1a can be used for people who are intolerant to other first line oral therapies.
	 Alemtuzumab is not an appropriate comparator as it would be considered a much more active therapy with significantly greater risk.
	Comments received from patient organisations:
	 Patients eligible for peginterferon beta-1a are eligible for treatments set out in NHS England Treatment Algorithm for Multiple Sclerosis. They are as likely to be treated with alemtuzumab and ocrelizumab as other highly efficacious treatments.
	 For patients who are intolerant of their initial disease modifying therapy, it is routine clinical practice to switch to an alternative first-line treatment and this should apply to peginterferon beta-1a.
	 Although alemtuzumab is approved as a first-line treatment, it is not an appropriate comparator for peginterferon beta-1a. People receiving alemtuzumab first line tend to have more active disease and a less favourable baseline prognostic profile.
	Comments received from comparator company:
	 Patients considering peginterferon beta-1a would be the same as those who might consider one of the recently approved treatment options (not alemtuzumab).
	 NICE has not previously required separate evidence to be presented for the position of "alternative first-line treatment" in RRMS. It is unclear whether relative efficacy would differ due to intolerance to first-line therapy.
	 Alemtuzumab is not an appropriate comparator because of current EMA safety restriction and patients are expected to be systematically different to those considering a first-line injectable given the different risk-benefit profiles.
Technical team judgement after engagement	Peginterferon beta-1a is likely to be used in line with current clinical practice, as first-line treatment for relapsing-remitting multiple sclerosis, and as an alternative first-line treatment for people who are intolerant of their initial disease modifying therapy.

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis Page 15 of 38

Issue date: November 2019

	It is unclear at this stage whether alemtuzumab should be a comparator, however if the EMA restrictions remain in place, this would limit its relevance as a first-line treatment. Ocrelizumab should be included as a comparator, given that it is recommended if alemtuzumab is contraindicated or otherwise unsuitable.
--	--

Issue 2 – Minimum clinically significant reduction in outcome measures

Background/description of issue	The primary endpoint in the ADVANCE trial was annualised relapse rate at 1 year. In addition, one of the key clinical outcomes in the company's model was confirmed disability progression, either at 3 or 6 months.
	The Association of British Neurologists commented that a clinically significant treatment response may be considered to be "Reduction of relative relapse rate compared to best supportive care." It further stated that "Relative reduction in confirmed disability progression compared to best supportive care is more difficult to ascertain due to the longer term nature of data needed to determine this in comparison to relapse rates."
	The technical team notes that a systematic review of 26 randomised, placebo-controlled trials in relapsing-remitting multiple sclerosis showed that the annualised relapse rate for the placebo group that did not receive any active treatment had decreased by 6.2% per year ($p < 0.0001$; 95% CI 4.2%; 8.1%; <u>Nicholas et al. 2011</u>), which suggests that there may be natural variability in annualised relapse rates over time.
Questions for engagement	4. In clinical practice, what is considered a minimum clinically significant reduction for the following outcomes:
	a) annualised relapsed rateb) confirmed disability progression?
Why this issue is important	If the differences in outcome measures reported in the trials and network meta-analyses are not
	clinically meaningful, then the results of the economic model based on these effectiveness data may not be valid.
Technical team preliminary judgement and rationale	The minimum clinically significant change in outcome measures should consider natural variability in readings over time.
Summary of comments	Comments received from company:

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis

Page 16 of 38

Issue date: November 2019

 Unable to identify any published literature that measures the minimum clinically significant reduction (MCID) of annualised relapse rate or confirmed disability progression in patients with multiple sclerosis.
This issue has not been raised in previous NICE multiple sclerosis appraisals.
Comments received from clinical expert:
 In clinical practice, treatment success is judged retrospectively by the absence of relapses Any relapse that caused impaired function is significant, particularly if the patient does not make a functionally full recovery.
 In clinical practice, disease modifying treatment decisions in RRMS are based on relapses and avoidance of relapse associated disability accrual. Any persistent disabling symptoms or neurological deficits are significant, though there may be variations in their implication for care.
Comments received from clinical organisation:
For annualised relapse rates, minimum is 30%.
 For confirmed disability progression, there is no set consistent figure.
Comments received from patient organisations:
 Any reduction in relapses and disability progression is significant for the patient.
 Reduction on brain atrophy and improvement in quality of life compared to alternative treatments should be considered clinically meaningful.
 Treatment goal is no evidence of disease activity (no relapses, no increase in disability, no new or active lesions on MRI scans).
Comments received from comparator company:
 Minimum clinically significant reduction is not applicable to direct clinical outcomes of annualised relapse rate and confirmed disability progression because these are major

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis Page 17 of 38 Jacua date: November 2010

Issue date: November 2019

	 objective clinical events for patients and any difference in relative treatment effect is important. Regarding variation in absolute annualised relapse rates in placebo arms over time, is there evidence of relative relapse efficacy (that being what is modelled) varying over time in disease modifying therapies for which evidence for multiple trials may be available?
Technical team judgement after engagement	Although one clinical organisation suggested that a minimum 30% reduction in annualised relapse rate is clinically meaningful, no data or references were provided to support this figure, and the overarching view from most stakeholders appears to be that any relative reduction in annualised relapse rates and confirmed disability progression is clinically meaningful.

Issue 3 – Generalisability of ADVANCE population

Background/description of issue	The company stated that "The patient population in ADVANCE is reflective of adult patients with relapsing-remitting multiple sclerosis (RRMS) in the UK" (Document B, section B.3.11). It highlighted that the baseline characteristics of patients in ADVANCE are similar to other comparator studies of relevant appraisals, which have previously been considered generalisable to the UK (Document B, section B.2.9.3, Table 17). In addition, a subgroup analysis showed that the efficacy of peginterferon beta-1a was broadly similar across all populations, regardless of geographical region (Company clarification response, A5).
	The ERG noted that ADVANCE was conducted across 26 countries and only enrolled 14 patients from the UK, with most participants from Eastern Europe (69%), followed by India (11%) and Western Europe (including the UK, 8%). It noted differences in efficacy of peginterferon beta-1a across the 3 geographical regions and highlighted that there may be differences in clinical practice, treatments and standards of care (ERG report, pages 60-61).
	The company presented a scenario analysis using data on the patient characteristics from the UK MS Risk Sharing Scheme, a 10-year observational study initiated in 2002 to assess the impact of disease-modifying therapies on disability progression in patients with relapsing-remitting multiple sclerosis. This was the population used in NICE technology appraisal 527. This increased the overall costs of peginterferon beta-1a, but it did not have a significant impact on cost-effectiveness results.

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis Page 18 of 38

Issue date: November 2019

Questions for engagement	5. Are the patients in the ADVANCE trial likely to reflect people who would be eligible for peginterferon beta-1a in NHS practice? For example, are patients in Eastern Europe likely to be comparable to the UK in characteristics and the care and treatment they receive?
	6. If not, should the economic model use the baseline characteristics of the population from the UK MS Risk Sharing Scheme?
Why this issue is important	If the patients in ADVANCE do not have similar characteristics to those who would have peginterferon beta-1a in the NHS, some of these factors may influence how well the treatment works. This might mean that the safety and effectiveness results from the ADVANCE trial for peginterferon beta-1a do not accurately reflect how safe and effective the treatment would be in UK clinical practice.
Technical team preliminary judgement and rationale	For the purposes of interpreting the safety and effectiveness of the ADVANCE trial, the evidence is likely to be subject to some bias but broadly generalisable and relevant for this appraisal.
	For the purposes of the economic model, there is an alternative UK-based population that can be used. If patients in ADVANCE are unlikely to reflect people seen in the NHS, the company should use the baseline characteristics from the population in the UK MS Risk Sharing Scheme, as per NICE technology appraisal 527 (Beta interferons and glatiramer acetate for treating multiple sclerosis) for its base case analysis. However, this is not a salient issue because it has little impact on the cost-effectiveness results.
Summary of comments	Comments received from company:
	 Patients from ADVANCE trial reflect people in the NHS eligible for peginterferon beta-1a (already currently used in NHS practice since August 2015) and should be used in the economic model.
	 Geographical locations or ethnicity of patients in ADVANCE compared with comparator pivotal studies is not possible because the information is not published or categorised differently.
	Comments received from clinical expert:

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis Page 19 of 38 Issue date: November 2019

 ADVANCE trial inclusion criteria do not completely match current NHS England criteria for other injectable treatments, in particular, they do not include people with EDSS scores up to 6.5.
 There is evidence of regional differences across Europe in disease progression, and care and treatment.
 In terms of efficacy (relative reduction in risk of relapses), the clinical expert is not aware of any evidence to show differences in response to treatment between Eastern and Western populations.
 ADVANCE and UK MS Risk Sharing Scheme cohorts should be statistically compared before assuming that data from ADVANCE can be directly extrapolated to people with MS in the UK.
Comments received from clinical organisation:
 ADVANCE trial population is almost exclusively "Caucasian" so may not be representative of MS populations in certain parts of the UK. Skewing of recruitment of study participants to Eastern Europe is commonplace for trials in MS in the last 10 years.
 On balance, it is not necessary for the economic model to use the baseline characteristics of the population from the UK MS Risk Sharing Scheme.
Comments received from patient organisations:
 ADVANCE trial applied inclusion and exclusion criteria which correspond to drug eligibility criteria in the UK and therefore patients recruited in Eastern Europe should be comparable to UK patients.
 The Risk Sharing Scheme data does not reflect the current population of people with RRMS who would be considered for peginterferon beta-1a.
Comments received from comparator company:
• It is preferable to model interventions in the population in which their trial was undertaken.

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis Page 20 of 38 Issue date: November 2019

Technical team judgement after	For the purposes of interpreting the safety and effectiveness of the ADVANCE trial, the evidence is
engagement	likely to be subject to some bias but broadly generalisable and relevant for this appraisal. The
	baseline characteristics of patients from ADVANCE should be used in the economic model.

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosisPage 21 of 38Issue date: November 2019© NICE 2019. All rights reserved. Subject to Notice of rights.

Issue 4 – Clinical outcomes used in the economic model

Background/description of issue	 The company used the following clinical outcomes in its base case analysis: annualised relapse rate, confirmed disability progression at 6 months (CDP6M), mortality and stopping treatment for any reason. It conducted scenario analyses using confirmed disability progression at 3 months (CDP3M) and stopping treatment because of adverse events. The ERG noted that there were inconsistencies in the company's choice of studies used to derive the effectiveness values for comparators for these outcomes in the economic model, either when comparing the clinical and cost-effectiveness sections within the company submission, or when comparing this company submission to a previous appraisal. For example:
	• For interferon beta-1a, the company submission excluded the PRISMS (1998) trial (provided data on annualised relapse rate), and the MSCGR (1996) trial (provided data on disability progression at 6 months). However, NICE multiple technology appraisal of <u>beta interferons</u> and glatiramer acetate for treating multiple sclerosis (TA527) included these trials.
	 The ERG noted a discrepancy between the number of studies used for the analyses of stopping treatment because of any reason undertaken for the clinical section (3 trials), and in the economic model (18 trials).
	 The ERG noted that for the analyses of stopping treatment because of adverse events, the company only included 2 studies, compared with 21 trials that were included in the network meta-analysis of this outcome at 24 months in TA527 (ERG report, pages 70-86 and 114).
	In addition, the technical team notes that the company's analysis for CDP3M included the BEYOND trial. However, BEYOND had not reported CDP6M and therefore was excluded from this analysis. The technical team notes that in the NICE technology appraisal on <u>ocrelizumab for treating relapsing-remitting multiple sclerosis</u> (TA533), the committee preferred joint modelling of CDP3M and CDP6M, that is, using data from trials that report both data at 3 and 6 months to infer missing data at 6 months, rather than excluding trials.
Questions for engagement	7. Has the company used all available data to model clinical effectiveness?
Why this issue is important	These clinical outcomes are used in the economic model and therefore affect the cost-effectiveness estimates.

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis Page 22 of 38

Issue date: November 2019

Technical team preliminary judgement and rationale	The ERG suggested that the discrepancies in the data included in the clinical effectiveness section of the company's submission does not have a large impact on the cost-effectiveness estimates. However, for completeness, the company should present clinical effectiveness results using all relevant studies and its impact on cost-effectiveness estimates using scenario analyses. Alternatively, the company should provide a clear justification for the inconsistencies in study choice.
Summary of comments	Comments received from company:
	Reasons for inconsistencies in choice of studies:
	 For interferon beta-1a, company excluded PRISMS (1998) trial because this study does not report annualised relapse rate (ARR) and does not consider the method used by the NICE MTA (TA527; Melendez-Torres et al) to derive the ARR from mean number of relapses per patient is a justified assumption. However, a scenario analysis including PRISMS in the NMA showed minimal differences in the results and on the cost-effectiveness results.
	 For interferon beta-1a, company excluded MSCGR (1996) trial from the network for confirmed disability progression at 6 months (CDP6M) because the hazard ratio was not published or in the clinical study report. The company did not derive the hazard ratio from the reported risk ratio as undertaken in TA527 because it considered that this would increase uncertainty. However, a scenario analysis including MSCGR in the NMA showed minimal differences in the results and on the cost-effectiveness results.
	 Discrepancy in the number of studies used for the analyses of stopping treatment because of any reasons for the clinical section (3 trials) and in the economic model (18 trials): only data up to 12 months follow up were used in the clinical section (3 trials) to reduce uncertainty. Most trials used different definitions of stopping criteria and reported data at 22 to 24 months follow up which were incompatible with data from the ADVANCE trial. Inputs in economic model were from individual disease modifying therapy pivotal trials and is consistent with other appraisals. In its original submission, company provided different scenario analyses varying stopping rates for which peginterferon beta-1a was still a cost-effective option.
	Comments received from clinical expert:

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis Page 23 of 38

Issue date: November 2019

	 Company used the same rate ratios for RRMS and SPMS phases for mortality: in clinical practice, mortality rate ratio should be higher in people with SPMS than people with RRMS. Company excluded fatigue, injection site reactions not associated with a disability. This is reasonable given the lack of data, but in clinical practice, these side effects are significant, and in particular, fatigue can be associated with markedly impaired function.
	Comments received from clinical organisation:
	• Yes, the company has used all available data to model clinical effectiveness.
	Comments received from patient organisation:
	• Yes, we believe that the company has used all available data to model clinical effectiveness.
	Comments received from comparator company:
	 Does not agree that joint modelling of 3-month CDP and 6-month CDP data should be undertaken. Regulatory authorities and previous NICE MS appraisals preferred 6-month CDP data because it is less likely to be subject to random bias than 3-month CDP data which may be influenced by residual effect of relapses. Therefore, a consistent relationship between 3-month CDP and 6-month CDP data are not expected and joint modelling would introduce the random bias of 3-month CDP data reducing its usefulness to guide decision making.
	 RRMS trials may differ in their definition of 3/6-month CDP and should be explicitly addressed in considering whether trials are sufficiently comparable to allow inclusion in a network meta-analysis.
Technical team judgement after engagement	The company has adequately justified the discrepancies in the data included in the clinical effectiveness section in its submission, which have little impact on the cost-effectiveness estimates.

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis Page 24 of 38

Issue date: November 2019

Issue 5 – Treatment waning

Background/description of issue	The company assumed that the same waning effects occurred for all treatments in line with some previous NICE technology appraisals (for example, <u>TA527</u>):
	Years 1-2: no waning
	Years 3-5: 75% of full treatment effect
	Year 6 onwards: 50% of full treatment effect
	The technical team agrees that treatment waning should be modelled as in the NICE technology appraisal on beta interferons and glatiramer acetate for treating multiple sclerosis (TA527). However, it is concerned that the waning effects for the newer disease-modifying therapies such as alemtuzumab, dimethyl fumarate, teriflunomide and ocrelizumab may be different.
Questions for engagement	8. Are the waning effects modelled by the company clinically plausible? That is, from years 3 to 5, effect decreases to 75% of full treatment effect and from year 6 onwards, the effect decreases further to 50% of full treatment effect.
	9. Is it clinically plausible that the waning effects are the same for all treatments?
Why this issue is important	Applying the same waning effects to all disease-modifying therapies does not affect the relative clinical effectiveness of the different treatments, which may effectively 'cancel out' the impact of treatment waning overall.
Technical team preliminary judgement and rationale	It is likely that the waning effects of peginterferon beta-1a may be different to newer disease- modifying therapies such as alemtuzumab and ocrelizumab. The company should provide alternative scenario analyses of waning specific to individual treatments based on available evidence, to explore how much impact this might have.
Summary of comments	Comments received from company:
	 Current waning assumptions in the economic model are arbitrary because of little published evidence on treatment waning for disease-modifying therapies. Consistent with previous NICE appraisals, the same step-change in hazard ratio for disability progression across all comparators has been applied. Peginterferon beta-1a may be associated with less treatment waning than interferon beta-1a and interferon beta-1b.

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis Page 25 of 38

Issue date: November 2019

Comments received from clinical expert:					
 In clinical practice, treatment decisions are based on failure (further relapses or progression to SPMS). 					
 With regard to timescales for diminishing potential treatment effects, in clinical practice, the clearest indicator is the average time a person with MS develops SPMS which usually occurs over 10 years of clinical onset of MS. 					
 In the absence of a specific reason (for example, treatment neutralising antibodies in interferons), at a group level, it is reasonable to assume that underlying relapse rate declines with disease duration and age (and so the potential for treatment efficacy wanes) in the same way for all treatments. 					
Comments received from clinical organisation:					
 The modelled waning effects are clinically plausible but likely overestimated for peginterferon beta-1a because its efficacy is likely to be below the levels quoted although it is well tolerated and has less than 1% level of antibody formation. 					
 Waning effects are partially dependent on antibody formation which is different for various interferons. 					
Comments received from patient organisations:					
 It is not clinically plausible that waning effects are the same for all treatments because different classes of drugs have different chemical structures and mechanisms of action. 					
It is unclear whether there is any evidence to support any waning effect.					
Comments received from comparator company:					
 In TA527, waning was assumed from 10 years only (at 50%). 					
 Waning assumptions are based on appraisals (TA320) conducted in 2014 which were based on assumptions and not evidence. 					
 In the recent appraisal of ocrelizumab (TA533), the committee considered that a separate waning effect should not be modelled because all-cause stopping rate is a proxy for any 					

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis Page 26 of 38

Issue date: November 2019

	 treatment waning as in clinical practice patients would not continue an ineffective therapy and will discontinue and switch to an alternative disease modifying therapy. It is not plausible to include waning in the model as arbitrary waning assumptions would introduce double counting with all-cause stopping rates which include stopping because of lack of efficacy.
	• Waning assumptions are inherently arbitrary and do not reflect clinical reality of switching treatments due to lack of efficacy. Long-term differences in effectiveness between treatments should be captured through evidence-based modelling of time-dependent stopping rates that do not vary by disease modifying therapies. The practical effect of assuming differential waning for disease modifying therapies will be to bias appraisals against new products that have shorter long-term follow up data than more established comparators.
Technical team judgement after engagement	It is likely that the waning effects of peginterferon beta-1a may be different to newer disease- modifying therapies such as alemtuzumab and ocrelizumab. However, in the absence of supporting evidence, the same waning effects should be applied to all disease modifying therapies.

Issue 6 – Stopping treatment

Background/description of issue	The company applied a probability of stopping treatment for any reason in its base case analysis (left column below). It used the annualised stopping rates from 18 trials and weighted these based on sample size to derive the risk of stopping treatment for any reason for each disease-modifying therapy.					
		Annual probability of stopping treatment for any reason				
	Treatment	Weighted by sample size (company base case)	Weighted by person time			
	Peginterferon beta-1a	15.6%	15.6%			
	Avonex (interferon beta-1a)	7.9%	8.3%			
	Rebif 22 mcg (interferon beta-1a)	6%	6%			
	Rebif 44 mcg (interferon beta-1a)	10.5%	9.7%			
	Extavia (interferon beta-1b)	6.9%	7.5%			

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis Pa

Page 27 of 38

Issue date: November 2019

	Copaxone 20 mg (glatiramer acetate)	11%	8.1%			
	Copaxone 40 mg (glatiramer acetate)	8.9%	8.9%			
	Generic glatiramer acetate 20 mg	11%	8.1%			
	Generic glatiramer acetate 40 mg	8.9%	8.9%			
	Teriflunomide	18.6%	18.5%			
	Dimethyl fumarate	18%	18%			
	Alemtuzumab	2.6%	2.6%			
	Ocrelizumab	6.7%	6.7%			
Questions for engagement	 because of tolerability or adverse effects an secondary progressive or inactive multiple s that the data from trials may not accurately observed in a real-world setting over a long ERG considered it more appropriate to use MS Risk Sharing Scheme. In its base case, the NICE multiple technology appraisal of b multiple sclerosis (TA527) for all treatments include some of the newer disease-modifyin following up people on newer treatments (E 10. Is it clinically plausible to apply the same 	 stopping rate would not capture changes over time, for example, early higher stopping rates because of tolerability or adverse effects and later higher stopping rates because of progression is secondary progressive or inactive multiple sclerosis (ERG report, page 22). In addition, it consider that the data from trials may not accurately reflect stopping treatment that would have been observed in a real-world setting over a longer time horizon (ERG report, page 147). Therefore, th ERG considered it more appropriate to use estimates from real life clinical studies, such as the U MS Risk Sharing Scheme. In its base case, the ERG used a 5% stopping rate that was applied in the NICE multiple technology appraisal of beta interferons and glatiramer acetate for treating multiple sclerosis (TA527) for all treatments. It acknowledged that the Risk Sharing Scheme did r include some of the newer disease-modifying therapies but noted the paucity of real-life studies following up people on newer treatments (ERG report, page 19). 10. Is it clinically plausible to apply the same probability of stopping treatment for any reason to: 				
	a) all disease-modifying therapies?b) all years, that is at the start of treatr	nent and after many years o	on treatment?			
	 11. Are the annual probabilities of stopping treatment for any reason for the different disea modifying therapies in the table above clinically plausible? If so, which values are most – the company's base case weighted by sample size or the alternative values weighted person time? 					

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis Page 28 of 38

Issue date: November 2019

Why this issue is important	Probability of stopping treatment for any reason should reflect what would normally happen in clinical practice as closely as possible. Otherwise the length of time for which treatment is taken ma not be accurate, which may affect the costs and effectiveness of treatment.				
Technical team preliminary judgement and rationale	The 5% stopping rate used by the ERG is based on the UK MS Risk Sharing Scheme that only included beta-interferons and glatiramer acetate. It is unclear whether the same probability of stopping treatment for any reason should apply to newer disease-modifying therapies and for all years. The company should provide a scenario analysis altering the stopping rates for individual treatments based on available evidence.				
Summary of comments	Comments received from company:				
	 Company prefers stopping rates from pivotal trials for each disease modifying therapy because of significant differences between treatments with respect to safety and adverse event profile. A scenario analysis using the same probability of stopping for all therapies (5%) consistent with previous appraisals show that peginterferon beta-1a remains a cost- effective option. 				
	Comments received from clinical expert:				
	 In the absence of evidence, it is not plausible to apply the same probability of stopping treatment for all therapies because side effects differ substantially and some may be time- dependent. 				
	 Probability of stopping treatment will be relatively high initially because of side effects but because of the disease progression to SPMS, probability of stopping treatment after several years will increase again. 				
	Comments received from clinical organisation:				
	 It is not plausible to apply the same probability of stopping treatment because different treatments have different efficacies and tolerances and some therapies (alemtuzumab and cladribine) are time-limited (18 to 24 months). 				
	 The probabilities of stopping treatment in the table are plausible but this is an area of uncertainty. 				

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis Page 29 of 38

Issue date: November 2019

	Comments received from patient organisations:				
	 It is not clinically plausible to apply the same probability of stopping treatment because different disease modifying therapies are different classes of drugs, are administered differently and at different times. 				
	Comments received from comparator company:				
	 It is not clinically plausible to model stopping rates being the same over time for all diseas modifying therapies. Alemtuzumab cannot be meaningfully stopped after 2 years as it is n longer taken but it is not expected to be efficacious indefinitely as it is not curative. 				
	• Stopping rates are unlikely to be constant over time with early stopping driven by intolerance and later stopping reflecting lack of efficacy. In appraisal on daclizumab (TA441 now withdrawn), the committee preferred a model with separate rates for Years 1, 2 and 3+.				
Technical team judgement after engagement	It is clinically more plausible that individual disease modifying therapies would have specific stopping rates, which will likely vary over time.				

Issue 7 – Utility values

Background/description of issue	In its base case analysis, the company used the utility values from <u>Orme et al. (2007)</u> for consistency with previous technology appraisals. It also provided utility values from a more recent study, <u>Thompson et al. (2017)</u> , although these were not used in any company analyses.
	The ERG provided a scenario analysis using Thompson et al. (2017). This study collected resource use, cost and health-related quality of life (EQ-5D) data in a cross-sectional retrospective study of 779 people living in the UK with multiple sclerosis. The ERG highlighted that this study includes information collected from people receiving treatment with more recent disease-modifying therapies, but that the participants were older than those in the Orme study and had fewer people. On the whole, the utility values in each health state are similar. However there are some health states where the differences are more pronounced, for example, Expanded Disability Status Scale (EDSS)

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis Page 30 of 38

Issue date: November 2019

	7 has lower utility values in Orme et al., suggesting that people with more severe disease would accrue less utility than if using Thompson et al.							e would		
	EDSS		Orme et al. (2007)				Thompson et al. (2017) – difference compared to Orme et al.			
	ED35	EDSS No relapse		Relapse		No relapse		Relapse		
		RRMS	SPMS	RRMS	SPMS	RRMS	SPMS	RRMS	SPMS	
	0	0.870	0.825	0.799	0.754	0.028	0.028	0.028	0.028	
	1-1.5	0.799	0.754	0.728	0.683	-0.012	-0.012	-0.012	-0.012	
	2-2.5	0.705	0.660	0.634	0.589	-0.01	-0.01	-0.01	-0.01	
	3-3.5	0.574	0.529	0.503	0.458	-0.001	-0.001	-0.001	-0.001	
	4-4.5	0.610	0.565	0.539	0.494	-0.005	-0.005	-0.005	-0.005	
	5-5.5	0.518	0.473	0.447	0.402	0.051	0.051	0.051	0.051	
	6-6.5	0.460	0.415	0.389	0.344	-0.004	-0.004	-0.004	-0.004	
	7-7.5	0.297	0.252	0.226	0.181	0.076	0.076	0.076	0.076	
	8-8.5	-0.049	-0.094	-0.120	-0.165	0.206	0.206	0.206	0.206	
	9-9.5	-0.195	-0.240	-0.266	-0.311	0.085	0.085	0.085	0.085	
Questions for engagement	12. Which u patients like				· · ·	[.] Thompso	n et al. (201	7), is more pl	ausible for	
Why this issue is important	Orme et al. (2007), used in the company base case, is a decade older than Thompson et al (2017), therefore the associated utility values in Orme may be out of date. The choice of source of utility values may have a large impact on cost-effectiveness results.									
Technical team preliminary judgement and rationale	Utility values are broadly similar between the 2 studies, and using Orme et al. is consistent with previous appraisals. Using Orme et al. in the base case is reasonable, however the company should explore the impact of using the utility values from Thompson et al.									
Summary of comments	Comments	received	from con	npany:						
	 Thompson et al (2017) used the same data from the MS Survey in 2006 as Orme et al (2007). Orme has a larger sample size (n=2,048) across all MS types (RRMS, PPMS, SPMS) whereas Thompson's paper is restricted to a smaller sample of 779 people. Company considers utility data from Orme is more plausible and consistent with previous 									

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis Page 31 of 38

Issue date: November 2019

	appraisals. A scenario analysis using Thompson study showed that peginterferon beta-1a remains a cost-effective option.
Co	omments received from clinical expert:
	• Just over 30% of patients in the cohorts included in Orme and Thompson had RRMS and the rest had progressive MS; 25% have primary progressive MS and would not be prescribed interferons. Neither cohorts are representative of patients likely to start interferons, although a subset (patients with RRMS and lower EDSS scores) will be more representative.
	• From a clinical perspective, there have been substantial changes in referral patterns and increasing treatment options, both of which may affect care cost estimates, and so it seems logical to use more recently acquired data.
Co	omments received from clinical organisation:
	On balance, Thompson et al is the preferred study for utility data.
Co	omments received from patient organisation:
	Orme has been the standard for previous appraisals so it would be more consistent to follow previous practice.
Co	omments received from comparator company:
	 The sample size in Orme is 2.5 times larger than Thompson. Orme has been used in many previous MS appraisals allowing for consistency in decision making.
	• There are issues regarding face validity of the higher utility values for patients in EDSS 7 health state (people who have become wheelchair bound) and EDSS 8 health state (people who have become bed-ridden for life) reported by Thompson.
	• Orme also provides utilities for SPMS and relapse, whereas Thompson does not. The ERG applies Thompson data and continues to apply parts of the Orme regression analysis directly to the Thompson data which may not be valid.

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis Page 32 of 38

Issue date: November 2019

Technical team judgement after	Utility values are broadly similar between the 2 studies, and using Orme et al. is consistent with
engagement	previous appraisals.

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosisPage 33 of 38Issue date: November 2019© NICE 2019. All rights reserved. Subject to Notice of rights.

4. Issues for information

Tables 1 to 3 are provided to stakeholders for information only and not included in the technical report comments table provided.

ration Technical team rationale		Change from base case	
-	£1,155*	-	
Previous technology appraisals (for example, TA527) highlighted that the standardised mortality ratios from Pokorski et al. overestimated mortality, especially in the lower EDSS health states. The interpolated values better reflect the increased risk of mortality compared to the general population as EDSS levels increase.	£2,019*	+£864	
Values from Gani et al. (2008) provide more plausible utility decrements, that is, utility decrements increase as EDSS levels rise.	£1,149*	-£6	
The values reported in TA527 based on the British Columbia cohort provide more plausible changes in annual relapse rates because they decrease as EDSS levels increase.	£1,284*	+£129	
The values reported in TA527 provide more plausible changes in annual relapse rates because they decrease as EDSS levels increase and they are less than the relapse rates for people with RRMS.	£1,297*	+£142	
-	Dominated^	-	
	 Previous technology appraisals (for example, TA527) highlighted that the standardised mortality ratios from Pokorski et al. overestimated mortality, especially in the lower EDSS health states. The interpolated values better reflect the increased risk of mortality compared to the general population as EDSS levels increase. Values from Gani et al. (2008) provide more plausible utility decrements, that is, utility decrements increase as EDSS levels rise. The values reported in TA527 based on the British Columbia cohort provide more plausible changes in annual relapse rates because they decrease as EDSS levels increase. The values reported in TA527 provide more plausible changes in annual relapse rates because they decrease as EDSS levels increase. 	alemtuzumab (all at list price**)-£1,155*Previous technology appraisals (for example, TA527) highlighted that the standardised mortality ratios from Pokorski et al. overestimated mortality, especially in the lower EDSS health states. The interpolated values better reflect the increased risk of mortality compared to the general population as EDSS levels increase.£2,019*Values from Gani et al. (2008) provide more plausible utility decrements, that is, utility decrements increase as EDSS levels rise.£1,149*The values reported in TA527 based on the British Columbia cohort provide more plausible changes in annual relapse rates because they decrease as EDSS levels increase.£1,297*The values reported in TA527 provide more plausible changes in annual relapse rates because they decrease as EDSS levels increase and they are less than the relapse rates for people with RRMS.£1,297*	

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis Pa

Page 34 of 38

Issue date: November 2019

Alteration	Technical team rationale	ICER [^] vs alemtuzumab (all at	Change from base case	
		list price**)		
*Peginterferon beta-1a dominates all other comparators.				
**All incremental cost-effectiveness ratios (ICERs) are reported at list price. This is because several comparators have confidential discounts.				
The ICERs are therefore currently confidential to protect these discounts.				
***Alemtuzumab dominates all other comparators. Please note that alemtuzumab is currently undergoing a safety review by the EMA, please				
see Issue 1 p.13 above for more details.				
There are patient access schemes for interferon beta-1a (Avonex, Rebif), interferon beta-1b (Extavia), glatiramer acetate (Copaxone),				
dimethyl fumarate (Tecfidera), teriflunomide and ocrelizumab.				

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosisPage 35 of 38Issue date: November 2019© NICE 2019. All rights reserved. Subject to Notice of rights.

Table 2: Outstanding uncertainties in the evidence base

Area of uncertainty	Why this issue is important	Likely impact on the cost-effectiveness estimate
The model assumes that people do not receive other disease-modifying therapies when they stop treatment. Once treatment is stopped, people do not have any residual benefit from treatment and follow the British Columbia natural history cohort.	The model should generally try to accurately map out the patient journey through the treatment pathway, for a lifetime time horizon. There are several treatments available for people with MS from second line onwards, but these have not been captured in the model. Instead, the British Columbia natural history cohort has been used a proxy, and this does not reflect the range of treatments which are available second line and onwards for MS. This may influence cost-effectiveness results.	Unknown, but this is in line with the approach taken in previous NICE technology appraisals on relapsing-remitting multiple sclerosis.
The ERG noted that more patients in the peginterferon beta-1a arm (15%) stopped participating in ADVANCE than in the placebo arm (9%) at 1 year. However, because the company had not provided demographic data of patients who stopped participating in the trial, the ERG was not able to determine whether these patients were different from those who had completed the trial.	The results obtained in ADVANCE could potentially be biased.	Unknown.

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis Page 36 of 38

Issue date: November 2019

Table 3: Other issues for information

Issue	Comments
Stopping rules	In line with <u>TA527</u> and <u>TA533</u> , the company applied the following stopping rule in its model for all disease-modifying therapies: stop treatment upon progressing to EDSS ≥7 and/or progressing to secondary progressive multiple sclerosis.
Adverse events	For its base case analysis, the company included the disutility of serious and non-serious adverse events and the costs related to managing these events.
Innovation	The technical team considers that all relevant benefits associated with the drug are adequately captured in the model.
Equality considerations	No equalities issues were identified by the company and consultees.

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosisPage 37 of 38Issue date: November 2019© NICE 2019. All rights reserved. Subject to Notice of rights.

Authors

Amanda Adler Appraisal committee chair

Sharlene Ting Technical lead

Carl Prescott Technical adviser

Nicole Elliott Associate director

With input from the lead team:

John Cairns Lead team member

Sue Faulds Lead team member

Nigel Westwood Lead team member

Technical report – Peginterferon beta-1a for treating relapsing-remitting multiple sclerosis Page 38 of 38 Issue date: November 2019 © NICE 2019. All rights reserved. Subject to <u>Notice of rights</u>.