# Avalglucosidase alfa for treating Pompe disease

AIC and CIC information redacted

Technology appraisal committee A [7 June 2022]

Chair: Jane Adam

Lead team: Min Ven Teo, Justin Daniels, Richard Ballerand

Evidence assessment group: Southampton Health Technology Assessments Centre

Technical team: Lewis Ralph, Michelle Green, Janet Robinson

Company: Sanofi Genzyme



© NICE [2022]. All rights reserved. Subject to Notice of rights.

# **Key clinical issues**

Which patients and at what stage would patients benefit from AVAL instead of ALGLU a) late onset b) infantile onset, how does that fit with the licence?

Is the COMET trial (supplemented by NEO1 and NEO-EXT) the best available evidence to inform the LOPD model?

Is the case-note review (Broomfield et al. 2015) the best available data to inform the IOPD economic model?

NICE

## Pompe disease

### Rare, chronic, progressive, and debilitating genetic disorder

### Cause

- Lysosomal storage disorder mutated GAA gene  $\rightarrow$  accumulation of glycogen in the lysosome
- Glycogen accumulation causes progressive muscle weakness (skeletal, heart and affects the CNS)

### Prevalence

December 2019 ~ 1 in 308,642, (approximately 183 people in England)

### **Diagnosis/classification**

- IOPD typically manifests during the first weeks of life with hypotonia and respiratory distress
- LOPD after 12 months of age less cardiac involvement, predominantly affects the lower limbs

### Prognosis

- Both subtypes severely disabling; reduced quality of life for patients and carers
- Reduced life-expectancy to the general population (data limited):
  - IOPD: 2 years if left untreated
  - LOPD: Currently estimated to be 30 years when it presents in children/teenagers; 50 years when it presents in adults

### Avalglucosidase alfa (Nexviadyme<sup>®</sup>, Sanofi Genzyme

#### Table 1: Technology being appraised

| Marketing<br>authorisation | <ul> <li>MHRA innovative medicine designation (September 2020, EAMS positive scientific opinion (5th March 2021) granted for restricted populations: <ul> <li>LOPD in patients who have received ALGLU for ≥2 years.</li> <li>IOPD in patients ≥1 year old who have received ALGLU for ≥6 months.</li> </ul> </li> <li>Final CHMP positive opinion (November 2021) for the broader treatment of Pompe disease (expected MA).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mechanism of action        | <ul> <li>ERT replaces the deficient GAA enzyme, enabling degradation of accumulated<br/>lysosomal glycogen.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Administration             | 20 mg/kg, administered by IV infusion Q2W for patients with LOPD and IOPD.<br>Potential dose increase to 40 mg/kg in IOPD population in non-/limited-responders.<br>Children will require indwelling line.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Price                      | <ul> <li>List price: ALGLU, £356.06 per 50 mg vial (dose 20mg/kg Q2W); AVAL, £ per 100 mg vial (dose 20mg/kg Q2W).</li> <li>Cost per year of AVAL treatment: Adult (78.5 kg), £ Child (22.3 kg) £ Child (22.3 kg)</li></ul> |

Abbreviations: ALGLU, alglucosidase alfa; AVAL, avalglucosidase alfa; EAMS, early access medicines scheme; EMA, European medicines agency; ERT, enzyme replacement therapy; GAA, alpha glucosidase; IOPD, infantile-onset Pompe disease; IV, intravenous; kg, kilogram; LOPD, late-onset Pompe disease; MA, marketing authourisation; mg, milligram; NHS, National Health Service; PAS, patient access scheme; Q2W, once every 2 weeks.

### **Treatment pathway** AVAL as an alternative to the existing standard of care

- Current treatment limited to ALGLU
  - ALGLU not previously assessed by NICE

- Response can vary between patients
- Well-recognised need for an alternative treatment

#### Positioning in treatment pathway (IOPD/LOPD)

- AVAL could potentially be used to treat:
  - People recently diagnosed with Pompe disease, i.e. initial treatment
  - People who have not responded to initial ALGLU treatment, i.e. second-line treatment
  - People who have experienced clinical decline following response to initial ALGLU treatment, i.e. second-line treatment



Is AVAL likely to become first-line treatment?

Would it also be appropriate for second line treatment? Would you treat with ALGLU first?



What is the most appropriate position for the technology in the pathway?

**Abbreviations:** ALGLU, alglucosidase alfa; AVAL, avalglucosidase alfa; ERT, enzyme replacement therapy; IOPD, infantile-onset Pompe disease; LOPD, lateonset Pompe disease; NICE, National Institute for Health and Care Excellence.

### **Patient perspectives – LOPD** Symptoms take a physical and mental toll on people

#### Submissions from patient experts, AGSD UK and MDUK

#### Living with the condition

- At diagnosis many are already unable to properly walk and some may also already struggle to breathe.
- Most challenging symptoms are muscle weakness, mobility and falls, tiredness and fatigue, and respiratory problems.
- Symptoms and prognosis take a huge toll in terms of their physical and mental wellbeing, and causes considerable anxiety for their future.
- Patients lives are 'shrinking' and improved therapy may come too late.

#### Current treatment

- Current treatment can help with symptom management but does not treat the underlying cause.
- Patients losing hope as a levelling off in response to standard therapy led to increasing dependence on walking aids and assisted respiration.

#### Advantages of the technology

• Among the small number of people with experience of AVAL there was optimism expressed for the future.

"My breathing and mobility are both getting worse. I feel worried that I will end up with breathing support fulltime and dread the thought that I won't be able to move around independently"

"[I worry about] how fast I will decline. Lack of income if things decline quickly. Inability to be the mother my children deserve"

6

### **Patient and carer perspectives – IOPD** Symptoms of children also take a substantial toll on their carers

### Submissions from AGSD UK and MDUK

### Living with the condition

- The most severely affected infants usually present within the first 3 months after birth.
- They have characteristic cardiac problems due to heart enlargement in addition to generalised skeletal muscle weakness, with a life expectancy of less than 2 years if untreated.
- Symptoms and prognosis for children has mental health implications for the parents and carers.

#### **Current treatment**

• Current treatment can help with symptom management but do not treat the underlying cause

#### Advantages of the technology

• For a parent of a child with IOPD, there was a significant reduction in the need for emergency admissions.

"Both my partner's and my mental health have suffered from watching our son deteriorate rapidly before showing some improvement, but the hardest thing is knowing that this condition is going to eventually claim his life."

### **Decision problem** Company analysis in line with the final scope

#### **Table 2:** Summary of the decision problem

|              | Final scope                                                                                                                                                                                                                                 | Company            | ERG comments                                                                    |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------|
| Population   | Children and adults with Pompe disease                                                                                                                                                                                                      | As per final scope | None                                                                            |
| Intervention | AVAL                                                                                                                                                                                                                                        | As per final scope | None                                                                            |
| Comparators  | ALGLU                                                                                                                                                                                                                                       | As per final scope | None                                                                            |
| Outcomes     | <ul> <li>change in respiratory, cardiac, motor and muscular function</li> <li>mortality</li> <li>immunogenicity response</li> <li>adverse effects of treatment</li> <li>health-related quality of life (for patients and carers)</li> </ul> | As per final scope | IOPD: respiratory<br>outcomes limited<br>LOPD: cardiac outcomes<br>not relevant |

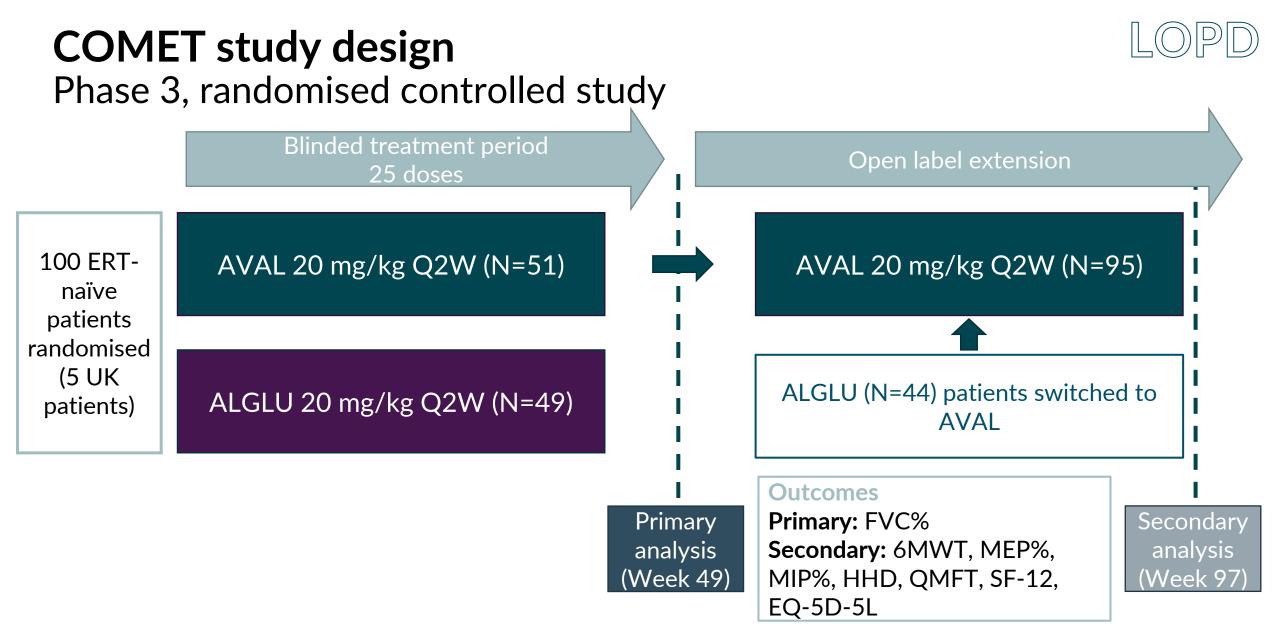


# Late-onset Pompe disease

#### Clinical effectiveness

NICE National Institute for Health and Care Excellence

### **LOPD clinical trials** COMET: AVAL vs ALGLU in treatment naïve people


Table 3: Summary of COMET

|                        | COMET (NCT02782741)                                    |
|------------------------|--------------------------------------------------------|
| Design                 | Phase 3 non-inferiority RCT                            |
| Population             | LOPD >3 years old, ERT-treatment-naïve                 |
| Intervention           | AVAL (N=51)                                            |
| Comparator(s)          | ALGLU N=49)                                            |
| Duration               | 49-week blinded period, then open-label extension      |
| Primary outcome        | FVC%                                                   |
| Key secondary outcomes | 6MWT, muscle strength, motor function and HRQL (SF-12) |
| Locations              | 20 countries, incl. UK (N=5)                           |
| Used in model?         | Yes (magnitude of effect)                              |



**Abbreviations:** 6MWT, six minute walk test; ALGLU, alglucosidase alfa; AVAL, avalglucosidase alfa; ERT, enzyme replacement therapy; FVC%, forced vital capacity; HRQL, health-related quality of life; incl., including; kg, kilogram; LOPD, late-onset Pompe disease; mg, milligram; N, number; NA, not applicable; Q2W, every two weeks; RCT, randomised controlled trial; SF-12, Short-Form 12 question utility measure; UK, United Kingdom.



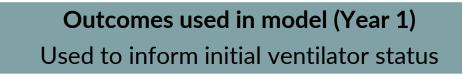


Abbreviations: 6MWT, six-minute walk test; ALGLU, alglucosidase alfa; AVAL, avalglucosidase alfa; EQ-5D-5L, 5-level EuroQol 5-dimension measure; ERT, enzyme replacement therapy; FVC%, forced vital capacity (% predicted); HHD, hand-held dynamometry; kg, kilogram; MEP%, maximum expiratory pressure (% predicted); N, number; PAP, primary analysis period; Q2W, every two weeks; QMFT, quick motor function test; SF-12, 12-item short form health survey; UK, United Kingdom.



# **COMET** results – Efficacy: FVC (lung function)

Week 49: AVAL non-inferior to ALGLU, not statistically superior (p=0.0626) Week 97: Improvement with AVAL (statistical significance NR)


Figure 1: COMET mean change in FVC% from baseline

Blinded treatment period

Extension period

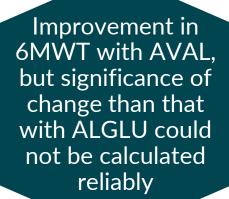


12



Fiq Fiq

Would you expect AVAL to present a greater treatment effect than ALGLU? Would you expect this percentage change to be clinically significant?


**NICE** Abbreviations: ALGLU, alglucosidase alfa; AVAL, avalglucosidase alfa; FVC, forced vital capacity; No., number; NR, not reported; PAP, primary analysis period.

### **COMET** results – Efficacy: 6-minute walk test (mobility) AVAL associated with improved 6MWT\*

Figure 2: COMET mean change in 6MWT from baseline

Blinded treatment period

Extension period





**Outcomes used in model (Year 1)** 

Used to inform initial wheelchair status



Would you expect AVAL to present a greater treatment effect than ALGLU?

Would you expect this percentage change to be clinically significant?

Notes: \* Significant of change could not be reliably calculated, COMET hierarchical trial design, since superiority was not reached for the primary endpoint (FVC% predicted in the upright position), superiority testing could not be carried out for the remaining endpoints NICE

13 Abbreviations: 6MWT, six-minute walk test; ALGLU, alglucosidase alfa; AVAL, avalglucosidase alfa; No., number; NR, not reported; PAP, primary analysis period.

# COMET clinical trial results – HRQL



Utility improved from baseline on AVAL and ALGLU No statistical significant difference between treatments

### EQ-5D-5L

- Utility values generally higher than baseline at measured timepoints for both treatments
- Data not available for all participants for these analyses
- Large standard deviations
- EQ-5D-5L mapped to EQ-5D-3L, used to inform utility increase for AVAL and ALGLU in model for first year only

### **COMET clinical trial results – Adverse events** AVAL and ALGLU similarly tolerated



#### Adverse events

- Slightly lower AEs with AVAL
- Four ALGLU patients withdrew due to AEs, none in the AVAL arm
- Most common TEAEs were headache, nasopharyngitis, back pain, fatigue, diarrhoea, nausea

#### Table 4: Summary of COMET adverse events

| Parameter, n (%)                                                            | AVAL, N=51                   | ALGLU, N=49            |
|-----------------------------------------------------------------------------|------------------------------|------------------------|
| TEAEs                                                                       | 44 (86.3)                    | 45 (91.8)              |
| Serious TEAEs <sup>†</sup>                                                  | 8 (15.7)                     | 12 (24.5)              |
| TEAEs leading to permanent treatment discontinuation                        | 0                            | 4 (8.2)                |
| TEAEs leading to death                                                      | 0                            | 1 (2.0)                |
| Key: <sup>†</sup> , Serious TEAE is any untoward medical occurrence that at | any dose results in death, o | r is life-threatening. |

#### Outcome not used in model

**NICE** Abbreviations: AEs, adverse events; ALGLU, alglucosigase alfa; AVAL, avalglucosidase alfa; n, number; TEAEs, treatment emergent adverse events.

### LOPD clinical trials NEO1/NEO-EXT: Single-arm AVAL in ERT-naïve or after ALGLU

 Table 5: Summary of NEO

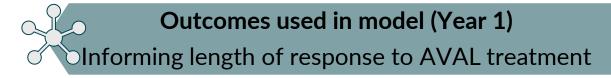
|                                                 | NEO1 (NCT01898364)                                         | NEO-EXT (NCT02032524)           |  |  |
|-------------------------------------------------|------------------------------------------------------------|---------------------------------|--|--|
| Design                                          | Phase 1 ascending dose study                               | Phase 2 extension to NEO1       |  |  |
| Population                                      | LOPD ≥18 years, ERT-naïve or previously treated with ALGLU |                                 |  |  |
| Intervention                                    | AVAL (N=24): 5, 10 or 20 mg/kg Q2W                         | AVAL (N=19) 20 mg/kg Q2W        |  |  |
| Comparator(s)                                   | NA                                                         | NA                              |  |  |
| Duration                                        | 24 weeks                                                   | On-going (data up to week 312)  |  |  |
| Primary outcome         Safety and tolerability |                                                            |                                 |  |  |
| Key secondary outcomes                          | Change from baseline in FVC % and 6M                       | WT                              |  |  |
| Locations                                       | 10 sites globally (incl. the UK)                           | 17 site globally (incl. the UK) |  |  |
| Used in model?                                  | Yes (duration of effect)                                   |                                 |  |  |

Abbreviations: 6MWT, six minute walk test; ALGLU, alglucosidase alfa; AVAL, avalglucosidase alfa; ERT, enzyme replacement therapy; FVC%, forced vital capacity; incl., including; kg, kilogram; LOPD, late-onset Pompe disease; mg, milligram; N, number; NA, not applicable; Q2W, every two weeks; UK, United Kingdom.



### **NEO1/NEO-EXT clinical trial results – Efficacy** AVAL associated with improved and stable FVC% and 6MWT

#### Table 6: FVC% predicted, mean change from baseline


| Week     |      | (ERT-naïvo<br>AVAL dos | •              | Group 2 (ERT-experienced,<br>n=14)<br>All AVAL doses |               |                |
|----------|------|------------------------|----------------|------------------------------------------------------|---------------|----------------|
|          | N    | Mean<br>FVC %          | Mean<br>change | N                                                    | Mean<br>FVC % | Mean<br>change |
| Baseline | n=10 |                        |                | n=14                                                 |               |                |
| W25      | n=9  |                        | 2.56           | n=13                                                 |               | -0.19          |
| W52      | n=8  |                        | 2.64           | n=11                                                 |               | -2.51          |
| W104     | n=7  |                        | 3.11           | n=11                                                 |               | -3.79          |
| W208     | n=7  |                        | 1.26           | n=10                                                 |               | -1.71          |
| W312     |      |                        |                |                                                      |               |                |

Notes: Mean change denotes mean change from baseline.

 Table 7: 6MWT, mean change from baseline

| Week     | Group 1 (ERT-naïve, n=10)<br>All AVAL doses |              |                |      | (ERT-exp<br>n=14)<br>AVAL do |                |
|----------|---------------------------------------------|--------------|----------------|------|------------------------------|----------------|
|          | N                                           | Mean<br>6MWT | Mean<br>change | N    | Mean<br>6MWT                 | Mean<br>change |
| Baseline | n=10                                        |              |                | n=14 |                              |                |
| W25      | n=9                                         |              | 1.29           | n=13 |                              | -0.31          |
| W52      |                                             |              |                |      |                              |                |
| W104     |                                             |              |                |      |                              |                |
| W208     |                                             |              |                |      |                              |                |
| W312     |                                             |              |                |      |                              |                |

**Notes:** Mean change denotes mean change from baseline.





How long would you expect the treatment effect to persist for (AVAL and ALGLU)?

**NICE** Abbreviations: 6MWT, six-minute walk test; ERT, enzyme replacement therapy; AVAL, avalglucosidase alfa; FVC, forced vital capacity; n, number.



# Infantile-onset Pompe disease

#### **Clinical effectiveness**

NICE National Institute for Health and Care Excellence

# **IOPD** clinical trial



19

Limited data – not used in model

Only 16 children received AVAL, 6 received ALGLU

Table 8: Summary of mini-COMET

|                    | Mini-COMET (N=22), NCT03019406                                                                                    |                            |                                             |  |  |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------|--|--|--|--|
| Design             | Phase 2, multi-stage, op                                                                                          | oen-label, multicentre, as | scending dose study                         |  |  |  |  |
| Population         | Children (aged <18 years) with IOPD previously treated with ALGLU with clinical decline or a sub-optimal response |                            |                                             |  |  |  |  |
| Stage              | Stage 1 - Children with clinical declineStage 2 - Children with suboptimal response                               |                            |                                             |  |  |  |  |
| Cohort             | Cohort 1 (N=6)                                                                                                    | Cohort 2 (N=5)             | Cohort 3 (N=11)                             |  |  |  |  |
| Intervention       | AVAL 20 mg/kg Q2W                                                                                                 | AVAL 40 mg/kg Q2W          | AVAL at highest tolerated dose ( $N=5$ )    |  |  |  |  |
| Comparator(s)      | NA                                                                                                                | NA                         | ALGLU at current stable dose (N=6)          |  |  |  |  |
| Duration           | 25-week primary analys                                                                                            | sis period, then open-lab  | el extension (data for Week 97 in Cohort 3) |  |  |  |  |
| Primary outcome    | Safety and tolerability                                                                                           |                            |                                             |  |  |  |  |
| Secondary outcomes | Preliminary efficacy                                                                                              |                            |                                             |  |  |  |  |
| Locations          | International (France, Ja                                                                                         | apan, Taiwan, UK and US    | 5)                                          |  |  |  |  |

**Abbreviations:** ALGLU, alglucosidase alfa; AVAL, avalglucosidase alfa; IOPD, infantile-onset Pompe disease; kg, kilogram; mg, milligram; N, number; NA, not applicable; Q2W, every two weeks; UK, United Kingdom; US, United States.

# Limitations of mini-COMET

### Small sample size and all pre-treated with ALGLU

- 22 children included in the trial (11 clinical decliners and 11 suboptimal responders)
- Comparative portion made up of 11 suboptimal responders
  - AVAL at highest tolerated dose (N=) versus ALGLU at current stable dose (N=)

### High AVAL dose

• Cohort 2 and 3 received 40 mg/kg every 2 weeks – higher than current licenced ALGLU dose

### Range of ALGLU doses

- Cohort 3 had children receiving a wide range of ALGLU dosing regimens
  - \_\_\_\_\_\_

#### **Clinical comments**

**ALGLU:** 20 mg/kg QW for at least first 12 weeks used for newly diagnosed children with IOPD who have significant cardiac disfunction/hypertrophy.

**AVAL:** Anticipate higher dosing regimen (40mg/kg Q2W, or 20mg/kg QW) would be dose utilised for children with ERT-naïve IOPD at treatment initiation

#### Outcomes not used in model



Would it be possible to get more data?

CE Abbreviations: ALGLU, alglucosidase alfa; AVAL, avalglucosidase alfa; kg, kilogram; mg, milligram; N, number; NHS, National Health Service; Q2W, every 2 weeks; 20 QW, every week.



# Is there any other data?



Company provided bibliography of missing studies

### ERG

- ERG counts 37 publications in the company bibliography of 40; remaining 3 not present
- None of the 37 references appear relevant to the decision problem; satisfied but for the missing 3 references

### **Clinical comments**

• Unlikely that any high quality data from patients treated with AVAL has been omitted

### Other key data

- Key studies used in the company model:
  - Broomfield et al., 2015:
    - Response of 33 UK patients with infantile-onset Pompe disease to ALGLU
    - Measured overall, ventilator and wheelchair free survival
  - Simon et al., 2019:
    - Health utilities and parental quality of life effects for three rare conditions tested in newborns

#### Pompe registry

• Sanofi Genzyme data on file

# **Cost effectiveness**

Cost-utility analyses

NICE National Institute for Health and Care Excellence

# Key issue: Type of economic evaluation

Company prefers cost-comparison analyses and ERG prefers cost-utility analysis

### Background

- NICE reference case requests fully incremental cost-utility analysis
- Company presented cost-comparison based on equivalent effectiveness of AVAL and ALGLU (Phase III evidence: AVAL non-inferior to ALGLU) and equivalent or lower cost
- ERG uses cost-utility analysis on the basis that short term benefit likely to impact long term survival:
  - LOPD base case includes AVAL versus ALGLU HR=0.85 (LOPD survival advantage of 3 months)
  - IOPD clinical effectiveness evidence too limited to confirm either equivalence or superiority

### Company

- Reiterate preference for cost-comparison, but accept HR=0.85 (in LOPD) and offered AVAL at
- LOPD: With survival gain, AVAL and and QALYs than ALGLU
- IOPD: and QALYs

### ERG

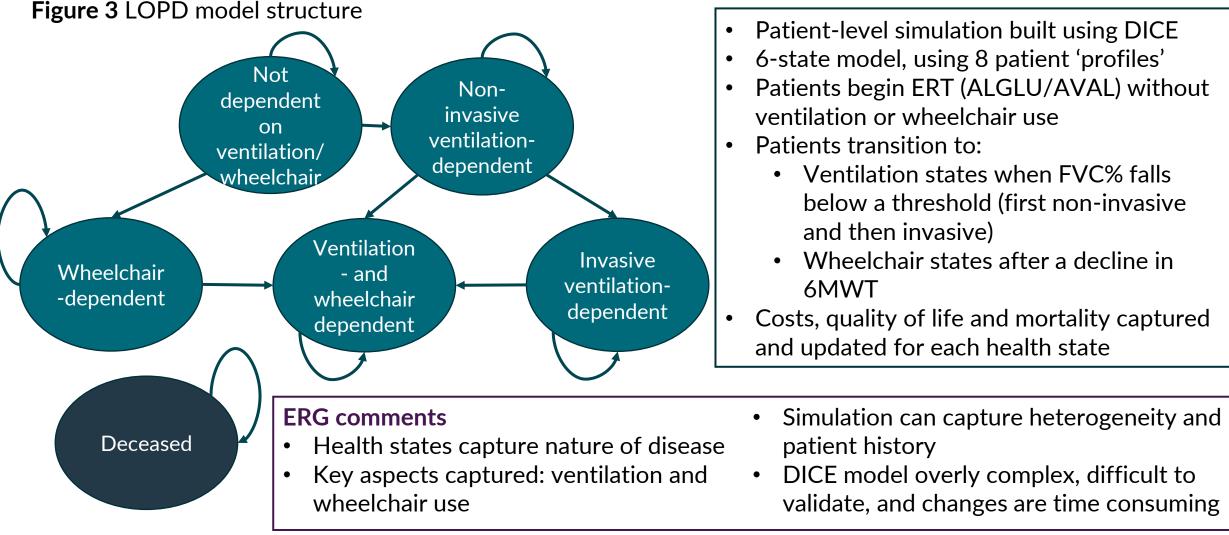
• Maintains preference for cost-utility analysis, but notes uncertainty in this

### **Clinical comments**

• Expect AVAL to provide greater efficacy than ALGLU in IOPD; expected to increase HRQL over current care

#### Does the committee accept that the cost-utility approach is preferable?

**NICE** Abbreviations: ALGLU, alglucosidase alfa; AVAL, avalglucosidase alfa; ERG, evidence review group; HR, hazard ratio; HRQL, health-related quality of life; IOPD, infantile-onset Pompe disease; LOPD, late-onset Pompe disease; NICE, National Institute for Health and Care Excellence; QALYs, quality-adjusted life-years. 23




# Late-onset Pompe disease

#### Cost-utility analysis

NICE National Institute for Health and Care Excellence

### **Company's model overview** Six-state patient-level DICE simulation model



**NICE** Abbreviations: 6MWT, six minute walk test; ALGLU, alglucosidase alfa; AVAL, avalglucosidase alfa; DICE, Discretely Integrated Condition Event; ERT, enzyme replacement therapy; FVC%, forced vital capacity; LOPD, late-onset Pompe disease.

# How company incorporated COMET evidence into model LOPD

Table 9: Input and evidence sources in company's LOPD cost-effectiveness model

| Input                         | Assumption and evidence source                                                                                              |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Baseline characteristics      | 2,000 simulated patients using COMET data grouped into eight patient 'profiles'                                             |
| Intervention efficacy         | Disease course captured using COMET FVC% and 6MWT                                                                           |
| Comparator efficacy           | Overall survival informed by life tables and adjusted for Pompe disease                                                     |
| Utilities                     | COMET (baseline), Pompe disease registry (patient disutilities) and Simon et al. (carer disutilities)                       |
| Costs                         | AVAL: confidential PAS price. ALGLU: £356.06 per 50 mg vial. Administered by IV. Doses rounded up or down to the whole vial |
| Resource use                  | Ventilation, wheelchair-related and monitoring/management costs calculated as one-off costs and annual costs                |
| Time horizon and cycle length | Lifetime (60 years) time horizon and monthly cycle length                                                                   |

**NICE** Abbreviations: 6MWT, six minute walk test; ALGLU, alglucosidase alfa; AVAL, avalglucosidase alfa; FVC%, forced vital capacity; IV, intravenous; mg, milligram; PAS, patient access scheme; PLD, patient-level data.

# Modelling clinical effectiveness



Disease course captured through changes FVC% predicted and 6MWT

**Figure 4** Predicted trajectory over time (company): a, FVC%; b, 6MWT

#### Company

- Assumed no clinical improvement during Year 1
- COMET Week 49 results inform change from baseline in FVC% predicted and 6MWT at Year 2
- AVAL: Benefits last years (NEO-EXT);
- ALGLU: Benefits last and years (Pompe registry/clinical opinion)
- Benefits declined linearly at the same rate

#### ERG

- No conclusions can be drawn on the stability of the treatment effect
- Assume same duration of treatment effect between arms:
   year for FVC% predicted and years for 6MWT
- Assumed faster rate of clinical decline for people who discontinue

#### No critical effect on ICER



Would you expect differences in the duration of treatment effect between ERTs?

**NICE** Abbreviations: 6MWT, 6-metre walk test; ALGLU, alglucosidase alfa; AVAL, avalglucosidase alfa; ERG, evidence review group; ERT, enzyme replacement therapies; FVC, functional vital capacity; ICER, incremental cost-effectiveness ratio.

### Summary of LOPD model, post-technical engagement LOPI Company and ERG models are similar

**Table 10** Assumptions in company and ERG base case

| Assumption                | Company base case | ERG base case |
|---------------------------|-------------------|---------------|
| Treatment effect duration |                   |               |

- Technology affects **costs** by:
  - unit cost of AVAL than ALGLU
  - Lower costs associated with ventilator and wheelchair use due to improved efficacy
- Technology affects **QALYs** by:
  - Increase in life expectancy
  - Lower probability of ventilator and wheelchair use

All other Key Issues resolved or have minimal impact on cost-effectiveness outcomes (Summary provided in back-up slides)

**ICE** Abbreviations: ALGLU, alglucosidase alfa; AVAL, avalglucosidase alfa; ERG, evidence review group; LOPD, late-onset Pompe disease; QALY, quality-adjusted life year 28

### Confidential Company results – post-technical engagement

 Table 11 Incremental base case results

| Technology | Total costs<br>(£) | Total LYs | Total QALYs |  | ICER<br>(£/QALY) |
|------------|--------------------|-----------|-------------|--|------------------|
| ALGLU      |                    |           |             |  |                  |
| AVAL       |                    |           |             |  | Dominant         |

#### Table 12 Probabilistic sensitivity analysis results

| Technology | Total costs<br>(£) | Total LYs | Total QALYs |  | ICER<br>(£/QALY) |
|------------|--------------------|-----------|-------------|--|------------------|
| ALGLU      |                    |           |             |  |                  |
| AVAL       |                    |           |             |  | Dominant         |

#### Table 13 Company scenario analyses

| No. | Scenario (applied to company base case)               | Incremental<br>costs (£) | Incremental<br>QALYs | ICER (£) |
|-----|-------------------------------------------------------|--------------------------|----------------------|----------|
| 1   | Company base case                                     |                          |                      | Dominant |
| 2   | AVAL plateau period equal to the ALGLU plateau period |                          |                      | Dominant |

**NICE** Abbreviations: ALGLU, alglucosidase alfa; AVAL, avalglucosidase alfa; ERG, ICER, incremental cost-effectiveness ratio; LYs, life-years; QALYs, quality-adjusted life-years.

# ERG results – post-technical engagement



30

 Table 14 ERG incremental base case results

| Technology | Total costs<br>(£) | Total LYs | Incremental<br>costs (£) | Incremental<br>LYs | ICER<br>(£/QALY) |
|------------|--------------------|-----------|--------------------------|--------------------|------------------|
| ALGLU      |                    |           |                          |                    |                  |
| AVAL       |                    |           |                          |                    | Dominant         |

#### **Table 15** ERG probabilistic sensitivity analysis results

| Technology | Total costs<br>(£) | Total LYs | Total QALYs | Incremental<br>costs (£) |  | ICER<br>(£/QALY) |
|------------|--------------------|-----------|-------------|--------------------------|--|------------------|
| ALGLU      |                    |           |             |                          |  |                  |
| AVAL       |                    |           |             |                          |  | Dominant         |

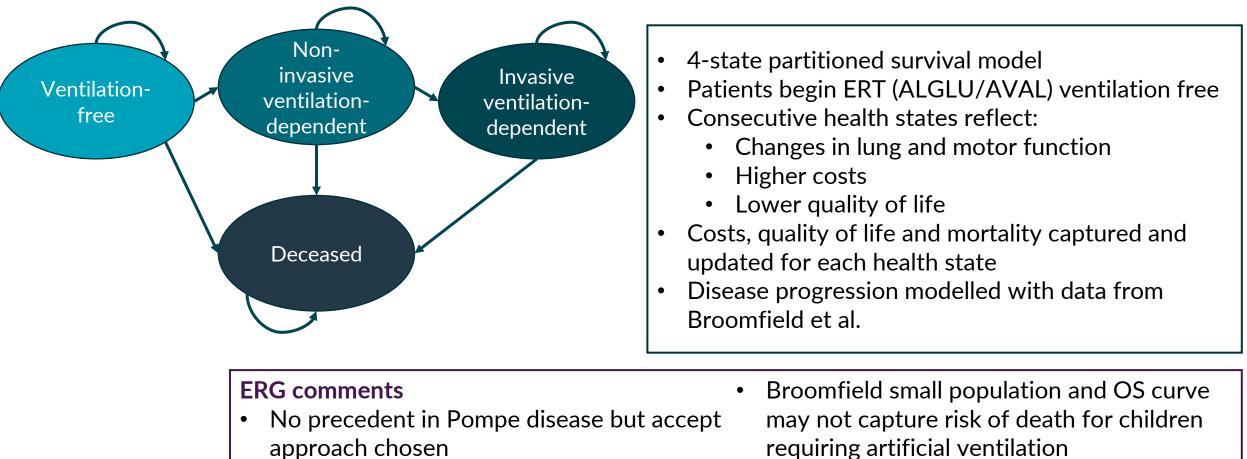
#### **Table 16** ERG scenario analyses

| No. | Scenario                    | Incremental<br>costs (£) | Incremental<br>QALYs | ICER (£) |
|-----|-----------------------------|--------------------------|----------------------|----------|
|     | ERG's preferred assumptions |                          |                      | Dominant |
| 1   | OS AVAL vs ALGLU, HR = 1    |                          |                      | Dominant |
| 2   | OS AVAL vs ALGLU, HR = 0.7  |                          |                      | Dominant |

**NICE** Abbreviations: ALGLU, alglucosidase alfa; AVAL, avalglucosidase alfa; ERG, evidence review group; HR, hazard ratio; ICER, incremental cost-effectiveness ratio; QALYs, quality-adjusted life-years.

IOPD

# Infantile-onset Pompe disease


#### Cost-utility analysis

NICE National Institute for Health and Care Excellence

### **Company's model overview** Four-state partitioned survival model

IOPD

Figure 4 IOPD model structure



• 4 health states reflect disease progression

**NICE** Abbreviations: ALGLU, alglucosidase alfa; AVAL, avalglucosidase alfa; ERT, enzyme replacement therapy; IOPD, infantile-onset Pompe disease; IVFS, invasive ventilator-free survival; OS, overall survival; VFS, ventilator-free survival.

# How company incorporated evidence into model



#### Table 17 Input and evidence sources in company's IOPD cost-effectiveness model

| Input                         | Assumption and evidence source                                                                                                                       |  |  |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Baseline characteristics      | Broomfield et al.                                                                                                                                    |  |  |
| Intervention efficacy         | AVAL and ALGLU equivalent, based on Broomfield et al.                                                                                                |  |  |
| Comparator efficacy           | OS, VFS and IVFS extrapolated to inform disease progression                                                                                          |  |  |
| Utilities                     | Simon et al, utility values for patients/caregivers with mild, moderate and severe<br>Pompe disease<br>ERG prefer alternative source of utility data |  |  |
| Costs                         | AVAL: confidential PAS price. ALGLU: £356.06 per 50 mg vial. Administered by IV.                                                                     |  |  |
| Resource use                  | Ventilation, wheelchair-related and monitoring/management costs                                                                                      |  |  |
| Time horizon and cycle length | 50 year time horizon; yearly cycle length                                                                                                            |  |  |

Abbreviations: ALGLU, alglucosidase alfa; AVAL, avalglucosidase alfa; ERG, evidence review group; IV, intravenous; IVFS, invasive ventilator-free survival; mg, milligram; OS, overall survival; PAS, patient access scheme; UK, United kingdom; VFS, ventilator-free survival.

### Key issue: Limited IOPD efficacy and safety evidence Lack of long-term data, uncertainty in long-term efficacy



- Only available comparative evidence for AVAL in the IOPD population is Cohort 3 of mini-COMET
  - Small sample size (n=11 participants) and dose heterogeneity
- A range of equivalence assumptions used for AVAL and ALGLU efficacy due to lack of data

#### Company

- Mini-COMET showed improvement or stabilisation in children treated with AVAL who weren't responding to ALGLU
- Conservative assumption to assume AVAL has the same efficacy as ALGLU

### **ERG** comments

- Unclear if AVAL would be similar to ALGLU when extrapolated as assumed in use of Broomfield
- ERG's scenario analyses showed significantly higher ICERs if a survival benefit is assumed for AVAL
  - Longer time on treatment  $\rightarrow$  higher treatment cost

### **Clinical comments**

• Efficacy evidence limited, could run treatment-naïve head-to-head study, would take a long time to recruit



Given limited evidence, is the model appropriate for decision making?

**NICE** Abbreviations: ALGLU, alglucosidase alfa; AVAL, avalglucosidase alfa; ERG, evidence review group; ICER, incremental cost-effectiveness ratio; IOPD, infantile-onset Pompe disease; UK, United Kingdom.

### **Modelling overall survival** Equivalent OS assumed by both company and ERG If OS benefit assumed, major effect on ICER

Background

• Mini-COMET showed benefit for AVAL, but no long-term data survival data available

#### Company

- Equivalence assumed between ERTs, informed by Broomfield 2015
- Broomfield presents survival for 33 UK patients
- Company selected Weibull model

#### ERG

- Mini-COMET data too limited to conclude equivalence
- All curves are good fit to observed KM data, but Weibull model provides an unrealistic extrapolation
- ERG selected exponential model in base case
- ERG present scenarios will longer OS for AVAL (including HR=0.85 used in LOPD analysis)
- AVAL survival benefits have a major effect on ICER



Is it reasonable to assume equivalence in overall survival?

**NICE** Abbreviations: AVAL, avlglucosidase alfa; ERG, evidence review group; ERTs, enzyme replacement therapies; ICER, incremental cost-effectiveness ratio; KM, 35 Kaplan–Meier; OS, overall survival; UK, United Kingdom.

### Summary of IOPD model, post-technical engagement



Company and ERG both assume equal efficacy in base case with varying assumptions around dosing and vial sharing

 Table 18 Assumptions in company and ERG base case

| Assumption                                      | Company base case            | ERG base case                                                                 |
|-------------------------------------------------|------------------------------|-------------------------------------------------------------------------------|
| Dosing of AVAL in first 12<br>weeks [Key Issue] | Fortnightly                  | Weekly dose, as per ALGLU                                                     |
| Vial sharing [Key Issue]                        | Dose rounded to nearest vial | Dose rounded to nearest vial                                                  |
| OS* [HR Key Issue]                              | Weibull – HR=1               | Exponential – HR=1 (Scenario, HR<1)                                           |
| Utility estimates*                              | Simon et al.                 | Pompe registry                                                                |
| Age-adjusted utility*                           | Included                     | Not included – utility values already specified by infant, children and adult |

Notes: \* Only impact results in scenario where difference in OS is modelled

All other Key Issues resolved or have minimal impact on cost-effectiveness outcomes (Summary provided in back-up slides)



Abbreviations: ALGLU, alglucosidase alfa; AVAL, avalglucosidase alfa; ERG, evidence review group; ICER, incremental cost-effectiveness ratio; IOPD, infantile-onset Pompe disease; OS, overall survival; QALY, quality-adjusted life year

# **Company IOPD results – post-technical engagement** Deterministic results only, no probabilistic results provided

 Table 19 Base case deterministic results

| Technology | Total costs<br>(£) | Total LYs | Total QALYs |  | Incremental<br>QALYs | ICER<br>(£/QALY) |
|------------|--------------------|-----------|-------------|--|----------------------|------------------|
| ALGLU      |                    |           |             |  |                      |                  |
| AVAL       |                    |           |             |  |                      | Dominant         |

#### Table 20 Company scenario analyses (deterministic)

| No. | Scenario (applied to company base case)      | Incremental<br>costs (£) | Incremental<br>QALYs | ICER (£) |
|-----|----------------------------------------------|--------------------------|----------------------|----------|
| 1   | Company base case                            |                          |                      | Dominant |
| 2   | Exponential distribution used to model OS    |                          |                      | Dominant |
| 3   | Double dosing for AVAL in the first 12 weeks |                          |                      | Dominant |

**Abbreviations:** ALGLU, alglucosidase alfa; AVAL, avalglucosidase alfa; ICER, incremental cost-effectiveness ratio; LYs, life-years; OS, overall survival; QALYs, quality-adjusted life-years.

# **ERG** base case results

**Table 21** Cumulative results for the ERG's preferred model assumptions

| No. | Scenario                                     | Incremental<br>costs (£) | Incremental<br>QALYs | ICER (£) |
|-----|----------------------------------------------|--------------------------|----------------------|----------|
| 1   | Company base case                            |                          |                      | Dominant |
| 2   | Double dosing for AVAL in the first 12 weeks |                          |                      | Dominant |
| 3   | Dosing estimated by rounding to nearest vial |                          |                      | Dominant |
| 4   | Exponential distribution used to model OS    |                          |                      | Dominant |
| 5   | ERG utility estimates                        |                          |                      | Dominant |
| 6   | Age adjusted utility not included            |                          |                      | Dominant |
| 7   | ERG's preferred assumptions                  |                          |                      | Dominant |

Notes: Steps 4, 5 and 6 have no impact on model results here as equivalence is assumed.

#### Table 22 Deterministic incremental base case results

| Technology | Total costs<br>(£) | Total LYs | Total QALYs |  | ICER<br>(£/QALY) |
|------------|--------------------|-----------|-------------|--|------------------|
| ALGLU      |                    |           |             |  |                  |
| AVAL       |                    |           |             |  | Dominant         |

**Abbreviations:** ALGLU, alglucosidase alfa; AVAL, avalglucosidase alfa; ERG, evidence review group; HR, hazard ratio; ICER, incremental cost-effectiveness ratio; LY life-years; OS, overall survival; QALYs, quality-adjusted life-years.



# **ERG** scenario results



Model outcomes extremely sensitive to survival assumptions

### Table 23 ERG scenario analyses (deterministic)

| No. |                             | Incremental<br>costs (£) | Incremental<br>QALYs | ICER (£) |
|-----|-----------------------------|--------------------------|----------------------|----------|
|     | ERG's preferred assumptions |                          |                      | Dominant |
| 1   | OS AVAL vs ALGLU, HR = 0.95 |                          |                      | £348,428 |
| 2   | OS AVAL vs ALGLU, HR = 0.85 |                          |                      | £591,310 |

# **Other considerations**

## **Equality considerations**

• No equality issues raised

## Innovation

### Company

• AVAL quicker to reconstitute than ALGLU, could reduce vial preparation time freeing up capacity in the NHS, and may encourage further innovation in rare diseases

### **Clinical experts**

- Second-generation ERT, alterations made to the enzyme not especially innovative and are designed to improve the efficiency of treatment rather than being a step change in management
- AVAL addresses the unmet need of the population for whom existing treatment is sub-optimal

Are there any other innovative aspects of the treatment not capture in the QALY calculations?

**IICE** Abbreviations: ALGLU, alglucosidase alfa; AVAL, avalglucosidase alfa; ERT, enzyme replacement therapy; NHS, National Health Service; QALY, quality adjusted 40 life-year.

NICE National Institute for Health and Care Excellence

# Thank you.

© NICE [insert year]. All rights reserved. Subject to Notice of rights.

**NICE** National Institute for Health and Care Excellence

# **Back-up slides**

# Key issues

LOPD/IOPD

 Table 1
 Key issues

| Issue                                                                        | In main deck? | ICER impact                  |
|------------------------------------------------------------------------------|---------------|------------------------------|
| Decision problem                                                             |               |                              |
| Cost-comparison or cost-utility analysis? (LOPD/IOPD)                        | Yes           | Small                        |
| Clinical effectiveness                                                       |               |                              |
| All relevant clinical evidence included? (LOPD/IOPD)                         | Partially     | Unknown                      |
| Studies <100 people outside the UK/Netherlands excluded (LOPD)               | No            | Unknown                      |
| Cost effectiveness                                                           |               |                              |
| Limited IOPD efficacy and safety evidence (IOPD)                             | Yes           | Unknown                      |
| AVAL treatment effect duration uncertain (LOPD)                              | Yes           | Small                        |
| Lifetime incremental survival advantage for AVAL (LOPD/IOPD)                 | Yes           | LOPD = Small<br>IOPD = Large |
| Vial sharing underestimates AVAL treatment costs (LOPD/IOPD)                 | No            | Medium                       |
| Increased ALGLU dosing frequency for first 12 weeks, increasing costs (IOPD) | No            | Small                        |
| ERT dose escalation (IOPD)                                                   | No            | Unknown                      |

**NICE** Abbreviations: ALGLU, alglucosidase alfa; AVAL, avalglucosidase alfa; ERT, enzyme replacement therapy; IOPD, infantile-onset Pompe disease; LOPD, late-onset Pompe disease; UK, United Kingdom.

# **Key issue: Excluded studies**



Excluded studies outside of UK and the Netherlands with <100 people

### Background

- No studies included if:
  - <100 people conducted outside the UK and the Netherlands</p>
  - Reporting only humanistic outcomes; not SF-36 or EQ-5D
- Rationale for this not reported in company submission, questioned by ERG

### Company

- Provided basic details of the 17 non-data extracted studies
- "provided only data on ALGLU or natural history (rather than AVAL) and data from large registries were already available" and "only data most generalisable to the UK were extracted"

### ERG

- Agrees with not including ALGLU or natural history studies, but cannot comment on registry data availability
- Unsure on characteristics of studies which affect generalisability to the UK

### **Clinical comments**

- Sample sizes of >100 will be very limited, likely that excluded studies may contain useful information
- UK/Netherlands populations may be similar, but other populations (e.g. US) may also reflect UK population

**NICE** Abbreviations: ALGLU, alglucosidase alfa; AVAL, avalglucosidase alfa; EQ-5D, EuroQol 5-dimension utility score; ERG, evidence review group; IOPD, infantileonset Pompe disease; LOPD, late-onset Pompe disease; SF-6D, short-form 6-dimension utility score; UK, United Kingdom; US, United States.

# Key issue: Vial sharing

# LOPD/IOPD

## Vials rounded up/down, doses shared across administrations

### Background

- Company drug acquisition costs assumes vial sharing of leftover medication, so no wastage stating doses are generally rounded to the whole vial to obtain the 'correct' dose over multiple infusions
- ERG considers this unrealistic and suggested number of vials should be rounded in the model

### Company

- Conducted a survey of eight UK treatment centres, experts stated they would round to the nearest vial to avoid vial wastage
- Revised LOPD base case so doses can be rounded up or down to the nearest vial; no change to IOPD model

## **ERG** comments

- Agrees with the company approach to vial wastage (LOPD), supported by clinician survey
- Consider the rounding approach should also be taken for IOPD

### **Clinical comments**

 Use "dose rounding" to utilise a full vial, with alternating dosing to achieve target dose for a patient (i.e. average over alternating doses).

# Key issue: ALGLU dosing frequency first 12 weeks Company and ERG disagree on initial dosing frequency



• Weekly ALGLU for first 12 weeks, then every other week; company modelled AVAL every other week

### Company

- Maintained original position: no evidence or established practice to support initial higher dose of AVAL
- Company included scenario with increased dosing frequency where AVAL remained dominant

### **ERG** comments

- Clinical advice to the ERG expected AVAL to match ALGLU frequency during first three months
- Dosing frequency should be the same for ALGLU and AVAL in the first 12 weeks of the model

### **Clinical comments**

- Newly diagnosed IOPD patients with significant cardiac complications, established higher ALGLU dosing aims to achieve rapid improvement in the cardiac component which would otherwise be fatal
- Anticipated that a higher AVAL dosing regimen (40mg/kg Q2W, or 20mg/kg QW) would be the dose utilised for ERT-naïve IOPD patients at treatment initiation
- Majority of Mini-COMET participants had 40mg/kg Q2W; also dose used for ERT-experienced children switching to AVAL under the EAMS

**NICE** Abbreviations: ALGLU, alglucosidase alfa; AVAL, avalglucosidase alfa; EAMS, early access to medicines scheme; ERG, evidence review group; ERT, enzyme replacement therapy; IV, intravenous; kg, kilogram; mg, milligram; QW, weekly; Q2W, every 2 weeks.

# Key issue: ERT dose escalation



47

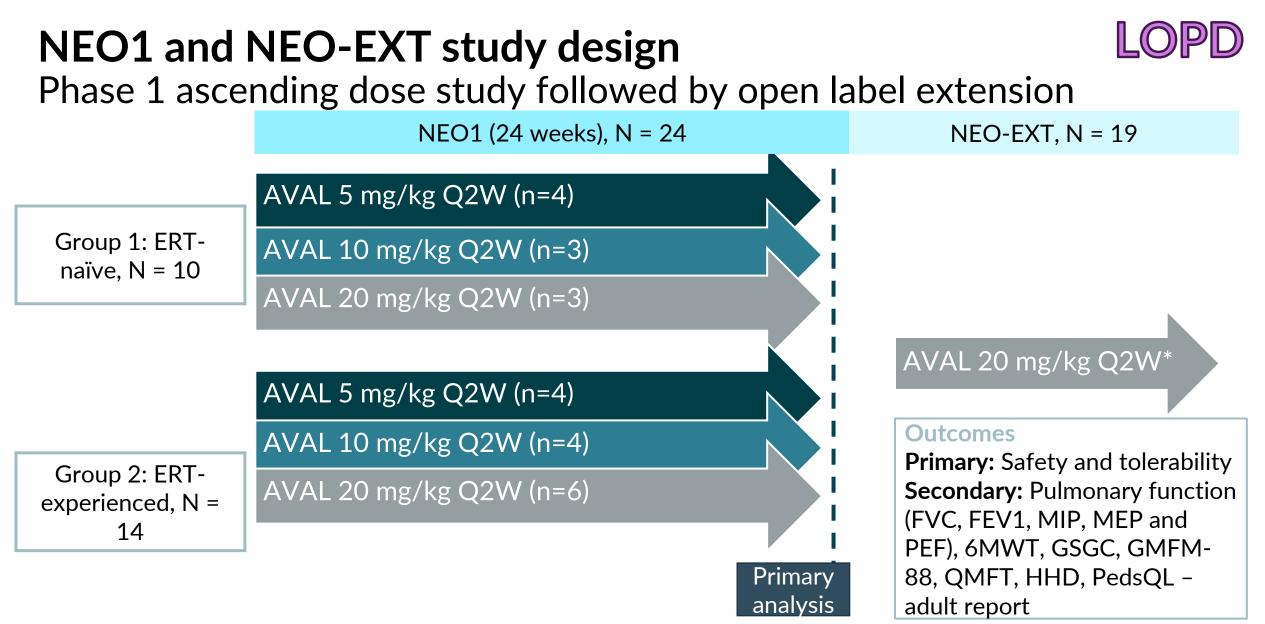
## Impact of different dose escalation approaches is unknown

### Background

- Anticipated AVAL licence permits dose escalations for IOPD patients up to 40 mg/kg every other week if inadequate response to 20 mg/kg dose
- Company excluded dose escalations of both drugs from the model; citing equivalence means proportion of patients needing escalations would be the same, offsetting any impact

### Company

• Maintains modelling informative scenarios is not possible due to lack of information on how dose escalation would occur in practice


## **ERG** comments

- Equivalence cannot necessarily be assumed; cannot assume proportions requiring increase the same
- Dose escalation should be in scenario analyses (i) ERT-initiation, (ii) Clinical decline (iii) inadequate response

### **Clinical comments**

- ALGLU escalation used in clinical practice where suboptimal response or clinical decline; difficult to model dose-escalation for AVAL as likely used in patients already showing suboptimal response
- Clinicians likely to prospectively use higher dose on assumption that this will provide greater benefit

**NICE** Abbreviations: ALGLU, alglucosidase alfa; AVAL, avalglucosidase alfa; ERG, evidence review group; ERT, enzyme replacement therapy; IOPD, infantile-onset Pompe disease; kg, kilogram;; mg, milligram.



Notes: \*All patients transferred to 20 mg/kg dose during 2016.



**Abbreviations:** 6MWT, six-minute walk test; AVAL, avalglucosidase alfa; ERT, enzyme replacement therapy; FEV, forced expiratory volume; FVC%, forced vital capacity (% predicted); GSGC, Gait, Stair, Gower's Maneuver, and Chair test; GMFM-88, Gross Motor Function Measure-88; HHD, hand-held dynamometry; kg, kilogram; MEP%, maximum expiratory pressure (% predicted); mg, milligram; MIP%, maximum inspiratory pressure (% predicted); N, number; Peds-QL, paediatric Quality of Life ; PEF, peak expiratory flow; Q2W, every two weeks QMFT, quick motor function test.



# **LOPD** trials baseline characteristics

|                                        | COMET | (N=100) | NEO1/NEO-EXT (N=24) |                   |  |
|----------------------------------------|-------|---------|---------------------|-------------------|--|
|                                        |       |         | AVAL: Group 1       | AVAL: Group 2     |  |
|                                        | AVAL  | ALGLU   | (ERT-naïve)         | (ERT-experienced) |  |
| Parameter                              | N=51  | N=49    | N=10                | N=14              |  |
| Age, mean (SD)                         | 46.0  | 50.3    | 44.8                | 46.7              |  |
| Age at first symptoms, mean (SD)       | 32.9  | 37.7    |                     |                   |  |
| Predicted FVC (%), mean (SD)           | 62.5  | 61.6    | 68.3                | 75.4              |  |
| Distance walked in 6MWT (m), mean (SD) | 399.3 | 378.1   | 449.2               | 440.4             |  |
| Key: ¶n=1                              |       |         |                     |                   |  |

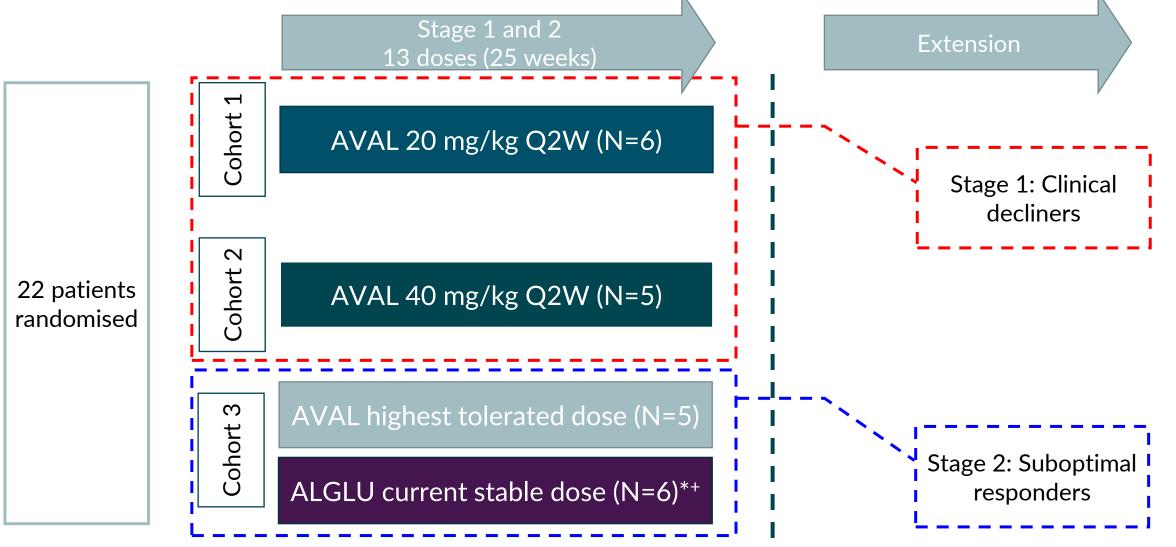
### **ERG** comments

- **COMET:** Generally well balanced; exceptions: AVAL group younger, treated quicker and had better predicted FVC% and 6MWT at baseline. Potentially have a greater chance of showing benefit.
- **NEO:** Younger with better FVC% and 6MWT than COMET. Long-term effect may not be applicable to COMET.
- Both studies excluded people more severely affected by LOPD.

**Abbreviations:** 6MWT, six-minute walk test; ALGLU, alglucosidase alfa; AVAL, avalglucosidase alfa; ERT, enzyme replacement therapy; FVC, forced vital capacity; LOPD, late-onset Pompe disease; m, metre; N, number; SD, standard deviation.

# Health related quality of life




Utility values adjusted for treatment and disease progression

- Baseline utility for each patient profile assigned using COMET baseline EQ-5D 5L
- Profile utility values adjusted: utility gain for treatment received; disutility for 'complication' health states

| Treatment                                                               | Utility gain (95% CI)                             |                                |
|-------------------------------------------------------------------------|---------------------------------------------------|--------------------------------|
| ALGLU                                                                   |                                                   |                                |
| AVAL                                                                    |                                                   |                                |
| Health state – Patient                                                  | Mean Registry utility (95% CI)                    | Calculated disutility          |
| Not dependent on ventilator or wheelchair                               |                                                   | _                              |
| Non-invasive ventilator                                                 |                                                   |                                |
| Wheelchair-dependent                                                    |                                                   |                                |
| Invasive ventilator-dependent                                           |                                                   |                                |
| Ventilator & wheelchair                                                 | -                                                 | *                              |
| Health state – Caregiver (1.72 carers per patient)                      | Disutility                                        |                                |
| Mild/moderate                                                           | -0.117                                            |                                |
| Severe                                                                  | -0.131                                            |                                |
| Notes: *For patients on both a ventilator and wheelchair, the individua | al disutilities for the ventilator and wheelchair | states are additively applied. |

• ERG prefer values from the mild states used for the not ventilator-dependent/wheelchair states and moderate to be used for the non-invasive ventilation-dependent health state.

# **Mini-COMET study design** Phase 2 ascending dose study



Notes: \* of treated with ALGLU in Cohort 3 received doses higher than the current maximum dose allowed in the UK. \* of treated with ALGLU in Cohort 3 received weekly dosing.

**NICE** Cohort 3 received weekly dosing. **Abbreviations:** ALGLU, alglucosidase alfa; AVAL, avalglucosidase alfa; kg, kilogram; mg, milligram; N, number; Q2W, every two weeks; UK, United Kingdom.

# **Mini-COMET trial baseline characteristics** Lack of IOPD data relevant to UK clinical practice



**Table 11** Baseline characteristics for intervention and comparator

|                                           | Clinical o         | decliners   | Sub-optimal responders |                    |
|-------------------------------------------|--------------------|-------------|------------------------|--------------------|
| Parameter                                 | Cohort 1           | Cohort 2    | Cohort 3               |                    |
|                                           | AVAL               | AVAL        | AVAL                   | ALGLU              |
|                                           | 20mg/kg N=6        | 40mg/kg N=5 | HTD N=5                | CSD N=6            |
| Gender, N (%) male                        | 5 (83.3)           | 3 (60.0)    | 2 (40.0)               | 2 (33.3)           |
| Age at study entry (months), mean (SD)    | 7.6 (3.4)          | 8.1 (4.1)   | 6.9 (2.7)              | 4.7 (3.2)          |
| Age at diagnosis (years), mean (SD)       | 1.93 (2.07)        | 4.29 (3.75) | 1.54 (1.49)            | 5.12 (5.46)        |
| Age at first symptoms (months), mean (SD) | <u>1.23 (1.70)</u> | 3.33 (2.93) | <u>0.18 (0.41</u> )    | <u>1.79 (1.72)</u> |
| Predicted FVC (%), upright, mean (SD)     |                    |             |                        |                    |
| Distance walked from 6MWT (m), mean (SD)  |                    |             |                        |                    |

### **ERG** comments

Lack of treatment-naïve data, unlikely to represent UK clinical practice should AVAL be approved

- Clinicians are likely to use the weekly 40 mg/kg dose for AVAL in clinical practice
- ALGLU dosing in Cohort 3 unbalanced, of received doses exceeding maximum dose used in the UK

**NICE** Abbreviations: 6MWT, six minute walk test; ALGLU, alglucosidase alfa; AVAL, avalglucosidase alfa; CSD, current stable dose; FVC%, forced vital capacity; kg, kilogram; HTD, highest tolerated dose; IOPD, infantile-onset Pompe disease; mg, milligram; m, metre; N, number; SD, standard deviation; Q2W, every two weeks. 52

# Adverse events – Mini COMET AVAL similarly tolerated as ALGLU

and

- AE incidence was comparable between the two treatment arms in Cohort 3.
- The highest proportion of TEAEs experienced by patients were observed in the organ class.
  - , , , ,

were the most common by preferred term.

| Parameter, n (%)                                    | Cohort 1 | Cohort 2 | Cohort 3 |              |
|-----------------------------------------------------|----------|----------|----------|--------------|
|                                                     | AVAL     | AVAL     | AVAL     | ALGLU        |
|                                                     | 20 mg/kg | 40 mg/kg | 40 mg/kg | current dose |
|                                                     | N=6      | N=5      | N=5      | N=6          |
| TEAEs                                               | 5 (83.3) | 5 (100)  | 5 (100)  | 5 (83.3)     |
| TEAEs potentially related to study treatment        | 0        | 2 (40)   | 1 (20.0) | 1 (16.7)     |
| TESAEs <sup>†</sup>                                 | 1 (16.7) | 3 (60.0) | 0        | 2 (33.3)     |
| TESAEs potentially related to study treatment       | 0        | 0        | 0        | 0            |
| Severe TEAEs <sup>†</sup>                           | 0        | 2 (40.0) | 0        | 1 (16.7)     |
| Severe TEAEs potentially related to study treatment | 0        | 0        | 0        | 0            |
| Adverse event of special interest                   | 0        | 2 (40.0) | 1 (20.0) | 1 (16.7)     |
| Protocol-defined IARs                               | 0        | 2 (40.0) | 1 (20.0) | 1 (16.7)     |
| Algorithm-defined IARs                              | 0        | 2 (40.0) | 1 (20.0) | 1 (16.7)     |

Abbreviations: AEs, adverse events; ALGLU, alglucosigase alfa; AVAL, avalglucosidase alfa; IARs, infusion adverse reactions; n, number; SAEs, serious adverse events; TEAEs, treatment emergent adverse events;

