1 Guidance

1.1 Basiliximab or daclizumab, used as part of a calcineurin-inhibitor-based immunosuppressive regimen, are recommended as options for induction therapy in the prophylaxis of acute organ rejection in people undergoing renal transplantation. The induction therapy (basiliximab or daclizumab) with the lowest acquisition cost should be used.

1.2 Tacrolimus is an alternative to ciclosporin when a calcineurin inhibitor is indicated as part of an initial or a maintenance immunosuppressive regimen in renal transplantation. The initial choice of tacrolimus or ciclosporin should be based on the relative importance of their side-effect profiles for individual patients.

1.3 Mycophenolate mofetil is recommended as an option as part of an immunosuppressive regimen only where there is proven intolerance to calcineurin inhibitors, particularly nephrotoxicity leading to risk of chronic allograft dysfunction or during periods of very high risk of nephrotoxicity, necessitating minimisation or avoidance of the calcineurin inhibitor.

1.4 Sirolimus is recommended as an option as part of an immunosuppressive regimen only in cases of proven intolerance to calcineurin inhibitors (including nephrotoxicity) necessitating complete withdrawal of these treatments.

1.5 These recommendations contain advice that may result in some medicines being prescribed outside the terms of their marketing authorisation. Clinicians prescribing these drugs should ensure that patients are aware of this, and that they consent to their use in such circumstances.
2 Clinical need and practice

2.1 Over the past three decades, renal transplantation has become established as the treatment of choice for many patients with end-stage renal failure. The only alternative is dialysis. The establishment of transplantation has been made possible by the introduction of immunosuppressants. Immunosuppression has customarily constituted triple therapy with: (1) a calcineurin inhibitor (that is, ciclosporin); (2) an antiproliferative agent (that is, azathioprine); and (3) a corticosteroid. However, a small number of treatment centres uses a policy of initial monotherapy with a calcineurin inhibitor, adding in other agents if necessary.

2.2 Ciclosporin for oral administration has been available in two forms. It was originally available as an oily solution (Sandimmun, Novartis) but is now only marketed as an oral solution/microemulsion (Neoral, Novartis). However, the pharmacokinetic profiles of the two agents are different.

2.3 In 2001, there were about 13,000 patients receiving immunosuppression after kidney transplantation in England, and about 900 in Wales. In 2001, about 1500 new renal transplants were performed in England and Wales with about 21% of organs coming from live donors.

2.4 The median age of all adults receiving a kidney transplant in 2001 was 49 years. There is a 7–10% annual increase in the UK dialysis population and the number of people needing a transplant is expected to rise over the next decade.

2.5 Renal transplants can be unsuccessful for a number of reasons, including technical failures, recurrence of original renal disease in the allograft, chronic allograft dysfunction (formerly called chronic rejection – that is, long-term deterioration of the graft), acute rejection and death of the recipient with a functioning graft.
2.6 Chronic allograft dysfunction is arguably the most common cause of late graft loss. It is usually a gradual process, although both the time of onset and the rate of progression vary. Chronic allograft dysfunction may develop as early as within a few months of the transplant or it may emerge after several years. The course is generally unremitting and ultimately leads to total loss of graft function, necessitating re-transplantation or a return to dialysis.

2.7 Episodes of acute rejection are most frequently observed during the first few weeks after transplantation, but can occur at any time if the level of immunosuppression becomes inadequate. The response is cell-mediated and leads to injury to or destruction of the functioning cellular structures of the transplanted organ. Occasionally, the response may be more aggressive and include a vascular component.

2.8 Clinically, acute rejection tends to occur as acute episodes heralded by a reduction in graft function (seen as changes in urine biochemistry and a reduction in urine output) and clinical features such as fluid retention and, occasionally, graft tenderness or fever.

2.9 People who undergo renal transplantation are required to receive life-long (or at least, long-term) treatment with immunosuppressive drugs. When selecting these treatments, the risk of immunologically mediated graft failure for any donor–recipient pair needs to be balanced against the drug’s side effects for the recipient. The ultimate aim of treatment is to prolong patient and graft survival.

2.10 Complications of immunosuppression include increased risk of developing infections (including viral infections such as cytomegalovirus, herpes simplex and zoster, and Epstein–Barr virus; and opportunistic protozoal, fungal and bacterial infections). As immunosuppression is usually at its highest level in the first 6 months after transplantation, this is also the peak period for infections in patients. Although modern immunosuppressive agents direct their activity principally towards the components of the rejection response, recipients are at much higher risk of infections than the general population.
throughout their post-transplant life. Some drugs also cause bone marrow suppression.

2.11 Suppression of the immune system is also associated with an increase in the development of cancers, especially lymphoproliferative disorders.

2.12 The risk of premature death due to cardiovascular disease is well documented in renal transplant recipients. Much of this is due to previous damage incurred during chronic renal failure. Dyslipidaemia is common in patients with end-stage renal failure, and some immunosuppressive drugs are thought to be associated with adverse lipid profiles. Hypertension and weight gain are also among the side effects of immunosuppressive drugs.

2.13 De novo post-transplant diabetes mellitus is a potentially serious side effect of treatment. Some patients are at increased risk of this complication, for example, because of ethnic background, obesity or family history of the condition.

2.14 Nephrotoxicity is a particular complication of some immunosuppressive regimens, notably the calcineurin inhibitors, which may increase the risk of chronic graft dysfunction.

2.15 Other treatment side effects, depending on the drugs used, may include hirsutism, alopecia, tremors, mood swings or gastrointestinal intolerance. Some side effects are temporary and resolve as dose reductions are implemented.

2.16 Most treatment centres attempt to categorise donor–recipient pairs according to the degree of perceived immunological risk and offer corresponding differing intensities of immunosuppression. Risk factors for acute rejection episodes include poor human leukocyte antigen (HLA) matching, high levels of antibody sensitisation, prolonged graft cold ischaemia times and whether the recipient has received a previous kidney transplant. Most centres adopt different strategies for patients with delayed graft function, for patients who
receive kidneys from non-heart-beating donors and for those who receive kidneys from live donors.

2.17 Immunosuppression can be categorised as follows:

- prevention of graft rejection, by induction therapy, initial therapy and maintenance therapy
- treatment of established acute rejection episodes.

2.18 Induction therapy is a course of intensive immunosuppression for about 2 weeks immediately post-operatively (though often started immediately pre-operatively) with the aim of ‘switching off’ the immune system after transplantation to reduce the likelihood of accelerated rejection and acute rejection. It has also been used as a means of reducing exposure to calcineurin inhibitors in the early stages after transplantation when the graft may be particularly vulnerable to their nephrotoxic effects. The term induction therapy has usually been linked with the use of the following agents – the polyclonal antibodies antithymocyte immunoglobulin (ATG) and antilymphocyte immunoglobulin (ALG), and the monoclonal antibody muromonab-CD3 (previously known as OKT3). Induction therapy with these agents has been used extensively in the USA but its use has been more limited in the UK, where the agents’ side effects are considered unacceptable. For this reason, the scope for this technology appraisal stated that ‘placebo’ or ‘no induction drug’ would be an acceptable comparison for the newer induction therapies in addition to the three drugs listed above.

2.19 Initial therapy is the treatment given to all recipients (except where the donor is an identical twin) for 0–3 months after transplantation. Initial therapy is usually ‘triple therapy’, in which a calcineurin inhibitor (traditionally ciclosporin) is used as the ‘primary agent’ in combination with a corticosteroid (prednisolone) and azathioprine. Occasionally, dual therapy (ciclosporin plus corticosteroid) is used. Both of these regimens were stated as relevant comparators in the scope.
2.20 Maintenance therapy is the treatment that patients receive long-term, throughout the duration of allograft survival. Often, maintenance therapy is identical to initial therapy but at a reduced dosage because the transplanted kidney becomes immunologically more stable with increasing time. However, it is also not uncommon for agents used in maintenance therapy to be altered in response to the development of acute rejection, severe infections or toxicity. Poor tolerability leading to non-adherence to treatment is another possible reason for changing drugs.

2.21 Acute rejection therapy. Maintenance therapies are sometimes adjusted either temporarily or permanently following acute rejection and especially following multiple rejection episodes. However, short courses of high-dose corticosteroids are the standard treatment for episodes of acute rejection. In most cases, corticosteroids will treat the problem quickly and effectively, although it is not unusual for two courses of corticosteroids to be required. If acute rejection does not resolve after treatment with corticosteroids, it is defined as ‘corticosteroid-resistant acute rejection’. Corticosteroid-resistant acute rejection may be treated with the polyclonal antibodies ALG or ATG or the monoclonal antibody muromonab-CD3, or by switching the calcineurin inhibitor to high-dose tacrolimus.

3 The technologies

3.1 Basiliximab

3.1.1 Basiliximab is a monoclonal antibody with specificity for CD25. It is licensed as an induction therapy for the prophylaxis of acute organ rejection in de novo allogenic renal transplantation in adults and children. The licence states that it should be used concomitantly with ciclosporin microemulsion and corticosteroid-based immunosuppression in patients with panel-reactive antibodies less than 80%, or in a triple-maintenance immunosuppressive regimen containing ciclosporin microemulsion, corticosteroids and either azathioprine or mycophenolate mofetil. The standard total dosage is 40 mg
given in two doses of 20 mg each. In children weighing less than 35 kg, the recommended total dosage is 20 mg given in two doses of 10 mg each. In children weighing 35 kg or more, the standard adult regimen of two 20 mg doses is recommended.

3.1.2 One dose of basiliximab costs approximately £840 (excluding VAT; *British National Formulary*, 45th edition). A two-dose course therefore costs approximately £1680 (excluding VAT). However, costs may vary in different settings because of negotiated procurement discounts.

3.2 Daclizumab

3.2.1 Daclizumab is also a monoclonal antibody with specificity for CD25 and is used as an induction agent in the prophylaxis of acute rejection. It is licensed as an induction therapy for the prophylaxis of acute organ rejection in de novo allogenic renal transplantation used concomitantly with an immunosuppressive regimen, including ciclosporin and corticosteroids in patients who are not highly immunised. The recommended dose for daclizumab in adults and children is 1 mg/kg. It should initially be given at least 24 hours before transplantation. Further doses are given at intervals of 14 days, for a total of five doses.

3.2.2 One dose of daclizumab costs about £720 for a person weighing 70 kg (excluding VAT; *British National Formulary*, 45th edition). A five-dose course therefore costs about £3600 (excluding VAT). However, costs may vary in different settings because of negotiated procurement discounts.

3.3 Tacrolimus

3.3.1 Tacrolimus is a calcineurin inhibitor. It is licensed for primary immunosuppression in kidney allograft recipients and kidney allograft rejection resistant to conventional immunosuppressive regimens. It can be given intravenously or orally. According to the licence, oral tacrolimus therapy should start at 150–300 µg/kg per day; it is subsequently adjusted according to whole blood or plasma trough concentrations. Tacrolimus is also licensed
for the treatment of acute rejection episodes. Rejection episodes can be treated with increased doses of tacrolimus.

3.3.2 Initial doses of 150–300 µg/kg per day for a person weighing 70 kg cost about £16.30–£32.60 per dose (excluding VAT; *British National Formulary*, 45th edition). Using a defined daily dose of 5–7 mg equates to an annual cost of about £2500–£3500 (excluding VAT). However, costs may vary in different settings because of negotiated procurement discounts.

3.4 Mycophenolate mofetil

3.4.1 Mycophenolate mofetil is a prodrug of mycophenolic acid, prepared as the mofetil compound to increase bioavailability. It is an antiproliferative agent that acts through inhibition of the purine biosynthetic pathway. Mycophenolate mofetil is licensed for initial and maintenance therapy and is indicated in combination with ciclosporin and corticosteroids for the prophylaxis of acute transplant rejection in patients receiving allogenic renal transplants. For adults, oral mycophenolate mofetil should be initiated within 72 hours after transplantation. The recommended dose in renal transplant patients is 1 g twice daily (2 g daily dose). For children and adolescents (aged 2 to 18 years) the recommended dosage of mycophenolate mofetil is 600 mg/m² given orally twice daily (up to a maximum 2 g daily). Patients with a body surface area of 1.25–1.5 m² may be prescribed mycophenolate mofetil capsules at a dosage of 750 mg twice daily (1.5 g daily dose). Mycophenolate mofetil is not indicated for children who are younger than 2 years old.

3.4.2 A 2 g dose of mycophenolate mofetil costs about £9 (excluding VAT; *British National Formulary*, 45th edition). Using a defined daily dose of 2 g equates to an annual cost of approximately £3300 (excluding VAT). However, costs may vary in different settings because of negotiated procurement discounts.

3.5 Sirolimus

3.5.1 Sirolimus is a non-calcineurin inhibiting immunosuppressant. Sirolimus is licensed for the prophylaxis of organ rejection in adult patients at low to
moderate immunological risk who have received a renal transplant. It is recommended that sirolimus is used initially in combination with ciclosporin microemulsion and corticosteroids for 2–3 months. The marketing authorisation states that sirolimus may be continued as maintenance therapy with corticosteroids only if ciclosporin can be progressively discontinued. According to this authorisation, the usual dosage regimen for sirolimus is a 6 mg oral loading dose, given as soon as possible after transplantation, followed by 2 mg once daily. The sirolimus dose should then be individualised, to obtain whole blood trough levels of 4–12 ng/ml (measured by chromatographic assay). Sirolimus therapy should be optimised with a tapering regimen of corticosteroids and ciclosporin microemulsion. Suggested ciclosporin trough concentration ranges for the first 2–3 months after transplantation are 150–400 ng/ml (monoclonal assay or equivalent technique). Ciclosporin should be progressively discontinued over 4–8 weeks and the sirolimus dose should be adjusted to obtain whole blood trough levels of 12–20 ng/ml. Sirolimus should be given with corticosteroids. In patients for whom ciclosporin withdrawal is either unsuccessful or cannot be attempted, the combination of ciclosporin and sirolimus should not be maintained for more than 3 months after transplantation. In such patients, when clinically appropriate, sirolimus should be discontinued and an alternative immunosuppressive regimen instituted.

3.5.2 A 6 mg dose costs £18 per day (excluding VAT; British National Formulary, 45th edition). Using 6 mg as the defined daily dose equates to an annual cost of about £6600 (excluding VAT). However, costs may vary in different settings because of negotiated procurement discounts.

4 Evidence and interpretation

The Appraisal Committee (Appendix A) considered evidence from a number of sources (see Appendix B).
4.1 **Clinical effectiveness**

4.1.1 **Basiliximab**

4.1.1.1 A total of eight randomised controlled trials (RCTs) were included in the Assessment Report. Four of the RCTs compared basiliximab with placebo within regimens comprising either ciclosporin/corticosteroid dual therapy (two trials) or ciclosporin-based triple therapy (two trials) with either azathioprine or mycophenolate mofetil as the antiproliferative component. One trial compared basiliximab with no induction agent in a ciclosporin/corticosteroid/azathioprine triple regimen with a third group receiving ciclosporin/corticosteroid/mycophenolate mofetil triple therapy. All five of these trials only recruited patients considered to be at low-to-moderate immunological risk of graft-failure. The three remaining trials compared basiliximab with another induction agent (either ATG or muromonab-CD3); one of these also included an arm where there was no induction therapy.

4.1.1.2 At 6- or 12-month follow-up, a pooled analysis of comparisons with other induction agents found no statistically significant differences in patient survival, graft loss or rates of biopsy-confirmed acute rejection. A pooled analysis of the comparisons with placebo also found that basiliximab was not associated with statistically higher patient or graft survival rates compared with placebo, but that it was associated with a lower incidence of biopsy-confirmed acute rejection (odds ratio [OR] 0.57; 95% confidence interval [CI] 0.45 to 0.72).

4.1.1.3 The risk and severity of side effects and adverse events were considered to be similar across treatment groups.

4.1.1.4 No data with a longer follow-up than 12 months were available, nor were there data relating to health-related quality of life.
4.1.2 Daclizumab

4.1.2.1 Three RCTs assessing the use of daclizumab were included in the Assessment Report. The two larger studies (n = 275 and n = 260) compared the use of daclizumab with a placebo, as an adjunct to double or triple ciclosporin-based initial and maintenance therapy. The third trial compared the adjunctive use of daclizumab with muromonab-CD3, but involved only 28 patients and is excluded from the rest of this document. The majority of patients included in these were considered to be at low-to-moderate immunological risk of graft-failure.

4.1.2.2 The pooled 12-month analysis showed that all-cause mortality was statistically significantly lower for patients who received daclizumab than for those who received placebo (OR 0.22; 95% CI 0.06 to 0.79), although the absolute difference in terms of aggregate patient numbers was very small and, in both trials, patient mortality was defined as a secondary outcome. The rate of biopsy-confirmed acute rejection (OR 0.47; 95% CI 0.32 to 0.67) was also lower for patients who received daclizumab. However, the pooled difference in graft loss was not statistically significantly different (OR 0.59; 95% CI 0.34 to 1.03).

4.1.2.3 The risk and severity of side effects and adverse events were considered to be similar across the two treatment groups.

4.1.2.4 The pooled 3-year analysis did not reveal any statistically significant differences in all-cause mortality (OR 0.67; 95% CI 0.17 to 2.69) or graft loss (OR 0.59; 95% CI 0.34 to 1.03) between the daclizumab and placebo treatment groups. No other outcomes at 3 years were reported.

4.1.3 Tacrolimus

4.1.3.1 Thirteen RCTs comparing tacrolimus with either of the two ciclosporin formulations were included in the Assessment Report. Six of these RCTs assessed the use of tacrolimus against the older oily formulation of ciclosporin (Sandimmun), whereas the remaining seven assessed its use
against the newer microemulsion formulation (Neoral). Most of the RCTs assessed the use of ciclosporin or tacrolimus in combination with an antiproliferative agent (azathioprine or mycophenolate mofetil) and a corticosteroid. In some of the studies, induction therapy with antilymphocyte agents was also used.

4.1.3.2 Pooling the 1-year results for the RCTs that compared tacrolimus with the original, older formulation of ciclosporin showed that the probability of biopsy-confirmed acute rejection favoured treatment with tacrolimus (OR 0.46; 95% CI 0.35 to 0.61). However, there was no statistically significant difference in the probability of all-cause mortality or graft loss.

4.1.3.3 The comparisons with ciclosporin microemulsion also favoured tacrolimus for the endpoint of biopsy-confirmed acute rejection (OR 0.44; 95% CI 0.33 to 0.58). Again, there was no statistically significant difference in the probability of all-cause mortality or graft loss.

4.1.3.4 Across the trials there was evidence at 12 months of an increase in the incidence of tremor with tacrolimus compared with ciclosporin microemulsion. Conversely, with ciclosporin microemulsion, there was a significant increase in hirsutism, hyperlipidaemia and gingivitis.

4.1.3.5 Only one of the 13 RCTs collected information on health-related quality of life, using the generic SF-36 and a disease-specific measure, the Bergner Appearance Scale. No statistically significant difference in SF-36 was reported between tacrolimus and the oily ciclosporin groups. However, results on the Bergner Scale showed a statistically significant difference favouring tacrolimus.

4.1.4 Mycophenolate mofetil

4.1.4.1 Seven RCTs comparing mycophenolate mofetil with azathioprine were included in the Assessment Report. Five of these studies compared mycophenolate mofetil with azathioprine in ciclosporin-based regimens. The remaining two studies compared mycophenolate mofetil with azathioprine in
tacrolimus-based regimens; one of these trials appeared to be a dose-ranging study. A study comparing mycophenolate mofetil with placebo in a ciclosporin-based regimen was not included in the Assessment Report (see section 4.1.3.4) and another RCT comparing the ciclosporin reductions under cover of mycophenolate mofetil with a continued regimen of ciclosporin in patients with chronic allograft dysfunction was made available to the Committee. Two separate analyses using UNOS (United Network for Organ Sharing) registry data were also available to the Committee.

4.1.4.2 The pooled data from the comparisons with azathioprine in ciclosporin-based regimens demonstrated a statistically significant lower probability of biopsy-confirmed acute rejection (OR 0.45; 95% CI 0.34 to 0.59) at 6 months or 1 year with mycophenolate mofetil than with azathioprine. There was no statistically significant difference in all-cause mortality (OR 1.12; 95% CI 0.56 to 2.24) or graft loss (OR 0.77; 95% CI 0.52 to 1.13) associated with mycophenolate mofetil at a dose of 2 g per day.

4.1.4.3 The pooled analysis of the two trials comparing mycophenolate mofetil with azathioprine in tacrolimus-based regimens demonstrated no statistically significant difference in the probability of all-cause mortality (OR 1.71; 95% CI 0.50 to 5.37), graft loss (OR 0.75; 95% CI 0.30 to 1.53) or biopsy-confirmed acute rejection (OR 0.43; 95% CI 0.10 to 1.84) for mycophenolate mofetil at a dose of 2 g per day.

4.1.4.4 One additional RCT compared mycophenolate mofetil with placebo in a ciclosporin-based regimen. In this study, mycophenolate mofetil reduced the incidence of biopsy-confirmed acute rejection in the first 6 months after transplantation, but the study lacked the power to demonstrate a difference in patient survival or graft survival.

4.1.4.5 The side-effect profile of mycophenolate mofetil differs from that of azathioprine. In comparative clinical trials, there was a higher incidence of gastrointestinal adverse events (diarrhoea and bleeding) and cytomegalovirus infection in the mycophenolate mofetil groups, but a lower
incidence of nausea, thrombocytopenia and jaundice than in the azathioprine groups.

4.1.4.6 Four of the mycophenolate mofetil RCTs reported longer-term results, of up to 3 years follow-up. Results were pooled from three of the trials. Although there was some evidence of a reduction in graft loss and all-cause mortality with mycophenolate mofetil at 3 years, the differences were not statistically significant (OR 0.62, 95% CI 0.34 to 1.13 for reduction in graft loss, and OR 0.77 95% CI 0.47 to 1.26 for all-cause mortality).

4.1.4.7 The RCT that compared reduced ciclosporin doses, under cover of mycophenolate mofetil, with a continued regimen of ciclosporin in patients with chronic allograft dysfunction showed that people in the ciclosporin dose-reduction arm of the trial were more likely to have responded to treatment (p = 0.006).

4.1.4.8 The results from the UNOS registry analyses suggested that mycophenolate mofetil reduced the 4-year probability of graft failure compared with azathioprine by 27% (p < 0.001) at the most.

4.1.5 Sirolimus

4.1.5.1 Although there are no RCTs comparing the licensed regimen for sirolimus with a standard calcineurin-based dual or triple therapy, two studies compared two regimens that both included sirolimus (n = 525 and n = 246,). One arm received a regimen of sirolimus initially combined with ciclosporin, followed by tapering of the ciclosporin dose to discontinuation after 2–3 months, with a concomitant increase in the dose of sirolimus adjusted according to whole blood concentrations (this regimen is now licensed). The other arm received sirolimus nominally 2 mg per day with continued ciclosporin (the subsequent marketing authorisation specifically excluded this regimen). Three-year follow-up data was available for the larger RCT. In both studies, no statistically significant differences in the incidences of biopsy-confirmed acute rejection were found. However, in both studies,
renal function was significantly better in the group in which ciclosporin was withdrawn from the regimen. Also, in both studies, hypertension was reported to be significantly less frequent in the group that discontinued ciclosporin. The results from a third RCT, in which the use of sirolimus plus low-dose steroids as a maintenance regimen with or without low-dose ciclosporin adjunctive therapy was evaluated, were marked ‘commercial in confidence’ because the manuscript was unpublished.

4.1.5.2 Other studies have compared sirolimus 2 mg or 5 mg daily versus either azathioprine 2–3 mg/kg per day (one study, n = 719) or placebo (one study, n = 576). All patients received concomitant ciclosporin and corticosteroids. In both studies, the incidence of acute rejection was lower in the groups that received sirolimus. However, because there was no attempt to withdraw ciclosporin, these studies are not directly relevant to estimating the effectiveness of the licensed regimen.

4.1.5.3 Two smaller RCTs compared sirolimus-based triple therapy with ciclosporin-based triple therapy. The rate of biopsy-confirmed acute rejection and levels of serum creatinine were not statistically significantly different in either trial at 1 year. Neither sirolimus-treatment arm included an initial phase where people received sirolimus and ciclosporin as specified in the marketing authorisation.

4.2 Cost effectiveness

4.2.1 Basiliximab

4.2.1.1 Eight economic evaluations of basiliximab were included in the Assessment Report.

4.2.1.2 Six of the eight evaluations were published studies (at the time of submission). Two of these six compared the addition of basiliximab or ATG to initial therapy regimens. The remaining four published evaluations assessed the addition of basiliximab alone to ciclosporin-based immunosuppressant regimens. Four of the published studies were cost-
consequence analyses, one was a cost-effectiveness analysis and one a cost-utility analysis. One cost-consequence study was conducted from an NHS perspective; the remaining five studies were all non-UK-based evaluations.

4.2.1.3 All the studies included healthcare costs only, which included drug acquisition costs, and the costs of acute rejection episodes and of graft failure treatment.

4.2.1.4 The cost-utility analysis reported the incremental cost of basiliximab to be over US$150,000 per quality-adjusted life year (QALY) at 1 year (basiliximab versus muromonab-CD3). The Assessment Report states that the cost-effectiveness analysis found basiliximab to be ‘superior’ to placebo at 1 and 10 years.

4.2.1.5 The UK cost-consequence analysis found the 1-year healthcare costs of basiliximab and placebo to be similar.

4.2.1.6 The sponsor’s model assessed the use of basiliximab as an adjunct to initial therapy from an NHS perspective over a 10-year period. When basiliximab was added to triple therapy with ciclosporin, azathioprine and a corticosteroid, the basiliximab regimen was more effective and less costly compared with triple therapy alone. When it was added to triple therapy with ciclosporin, mycophenolate mofetil and a corticosteroid, the incremental cost effectiveness of the basiliximab regimen was about £1800 per QALY.

4.2.1.7 The Assessment Group’s own economic model showed the adjunctive use of basiliximab to be less costly and more effective than ciclosporin-based triple therapy alone.

4.2.2 Daclizumab

4.2.2.1 Three economic evaluations of daclizumab were available to the Committee, including one by the Assessment Group.
4.2.2.2 One (non-UK) published economic evaluation for daclizumab was identified. It compared the cost effectiveness of adding daclizumab to a variety of different drug combinations, including ciclosporin-based triple therapy.

4.2.2.3 Few details of the results are available in the Assessment Report but it states that at 10 years, the cost effectiveness of daclizumab plus triple therapy was ‘superior’ to triple therapy alone.

4.2.2.4 The sponsor estimated the 1-year cost effectiveness of the licensed five-dose daclizumab plus ciclosporin-based triple therapy regimen compared with ciclosporin-based triple therapy alone to be £153,000 per QALY gained. However, for a two-dose regimen, they provided an estimate of £8400 per QALY gained, again at 1 year. Costs were restricted to those incurred by the NHS.

4.2.2.5 The Assessment Group’s economic evaluation predicted that the licensed five-dose daclizumab plus ciclosporin-based triple therapy regimen would be more clinically effective and less costly than ciclosporin-based triple therapy alone.

4.2.3 Tacrolimus

4.2.3.1 Nine economic evaluations of tacrolimus were included in the Assessment Report. Six of the nine evaluations were published studies, two were from the drug sponsor, and one was undertaken by the Assessment Group.

4.2.3.2 All of the published economic evaluations assessed the use of tacrolimus versus ciclosporin, both in combination with other agents. Although all six studies included healthcare costs only, four of them were performed specifically from an NHS perspective. Four of the published studies evaluated the oily formulation of ciclosporin (Sandimmun) and the remaining two evaluated the microemulsion formulation (Neoral).

4.2.3.3 Three of the six evaluations were either cost-effectiveness or cost-utility analyses. The first of the three studies modelled the cost-utility of tacrolimus
over 1- and 10-year periods, producing incremental cost-effectiveness ratios (ICERs) of £120,000–£220,000 and £75,000 per QALY, respectively. The second evaluation produced a cost-effectiveness estimate of £30,000 per additional graft saved or patient death avoided, although the time period for this evaluation was unclear.

4.2.3.4 The remaining published cost-effectiveness analysis was based on 6 months’ clinical data, which was collected retrospectively from a European multi-centre clinical trial. The differing cost structures for each country resulted in variable per-patient cost differences, but all analyses suggested tacrolimus was the least costly treatment option.

4.2.3.5 The three remaining published studies were cost analyses. One of these studies reported that there was no cost difference between tacrolimus and ciclosporin, whereas the remaining two studies suggested that tacrolimus was the less costly treatment option.

4.2.3.6 The sponsor provided two cost-effectiveness analyses. The first evaluation was performed alongside an RCT at a single UK treatment centre. An NHS perspective was used and follow-up was for a minimum of 1 year. The results of the analysis showed that tacrolimus cost about £200 more over the follow-up period than did ciclosporin, but it was also associated with fewer episodes of acute rejection, leading to an incremental cost of about £6000 per rejection-free graft.

4.2.3.7 The sponsor’s second evaluation had a longer time horizon – 10 years instead of one. The analysis, which was essentially based on a model, was performed from the perspective of a UK transplant unit. The results from the analysis suggested that the mean cost per additional patient death avoided was about £8000.

4.2.3.8 The results from the Assessment Group’s economic model suggested that the combination of tacrolimus with azathioprine and corticosteroids is less costly and more effective than is the combination of ciclosporin with
azathioprine and corticosteroids at the baseline. However, the ICER increased to £28,500 per QALY when the annual cost of providing tacrolimus was assumed to be £5,500 instead of £3,500.

4.2.4 Mycophenolate mofetil

4.2.4.1 Nine economic evaluations of mycophenolate mofetil versus azathioprine were included in the Assessment Report. Seven of these evaluations were published studies, one was performed by the sponsor and another by the Assessment Group.

4.2.4.2 Four of the seven published evaluations were cost-consequence analyses and the remaining three were cost-effectiveness analyses. All of the published evaluations included healthcare costs only, although their exact content varied, but none were UK-based evaluations. Only one of the published studies included a time horizon that was greater than 1 year.

4.2.4.3 All but two of the published cost analyses found the costs of mycophenolate mofetil to be greater at 6 months or 1 year compared with those of azathioprine. The one cost analysis that considered the outcomes of treatment over a longer period suggested that this cost difference was maintained at 10 years. The remaining two cost analyses estimated the short-term costs of mycophenolate mofetil to be lower than those associated with azathioprine.

4.2.4.4 Of the published cost-effectiveness analyses, two estimated both the cost and the effectiveness of mycophenolate mofetil to be superior to those of azathioprine at 10 years. Another produced an incremental cost per QALY estimate of approximately CAN$50,000.

4.2.4.5 The results from the Assessment Group’s economic evaluation showed the cost per QALY of replacing azathioprine with mycophenolate mofetil in a ciclosporin-based treatment regimen was about £130,000. The sponsor submitted a cost–utility analysis, which was performed from an NHS perspective over 1- and 10-year periods. Both analyses compared the use
of mycophenolate mofetil with azathioprine in ciclosporin-based treatment regimens. Switching to mycophenolate mofetil but not reducing the dose of ciclosporin produced an incremental cost per QALY of about £40,000. The critical difference between the assessment group’s and the sponsor’s models concerned the risk of graft failure. The sponsor used the assessment group’s model but its own more optimistic estimates of graft failure, and found ICERs of £56,000 and £42,000 per QALY. The former ICER was based on acute rejection rates and the latter on registry data on graft survival.

4.2.4.6 The sponsor in addition provided an estimate of £23,000 per additional QALY, based on ciclosporin dose reduction. They also used the Assessment Group’s model with reduced doses of ciclosporin (based on a number of analyses of RCT and registry data). This reduced the ICER to £54,000 from £130,000 per QALY. Furthermore, they argued that the adjusted ciclosporin dose and the optimistic graft failure rate generated an ICER of £22,000 per QALY using the Assessment Group’s model. This is consistent with their first estimate of £23,000 per QALY.

4.2.4.7 The Assessment Group calculated an ICER per QALY for people in whom renal function was deteriorating (see section 4.1.3.7). For this group, mycophenolate mofetil was both less costly and more effective compared with continued treatment with full dose ciclosporin.

4.2.5 Sirolimus

4.2.5.1 Three economic evaluations of sirolimus were considered by the Committee. One was a published study, one was performed by the Assessment Group and the third was submitted by the sponsor. All three studies included healthcare costs only.

4.2.5.2 The published study was a US-based cost analysis that compared the 1-year costs of using sirolimus instead of azathioprine. Costs included the consequences of treatment but did not include the actual cost of the study
drugs. The study reported the costs of these treatments to be similar (US$122,033 for sirolimus versus US$126,627 for azathioprine).

4.2.5.3 The sponsor’s economic evaluation compared the cost-effectiveness of sirolimus with ciclosporin withdrawal and a corticosteroid to a standard calcineurin-inhibitor-based treatment regimen. As there has not been an RCT of these treatments, treatment effects were estimated by incorporating the results from a number of other studies. The results from this analysis were used to suggest that sirolimus was a more effective and less costly treatment option.

4.2.5.4 The Assessment Group’s economic model compared the cost effectiveness of sirolimus with ciclosporin withdrawal and a corticosteroid with that of sirolimus, ciclosporin and a corticosteroid. However, the Committee considered this to be an inappropriate comparison.

4.3 Consideration of the evidence

4.3.1 The Committee reviewed the data available on the clinical and cost effectiveness of immunosuppressive therapy for renal transplantation, having considered evidence on the nature of the condition and the value placed by users on the benefits of immunosuppressive therapy from recipients of renal transplants, those who represent them, and clinical experts. It was also mindful of the need to take account of the effective use of NHS resources.

Basiliximab and daclizumab

4.3.2 The Committee considered that the evidence from the RCTs and economic evaluations demonstrated that basiliximab and daclizumab used concomitantly with calcineurin-inhibitor-based immunosuppression were clinically and cost effective relative to no induction therapy in preventing acute rejection in the first year after renal transplantation in patients at low to moderate immunological risk. However, the Committee was also aware of the equivocal nature of the evidence that acute rejection in these circumstances predicts long-term graft survival.
4.3.3 The Committee heard from the experts that these agents are more commonly used for patients with higher levels of immunological risk, although basiliximab and daclizumab are not licensed for patients who are at high immunological risk. The Committee were persuaded that there was a need for additional options for immunosuppression for this group and the experts stated that there was no reason to anticipate that these agents would be less safe or less effective in the high risk group. The Committee was aware that the Department of Health and Welsh Assembly Government had indicated that the Institute should consider the use of immunosuppressants as they are used in current practice, which may include use outside the terms of the marketing authorisation. It therefore concluded that basiliximab and daclizumab should be options for all individuals undergoing renal transplantation, irrespective of their immunological risk.

4.3.4 The Committee considered that, on the basis of data from clinical studies and the opinion of experts, there was no convincing evidence that either of these agents should be preferred over the other. The Committee noted that the costs associated with the use of these drugs are potentially quite different, given the different dosing regimens, and they concluded that the drug regimen with the lowest acquisition costs should be prescribed unless it is contraindicated.

Tacrolimus

4.3.5 The Committee considered that the evidence from the RCTs demonstrated that tacrolimus was at least as effective as ciclosporin as initial or maintenance immunosuppression and there was some evidence to suggest that it may be more effective in preventing acute rejection. However, the Committee heard from experts that interpretation of studies was complicated by differences in the dosage regimens used in the trials and those currently used in clinical practice. The experts also emphasised the different side-effect profiles of the calcineurin inhibitors and therefore the need for both options to be available.
4.3.6 Both the sponsor’s economic assessment and the revised economic evaluation from the Assessment Group suggested that tacrolimus was likely to be cost effective. The Committee therefore concluded that tacrolimus should be available as an alternative to ciclosporin.

4.3.7 The Committee noted that acute rejection episodes are sometimes treated by switching the calcineurin-inhibitor from ciclosporin to tacrolimus, and that this use of tacrolimus is separately specified in its licensed indications. However, as this essentially constitutes a change to the initial or maintenance therapy, the Committee understood that the guidance already included its use for this indication (see section 1.2).

Mycophenolate mofetil

4.3.8 The evidence from RCTs comparing mycophenolate mofetil with azathioprine or placebo in ciclosporin-based immunosuppressive regimens demonstrated that mycophenolate mofetil was effective in reducing the incidence of acute rejection in the first 6–12 months after renal transplantation. The Committee also noted that registry data suggested that mycophenolate mofetil might reduce the likelihood of graft failure. However, evidence both from the Assessment Group’s and from the sponsor’s economic models suggested that mycophenolate mofetil with full dose ciclosporin (as per the licensed indication) was unlikely to be cost effective compared with a regimen containing azathioprine.

4.3.9 The Committee considered the possibility that, when mycophenolate mofetil is used, the dose of ciclosporin (and drug costs overall) could be reduced without loss of clinical effectiveness. However, only when optimistic assumptions were made about the effect of mycophenolate mofetil both on graft survival and on reduction of ciclosporin dosage could mycophenolate mofetil be considered to be cost effective. Even so, the Committee was persuaded that for a subgroup of patients in whom renal function gradually decreases after transplantation, as evidenced by progressively rising creatinine levels (that is, where chronic allograft dysfunction is evident and
reduction of ciclosporin dose is required), mycophenolate mofetil was likely to be both clinically and cost effective.

4.3.10 The Committee was also persuaded that mycophenolate mofetil has a potentially clinically significant role during periods of very high risk of calcineurin inhibitor nephrotoxicity, as it allows the use of these drugs to be minimised or avoided. For example, in delayed graft function, or where kidneys are at particular risk of developing delayed graft function (for example kidneys from non-heart beating donors or where there is known prolonged warm or cold ischaemia time). The Committee considered that, in such circumstances, minimisation of exposure to nephrotoxic drugs was desirable and the use of mycophenolate mofetil therapy to cover this period of increased risk from calcineurin inhibitor nephrotoxicity was likely to be cost-effective in terms of reducing the high risk of graft failure at this time. However, the Committee considered that this therapeutic approach should be maintained only until this period of high risk has passed.

Sirolimus

4.3.11 The Committee noted that there were no clinical studies directly comparing the sirolimus regimen that is currently licensed (sirolimus with corticosteroids in combination with ciclosporin tapered to discontinuation) with standard calcineurin-inhibitor-based therapies. Indeed, in the two studies of the licensed regimen, sirolimus was also used in the comparator arm of the trial. The Committee did not accept that this licensed regimen was more clinically effective than standard ciclosporin-based immunosuppression on the basis of the available evidence.

4.3.12 The Committee also concluded that given the lack of other treatment options and the high risk and cost of returning to dialysis, in circumstances of intolerance to calcineurin inhibitors, sirolimus in combination with corticosteroids should be considered as an option. However, it was persuaded that, because there was more clinical experience of mycophenolate mofetil,
sirolimus should be used in this circumstance only when the use of mycophenolate mofetil was inappropriate.

5 Recommendations for further research

5.1 A randomised controlled trial comparing the following three regimens is required: (1) sirolimus, with corticosteroids and, after the initial treatment period, withdrawal of calcineurin inhibitor; (2) mycophenolate mofetil, with corticosteroids and, after the initial treatment period, withdrawal of calcineurin inhibitor; and (3) standard calcineurin-inhibitor-based triple therapy.

5.2 A trial should be carried out to determine whether starting a strategy of calcineurin inhibitor monotherapy and adding in an antiproliferative and a corticosteroid when necessary is clinically and economically preferable to using calcineurin-inhibitor-based triple therapy from the outset or vice versa.

5.3 Future clinical studies of immunosuppressants following renal transplantation should consider including people who are at a high immunological risk, such as children and those who have had a previous aggressive graft rejection. Studies should consider assessing the benefits of stratifying levels of immunosuppression according to risk.

5.4 Future clinical studies should also measure health-related quality of life.

6 Implications for the NHS

6.1 On balance, it is not anticipated that this guidance will increase the total cost of prescribing immunosuppressants for renal transplantation because, in general terms, it is likely to lead to a consolidation of current treatment patterns.
7 Implementation and audit

7.1 Clinicians with responsibility for people undergoing renal transplantation should review their current practice and policies to take account of the guidance set out in Section 1.

7.2 Local guidelines, protocols or care pathways that refer to the care of people undergoing renal transplantation should incorporate the guidance.

7.3 To measure compliance locally with the guidance, the following criteria could be used. Further details on suggestions for audit are presented in Appendix C.

7.3.1 Basiliximab or daclizumab, used as part of calcineurin-inhibitor-based immunosuppression, are considered as options for induction therapy in the prophylaxis of acute organ rejection in a person undergoing renal transplantation. The induction therapy with the lowest acquisition cost is used, unless it is contraindicated.

7.3.2 Tacrolimus is considered as an alternative to ciclosporin when a calcineurin inhibitor is indicated as part of an initial or maintenance immunosuppression in renal transplantation.

7.3.3 Mycophenolate mofetil, as part of an immunosuppressive regimen, is considered as an option only when a person has proven intolerance to calcineurin inhibitors, particularly nephrotoxicity leading to risk of chronic allograft dysfunction or during periods of very high risk of nephrotoxicity, necessitating minimisation or avoidance of the calcineurin inhibitor.

7.3.4 Sirolimus, as part of an immunosuppressive regimen, is considered as an option only when a person has proven intolerance to calcineurin inhibitors necessitating complete withdrawal of these treatments.
7.3.5 When any of these medicines is prescribed outside the terms of their marketing authorisation, the responsible clinician makes the person aware of this and obtains the person’s consent to their use in the circumstances.

7.4 Local clinical audits could also include measures of the timing and dosages of drug therapy used for people undergoing renal transplantation.

8 Related guidance

8.1 The Institute has issued guidance on the use of home compared with hospital haemodialysis for patients with end-stage renal failure. All issued guidance and details of appraisals and guidelines in progress are available on the NICE website (www.nice.org.uk).

9 Review of guidance

9.1 The review date for a technology appraisal refers to the month and year in which the Guidance Executive will consider any new evidence on the technology, in the form of an updated Assessment Report, and decide whether the technology should be referred to the Appraisal Committee for review.

9.2 The guidance on this technology will be reviewed in January 2007.

Andrew Dillon
Chief Executive, National Institute for Clinical Excellence
January 2004
Appendix A. Appraisal Committee members and NICE project team

A. Appraisal Committee members

NOTE The Appraisal Committee is a standing advisory committee of the Institute. Its members are appointed for a 3-year term. A list of the Committee members who took part in the discussions for this appraisal appears below. The Appraisal Committee meets twice a month except in December, when there are no meetings. The Committee membership is split into two branches, with the chair, vice-chair and a number of other members attending meetings of both branches. Each branch considers its own list of technologies and ongoing topics are not moved between the branches.

Committee members are asked to declare any interests in the technology to be appraised. If it is considered there is a conflict of interest, the member is excluded from participating further in that appraisal.

The minutes of each Appraisal Committee meeting, which include the names of the members who attended and their declarations of interests, are posted on the NICE website.

Dr Jane Adam
Radiologist, St George’s Hospital, London

Dr Sunil Angris
General Practitioner, Waterhouses Medical Practice, Staffordshire

Dr Darren Ashcroft
Senior Clinical Lecturer, School of Pharmacy and Pharmaceutical sciences, University of Manchester

Professor David Barnett (Vice-Chair)
Professor of Clinical Pharmacology, University of Leicester
Dr Peter Barry
Consultant in Paediatric Intensive Care and Honorary Senior Lecturer, Department of Child Health, Leicester Royal Infirmary

Professor John Cairns
Professor of Health Economics, Health Economics Research Unit, University of Aberdeen

Professor Mike Campbell
Statistician, Institute of General Practice & Primary Care, Sheffield

Dr Peter I Clark
Consultant Medical Oncologist, Clatterbridge Centre for Oncology, Wirral, Merseyside

Dr Mike Davies
Consultant Physician, University Department of Medicine & Metabolism, Manchester Royal Infirmary

Mr Richard Devereaux-Phillips
Public Affairs and Reimbursement Manager United Kingdom & Ireland, Medtronic Ltd, Watford, Hertfordshire

Professor Cam Donaldson
PPP Foundation Professor of Health Economics, School of Population and Health Sciences & Business School, Business School - Economics, University of Newcastle upon Tyne

Professor Jack Dowie
Health Economist, London School of Hygiene

Dr Paul Ewings
Statistician, Taunton & Somerset NHS Trust, Taunton
Professor Terry Feest
Clinical Director & Consultant Nephrologist, Richard Bright Renal Unit, & Chair of UK Renal Registry, Bristol

Ms Sally Gooch
Director of Nursing, Mid-Essex Hospital Services NHS Trust, Chelmsford

Professor Trisha Greenhalgh
Professor of Primary Health Care, University College London

Miss Linda Hands
Clinical Reader in Surgery, University of Oxford

Professor Peter Jones
Professor of Statistics & Dean Faculty of Natural Sciences, Department of Mathematics, Keele University

Professor Robert Kerwin
Professor of Psychiatry and Clinical Pharmacology, Institute of Psychiatry, London

Ms Joy Leavesley
Senior Clinical Governance Manager, Guy's and St Thomas' NHS Trust, London

Ms Ruth Lesirge
Lay Representative, previously Director, Mental Health Foundation, London

Dr George Levvy
Lay Representative, Chief Executive, Motor Neurone Disease Association, Northampton

Ms Rachel Lewis
Staff Nurse Nephrology, Hull Royal Infirmary, Hull

Dr Rubin Minhas
General Practitioner, Medway Primary Care Trust, Kent
Dr Gill Morgan
Chief Executive, NHS Confederation, London

Professor Philip Routledge
Professor of Clinical Pharmacology, College of Medicine, University of Wales, Cardiff

Dr Stephen Saltissi
Consultant Cardiologist, Royal Liverpool University Hospital

Mr Miles Scott
Chief Executive, Harrogate Health Care NHS Trust

Professor Andrew Stevens (Chair)
Professor of Public Health, University of Birmingham

Professor Mary Watkins
Professor of Nursing, University of Plymouth

Dr Norman Waugh
Department of Public Health, University of Aberdeen

B. NICE Project Team
Each appraisal of a technology is assigned to a Health Technology Analyst and a Technology Appraisal Project Manager within the Institute.

Dr Alec Miners and Janet Robertson
Technical Leads, NICE project team

Nina Pinwill
Project Manager, NICE project team
Appendix B. Sources of evidence considered by the Committee

A The assessment report for this appraisal was prepared by Department of Public Health and Epidemiology, The University of Birmingham. Health Economics Facility, Health Services Management Centre, The University of Birmingham and the Department of Nephrology, Queen Elizabeth Hospital, Birmingham.

B The following organisations accepted the invitation to participate in this appraisal. They were invited to make submissions and comment on the draft scope, Assessment Report and the Appraisal Consultation Document. Consultee organisations are provided with the opportunity to appeal against the Final Appraisal Determination.

I Manufacturer/sponsors:

- Fujisawa Limited
- Novartis Pharmaceuticals (UK) Limited
- Roche Products Limited
- Wyeth UK

II Professional/specialist and patient/carer groups:

- Addenbrookes NHS Trust
- Association of Renal Industries
- British Association for Paediatric Nephrology
- The British Renal Society
- The British Transplantation Society
- Department of Health
- National Kidney Federation
- National Kidney Research Fund
• Oxford City PCT
• Oxford Radcliffe NHS Trust
• The Renal Association
• Renal Pharmacists Group
• Royal College of General Practitioners
• Royal College of Nursing
• Royal College of Paediatrics and Children’s Health
• Royal College of Pathologists
• Royal College of Physicians
• Royal Pharmaceutical Society of Great Britain
• Society for DGH Nephrologists
• The Transplant Support Network
• UK Renal Transplant Nurses Association
• United Kingdom Transplant Coordinators Association
• Welsh Assembly Government
• Welsh Kidney Patients Association

III Commentator organisations (without the right of appeal):

• British National Formulary (BNF)
• NHS Quality Improvement Scotland
• UK Transplant
C The following individuals were selected from clinical expert and patient advocate nominations from the professional/specialist and patient/carer groups. They participated in the Appraisal Committee discussions and provided evidence to inform the Appraisal Committee’s deliberations. They gave their expert personal view on immunosuppressive therapy for renal transplantation by attending the initial Committee discussion and/or providing written evidence to the Committee. They were also invited to comment on the Appraisal Consultation Document.

- Mr Ali Bakran, Transplant and Vascular Surgeon, The Royal Liverpool University Hospitals, nominated by the National Kidney Research Fund and the Department of Health
- Ms Rachel Jones, Transplant Patient/Patient Representative for the National Kidney Research Fund
- Mr Christopher G Koffman, Consultant Surgeon & Head of Transplantation, Guy's and St Thomas' Hospital NHS Trust, London, nominated by Department of Health
- Dr John Marsden, Chairman, Welsh Kidney Patients Association
- Dr Chas Newstead, Consultant Renal Physician, Renal Unit, St James's University Hospital, Leeds, nominated by British Transplantation Society
- Dr Donal J O'Donoghue, Consultant Nephrologist, Department of Renal Medicine, Hope Hospital, Salford Royal Hospitals NHS Trust, nominated by British Renal Society
- Professor Stephen Powis, Professor of Renal Medicine, Centre for Nephrology, Royal Free Campus, Royal Free & University College Medical School, University College London, nominated by Oxford Transplant Centre, Oxford Radcliffe Hospital
- Dr Michelle Webb, Consultant Nephrologist, Kent & Canterbury Hospital, East Kent Hospitals NHS Trust Renal Unit, nominated by DGH Nephrology Society
Appendix C. Detail on criteria for audit of the use of Immunosuppressive therapy for renal transplantation

Possible objectives for an audit
An audit on the appropriateness of use of immunosuppressive therapy for renal transplantation could be carried out to ensure the following.

- Basiliximab or daclizumab are considered as options for induction therapy in the prophylaxis of acute organ rejection.
- Tacrolimus is considered as an alternative to ciclosporin when a calcineurin inhibitor is indicated as part of an initial and maintenance immunosuppression.
- Mycophenolate mofetil or sirolimus are considered as options only in appropriate situations.
- When any of these medicines is prescribed outside the terms of their marketing authorisation, the patient formally consents to their use.

Possible patients to be included in the audit
An audit could be carried out on people undergoing renal transplantation in a suitable time period for audit, for example, 6 months. The audit could focus on groups of people at different stages of transplantation, for example, immediate pre- and post-operative, 2–6 months post-operative, or longer term post-operative.

Measures that could be used as a basis for an audit
The measures that could be used in an audit of immunosuppressive regimens for renal transplantation are as follows. The measures are applicable to different groups of people, as described above.
<table>
<thead>
<tr>
<th>Criterion</th>
<th>Standard</th>
<th>Exception</th>
<th>Definition of terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Basiliximab or daclizumab are considered as options for induction therapy in the prophylaxis of acute organ rejection</td>
<td>100% of people undergoing renal transplantation</td>
<td>None</td>
<td>The drugs are used as part of a calcineurin-inhibitor-based immunosuppressive regimen. Clinicians will need to agree locally on how consideration of options for therapy is documented, for audit purposes. Also see 6 below.</td>
</tr>
<tr>
<td>2. If an individual is treated with basiliximab or daclizumab as part of induction therapy, the therapy with the lowest acquisition cost is used</td>
<td>100% of people at who are treated with basiliximab or daclizumab</td>
<td>A. The therapy with the lowest acquisition cost is contraindicated</td>
<td>Clinicians will need to agree locally on how the lowest acquisition cost is determined and how contraindications are documented, for audit purposes.</td>
</tr>
<tr>
<td>3. Tacrolimus is considered as an alternative to ciclosporin when a calcineurin inhibitor is indicated as part of an initial or maintenance immunosuppression</td>
<td>100% of people who have had renal transplantation</td>
<td>None</td>
<td>The initial choice of tacrolimus or ciclosporin is based on the relative importance of their side-effect profiles for the individual patient. Clinicians will need to agree locally on how consideration of options for therapy is documented, for audit purposes.</td>
</tr>
<tr>
<td>4. Mycophenolate mofetil is considered as an option only in the following situations: a. the person has proven intolerance to calcineurin inhibitors</td>
<td>100% of people who have a renal transplant and who have proven intolerance to calcineurin inhibitors or experience a period of very high risk of nephrotoxicity</td>
<td>None</td>
<td>Clinicians will need to agree locally on how proven intolerance to calcineurin inhibitors and consideration of options for therapy are documented, for audit purposes. Intolerance can include nephrotoxicity</td>
</tr>
<tr>
<td>5. Sirolimus is considered as an option only when a person has proven intolerance to calcineurin inhibitors necessitating complete withdrawal of these treatments</td>
<td>100% of people who have proven intolerance to calcineurin inhibitors necessitating complete withdrawal of these treatments</td>
<td>None</td>
<td>Clinicians will need to agree locally on how consideration of options for therapy and proven intolerance to calcineurin inhibitors is documented, for audit purposes. Also see 6 below.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6. When one of the medicines referred to in the guidance is prescribed outside the terms of their marketing authorisation, the responsible clinician: a. makes the person aware of the use outside the terms of their marketing authorisation and b. obtains the person’s consent for the use of the medicine outside the terms of their marketing authorisation</td>
<td>100% of people for whom a medicine is used beyond its licensed indications</td>
<td>None</td>
<td>Basiliximab, daclizumab, mycophenolate mofetil or sirolimus used consistent with the guidance in this document will sometimes be outside the terms of the marketing authorisation for these medicines. Clinicians will need to agree locally on how people are made aware of the use and on the written consent form used for this purpose.</td>
</tr>
</tbody>
</table>

An alternative to measuring the appropriateness of use of mycophenolate mofetil and sirolimus is illustrated in the measures that follow.
<table>
<thead>
<tr>
<th>Criterion</th>
<th>Standard</th>
<th>Exception</th>
<th>Definition of terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mycophenolate mofetil is prescribed</td>
<td>0% of people who have renal transplantation</td>
<td>A. The person has proven intolerance to calcineurin inhibitors</td>
<td>See above for relevant definitions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. During a period of very high risk of nephrotoxicity</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>See above for relevant definitions.</td>
<td></td>
</tr>
<tr>
<td>2. Sirolimus is prescribed as part of an immunosuppressive regimen</td>
<td>0% of people who have renal transplantation</td>
<td>A. A person has proven intolerance to calcineurin inhibitors necessitating complete withdrawal of these treatments</td>
<td>See above for relevant definitions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See above for relevant definitions.</td>
<td></td>
</tr>
</tbody>
</table>

Calculation of compliance

Compliance (%) with each measure described in the table above is calculated as follows.

\[
\text{Compliance} = \frac{\text{Number of patients whose care is consistent with the criterion}}{\text{Number of patients to whom the measure applies}} \times 100
\]

Clinicians should review the findings of measurement, identify whether practice can be improved, agree on a plan to achieve any desired improvement and repeat the measurement of actual practice to confirm that the desired improvement is being achieved.