Overview of the day - COVID-19 appraisals

Section	Data relevant to both appraisals	
1.1	SARS-CoV-2: variant tracking	Public
1.2	<i>In vitro</i> data	Public
1.3	Position of various organisations	Public
ID 4038	MTA of COVID-19 treatments	ACM 2
2.1	Community setting (mild COVID-19) – Part 1	Public
3.1	Hospital setting (severe COVID-19) – Part 1	Public
2.2	Community setting – Part 2	Private
3.2	Hospital setting – Part 2	Private
ID 6136	STA of tixagevimab/cilgavimab (Evusheld)	ACM 1
4.1	Prophylaxis in highly vulnerable people – Part 1	Public
4.2	Prophylaxis – Part 2	Private
NICE		

Section 1 Data relevant to both appraisals

- SARS-CoV-2 variant tracking
 - Evolution of variants
 - UK Health Security Agency (UKHSA) technical briefings
- In vitro data
 - The In Vitro data Assessment Group (IVAG)
 - BQ.1, BQ.1.1, XBB
- Position of various organisations

Section 1 Data relevant to both appraisals

- SARS-CoV-2 variant tracking
 - Evolution of variants
 - UK Health Security Agency (UKHSA) technical briefings
- In vitro data
 - The In Vitro data Assessment Group (IVAG)
 - BQ.1, BQ.1.1, XBB
- Position of various organisations

Evolution of SARS-Cov-2 Omicron variants*

Section 1 Data relevant to both appraisals

- SARS-CoV-2 variant tracking
 - Evolution of variants
 - UK Health Security Agency (UKHSA) technical briefings
- In vitro data
 - The In Vitro data Assessment Group (IVAG)
 - BQ.1, BQ.1.1, XBB
- Position of various organisations

Circulating variants change and difficult to predict

NICE

Possible only to predict prevalence of variants from trajectories of *currently circulating* variants in the near future

Source: UKHSA Technical briefing 49 (11 January 2023). Weekly growth rates: Table 3 (Please note limitations of model methods in Technical briefing 49 and 48)

UKHSA Technical Briefing 49. 11th Jan 2023

Multinomial modelling, estimated prevalence

Lineage	English sequences used in the multinomial model (MM)	MM England estimated prevalence	MM estimate for the weekly growth rate relative to BQ.1.1 lineages	English sequences counts used in the logistic regression and generalised additive model	Logistic regression GR (1/week)	Generalised additive model most recent GR (1/week)
BQ.1.1	1,4711	51.67% (95% Crl: 38.09 to 64.31)	-	1,161	14%	-9%
CH.1.1	2,262	15.78% (95% Crl: 10.41 to 24.56)	21.56% (95% Crl: 19.25 to 23.97)	291	37%	12%
BQ.1*	5,963	10.46% (95% Crl: 6.71 to 16.06)	-8.85% (95% Crl: -10.09 to -7.42)	2,053	16%	-18%
BN.1	2,410	6.01% (95% Crl: 3.35 to 10.21)	-6.12% (95% Crl: -7.69 to -4.39)	71	3.6%	-55%
BA.2.75 [†]	2,016	1.16% (95% Crl: 0.67 to 1.97)	-21.52% (95% Crl: -22.93 to - 19.95)	1,153	13%	4%
XBB**	1,304	7.02% (95% Crl: 4.04 to 10.58)	4.52% (95% Crl: 2.57 to 6.57)	267	18%	0%
XBB.1.5	124	1.66% (95% Crl: 0.89 to 2.74)	38.87% (95% Crl: 32.2 to 45.63)	-	-	-

Table 3. Growth rate (GR) of variants and signals under monitoring as of 25 December 2022^

* BQ.1 excludes BQ.1.1 which was modelled separately.

[†]BA.2.75 excludes BN.1 and CH.1.1 which were modelled separately.

** XBB excludes XBB.1.5 which was modelled separately.

^ Sampling range for both logistic regression and generalised additive models is from 12 October 2022 to 3 January 2023.

NICE

UKHSA Technical Briefing 49. 11th Jan 2023*

Multinomial modelling, estimated prevalence

Figure 7. Area plot showing the predicted representation of each lineage of the multinomial model of all sequenced cases in England

Section 1 Data relevant to both appraisals

- SARS-CoV-2 variant tracking
 - Evolution of variants
 - UK Health Security Agency (UKHSA) technical briefings
- In vitro data
 - The In Vitro data Assessment Group (IVAG)
 - BQ.1, BQ.1.1, XBB
- Position of various organisations

About the IVAG

Amanda Adler (Chair)	Director, Diabetes Trials Unit, University of Oxford
David Bauer	Group Leader & Head, RNA Virus Replication Laboratory. The Francis Crick Institute
Rupert Beale	Clinician Scientist Group Leader, Consultant Nephrologist, The Francis Crick Institute, UCL Division of Medicine
Sanjay Bhangani	Consultant Physician and Honorary Associate Professor, Royal Free Hospital and University College London
Neil Ferguson	Director, MRC Centre for Global Infectious Disease Analysis, Imperial College London
Neil Hawkins	Professor of Health Technology Assessment, University of Glasgow
Mark Jit	Professor of Vaccine Epidemiology, London School of Hygiene and Tropical Medicine
Saye Khoo	Professor in Pharmacology, Hon Consultant Physician in Infectious Diseases, University of Liverpool
David Lalloo	Director, Liverpool Tropical School of Medicine
Siraj Misbah	Consultant Clinical Immunologist, Oxford University NHS Foundation Trust
Andrew Owen	Professor of Pharmacology, University of Liverpool
Derek Smith	Professor of Infectious Disease Informatics, Zoology Department at Cambridge University
David Stuart	MRC Professor of Structural Biology, University of Oxford
Mark Sutton	Scientific Leader - Healthcare Biotechnology, and Professor for Antimicrobial Therapy, UKHSA and King's College London
Laurie Tomlinson	NIHR Research Professor, Honorary Consultant Nephrologist, London School of Hygiene and Tropical Medicine (Key author on OpenSAFELY data papers)
Erik Volz	Reader in Population Biology of Infectious Diseases, Faculty of Medicine, School of Public Health, Imperial College London

- Four meetings in December chaired by Amanda Adler (previous TAC Chair)
- Expertise in using and understanding COVID-19 clinical, health economic and *in vitro* data
- Various schools of thought including Crick Institute, advisors to the WHO guideline and authors of the OpenSAFELY publications
- Output: interim framework and decision rules for assessing COVID-19 *in vitro* data

Aim of In Vitro Advisory Group, IVAG

To help technology appraisal committee make reimbursement decision when clinical trial evidence for a 'technology' - monoclonal antibody treatment for COVID – is based on variants no longer circulating

<u>Output</u>

• Framework for linking data from *in vitro* studies of drug neutralisation of different coronavirus variants to clinical outcomes

<u>Output</u>

 Recommendations whether or not to recommend that the NHS reimburse nMAbs when clinical trials evidence is generated in a different variant era

nMAbs, neutralising monoclonal antibodies

Conceptual framework for decision-making

How to interpret neutralisation curves*

Delta 🔘 BA.2.75.2 🔵 BA.4.6 🔵 BQ.1.1

• 1 graph per drug – monoclonal antibody or combinations

- X-axis: (exponential) increasing concentration of the antibody (in ng/ml) as would be expected in serum in people
- Y-axis: neutralising activity as a percentage of virus neutralised in the assay
- Colours reflect different viral variants. Black is reference one on which clinical trial was conducted
 - For example bebtelovimab does not inhibit BQ.1.1 even at high concentrations
- EC-50 value is concentration needed to neutralise 50% of virus
 - EC-50 used to calculate the 'n-fold differences' between treatments as the most stable point in the dose-response curve
- EC-90 value is concentration needed to neutralise 90% of virus
 - EC-90 used to calculate threshold for efficacy because it represents most of the viral population being neutralised

In vitro neutralisation can indicate likely clinical effect

- Neutralisation used to identify promising treatments
- For each new variant, neutralisation assays of existing drugs can inform clinical effect
- A complete loss of neutralisation activity against a variant (no inhibition, even at supraphysiological doses) likely means no clinical effect
- NMAbs are dose-linear; if dose doubled then serum concentration doubled
- Reduced neutralisation: increased dose may maintain neutralisation
 - Requires PK/PD data in humans to understand the relationship to clinical efficacy
- Effector functions of nMAbs effects beyond neutralisation- are hypothesised to have an additional effect, but little known about mechanism of action.

PK/PD data needed to understand drug concentration in people

• Dose available in the appropriate tissue (for example lung) unknown but is necessary to understand if there will be a change in efficacy

- It is not possible to estimate neutralisation in people from in vitro neutralisation curves – this requires pharmacokinetic studies of licensed doses
- N-fold change alone cannot determine effectiveness. Consider a 100-fold change in neutralisation:
 - If licensed dose from RCT were dose 1, this would likely have minimal impact on clinical outcomes as there is still neutralisation activity
 - If licensed dose from RCT were dose 2, this would likely mean no clinical benefit
- There are 2 methods for this:
 - Dose-failure benchmarks IVAG prefers
 - Adjusting serum drug concentrations to tissue

How to interpret neutralising titres in people*

Source: https://www.fda.gov/media/157556/download

- Antibody titres a test that determines the presence and level (titre) of antibodies in blood
- Example: sotrovimab
- Curves are 3 different dosages of drug for delta variant(solid) and 1 dose for omicron BA.2 (dotted)
- X-axis is time
- Y-axis is neutralisation titre
 - defined as concentration of sotrovimab ÷ by concentration needed to neutralise 90% of virus
- Interpretation i.e. 500 mg IV treatment (black) shows higher number of antibodies in serum from administration, whereas 500 mg IM (green) takes longer to reach a steady level
- May need different neutralisation titres for treating or preventing COVID
- An n-fold reduction in neutralisation activity would result in the same reduction in neutralisation titre

Identifying when a reduced dose worsens clinical outcomes* FDA has used trial to identify 'benchmarks'

Note: Sotrovimab NT = sotrovimab concentration/(sub)variant EC90. Sotrovimab median PK exposures were generated from the values provided from various studies provided by the Sponsor (500 mg IV: BLAZE-4, COMET-PEAK, Japan-PK; 250 mg and 500 mg IM: COMET-TAIL); 250 mg IM (red) and 500 mg IM (green) dotted lines on Days 0-1 are projected median exposures. **Figure A** includes the BA.2 EC₉₀ value of ~6,800 ng/mL, and **Figure B** includes the BA.2 EC₉₀ value of 14,800 ng/mL. Delta EC₉₀ value is ~220 ng/mL (provided by the Sponsor).

Source: https://www.fda.gov/media/157556/download

 COMET-TAIL trial compared sotrovimab 500 mg IM vs 500 mg IV during Delta wave; the 250 mg IM cohort was terminated because of a higher rate of hospitalisation and death

Therefore, FDA assumed that 250 mg IM against Delta variant as a benchmark of suboptimal clinical efficacy

FDA assumed suboptimal clinical efficacy against BA.2 because n-fold adjusted neutralisation titre values of 500 mg IV for BA.2 (black dotted line) even lower that the 250 mg IM values against delta (lower than benchmarked dose failure)

Summary of IVAG discussions

- Difficult to predict viral evolution and likely prevalence of future new variants that cause COVID
- Circulating variants in near future likely related to currently circulating variants with the same mutations that may reduce effectiveness
- In general, reduced effectiveness over time as new variants evolve
- It is possible to determine an association between *in vitro* neutralisation data and clinical outcomes
 - Clear when no neutralisation, no clinical benefit
 - If there is reduced neutralisation of a new variant compared to variant prevalent during a randomised trial for which evidence is available, neutralisation data alone is not enough to conclude that effect estimates seen in the trial is generalisable to new variant– this requires PK/PD data
 - Most appropriate method of estimating clinical effect is identifying when a dose fails to provide benefit and matching this to an expected reduction in neutralisation

Section 1 Data relevant to both appraisals

- SARS-CoV-2 variant tracking
 - Evolution of variants
 - UK Health Security Agency (UKHSA) technical briefings
- In vitro data
 - The In Vitro data Assessment Group (IVAG)
 - BQ.1, BQ.1.1, XBB (earlier BA.5)
- Position of various organisations

Takashita, 20th July 2022 Efficacy of Antibodies and Antiviral Drugs against Omicron BA.2.12.1, BA.4, and BA.5 Subvariants

Table 1. Efficacy of Monoclonal Antibodies and Antiviral Drugs against Omicron Subvariants in Vitro.*													
Subvariant				Susceptibility to Antiviral Drug									
	Imdevimab	Casirivimab	Tixagevimab	Cilgavimab ng pe	Sotrovimab Precursor r milliliter	Bebtelovimab	Imdevimab+ Casirivimab	Tixagevimab+ Cilgavimab	Remdesivir	Molnupiravir µmol	Nirmatrelvir		
Reference∬	7.4	6.1	6.1	7.0	95.1	2.5	3.4	6.3	1.7	2.8	2.7		
BA.1	>50,000	>50,000	1552.7	2916.9	40727.1	5.8	>10,000	351.1	1.9	7.5	4.8		
BA.1.1	>50,000	>50,000	603.5	>50,000	3769.2	3.9	>10,000	1296.8	2.0	6.0	3.9		
BA.2	329.0	>50,000	2756.6	16.9	>50,000	3.3	835.1	34.6	5.9	8.7	6.9		
BA.2.12.1	238.1	>50,000	335.2	21.0	>50,000	4.0	452.7	38.1	0.5	3.2	1.8		
BA.4	132.6	>50,000	>50,000	53.6	>50,000	2.9	459.1	37.8	1.2	3.3	2.9		
BA.5	583.4	>50,000	>50,000	56.8	>50,000	3.3	1093.1	192.5	2.0	4.1	4.4		

* The antibodies that were used in this analysis are listed by their commercial names for readability although they were produced in the authors' laboratories in their generic formulations. Omicron subvariants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are listed according to the World Health Organization labels for the Pango lineage.

† Individual monoclonal antibodies were tested at a starting concentration of 50,000 ng per milliliter on 50% focus reduction neutralization testing. The monoclonal antibody combinations were tested at a starting concentration of 10,000 ng per milliliter for each antibody.

 The susceptibility to antiviral drugs was measured as the 50% inhibitory concentration of the mean micromole value of triplicate reactions. GS-441524 is the main metabolite of remdesivir and EIDD-1931 is the active form of molnupiravir, both of which are RNA-dependent RNA polymerase inhibitors. Nirmatrelvir (PF-07321332) is a protease inhibitor.
 The reference strain was SARS-CoV-2/UT-NC002–1T/Human/2020/Tokyo.

Wu (Crick group), 6th Oct 2022 WHO's Therapeutics and COVID-19 Living Guideline on mAbs needs to be reassessed

- "At present there is an unrealistically high threshold to enter a therapeutic agent into clinical practice. The threshold to withhold or withdraw the same agent is much lower when based on *in vitro* evidence for loss of potency alone.
- Such a situation disproportionately affects vulnerable patients whose other essential medications or comorbidities exclude COVID-19 therapeutics other than a neutralising mAb.
- This situation also strongly disincentivises development of novel antivirals that are needed to continue to offer protection to highly vulnerable populations."

Figure 1. Neutralisation of SARS-CoV-2 variants by monoclonal antibodies (mAbs). For each combination of mAb and SARS-CoV-2 variant, 288 independent data points are shown, which were generated from 3 independent repeats of 12 independent titrations, each consisting of 2 technical replicates of a 4-point dilution series against live SARS-CoV-2 virus. **EC**₅₀ values (solid vertical lines) by were calculated fitting a 4-parameter dose-response curve (solid curves) to this data. For each mAb, the mean serum concentration at maximum (grey point) and twice its standard deviation (grey error line), and at 28 days post-administration (black points) and twice its standard deviation (black error line) was obtained from its Summary of Product Characteristics (see Table 3) and plotted here for reference.

No BQs or XBBs in this paper

21

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.17.516888; this version posted November 17, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-N0.40. International license.

Resistance of Omicron subvariants BA.2.75.2, BA.4.6 and BQ.1.1 to neutralizing antibodies

Delphine Planas^{1,2#}, Timothée Bruel^{1,2}, Isabelle Staropoli¹, Florence Guivel-Benhassine¹, Françoise Porrot¹, Piet Maes³, Ludivine Grzelak¹, Matthieu Prot⁴, Said Mougari⁴, Cyril Planchais⁵, Julien Puech⁶, Madelina Saliba⁶, Riwan Sahraoui⁶, Florent Fémy⁷, Nathalie Morel⁸, Jérémy Dufloo⁹, Rafael Sanjuán^{9,10}, Hugo Mouquet⁵, Emmanuel André^{11,12}, Laurent Hocqueloux¹³, Etienne Simon-Loriere⁴, David Veyer^{6,14}, Thierry Prazuck 13*, Hélène Péré^{6,14**} & Olivier Schwartz^{1,2#*}

³Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France ²Varcine Research Institute, Créteil, France, ³KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Leuven Belgium. ⁴G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France. ⁵Humoral Immunology Laboratory, Institut Pasteur, Université Paris Cité, INSERM U1222, Paris, France. ⁶Laboratoire de Virologie, Service de Microbiologie, Hôpital Européen Georges Pompidou, Paris, France ⁷Service d'accueil des urgences, Hôpital Européen Georges Pompidou, Paris, France, Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Université Paris-Saclay, F-91191 Gif-sur Yvette, France Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980 Paterna, València, ¹⁰Department of Genetics, Universitat de València, València, Spain. ¹¹University Hospitals Leuven, Department of Laboratory Medicine, National Reference Centre for Respiratory Pathogens, Leuven, Belgium ¹²KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, Leuven, Belgium. ¹³CHR d'Orléans, Service de Maladies Infectieuses, Orléans, France. ¹⁴Functional Genomics of Solid Tumors (FunGeST), Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, Paris, France.

nature

The NEW ENGLAND JOURNAL of MEDICINE

CORRESPONDENCE

Efficacy of Antiviral Agents against Omicron

Subvariants BQ.1.1 and XBB

https://doi.org/10.1038/s41586-022-05644-7

Accelerated Article Preview

Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution

Received: 23 September 2022 Accepted: 12 December 2022

Accelerated Article Preview Published online: 19 December 2022

NICE

Cite this article as Cao, Y et al. Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution. Nature https://doi.org/10.1038/s41586-022-05644-7 (2022)

Yunlong Cao, Fanchong Jian, Jing Wang, Yuanling Yu, Weiliang Song, Ayijiang Yisimayi, Jing Wang, Ran An, Xiaosu Chen, Na Zhang, Yao Wang, Peng Wang, Lijuan Zhao, Haiyan Sun, Lingling Yu, Sijie Yang, Xiao Niu, Tianhe Xiao, Qingqing Gu, Fei Shao, Xiaohua Hao, Yanli Xu, Ronghua Jin, Zhongyang Shen, Youchun Wang & Xiaoliang Sunney Xie 🔪

This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers

Omicron sublineage BQ.1.1 resistance to monoclonal antibodies

Vaccination represents the key strategy and Drug Administration (FDA) or to control the COVID-19 pandemic European Medicines Agency (EMA) target the spike (S) protein (appendix through induction of neutralising antibody responses and T cellpp 1–2).5 During the course of the associated immunity that substantially COVID-19 pandemic, several SARSdecrease the risk of developing severe CoV-2 lineages evolved mutations that disease.^{1,2} However, individuals confer partial or full resistance against who are immunocompromised (eg, some mAbs.⁶⁻⁹ Consequently, only few because of comorbidities, high age, or mAbs remain suitable for treatment immunosuppressive treatment) might of individuals at high risk, and only the USA and Europe). not mount a full adaptive immune bebtelovimab shows high efficacy response and thus remain susceptible. against multiple omicron sublineages.8

For individuals at high risk, individual However, novel omicron sublineages 🕡 monoclonal antibodies (mAbs) or have been detected, harbouring cocktails of mAbs are administered additional S protein mutations Lancet Infect Dis 2022 as prophylaxis or therapy.³⁴ All mAbs within the epitopes of bebtelovimab Published Online and other mAbs (figure A; appendix November 18, 2022 currently approved by the US Food https://doi.org/10.1016 p 11). Novel sublineages include \$1473-3099(22)00733-2 BA.4.6 (with increasing incidence in several countries worldwide), See Online for appendix BA.2.75.2 (with increasing incidence in India), BJ.1 (mainly observed in India and Bangladesh; notably BJ.1 is one parental lineage of the currently increasing XBB recombinant), and BQ.1.1 (with increasing incidence in

> We compared neutralisation of omicron sublineages BA.1, BA.4-5

> > Article

Cell

Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants

Graphical abstract

Authors

Qian Wang, Sho Iketani, Zhiteng Li, ..., Aubree Gordon, Lihong Liu, David D. Ho

Correspondence

II3411@cumc.columbia.edu (L.L.), dh2994@cumc.columbia.edu (D.D.H.)

In brief

Recent BQ and XBB subvariants of SARS-CoV-2 demonstrate dramatically increased ability to evade neutralizing antibodies, even those from people who received the bivalent mRNA booster or who are immunized and had previous breakthrough Omicron infection. Additionally, both BQ and XBB are completely resistant to bebtelovimab. meaning there are now no clinically authorized therapeutic antibodies effective against these circulating variants.

Recent papers on BQ.1, BQ.1.1 or XBB*

Lead	Title	Date	Journal	Origin	Link
Planas	Resistance of Omicron subvariants BA.2.75.2, BA.4.6 and BQ.1.1 to neutralizing antibodies	17 th November 2022	bioRχiv (preprint)	Paris	https://pubmed.ncbi. nlm.nih.gov/3641545 5/
Arora	Omicron sublineage BQ.1.1 resistance to monoclonal antibodies	18 th November 2022	Lancet Infect Dis	Göttingen	https://www.thelance t.com/journals/laninf/ article/PIIS1473- 3099(22)00733- 2/fulltext
Wang	Alarming antibody evasion properties of rising SARS- CoV-2 BQ and XBB subvariants	14 th December 2022	Cell	New York	https://www.scienced irect.com/science/arti cle/pii/S00928674220 15318
Сао	Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution	19 th December 2022	Nature	Beijing	https://www.nature.c om/articles/s41586- 022-05644-7
Imai	Efficacy of Antiviral Agents against Omicron Subvariants BQ.1.1 and XBB	5 th January 2023	NEJM	Tokyo	https://www.nejm.org /doi/full/10.1056/NEJ Mc2214302

1/5 Planas. Resistance of Omicron subvariants BA.2.75.2, BA.4.6 and BQ.1.1 to neutralizing antibodies a. Sotroimab Cilgavinab Tixagevinab Evushed

Inhibition (%)

Figure 3. Neutralization activity of therapeutic monoclonal antibodies against BQ.1.1, BA.2.75.2 and BA.4.6. a. Neutralization curves of monoclonal antibodies. Dose–response analysis of the neutralization by the indicated antibodies or their clinical combinations. Evusheld: Cilgavimab and Tixagevimab. Ronapreve: Casirivimab and Imdevimab. Data are mean ± s.d. of 2 independent experiments. **b.** IC50 values in ng/ mL for each antibody against the indicated viral strains. *ED50 against BA.2 and BA.5 are from ⁴⁷.

2/5 Arora. Omicron sublineage BQ.1.1 resistance to monoclonal antibodies

NICE

25

2/5 Arora. Omicron sublineage BQ.1.1 resistance to monoclonal antibodies

							↓ ↓
	B.1	BA.1	BA.4-5	BA.4.6	BA.2.75.2	BJ.1	BQ.1.1
Casirivimab	21	1890	>50000	>50000	>50000	880	>50000
Imdevimab	19	>50000	994	2109	>50000	>50000	>50000
Bamlanivimab	16	>50000	>50000	>50000	>50000	>50000	>50000
Etesevimab	53	>50000	>50000	>50000	>50000	>50000	>50000
Cilgavimab	37	2658	88	24200	>50000	>50000	>50000
Tixagevimab	7	173	10090	27740	>50000	304	>50000
Amubarvimab	53	5641	1234	1290	>50000	4762	>50000
Romlusevimab	852	866	8279	>50000	>50000	>50000	>50000
Adintrevimab	14	23	>50000	>50000	>50000	>50000	>50000
Regdanvimab	7	>50000	>50000	>50000	6336	>50000	>50000
Bebtelovimab	5	7	6	7	14	>50000	>50000
Sotrovimab	157	833	5554	13000	3239	825	>50000
Casirivimab–imdevimab	9	3642	2611	5395	>50000	2456	>50000
Bamlanivimab–etesevimab	18	>50000	>50000	>50000	>50000	>50000	>50000
Cilgavimab–tixagevimab	7	97	155	7131	>50000	482	>50000
Amubarvimab-romlusevimab	64	657	1819	1015	>50000	5359	>50000

EC50 (ng/ml)

3/5 Wang. Alarming antibody evasion properties of rising SARS- CoV-2 BQ and XBB subvariants

	NTD	NTD- SD2	SD1		RBD (Class 1			RBD C	Class 2						R	BD Class	s 3					RBD Class 4	Europed
1C ⁵⁰ (µg/mi)	C1520	C1717	S3H3	S2K146	Omi-3	Omi-18	BD-515	XGv051	XGv347	ZCB11	COV2- 2196	LY- CoV1404	XGv289	XGv264	S309	P2G3	SP1-77	BD55- 5840	XGv282	BD-804	35B5	COV2- 2130	10-40	Evusneid
D614G	0.002	0.125	0.022	0.004	0.004	0.012	0.010	0.001	0.002	0.002	0.002	0.002	0.002	0.001	0.023	0.001	0.003	0.002	0.001	0.011	0.014	0.007	0.049	0.003
BA.4/5	0.001	0.209	0.014	0.090	0.023	0.013	0.010	0.050	3.450	4.868	>10	0.001	0.038	0.002	0.514	0.002	0.005	0.009	0.001	0.019	>10	0.021	2.414	0.035
BQ.1	0.001	0.666	0.019	0.585	0.860	0.131	0.343	0.159	2.830	>10	>10	>10	0.425	0.494	0.600	1.608	>10	0.034	0.020	>10	>10	>10	>10	>10
BQ.1.1	0.003	1.117	0.025	0.527	0.804	0.170	0.377	0.191	3.311	>10	>10	>10	1.013	>10	2.140	>10	>10	>10	0.098	>10	>10	>10	>10	>10
BA.4/5-R346T	0.002	0.141	0.020	0.081	0.019	0.009	0.006	0.042	2.166	2.560	>10	0.001	0.045	0.003	1.726	0.041	>10	1.447	0.001	>10	>10	>10	5.069	>10
BA.4/5-K444T	0.002	0.116	0.009	0.104	0.016	0.010	0.006	0.040	4.766	3.731	>10	>10	0.161	0.273	0.552	1.245	4.007	0.038	0.006	>10	>10	>10	6.976	>10
BA.4/5-N460K	0.002	1.166	0.016	0.542	1.279	0.186	0.431	0.152	3.046	>10	>10	0.002	0.353	0.003	0.934	0.003	0.009	0.012	0.002	0.122	>10	0.030	>10	0.063
BA.2	0.002	0.561	0.016	0.028	0.015	0.005	0.012	0.001	0.003	0.012	1.924	0.001	0.067	0.003	0.833	0.002	0.006	0.014	0.001	0.038	0.827	0.009	8,770	0.019
XBB	>10	0.836	0.016	0.223	1.181	0.468	0.555	>10	>10	>10	>10	>10	>10	>10	0.343	>10	>10	>10	>10	>10	>10	>10	>10	>10
XBB.1	>10	0.693	0.019	0.190	1.705	0.605	0.803	>10	>10	>10	>10	>10	>10	>10	0.405	>10	>10	>10	>10	>10	>10	>10	>10	>10
BA.2-V83A	0.001	0.354	0.015	0.036	0.019	0.007	0.015	0.002	0.003	0.013	3.039	0.001	0.070	0.002	0.641	0.002	0.007	0.019	0.001	0.045	1.274	0.011	>10	0.025
BA.2-Del144	0.002	0.501	0.011	0.026	0.016	0.004	0.011	0.002	0.002	0.008	4.134	0.001	0.063	0.002	0.455	0.002	0.005	0.014	0.001	0.031	0.341	0.010	8.766	0.021
BA.2-H146Q	0.001	0.356	0.011	0.032	0.011	0.004	0.009	0.002	0.002	0.010	2.924	0.002	0.055	0.002	0.641	0.003	0.007	0.019	0.001	0.044	1.107	0.009	9.106	0.019
BA.2-Q183E	0.322	0.307	0.019	0.034	0.018	0.006	0.014	0.002	0.003	0.013	3.098	0.001	0.067	0.003	0.649	0.002	0.008	0.020	0.002	0.028	1.019	0.011	9.251	0.022
BA.2-V213E	0.002	0.406	0.013	0.030	0.014	0.004	0.010	0.002	0.002	0.006	2.177	0.001	0.047	0.003	0.720	0.002	0.006	0.014	0.001	0.026	1.247	0.009	8.198	0.018
BA.2-G252V	0.001	0.577	0.013	0.030	0.012	0.004	0.008	0.002	0.003	0.008	2.258	0.001	0.048	0.002	0.564	0.002	0.005	0.012	0.001	0.032	0.939	0.011	>10	0.026
BA.2-G339H	0.001	0.485	0.017	0.034	0.020	0.006	0.012	0.002	0.002	0.010	3.876	0.002	0.114	0.002	0.302	0.002	0.007	0.040	0.002	0.050	0.661	0.012	8.575	0.023
BA.2-R346T	0.003	0.372	0.012	0.017	0.010	0.003	0.007	0.001	0.002	0.007	2.109	0.002	0.048	0.004	1.433	0.007	>10	1.442	0.001	0.112	>10	>10	7.767	1.486
BA.2-L368I	0.003	0.453	0.019	0.027	0.010	0.004	0.010	0.002	0.001	0.006	2.603	0.001	0.030	0.002	0.605	0.002	0.005	0.021	0.001	0.026	0.324	0.008	3.202	0.018
BA.2-V445P	0.001	0.433	0.019	0.026	0.009	0.004	0.009	0.002	0.002	800.0	2.313	>10	>10	1.141	0.428	>10	0.007	0.144	>10	1.582	0.486	>10	6.311	3.135
BA.2-G446S	0.002	0.367	0.012	0.021	0.009	0.004	0.009	0.001	0.003	0.008	2.614	0.002	0.026	0.004	0.686	0.002	0.004	0.014	0.022	0.026	0.965	0.017	5.774	0.029
BA.2-N460K	0.002	1.323	0.012	0.132	0.784	0.013	0.358	0.007	0.004	0.073	1.756	0.001	0.355	0.003	0.878	0.002	0.011	0.017	0.001	0.058	1.957	0.013	>10	0.025
BA.2-F486S	0.002	0.677	0.008	>10	0.583	0.011	0.017	>10	>10	>10	>10	0.001	0.049	0.003	0.581	0.002	0.006	0.009	0.002	0.060	2.264	0.011	>10	0.023
BA.2-F490S	0.001	0.428	0.014	0.022	0.033	0.004	0.008	0.001	0.004	0.012	1.105	0.001	0.030	0.002	0.564	0.002	0.006	0.011	>10	0.048	>10	0.013	5.337	0.016
BA.2-R493Q	0.003	0.338	0.024	0.005	0.006	0.006	0.006	0.001	0.001	0.002	0.034	0.001	0.045	0.002	1.109	0.002	0.007	0.022	0.000	0.010	1.175	0.010	3.419	0.008
																				>10	1-10	0.1-1	0.01-0.1	<0.01
																						Т		Т

Figure S2. Pseudovirus neutralization IC₅₀ values for mAbs against BQ and XBB subvariants and point mutants, related to Figure 3 Pseudovirus neutralization IC₅₀ values for mAbs against D614G, Omicron subvariants, and point mutants of BQ.1, BQ.1.1, XBB, and XBB.1 in the background of BA.4/5 or BA.2.

4/5 Cao. Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution

				Tixagev	Cilgav	Evusheld				Sotrov						
Pango	REGN	REGN	REGN10933	COV2-	COV2-	COV2-	BRII-	BRII-	BRII-	0000	DXP-	LY-CoV	0 4 5 0	0455	SA55+	Additional RBD
lineages	10933	10987	+10987	2196	2130	2196+2130	196	198	196+198	\$309	604	1404	SA58	SA55	SA58	mutations
BA.2	*	590	821	4312	6.3	8.2	8530	8990	8610	852	219	0.9	5.1	7.2	7.8	
BV 3 3 30	101	*	100	15	*	26	14	*	24	807	101	0.7	20	16	7.9	K444R+N450D+L452M
BA.2.3.20	121		199	15		20	14		24	091	101	9.7	20	4.0	7.0	+N460K+R493Q
BA.2.10.4	*	*	*	*	289	501	2109	7990	3984	706	6348	1.3	4.3	4.9	5.0	G446S+F486P+R493Q
																+S494P
DI1	*	*	*	2076	*	5095	7600	*	*	700	166	*	0162	27	9.6	D339H+R3461+L368I+
DJ. I				3070		5965	7009			709	100		0105	3.1	0.0	V445P+G4405+V463A
																D339H+R346T+I 368I+
XBB	*	*	*	*	*	*	*	*	*	963	*	*	8805	5.3	9.8	V445P+G446S+N460K
														0.0	0.0	+F486S+F490S+R493Q
PA 2 75	279	*	410	110	252	101	1720	6622	2961	672	5020	2.2	246	12	9.6	
BR.2.75	270	*	511	03	*	17/	1251	*	3075	508	7103	2.2	7075	4.3	9.0	P3/6T
BD 1	200	*	679	117	*	174	1002	*	3160	564	6680	*	1616	5.0	9.7	1/52D+K///M
BN 2.1	300	*	701	50	303	109	/101	*	8///	6070	8001	17	1010	5.7	<u>9.1</u>	K356T+E400S
	344	*	599	70	*	166	3683	*	7701	*	6012	33	8295	<u> </u>	9.4	R346T+K356T+F490S
BA 2 75 2	*	*	*	*	*	*	*	*	*	852	*	3.0	6922	5.9	9.0	R346T+E486S
BM 1 1	*	*	*	*	*	*	*	*	*	879	*	2.3	8823	5.2	8.9	R346T+F486S
BM.1.1.1	*	*	*	*	*	*	*	*	*	956	*	1.9	8082	4.8	10.5	R346T+F486S+F490S
BR.2	*	*	*	*	*	*	*	*	*	921	*	2.6	7263	4.7	10.5	R346T+L452R+F486I
CA.1	*	*	*	*	*	*	*	*	*	897	*	3.2	6927	6.0	11.5	R346T+L452R+F486S
	*	520	700	*	22	40	7104	*	*	1055	6264	0.8	2.0	5.0	4.5	
BA / 6 1	*	2338	5402	*	*	*	/ 124	*	7800	4456	1634	0.8	50	1.8	4.5	R3/6T
BA 5 6 2	*	*	*	*	*	*	4636	*	7883	1/08	5802	1662	58	5.1	<u> </u>	KAAAT
BO 1	*	*	*	*	*	*	*	*	*	1709	*	1905	44	6.6	9.2	K444T+N460K
BU 1	*	*	*	*	*	*	*	*	*	1082	*	26	56	5.3	10.5	K444M+N460K
BQ 1 1	*	*	*	*	*	*	*	*	*	5581	*	*	900	5.9	10.3	R346T+K444T+N460K
DQLILI													000	0.0	10.0	
Pseudovirus IC50 (ng/mL)						L)		<100		100	~1,0	00	>1	,000	* >10,000	

NICE RBD, Receptor binding domain

5/5 Imai. Efficacy of Antiviral Agents against Omicron Subvariants BQ.1.1 and XBB

NICE

Antibody Concentration (ng/ml)

5/5 Imai. Efficacy of Antiviral Agents against Omicron Subvariants BQ.1.1 and XBB

Recent papers on BQ.1, BQ.1.1 or XBB*

Lead	Title	Date	Journal	Origin	Link
Planas	Resistance of Omicron subvariants BA.2.75.2, BA.4.6 and BQ.1.1 to neutralizing antibodies	17 th November 2022	bioRχiv (preprint)	Paris	https://pubmed.ncbi. nlm.nih.gov/3641545 5/
Arora	Omicron sublineage BQ.1.1 resistance to monoclonal antibodies	18 th November 2022	Lancet Infect Dis	Göttingen	https://www.thelance t.com/journals/laninf/ article/PIIS1473- 3099(22)00733- 2/fulltext
Wang	Alarming antibody evasion properties of rising SARS- CoV-2 BQ and XBB subvariants	14 th December 2022	Cell	New York	https://www.scienced irect.com/science/arti cle/pii/S00928674220 15318
Сао	Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution	19 th December 2022	Nature	Beijing	https://www.nature.c om/articles/s41586- 022-05644-7
Imai	Efficacy of Antiviral Agents against Omicron Subvariants BQ.1.1 and XBB	5 th January 2023	NEJM	Tokyo	https://www.nejm.org /doi/full/10.1056/NEJ Mc2214302

Summary of *in vitro* papers investigating BQ.1, BQ.1.1, XBB.

			Sotrovimab	Casirivimab	Imdevimab	Ronapreve Cas + Imdev	Tixagevimab	Cilgavimab	Evusheld Tixa + Cilga	Remdesivir	Molnupiravir	Paxlovid Nirmatrelvir Ritonavir
	Planas	BQ.1.1										
		XBB										
	Arora	BQ.1.1										
		XBB										
	Wang	BQ.1.1	S309 (precursor)									
		XBB										
	Сао	BQ.1.1	S309 (precursor)									
		XBB										
	Imai	BQ.1.1	S309 (precursor)									
		XBB	?									
NIC	CE				Not evaluated	No	Reduc	ed U	Inaffected			

neutralisation

NIC

Last updated on Jan 11, 2023, 10:18 PM

Susceptibility summaries

Search database • Suggest new study • report error

d reduced neut	ralizing suse	ceptibility	to monoclona	alantibodies	s under Eme	rgency Use Ai	uthorizatio	n (EUA)				
											Сору	to clipboar
Test∖ mAb ≑	BAM ≑	ETE ≑	BAM/ETE ≑	CAS ≑	IMD ≑	CAS/IMD 🗢 Ronapreve	CIL ≑	TIX ≑	CIL/TIX 🗢 Evusheld	SOT 🗢 Sotrovimab	BEB ≑	AD
Alpha	1 ₂₃	13 ₂₀	1.3 ₉	1 ₃₂	0.6 ₃₃	0.9 ₁₄	0.6 ₁₅	1.5 ₁₄	0.8 ₁₄	1.6 ₂₉	0.9 ₆	1.
Beta	>1000 ₂₉	516 ₂₅	990 ₁₂	91 ₃₈	0.6 ₃₈	1.6 ₁₉	1.1 ₁₆	5.8 ₁₇	1.7 ₁₆	1.0 ₃₀	1 ₈	2.
Gamma	>1000 ₁₆	348 ₁₆	4044	124 ₂₄	0.4 ₂₄	1 ₉	0.5 ₁₂	3.7 ₁₁	0.9 ₁₀	1 ₂₃	1 ₅	2.
Delta	>1000 ₂₄	0.4 ₂₄	1 ₉	0.7 ₃₂	1.5 ₃₃	1.3 ₁₄	2.7 ₁₄	1 ₁₅	1 ₁₇	1.1 ₂₉	1 ₁₁	1.
Omicron/BA.1	>1000 ₄₁	432 ₄₁	980 ₁₇	>1000 ₄₉	>1000 ₅₀	>1000 ₂₃	263 ₄₆	264 ₄₈	60 ₃₄	3.8 ₆₁	1 ₂₅	11
Omicron/BA.2	>1000 ₂₂	504 ₂₂	744 ₁₅	>1000 ₃₀	220 ₂₉	387 ₂₁	2.1 ₃₃	893 ₃₂	8 ₃₁	23 ₄₅	1 ₂₇	>10
Omicron/BA.2.12.1	>1000 ₁₀	468 ₁₀	794 ₈	>1000 ₁₁	88 ₁₁	250 ₉	3 ₁₂	382 ₁₂	9.5 ₉	19 ₁₅	1 ₁₁	>10
Omicron/BA.2.75	7057	383 ₇	554 ₅	233 ₉	>1000 ₉	>10007	19 ₁₀	30 ₁₀	25 ₈	9.6 ₁₀	3.8 ₁₀	67
Omicron/BA.2.75.2	556 ₂	489 ₂	>10001	5894	5884	>10003	7004	8194	7384	174	3.04	50
Omicron/XBB	-	-	-	1771	175 ₁	200 ₁	700 ₂	819 ₂	738 ₂	14 ₂	>10002	
Omicron/BA.4/5	>1000 ₁₇	432 ₁₇	588 ₁₁	>1000 ₂₃	143 ₂₃	379 ₁₆	8.1 ₂₇	>1000 ₂₇	22 ₂₃	22 ₃₃	1 ₂₃	96
Omicron/BA.4.6	556 ₂	4892	>10001	5894	1734	738 ₃	527 ₆	819 ₆	738 ₆	44 ₅	1.1 ₆	50
Omicron/BQ.1	-	-	-	1771	175 ₁	200 ₁	7002	819 ₂	738 ₂	252	>10002	
Omicron/BQ.1.1	>10001	943 ₁	>10001	>10003	>10003	>10003	>10004	>10004	>10004	1064	>10004	>1(
Omicron/BE7	_	<u> </u>	_	_	_	_	>10004	>10004	>10004	494	1,	

Late breaking (17th Jan 2023): *Therapeutic and vaccine-induced cross-reactive antibodies* with effector function against emerging Omicron variants

4) Still works in mice with BQ.1.1

NICE

Interpretating neutralisation curves – IVAG conclusions

Sotrovimab

Unclear

No

neutralising

activity

dependent

- Sotrovimab neutralises all variants tested, but needs higher concentrations to achieve the same effect as when used to neutralise Delta ~100 n-fold difference measured at EC50
 - ... need to consider PK/PD to understand the effect on clinical outcomes

Tixagevimab + cilgavimab

- No evidence of neutralisation activity against any new variants tested at concentrations likely to be achieved in the body
- ∴ likely no clinical effect of the treatment for these variants

Casirivimab/ + imdevimab

• No evidence of neutralisation activity against BA.2.75.2 or BQ.1.1.

Variant - • Reduced neutralisation against BA.4.6

- ~1000 n-fold more drug required to achieve EC50
- ... need to consider PK/PD to understand effect on clinical outcomes
- NICE can appraise drugs only within licensed dosages

Section 1 Data relevant to both appraisals

- SARS-CoV-2 variant tracking
 - Evolution of variants
 - UK Health Security Agency (UKHSA) technical briefings
- In vitro data
 - The In Vitro data Assessment Group (IVAG)
 - BQ.1, BQ.1.1, XBB
- Position of various organisations

Position of various organisations

	Sotrovimab	Casirivimab plus imdevimab	Tixagevimab plus cilgavimab						
World Health Organization	Strong recommendation against use (13 January 2023, first published 14 January 2022)	Strong recommendation against use (13 January 2023, first published 24 September 2021)	NA (prevention only)						
FDA U.S. FOOD & DRUG ADMINISTRATION	Emergency Use Authorisation (EUA) withdrawn 5 April 2022	EUA withdrawn 24 January 2022	NA (prevention only)						
EUROPEAN MEDICINES AGENCY SCIENCE MEDICINES HEALTH	As of 9th December 2022, EMA's Emergency Task Force (ETF) has cautioned that monoclonal antibodies currently authorised for COVID-19 (including sotrovimab, casirivimab plus imdevimab and tixagevimab plus cilgavimab) are unlikely to be effective against emerging strains of SARS-CoV-2.								

Overview of the day

Section	Data relevant to both appraisals	
1.1	SARS-CoV-2: variant tracking	Public
1.2	In vitro data	Public
1.3	Position of various organisations	Public
ID 4038	MTA of COVID-19 treatments	ACM 2
2.1	Community setting (mild COVID-19) – Part 1 Public	
3.1	Hospital setting (severe COVID-19) – Part 1	Public
2.2	Community setting – Part 2	Private
3.2	Hospital setting – Part 2	Private
ID 6136	STA of tixagevimab/cilgavimab (Evusheld)	ACM 1
4.1	Prophylaxis in highly vulnerable people – Part 1	Public
4.2	Prophylaxis – Part 2	Private
NICE		

*Appendix slides

Variants can have 'spike mutations' which cause resistance to neutralising monoclonal antibody treatments

- Certain spike mutations are associated with more significant loss of neutralisation compared to drug's activity against reference variant e.g. R346T
- Spike mutations can develop independently through different lineages
- Evolution of virus **in the near future** likely from currently circulating variants that may retain these mutations (e.g. BQ.1.1 from BQ.1)
- Neutralisation activity of drugs against historical variants (or their sublineages) may become relevant because mutations and recombinant strains can occur in immunocompromised patients

Comparison of the estimated relative growth rates for emerging BA.5, BA.4, BA.2 and recombinant lineages versus that for specifically BQ.1.1 lineages

Omicron BQ.1 - relative growth rate vs BA.5.2 ~x39 (Tech briefing 48)

Relative growth rate compared with Omicron BQ.1.1

XBB.1.5: ~ x39%

CH.1.1 ~ x22%

XBB~ x4

Source: UKHSA Technical briefing 49 (11 January 2023).

NICE

Relative growth rate compared to BQ.1.1 (%)

How to determine the quality of in vitro evidence

- Cell-lines
- Pseudo-virus/live virus
- Reproducibility
- Good Clinical Practice-compliant high-throughput platform, calibrated to WHO International Standards (<u>Wu et al 2022</u>)
- MHRA in partnership with DHSC have created a variant framework (agreed with companies) for best practice

Adjusting serum concentrations to reflect lung tissue

- An alternative approach is to simulate an EC-90 value for sotrovimab compared to reference variant generating trial evidence
- Reduce this using a tissue-adjustment to account for serum levels of sotrovimab being higher than where it would have effect (i.e. the lungs)
- FDA suggests lung tissue concentrations are 6.5% to 12% of serum
- IVAG concurs that this approach has limited use for quantifying likelihood of efficacy and is weaker than analysis of when a dose would fail

Note: The sotrovimab 500 mg IV concentration-time profile is based on data from BLAZE-4, Japan-PK, COMET-PEAK studies in relationship to the taEC₉₀ value (live virus Omicron BA.2 subvariant EC₉₀/ lung penetration at 12%.

GSK submitted data on sotrovimab (VIR-7831), 13 Jan 2023

SARS-CoV-2 Variant Name		Geometric Mean EC50 (ng/mL)	Average Fold Change in EC50 Compared to	
WHO	Lineage		Wunan-Hu-1 Wild- Type	
Omicron	BA.1	336.4	2.7	
	BA.1.1	201.85	3.3	
	BA.2	1139	16	
	BA.4	1711	21.3	
	BA.5	1556	22.6	
	BA.2.12.1	1120	16.6	
	BA.2.75	541.8	8.3	
	BA.4.6	3637	57.9	
	BQ.1	1277	28.5	
	BQ.1.1	8818	94	
	BF.7	3317	74.2	
	BA.2.75.2	447.6	10.0	
	XBB.1	289.5	6.5	

Table 1 Activity of Sotrovimab Against Pseudotyped Virus Expressing SARS-CoV-2 Omicron Spike Variants

Sources: Cathcart, 2022¹; Park Y-J et al. Science. 2022;378(6620):619-627²; GSK data on file³.

¹Cathcart AL, Havenar-Daughton C, Lempp FA, et al. The dual function monoclonal antibodies VIR-7831 and VIR-7832 demonstrate potent in vitro and in vivo activity against SARS-CoV-2. bioRxiv [Preprint]. 01 April 2022. doi: 10.1101/2021.03.09.434607v12

²Park YJ, Pinto D, Walls AC, et al. Imprinted antibody responses against SARS-CoV-2 Omicron sublineages. Science. 2022 Nov 11;378(6620):619-627. doi: 10.1126/science.adc9127. Epub 2022 Oct

20.