Autologous anti-CD19-transduced CD3+ cells for treating relapsed or refractory B-precursor acute lymphoblastic leukaemia in people 26 years and over

For public observers: all ACIC redacted

**Technology appraisal committee C** 

14th February 2023

Chair: Stephen O'Brien

Evidence review group: ScHARR, The University of Sheffield

Technical team: Albany Chandler, Sally Doss, Chris Griffiths, Jasdeep Hayre

**Company: Kite (a Gilead company)** 



### □ Background

- ACM 1 conclusions overview
- Clinical evidence
- Economic model
- Consultation responses
- Issues to consider
  - Methods for indirect treatment comparison
  - Long-term mortality risk in cured population
  - Long-term quality of life in cured population
  - Inclusion of allo-SCT costs and QALYs
  - NHSE CAR-T cost estimate
  - Equalities issues
  - Cancer Drugs Fund
- Summary

### Background on acute lymphoblastic leukaemia (ALL)

#### The condition

- A malignant disorder derived from white blood cells (lymphocytes)
- 75% of ALL is derived from precursor B-cells (B-cell ALL)

### **Epidemiology**

- Incidence of ALL has two peaks. First peak occurs in childhood; second at approx. 50 years of age
- Rare in adults: 0.2% of new cancers in UK
- 790 new cases each year in the UK

#### Classification

• Classification based on presence of Philadelphia-chromosome (PH+ or PH-)

### **Symptoms**

- Signs of bone marrow failure (anaemia, leukopenia and thrombocytopenia)
- Non-specific symptoms such as fever, weight loss, night sweats, propensity to bruise or bleed, fatigue, weakness, dyspnoea, bone and joint pain, dizziness and frequent infection

### **Prognosis**

- Prognosis in adults is poor <40% achieve long-term remission</li>
- Estimated 5-year survival for ALL in England: age 25-64 is 40%; people over 65 years old is 15%
- Philadelphia positive (PH+) has poor prognosis despite targeted treatments




# Autologous anti-CD19 transduced CD3+ cells (KTE-X19) (Tecartus; Kite, a Gilead company)

| Marketing authorisation | <ul> <li>CD19-directed genetically modified autologous T-cell immunotherapy indicated for<br/>the treatment of adult patients 26 years of age and above with relapsed or<br/>refractory B- cell precursor acute lymphoblastic leukaemia (ALL)</li> <li>Licensed in the EU since September 2022</li> </ul> |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mechanism of action     | <ul> <li>CAR-T therapy</li> <li>Manufactured from patient's own T-cells, returned to patient, treatment targets</li> <li>CD 19-expressing tumour cells</li> </ul>                                                                                                                                         |
| Administration          | <ul> <li>Single intravenous infusion; dose: 1 million anti-CD19 CAR T-cells per kg of body weight</li> <li>Leukapheresis, conditioning therapy and bridging chemotherapy are needed prior to one-off infusion with the technology</li> </ul>                                                              |
| Price                   | <ul> <li>List price per infusion is £316,118</li> <li>A confidential patient access scheme has been agreed</li> </ul>                                                                                                                                                                                     |



- Background
- ☐ ACM 1 conclusions overview
- Clinical evidence
- Economic model
- Consultation responses
- Issues to consider
  - Methods for indirect treatment comparison
  - Long-term mortality risk in cured population
  - Long-term quality of life in cured population
  - Inclusion of allo-SCT costs and QALYs
  - NHSE CAR-T cost estimate
  - Equalities issues
  - Cancer Drugs Fund
- Summary

### Treatment pathway and proposed position of KTE-X19





Abbreviations: ALL, acute lymphoblastic leukaemia; Allo-SCT, Allogeneic-stem cell transplant; BSC, Best supportive care; KTE-X19, autologous anti-CD19-transduced CD3+ cells; R/R, relapsed/refractory

### ACM1 company and ERG base case and committee preferred assumptions

| Assumption                  | Company base case                                               | ERG base case                                                   | Committee preferred assumption ACM1                                                                             |
|-----------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Method for ITC (inotuzumab) | Naïve indirect comparison                                       | MAIC inverse hazard ratio                                       | Differences in populations across trials should be accounted for: <b>use MAIC inverse hazard ratio approach</b> |
| Long-term mortality         | Applies SMR 1.09                                                | Applies SMR 4.0                                                 | Likely higher risk of mortality after KTE-X19 than in general population: apply SMR 4.0                         |
| Long-term quality of life   | General population mortality after 3 years                      | 0.92 utility multiplier applied after 3 years                   | Likely lower QoL after KTE-X19 than in general population: apply 0.92 utility multiplier after 3 years          |
| Allo-SCT costs and QALYs    | Excludes costs and QALYs associated with allo-SCT after KTE-X19 | Includes costs and QALYs associated with allo-SCT after KTE-X19 | Some people may have allo-SCT after KTE-X19: include costs and QALYs associated with allo-SCT after KTE-X19     |
| CAR-T cost estimate         |                                                                 | Uncertain – various scenarios ran                               | £60k – but should be reviewed if new evidence is presented                                                      |

#### Other committee conclusions at ACM1

- ZUMA-3 suggests KTE-X19 could be clinically effective, but curative treatment effect is uncertain
- End of life criteria is met
- Not suitable for CDF: further evidence from ZUMA-3 will not address uncertainty in comparative clinical-effectiveness evidence or uncertainty around mortality rate and utilities for people who have had KTE-X19



- Background
- ACM 1 conclusions overview

### ☐ Clinical evidence

- Economic model
- Consultation responses
- Issues to consider
  - Methods for indirect treatment comparison
  - Long-term mortality risk in cured population
  - Long-term quality of life in cured population
  - Inclusion of allo-SCT costs and QALYs
  - NHSE CAR-T cost estimate
  - Equalities issues
  - Cancer Drugs Fund
- Summary

### **Key clinical trial-ZUMA 3**

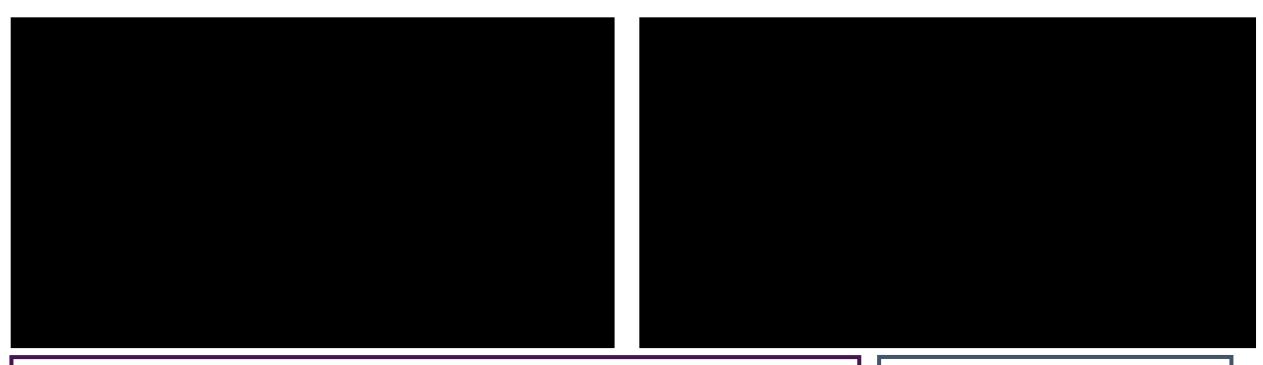
CONFIDENTIAL

ZUMA-3 is currently ongoing (final completion date expected September

| Trial name         | ZUMA-3                                                                                                                                                                                                                                                                                                      |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Design             | Phase 1/2, multicentre, open-label, single arm study, non-randomised                                                                                                                                                                                                                                        |  |  |
| Population         | <ul> <li>Adult patients with R/R ALL defined as:</li> <li>First relapse following a remission lasting ≤12 months</li> <li>R/R after second-line or higher therapy</li> <li>R/R after allo-SCT (transplant &gt;100 days prior to enrolment and no immunosuppressive medication in previous month)</li> </ul> |  |  |
| Intervention       | KTE-X19 (n=78)                                                                                                                                                                                                                                                                                              |  |  |
| Duration           | Median follow-up (Latest data cut: 23/07/21)                                                                                                                                                                                                                                                                |  |  |
| Primary outcome    | Overall complete remission (Combined measure of patients achieving complete remission and complete remission with incomplete haematological recovery)                                                                                                                                                       |  |  |
| Secondary outcomes | MRD-rate, DoR, OCR, allo-SCT rate, OS, RFS, incidence of AE and EQ-5D                                                                                                                                                                                                                                       |  |  |
| Locations          | No data from UK centres<br>United states: 21; Canada: 1; France 4; Germany 3; Netherlands 3                                                                                                                                                                                                                 |  |  |
| Used in model?     | OS, EFS, AE frequency, HRQoL                                                                                                                                                                                                                                                                                |  |  |



Abbreviations: AE, adverse event; ALL, acute lymphoblastic leukaemia; allo-SCT, Allogeneic-stem cell transplant; DoR, duration of remission; EFS, event-free survival; EQ-5D-5L, EuroQol 5 Dimensions 5 level; HRQoL, health related quality of life; KTE-X19, autologous auto-CD19-transduced CD3+ cells; MRD, Minimal residual disease negativity; OS, overall survival; R/R, relapsed/refractory


### **ZUMA-3** (Phase 1+2 combined, >25 years): Overall response

| Response Category, N (%)                                                                   | Phase 1 (N = ) | Phase 2 (N = ) | Phase 1+2 (N = ) |
|--------------------------------------------------------------------------------------------|----------------|----------------|------------------|
| Number of OCR (CR + CRi)                                                                   |                |                |                  |
| CR                                                                                         |                |                |                  |
| CRi                                                                                        |                |                |                  |
| CRh                                                                                        |                |                |                  |
| BFBM                                                                                       |                |                |                  |
| PR                                                                                         |                |                |                  |
| NR                                                                                         |                |                |                  |
| Unknown or not evaluable                                                                   |                |                |                  |
| Source: Company response to technical engagement, additional supportive evidence, table 3. |                |                |                  |

Abbreviations: BFBM, blast-free hypoplastic or aplastic bone marrow; CR, complete remission; CRh, complete remission with partial haematologic recovery; CRi, complete remission with incomplete haematologic recovery; N, number; NR, no response; PR, partial response; OCR, overall complete remission



# ZUMA-3 (Phase 1+2 combined, >25 years): Overall survival, relapse-free survival and cure assumption



#### **ACM1** conclusions

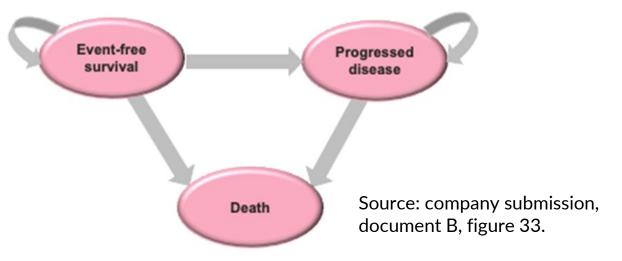
• KTE-X19 could be clinically effective but curative treatment effect is uncertain as analysis includes some people who have had prior allo-SCT – unclear if benefits from allo-SCT or KTE-X19

#### **ERG** comment

• RFS probability is , suggesting no cure with KTE-X19

#### Stakeholder comments

- Clinical expert and patient expert experience indicates KTE-X19 can be curative
- Cure after 3 years considered appropriate for tisagenlecleucel for ALL


- Background
- ACM 1 conclusions overview
- Clinical evidence

### ☐ Economic model

- Consultation responses
- Issues to consider
  - Methods for indirect treatment comparison
  - Long-term mortality risk in cured population
  - Long-term quality of life in cured population
  - Inclusion of allo-SCT costs and QALYs
  - NHSE CAR-T cost estimate
  - Equalities issues
  - Cancer Drugs Fund
- Summary

### **Economic model**

Partitioned survival model comprising 3 mutually exclusive health states: event-free, progressed disease, and death



| Parameter                  | Assumption and evidence source                                                                                              |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| KTE-X19                    | ZUMA-3                                                                                                                      |
| Comparators                | INO-VATE, TOWER, PACE, SCHOLAR-3                                                                                            |
| Time horizon; Cycle length | 57-year time horizon; weekly cycles without half-cycle correction                                                           |
| Discount rate              | 3.5% per annum                                                                                                              |
| Utility values             | Health state utility, ZUMA-3                                                                                                |
| Costs and resource use     | PSSRU, NHS reference costs, electronic market information tool and assumption in previous appraisals TA554, TA450 and TA541 |

### **ACM1** conclusion:

• Company's economic model is appropriate for decision making



- Background
- ACM 1 conclusions overview
- Clinical evidence
- Economic model

### **□** Consultation responses

- Issues to consider
  - Methods for indirect treatment comparison
  - Long-term mortality risk in cured population
  - Long-term quality of life in cured population
  - Inclusion of allo-SCT costs and QALYs
  - NHSE CAR-T cost estimate
  - Equalities issues
  - Cancer Drugs Fund
- Summary

### **Consultation responses**

#### Responses received from:

- Company (Kite, a Gilead company)
- Leukaemia Care
- Patient expert
- Clinical expert

### Summary of Leukaemia Care, patient expert and clinical expert consultation responses:

#### KTE-X19 efficacy and cure assumption:

- Cure accepted at 3 years for tisagenlecleucel and efficacy results for KTE-X19 similar; relapses after 12 months very unlikely and curative outcomes seen in real-world evidence
- ACD uses equal efficacy of tisagenlecleucel in PH- and PH+ subgroups to justify assumption of equal KTE-X19 efficacy across subgroups – unreasonable not to apply other clinical similarities such as cure assumption
- Clinical expert opinion that KTE-X19 is an effective treatment

### Long-term quality of life

 Negative impact of early treatment with KTE-X19 far outweighed by ability to return to near-normal life after treatment, including ability to perform daily activities, complete education, work and socialise

#### Inequalities

- Age inequality not addressed by draft recommendation tisagenlecleucel recommended in CDF for people aged under 26 and unfair to limit CAR-T to under 26s only
- People not able to receive a SCT do not currently have a potentially curative treatment option

- Background
- ACM 1 conclusions overview
- Clinical evidence
- Economic model
- Consultation responses
- ☐ Issues to consider
  - Methods for indirect treatment comparison
  - Long-term mortality risk in cured population
  - Long-term quality of life in cured population
  - Inclusion of allo-SCT costs and QALYs
  - NHSE CAR-T cost estimate
  - Equalities issues
  - Cancer Drugs Fund
- Summary

### Several key issues remain after consultation

| Issue                                                                             | Resolved?           | ICER impact |
|-----------------------------------------------------------------------------------|---------------------|-------------|
| Uncertainty around the appropriateness of the company's naïve comparison approach | No – for discussion | Moderate    |
| Life expectancy of cured patients compared to general population                  | No – for discussion | Large       |
| Long-term utility value of cured population compared with the general population  | No – for discussion | Moderate    |
| Inclusion of allo-SCT related costs and QALY loss for people receiving KTE-X19    | No – for discussion | Large       |



### Methods for indirect treatment comparison (1)

### **ACM1** conclusions

- ZUMA-3 was a single arm trial, so ITC needed to estimate KTE-X19 efficacy compared with comparators
- Inverse hazard ratio from MAIC applied to the ZUMA-3 baseline arm was preferred method of ITC for inotuzumab
- Matched comparison via SCHOLAR-3 accepted method of ITC for blinatumomab
- Naïve comparison for ponatinib deemed reasonable due to lack of data to inform MAIC

### **Company ACD response**

- ERG approach using inverse hazard ratio from MAIC flawed:
  - HR derived from unanchored MAIC at high risk of bias with small sample size
  - HR does not align with HRs calculated from other ITCs and transitivity assumption does not hold
  - Survival curves generated provide unrealistically high OS rate and cure fraction compared with INO-VATE (inotuzumab trial) data, given prognostic factors in ZUMA-3 are more unfavourable than in INO-VATE
- Naïve comparison more appropriate median from this is better aligned with median survival in INO-VATE

### Methods for indirect treatment comparison (2)

#### **ERG** comments

- Concerned that naïve comparisons don't reflect treatment effect of KTE-X19 due to key differences in populations across studies
- Prefers to use inverse HR from unanchored MAIC to model KTE-X19 vs inotuzumab
- Appropriate to adjust for observed and known prognostic factors with unanchored MAIC and acknowledge risk
  of bias, rather than use naïve ITC which does not address known differences in the populations
- Disagrees with company assertion that unanchored MAIC HR is inconsistent with results produced from other ITCs of KTE-X19 vs blinatumomab and inotuzumab vs blinatumomab (company has not considered results from an updated analysis of inotuzumab vs blinatumomab ITC with baseline covariate adjustments)
- Inappropriate to compare survival curve for inotuzumab with INO-VATE as results include population adjustment
- Company matched SCHOLAR-3 to ZUMA-3 phase 2 data only for blinatumomab comparison ERG would have preferred matching with pooled phase 1 and 2 data



Which method for indirect treatment comparison with inotuzumab is appropriate?

### Long-term mortality risk in cured population (1)

#### **ACM1** conclusions

- Cured population after KTE-X19 treatment likely to be at higher risk of mortality than general population
- Committee preferred ERG's approach, assuming a standardised mortality ratio (SMR) of 4 (sourced from Martin et al. 2010), rather than company's approach of SMR of 1.09
- Increased risk of death is linked to allo-SCT and risk of graft vs host disease before KTE-X19 treatment

#### **Company ACD response**

- Maintain base case approach of applying SMR of 1.09
- Martin et al. selected on assumption that all people receiving KTE-X19 have allo-SCT not all people will
  have prior allo-SCT in clinical practice and % had prior allo-SCT in ZUMA-3
- Only 11% of 5-year survivors in Martin et al. have acute lymphoblastic leukaemia
- People with active graft vs host disease cannot receive KTE-X19 in line with SmPC so population with prior allo-SCT receiving KTE-X19 at lower risk of death than population in Martin et al.
- Increase in SMR above 1.09 should be based on % of prior SCT in ZUMA-3 (=2.2); provided scenario using SMR 2.2



### Long-term mortality risk in cured population (2)

#### **ERG** comments

- Mortality data in Martin et al. for people 5-years relapse free, so prominence of GvHD less important
- Likely to be long term impact on health due to cumulative drug toxicities
- Company's preferred SMR source conducted in population with 0% acute lymphoblastic leukaemia
- SMR of 4 is reasonable but conducts scenarios using company's suggested value of 2.2 and a threshold analysis

### Previous technology appraisals

TA541: inotuzumab ozogamicin for treating relapsed or refractory B-cell acute lymphoblastic leukaemia

- Committee preferred assumption was to apply SMR of 4 for people still alive after 3 years who had received haematological SCT, based on lower end of estimate in Martin et al. 2010
- Note: not all people in model in current appraisal have received SCT
- Other appraisals in untreated acute myeloid leukaemia have used SMRs after stem cell transplant (committee preference: TA552, SMR 2.34; TA523, SMR 2 plausible but may be higher)



What is the appropriate mortality adjustment for people who are considered cured following KTE-X19?



### Long-term quality of life in cured population (1)

### **ACM1** conclusions

- People who are considered cured after KTE-X19 likely to have reduced HRQoL compared with the general population due to cumulative toxicity from previous treatments, risks of KTE-X19 and the disease itself
- Committee preferred ERG's approach of applying utility multiplier of 0.92 to general population utilities (calculated using ratio between value after infusion in ZUMA-3 and general population), to adjust for lower HRQoL for cured population after 3 years

### **Company ACD response**

- ERG's rationale that mortality and HRQoL are correlated is flawed; even if ERG's rationale correct, midpoint between HRQoL of responders in ZUMA-3 and general population is disproportionate to mortality risk of someone considered cured
- Disagree that mortality and HRQoL are correlated as mortality can be driven by acute events not impacting QoL
- Cured population will have HRQoL of general population in long term, which includes large proportion of people with weakened immune systems and cancer survivors
- Precedent from previous appraisals which use general population utility for cured population

### Long-term quality of life in cured population (2)

#### Stakeholder comments

- People can return to near normal life after CAR-T therapy
- Benefits of extended life far outweighs the QoL implications
- May be emotional and financial impact in early stages of treatment, but doesn't prevent normal daily activities after treatment
- Routine hospital appointments can help alleviate health-related anxiety as disease is being monitored

#### **ERG** comments

- Prefers to apply utility multiplier of 0.92
- Proportion of people with weakened immune system or cancer survivors in general population, but this will be much lower than proportion of people in the R/R ALL population
- Disagrees that there is TA precedent for using general population utility in cured population
- No precedent using general population utility when SMR applied
- Clinical expert feedback indicates cumulative drug toxicity will impact QoL for life



Is it appropriate to adjust general population utility estimates for people who are considered cured following KTE-X19?

### Inclusion of allo-SCT related costs and QALYs (1)

### **ACM1** conclusions

Costs and QALYs associated with allo-SCT should be included in the model for people having KTE-X19

### **Company ACD response**

- Sensitivity analysis censoring for allo-SCT found no difference in overall survival although not powered, analysis is informative
- Allo-SCTs in ZUMA-3 (14/78) were pre-planned due to investigational nature of trial; no survival advantage expected in people who received allo-SCT whilst in remission in ZUMA-3;
- Survival greater for people with allo-SCT and KTE-X19 than people who received SCT and other treatment
- Use of subsequent allo-SCT not anticipated in clinical practice

### Inclusion of allo-SCT related costs and QALYs (2)

#### Stakeholder comments

- ACD states that sensitivity analysis not powered but that allo-SCT could have provided a survival advantage
  - if no evidence that allo-SCT provides advantage, fair to assume there isn't one

#### **ERG** comments

- Unclear that all allo-SCT in ZUMA-3 were pre-planned
- People who received allo-SCT in ZUMA-3 may have benefited, costs were incurred and HRQoL was affected, which should be accounted for
- Clinical expert feedback that allo-SCT would be considered for people with relapsed disease who were fit



Is inclusion of costs and QALYs associated with allo-SCT appropriate?

### NHS England CAR-T cost estimate

### **Background**

NHSE confirmed CAR-T costs to be used is £41.1k (updated since ACM1)

### **Company ACD response**

- "Believe that the tariff issue is resolved at 41.1k when appropriate like for like changes have been made"
- £41.1k remains an overestimate based on available real-world evidence on costs and resource use of CAR-T delivery
- Applied £41.1k CAR-T costs in updated model but excluded from model all healthcare resource costs up to 100 days other than KTE-X19 acquisition, subsequent treatment and subsequent allo-SCT costs

#### Stakeholder comments

Fewer staff needed for CAR-T compared with SCT

#### **ERG** comments

- Applied £41.1k CAR-T cost but amended company model to also separately include costs excluded by company but not covered by overarching CAR-T cost estimate
  - ERG separately model costs for conditioning and bridging chemotherapy acquisition, administration and delivery and adverse events after treatments other than KTE-X19

**NICE** 

Abbreviations: allo-SCT, allogenic stem cell transplant; QALY, quality-adjusted life year; CDF, cancer drugs fund

### **Equalities issues**

### **ACM1** conclusions

- The marketing authorisation for KTE-X19 specifies use only for people aged 26 years and over
- For people up to age 25 with relapsed or refractory ALL, another CAR-T treatment is available within the CDF
- The availability of CAR-T for different age groups cannot be addressed within a technology appraisal, which
  make decisions within the marketing authorisation (MA for KTE-X19 specifies people aged 26 years and older)

### **Stakeholder comments**

- Committee has not addressed the age inequality issue if KTE-X19 not recommended, people aged 26 years and older are not eligible for a CAR-T therapy but people under 26 years are
- Some people are not eligible for SCT (e.g. older people) or are less likely to find a suitable stem cell donor ("white Caucasians have a 71% chance of finding the best match from an unrelated donor. This drops to a 37% chance for patients from minority ethnic backgrounds." [professional organisation submission])
  - KTE-X19 access could improve equality as otherwise SCT is the only potentially curative treatment which some people don't have access to due to age or family background



Have equalities issues been adequately considered in the recommendations?



#### CONFIDENTIAL

### **Cancer Drugs Fund**

#### The committee can make a recommendation with managed access if:

- the technology cannot be recommended for use because the evidence is too uncertain
- the technology has the plausible potential to be cost effective at the currently agreed price
- new evidence that could **sufficiently support the case for recommendation** is expected from ongoing or planned clinical trials, or could be collected from people having the technology in clinical practice
- data could feasibly be collected within a reasonable timeframe

### **ACM1** conclusions

• Not suitable for CDF: further evidence from ZUMA-3 will not address uncertainty in comparative clinicaleffectiveness evidence or uncertainty around mortality rate and utilities for people who have had KTE-X19

### **Company ACD response**

- Uncertainty around allo-SCT rate, mortality rate and quality of life in long-term survivors could be addressed in CDF
  - ZUMA-3 is ongoing and will complete in September
  - Up to 15 years follow up after receiving KTE-X19

#### **NICE**

- Background
- ACM 1 conclusions overview
- Clinical evidence
- Economic model
- Consultation responses
- Issues to consider
  - Methods for indirect treatment comparison
  - Long-term mortality risk in cured population
  - Long-term quality of life in cured population
  - Inclusion of allo-SCT costs and QALYs
  - NHSE CAR-T cost estimate
  - Equalities issues
- Cancer Drugs Fund
- ☐ Summary

### Company and ERG base case assumptions post-consultation

| Assumption                                                 | Company base case                                                                                                                | ERG base case                                                                                                                                                                                                   |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Comparison method (inotuzumab)                             | Naïve indirect comparison                                                                                                        | MAIC inverse hazard ratio                                                                                                                                                                                       |
| Comparison method (blinatumomab)                           | SCHOLAR-3 data adjusted to ZUMA-3                                                                                                | SCHOLAR-3 data adjusted to ZUMA-3                                                                                                                                                                               |
| Long-term mortality                                        | SMR 1.09                                                                                                                         | SMR 4.0                                                                                                                                                                                                         |
| Long-term quality of life                                  | General population mortality after 3 years                                                                                       | 0.92 utility multiplier applied after 3 years                                                                                                                                                                   |
| Allo-SCT costs and QALYs                                   | Excludes costs and QALYs associated with allo-SCT after KTE-X19                                                                  | Includes costs and QALYs associated with allo-<br>SCT after KTE-X19                                                                                                                                             |
| CAR-T cost estimate                                        | £41.1k - excludes other healthcare resource costs for 100 days other than KTE-X19 acquisition, subsequent treatment and allo-SCT | £41.1k - excludes other healthcare resource costs for 100 days other than KTE-X19 acquisition, subsequent treatment, allo-SCT, conditioning and bridging chemotherapy and adverse events after other treatments |
| Adjunctive chemotherapy with ponatinib (PH+ subgroup only) | 15% receive adjunct chemotherapy                                                                                                 | 0% receive adjunct chemotherapy                                                                                                                                                                                 |

ERG also corrected an error in the company's model which increased the ICER

Abbreviations: allo-SCT, allogenic stem cell transplant; QALY, quality-adjusted life year; SMR, standardised mortality rate; MAIC, matched-adjusted indirect comparison; IVIg, intravenous immunoglobulin

### **Cost-effectiveness results**

All ICERs are reported in PART 2 slides because they include confidential discounts for comparators and other treatments in the pathway

### **ACM1** conclusions

KTE-X19 meets the end-of-life criteria

### **Summary**

- Company's base case for the PH- and PH+ populations are within the range of what would usually be considered cost-effective use of NHS resources
- ERG's base case the PH- and PH+ populations are not within the range of what would usually be considered cost-effective use of NHS resources



### Impact of ERG exploratory analysis on company base case

### Description of ERG exploratory and scenario analysis

- 2: Inverse HRs from MAIC to model inotuzumab
- 4: Including allo-SCT costs and QALYs
- 5: SMR of 4 applied after 3 years
- 6: Applying utility multiplier 0.92 after 3 years
- 9: Amending NHS CAR-T cost estimate
- 10: No adjunctive chemotherapy with ponatinib
- Scenario: ERG base case plus SMR 2.2 after 3 years
- Threshold analysis: ERG base case with varying SMRs

PH- subgroup: ERG base case includes exploratory analysis 2, 4-6 and 9

PH+ subgroup: ERG base case includes exploratory analysis 2, 4-6 and 9-10



Arrow indicates direction and scale of change in costs, LYs, QALYs or ICER compared to company base case

Company also provided scenario analyses for:

- Applying a SMR of 2.2
- Assuming 50% allo-SCT costs and QALY loss

Abbreviations: allo-SCT, allogenic stem cell transplant; ICER, incremental-cost effectiveness ratio; LY, life years; QALY, quality-adjusted life year; SOC, standard of care; HR, hazard ratio; MAIC, matched-adjusted indirect treatment comparison; SMR, standardised mortality rate

### Key issues

| Issue                                                                             | Resolved?           | ICER impact |
|-----------------------------------------------------------------------------------|---------------------|-------------|
| Uncertainty around the appropriateness of the company's naïve comparison approach | No – for discussion | Moderate    |
| Life expectancy of cured patients compared to general population                  | No – for discussion | Large       |
| Long-term utility value of cured population compared with the general population  | No – for discussion | Moderate    |
| Inclusion of allo-SCT related costs and QALY loss for patients receiving KTE-X19  | No – for discussion | Large       |





Thank you.

© NICE 2023. All rights reserved. Subject to Notice of rights.